File size: 28,536 Bytes
211685a
8ece039
1483b6e
f88d400
190609e
ef0c882
0203e2d
c1fcc1b
 
5780309
c1fcc1b
 
 
5780309
 
 
c1fcc1b
d15d37b
c1fcc1b
 
 
 
 
 
 
 
 
211685a
aa2ecd6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd5cb51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d15d37b
5780309
 
d15d37b
 
5780309
1483b6e
9c59925
25f393b
 
74b563d
f88d400
9c59925
f74acac
f88d400
 
9c59925
74b563d
f88d400
1483b6e
425f676
9c59925
f74acac
d15d37b
425f676
0203e2d
 
 
425f676
0203e2d
 
 
 
74b563d
d15d37b
74b563d
 
 
 
 
 
 
9c59925
f74acac
0203e2d
 
35c6f88
 
f74acac
d15d37b
0203e2d
 
425f676
0203e2d
f74acac
d15d37b
0203e2d
425f676
35c6f88
f12be04
0203e2d
c1fcc1b
425f676
5780309
d15d37b
425f676
0203e2d
43b28bf
 
c1fcc1b
0203e2d
5780309
d15d37b
425f676
d15d37b
f88d400
9c59925
0203e2d
60ca19e
0203e2d
c1fcc1b
5780309
d15d37b
0203e2d
 
 
 
74b563d
0203e2d
 
 
74b563d
0203e2d
 
f74acac
d15d37b
35c6f88
f74acac
25f393b
74b563d
 
25f393b
aa98710
43b28bf
 
 
 
c1fcc1b
 
43b28bf
 
 
 
 
f74acac
d15d37b
43b28bf
 
25f393b
74b563d
 
25f393b
43b28bf
f12be04
43b28bf
 
aa98710
c1fcc1b
 
43b28bf
 
 
 
 
f74acac
d15d37b
35c6f88
f74acac
aa2ecd6
 
 
 
f74acac
 
aa2ecd6
f74acac
f12be04
 
25f393b
 
74b563d
 
 
 
 
f12be04
25f393b
c1fcc1b
74b563d
 
 
 
 
f12be04
25f393b
 
 
 
 
f12be04
 
f74acac
d15d37b
f12be04
 
aa2ecd6
 
 
 
f12be04
 
aa2ecd6
f74acac
f12be04
 
25f393b
 
74b563d
 
 
 
 
f12be04
25f393b
c1fcc1b
74b563d
 
 
 
 
f12be04
25f393b
 
 
 
 
f12be04
 
5780309
d15d37b
5780309
 
 
9c59925
d15d37b
5780309
 
 
 
 
9c59925
5780309
 
 
 
d15d37b
 
 
5780309
 
9c59925
5780309
 
 
9c59925
5780309
9c59925
5780309
 
 
 
f74acac
5780309
f74acac
 
 
 
 
 
5780309
74b563d
9c59925
5780309
 
 
 
9c59925
5780309
 
 
 
9c59925
 
5780309
9c59925
5780309
 
 
 
 
 
 
5f14908
 
f74acac
 
 
 
 
 
 
5f14908
 
f74acac
 
 
 
 
 
74b563d
5780309
6d93a47
 
35c6f88
6d93a47
35c6f88
2b4df81
 
6d93a47
2b4df81
 
35c6f88
 
 
6d93a47
c1fcc1b
74b563d
6d93a47
 
35c6f88
6d93a47
35c6f88
2b4df81
 
6d93a47
2b4df81
 
35c6f88
 
 
6d93a47
c1fcc1b
aa2ecd6
 
5780309
 
 
 
 
 
 
 
aa2ecd6
5780309
 
 
 
 
 
 
 
 
 
bd5cb51
 
 
 
 
 
 
 
 
aa2ecd6
 
 
c1fcc1b
5780309
 
 
 
74b563d
5780309
 
 
9c59925
 
5780309
74b563d
13068e8
2b4df81
35c6f88
 
2b4df81
35c6f88
2b4df81
35c6f88
 
2b4df81
35c6f88
2b4df81
35c6f88
 
2b4df81
35c6f88
 
 
2b4df81
35c6f88
 
2b4df81
35c6f88
 
 
 
 
 
2b4df81
35c6f88
 
 
 
 
2b4df81
74b563d
 
 
 
 
 
35c6f88
 
 
 
 
 
 
6e53f81
c206255
2b4df81
13068e8
c206255
87563ed
2b4df81
 
c206255
 
 
 
 
 
2b4df81
 
87563ed
 
 
 
 
6e53f81
c724ab8
 
 
 
 
 
 
 
 
 
 
6e53f81
a7a6666
c724ab8
c206255
8b73ee4
a4c87fe
8b73ee4
bd5cb51
8b73ee4
 
 
 
 
 
 
 
6e53f81
8b73ee4
6e53f81
2340130
6e53f81
8b73ee4
c724ab8
6e53f81
c724ab8
 
6e53f81
c724ab8
8b73ee4
c724ab8
6e53f81
c724ab8
 
6e53f81
c724ab8
13068e8
8b73ee4
 
 
c724ab8
 
2340130
8b73ee4
 
d15d37b
5780309
8b73ee4
 
 
5780309
d15d37b
8b73ee4
5780309
8b73ee4
 
 
 
d15d37b
5780309
8b73ee4
 
 
5780309
9a199bb
1483b6e
aa2ecd6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
import gradio as gr
import pandas as pd
import openpyxl
import datetime
import tempfile
import os
from openpyxl.utils.dataframe import dataframe_to_rows
import openai

# ===================== OpenAI API ํด๋ผ์ด์–ธํŠธ ์„ค์ • =====================
openai.api_key = os.getenv("OPENAI_API_KEY")

def call_api(content, system_message, max_tokens, temperature, top_p):
    """
    ChatGPT API ํ˜ธ์ถœ ํ•จ์ˆ˜.
    """
    response = openai.ChatCompletion.create(
        model="gpt-4o-mini",
        messages=[
            {"role": "system", "content": system_message},
            {"role": "user", "content": content}
        ],
        max_tokens=max_tokens,
        temperature=temperature,
        top_p=top_p
    )
    return response.choices[0].message['content']

def respond_gemini_qna(question, system_message, max_tokens, temperature, top_p, model_id):
    """
    Gemini Flash ๋ชจ๋ธ์„ ์ด์šฉํ•ด ์งˆ๋ฌธ(question)์— ๋Œ€ํ•œ ๋‹ต๋ณ€์„ ๋ฐ˜ํ™˜ํ•˜๋Š” ํ•จ์ˆ˜.
    """
    try:
        import google.generativeai as genai
    except ModuleNotFoundError:
        return ("์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค: 'google-generativeai' ๋ชจ๋“ˆ์„ ์ฐพ์„ ์ˆ˜ ์—†์Šต๋‹ˆ๋‹ค. "
                "ํ•ด๊ฒฐ ๋ฐฉ๋ฒ•: 'pip install --upgrade google-generativeai' ๋ฅผ ์‹คํ–‰ํ•˜์—ฌ ์„ค์น˜ํ•ด์ฃผ์„ธ์š”.")
    
    gemini_api_key = os.getenv("GEMINI_API_KEY")
    if not gemini_api_key:
        return "Gemini API ํ† ํฐ์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค."
    
    genai.configure(api_key=gemini_api_key)
    prompt = f"{system_message}\n\n{question}"
    try:
        model = genai.GenerativeModel(model_name=model_id)
        response = model.generate_content(prompt)
        return response.text
    except Exception as e:
        return f"์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค: {str(e)}"

def respond_o1mini_qna(question, system_message, max_tokens, temperature):
    """
    o1-mini ๋ชจ๋ธ์„ ์ด์šฉํ•ด ํ•œ ๋ฒˆ์˜ ์งˆ๋ฌธ(question)์— ๋Œ€ํ•œ ๋‹ต๋ณ€์„ ๋ฐ˜ํ™˜ํ•˜๋Š” ํ•จ์ˆ˜.
    o1-mini์—์„œ๋Š” 'system' ๋ฉ”์‹œ์ง€๋ฅผ ์ง€์›ํ•˜์ง€ ์•Š์œผ๋ฏ€๋กœ system_message์™€ question์„ ํ•˜๋‚˜์˜ 'user' ๋ฉ”์‹œ์ง€๋กœ ํ•ฉ์ณ ์ „๋‹ฌํ•ฉ๋‹ˆ๋‹ค.
    ๋˜ํ•œ, o1-mini์—์„œ๋Š” 'max_tokens' ๋Œ€์‹  'max_completion_tokens'๋ฅผ ์‚ฌ์šฉํ•˜๋ฉฐ, temperature๋Š” ๊ณ ์ •๊ฐ’ 1๋งŒ ์ง€์›ํ•ฉ๋‹ˆ๋‹ค.
    """
    openai_token = os.getenv("OPENAI_API_KEY")
    if not openai_token:
        return "OpenAI API ํ† ํฐ์ด ํ•„์š”ํ•ฉ๋‹ˆ๋‹ค."
    openai.api_key = openai_token
    combined_message = f"{system_message}\n\n{question}"
    messages = [{"role": "user", "content": combined_message}]
    try:
        response = openai.ChatCompletion.create(
            model="o1-mini",
            messages=messages,
            max_completion_tokens=max_tokens,
            temperature=1,  # ๊ณ ์ •๋œ ๊ฐ’ 1 ์‚ฌ์šฉ
        )
        assistant_message = response.choices[0].message['content']
        return assistant_message
    except Exception as e:
        return f"์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ–ˆ์Šต๋‹ˆ๋‹ค: {str(e)}"

# ===================== (1) ๋ฆฌ๋ทฐ์˜ต์…˜๋ถ„์„: ๋ฏธ์…˜ 1~9 ์ฒ˜๋ฆฌ =====================
def analyze_options(uploaded_file, selected_year, llm_model_choice):
    """
    ์—…๋กœ๋“œ๋œ ํŒŒ์ผ๋กœ๋ถ€ํ„ฐ ๋ฏธ์…˜ 1~9(์˜ต์…˜/ํ‰์  ์ง‘๊ณ„)๋ฅผ ์ˆ˜ํ–‰ํ•˜๊ณ ,
    ์ž„์‹œ ์—‘์…€ ํŒŒ์ผ๊ณผ ์„ ํƒ๋…„๋„ Top20 ์˜ต์…˜ ๋ฆฌ์ŠคํŠธ(์ „์ฒด์˜ต์…˜๋ถ„์„ ํฌํ•จ)๋ฅผ ๋ฐ˜ํ™˜ํ•œ๋‹ค.
    """
    if uploaded_file is None:
        return None, ["์ „์ฒด์˜ต์…˜๋ถ„์„"]
    
    try:
        df_upload = pd.read_excel(uploaded_file)
    except Exception as e:
        return None, ["์ „์ฒด์˜ต์…˜๋ถ„์„"]
    
    template_file = "๋ฆฌ๋ทฐ๋ถ„์„.ver1.0.xlsx"
    if not os.path.exists(template_file):
        return None, ["์ „์ฒด์˜ต์…˜๋ถ„์„"]
    
    try:
        wb = openpyxl.load_workbook(template_file)
    except Exception as e:
        return None, ["์ „์ฒด์˜ต์…˜๋ถ„์„"]
    
    # (๋ฏธ์…˜1) ์›๋ณธ๋ฐ์ดํ„ฐ ์‹œํŠธ ์ƒ์„ฑ
    if "์›๋ณธ๋ฐ์ดํ„ฐ" in wb.sheetnames:
        ws_source = wb["์›๋ณธ๋ฐ์ดํ„ฐ"]
        wb.remove(ws_source)
        ws_source = wb.create_sheet("์›๋ณธ๋ฐ์ดํ„ฐ")
    else:
        ws_source = wb.create_sheet("์›๋ณธ๋ฐ์ดํ„ฐ")
    for r_idx, row in enumerate(dataframe_to_rows(df_upload, index=False, header=True), start=1):
        for c_idx, value in enumerate(row, start=1):
            ws_source.cell(row=r_idx, column=c_idx, value=value)
    
    # ๋ฆฌ๋ทฐ ๋‚ ์งœ ์ฒ˜๋ฆฌ
    try:
        df_upload['๋ฆฌ๋ทฐ๋‚ ์งœ'] = pd.to_datetime(df_upload.iloc[:, 1], errors='coerce')
        df_upload['๋ฆฌ๋ทฐ๋‚ ์งœ'] = df_upload['๋ฆฌ๋ทฐ๋‚ ์งœ'].apply(
            lambda d: d.replace(tzinfo=None) if pd.notnull(d) and d.tzinfo is not None else d
        )
        df_valid = df_upload.dropna(subset=['๋ฆฌ๋ทฐ๋‚ ์งœ']).copy()
    except Exception as e:
        return None, ["์ „์ฒด์˜ต์…˜๋ถ„์„"]
    
    now = datetime.datetime.now()
    current_year = now.year
    start_year_val = current_year - 2
    end_year_val = current_year
    
    # ๋Œ€์‹œ๋ณด๋“œ๋ฐ์ดํ„ฐ ์‹œํŠธ
    if "๋Œ€์‹œ๋ณด๋“œ๋ฐ์ดํ„ฐ" in wb.sheetnames:
        ws_dashboard = wb["๋Œ€์‹œ๋ณด๋“œ๋ฐ์ดํ„ฐ"]
    else:
        ws_dashboard = wb.create_sheet("๋Œ€์‹œ๋ณด๋“œ๋ฐ์ดํ„ฐ")
    
    # (๋ฏธ์…˜2) ์ตœ๊ทผ 3๋…„ '๋…„์›”' ์ถ”์ด
    ws_dashboard["C2"] = str(current_year)[-2:]
    row_idx = 5
    for year in range(start_year_val, end_year_val + 1):
        for month in range(1, 13):
            count = df_valid[(df_valid['๋ฆฌ๋ทฐ๋‚ ์งœ'].dt.year == year) & (df_valid['๋ฆฌ๋ทฐ๋‚ ์งœ'].dt.month == month)].shape[0]
            ws_dashboard.cell(row=row_idx, column=3, value=count)
            row_idx += 1
    
    # (๋ฏธ์…˜3) ์ตœ๊ทผ 3๋…„ '๋…„๋„' ์ถ”์ด
    ws_dashboard["E2"] = str(current_year)[-2:]
    row_year = 5
    for y in [current_year, current_year - 1, current_year - 2]:
        count = df_valid[df_valid['๋ฆฌ๋ทฐ๋‚ ์งœ'].dt.year == y].shape[0]
        ws_dashboard.cell(row=row_year, column=6, value=count)
        row_year += 1
    
    # (๋ฏธ์…˜4) ์„ ํƒ๋œ ๋…„๋„ '์›”๋ณ„' ์ถ”์ด
    try:
        selected_year_int = int("20" + selected_year[:2])
    except Exception as e:
        return None, ["์ „์ฒด์˜ต์…˜๋ถ„์„"]
    ws_dashboard["I2"] = selected_year[:2]
    for month in range(1, 13):
        count = df_valid[(df_valid['๋ฆฌ๋ทฐ๋‚ ์งœ'].dt.year == selected_year_int) & (df_valid['๋ฆฌ๋ทฐ๋‚ ์งœ'].dt.month == month)].shape[0]
        ws_dashboard.cell(row=4 + month, column=9, value=count)
    
    # (๋ฏธ์…˜5) ์„ ํƒ๋œ ๋…„๋„ '์›”์ผ' ์ถ”์ด
    start_date = datetime.date(selected_year_int, 1, 1)
    end_date = datetime.date(selected_year_int, 12, 31)
    df_selected = df_valid[df_valid['๋ฆฌ๋ทฐ๋‚ ์งœ'].dt.year == selected_year_int].copy()
    df_selected['๋ฆฌ๋ทฐ๋‚ ์งœ_์ผ'] = df_selected['๋ฆฌ๋ทฐ๋‚ ์งœ'].dt.date
    daily_counts = df_selected.groupby('๋ฆฌ๋ทฐ๋‚ ์งœ_์ผ').size().to_dict()
    row_day = 5
    current_day = start_date
    while current_day <= end_date:
        ws_dashboard.cell(row=row_day, column=12, value=daily_counts.get(current_day, 0))
        row_day += 1
        current_day += datetime.timedelta(days=1)
    
    # (๋ฏธ์…˜6) ์ตœ๊ทผ 3๋…„ ์ „์ฒด์˜ต์…˜ ๋ฐ์ดํ„ฐ ์ž…๋ ฅ
    df_recent = df_valid[(df_valid['๋ฆฌ๋ทฐ๋‚ ์งœ'].dt.year >= start_year_val) & (df_valid['๋ฆฌ๋ทฐ๋‚ ์งœ'].dt.year <= end_year_val)].copy()
    if df_recent.shape[1] >= 3:
        df_recent['์˜ต์…˜์›๋ณธ'] = df_recent.iloc[:, 2].astype(str).fillna('')
        def get_first_option(opt_str):
            return opt_str.split(' / ')[0].strip()
        df_recent['์˜ต์…˜1'] = df_recent['์˜ต์…˜์›๋ณธ'].apply(get_first_option)
        option_counts_3y = df_recent['์˜ต์…˜1'].value_counts()
        top20_3y = option_counts_3y.head(20)
        sum_others_3y = option_counts_3y.iloc[20:].sum() if len(option_counts_3y) > 20 else 0
        row_opt = 5
        for opt_name, cnt in top20_3y.items():
            ws_dashboard.cell(row=row_opt, column=14, value=opt_name)
            ws_dashboard.cell(row=row_opt, column=15, value=cnt)
            row_opt += 1
        ws_dashboard.cell(row=25, column=15, value=sum_others_3y)
    else:
        ws_dashboard.cell(row=5, column=14, value="๊ตฌ๋งค์˜ต์…˜ ์—ด์ด ์—†์Šต๋‹ˆ๋‹ค.")
        ws_dashboard.cell(row=5, column=15, value=0)
    
    # (๋ฏธ์…˜7) ์„ ํƒ๋…„๋„ ๊ธฐ์ค€ ์˜ต์…˜ ๋ฐ์ดํ„ฐ (๋‚ด๋ฆผ์ฐจ์ˆœ)
    df_selected_year = df_valid[df_valid['๋ฆฌ๋ทฐ๋‚ ์งœ'].dt.year == selected_year_int].copy()
    if df_selected_year.shape[1] >= 3:
        df_selected_year['์˜ต์…˜์›๋ณธ'] = df_selected_year.iloc[:, 2].astype(str).fillna('')
        def get_first_option(opt_str):
            return opt_str.split(' / ')[0].strip()
        df_selected_year['์˜ต์…˜1'] = df_selected_year['์˜ต์…˜์›๋ณธ'].apply(get_first_option)
        option_counts_selected = df_selected_year['์˜ต์…˜1'].value_counts()
        top20_selected = option_counts_selected.head(20)
        sum_others_selected = option_counts_selected.iloc[20:].sum() if len(option_counts_selected) > 20 else 0
        row_opt = 5
        for opt_name, cnt in top20_selected.items():
            ws_dashboard.cell(row=row_opt, column=18, value=opt_name)
            ws_dashboard.cell(row=row_opt, column=19, value=cnt)
            row_opt += 1
        ws_dashboard.cell(row=25, column=19, value=sum_others_selected)
    else:
        ws_dashboard.cell(row=5, column=18, value="๊ตฌ๋งค์˜ต์…˜ ์—ด์ด ์—†์Šต๋‹ˆ๋‹ค.")
        ws_dashboard.cell(row=5, column=19, value=0)
    
    # (๋ฏธ์…˜8) ์ตœ๊ทผ3๋…„ ํ‰์ ํ˜„ํ™ฉ - top 20 ์˜ต์…˜
    df_recent_score = df_valid[(df_valid['๋ฆฌ๋ทฐ๋‚ ์งœ'].dt.year >= start_year_val) & (df_valid['๋ฆฌ๋ทฐ๋‚ ์งœ'].dt.year <= end_year_val)].copy()
    if df_recent_score.shape[1] >= 5:
        df_recent_score['์˜ต์…˜์›๋ณธ'] = df_recent_score.iloc[:, 2].astype(str).fillna('')
        def get_first_option(opt_str):
            return opt_str.split(' / ')[0].strip()
        df_recent_score['์˜ต์…˜1'] = df_recent_score['์˜ต์…˜์›๋ณธ'].apply(get_first_option)
        df_recent_score['ํ‰์ '] = pd.to_numeric(df_recent_score.iloc[:, 4], errors='coerce')
        df_recent_score = df_recent_score.dropna(subset=['ํ‰์ '])
        group_8 = df_recent_score.groupby(['์˜ต์…˜1', 'ํ‰์ ']).size().unstack(fill_value=0)
        group_8 = group_8.reindex(columns=[5,4,3,2,1], fill_value=0)
        group_8['total_count'] = group_8.sum(axis=1)
        group_8 = group_8.sort_values(by='total_count', ascending=False)
        top20_8 = group_8.head(20).copy()
        others_8 = group_8.iloc[20:].copy()
        sum_others_5 = others_8[5].sum()
        sum_others_4 = others_8[4].sum()
        sum_others_3 = others_8[3].sum()
        sum_others_2 = others_8[2].sum()
        sum_others_1 = others_8[1].sum()
        row_v = 5
        for opt_name, row_data in top20_8.iterrows():
            ws_dashboard.cell(row=row_v, column=22, value=opt_name)
            ws_dashboard.cell(row=row_v, column=24, value=row_data[5])
            ws_dashboard.cell(row=row_v, column=25, value=row_data[4])
            ws_dashboard.cell(row=row_v, column=26, value=row_data[3])
            ws_dashboard.cell(row=row_v, column=27, value=row_data[2])
            ws_dashboard.cell(row=row_v, column=28, value=row_data[1])
            row_v += 1
        ws_dashboard.cell(row=25, column=24, value=sum_others_5)
        ws_dashboard.cell(row=25, column=25, value=sum_others_4)
        ws_dashboard.cell(row=25, column=26, value=sum_others_3)
        ws_dashboard.cell(row=25, column=27, value=sum_others_2)
        ws_dashboard.cell(row=25, column=28, value=sum_others_1)
    else:
        ws_dashboard.cell(row=5, column=22, value="์˜ต์…˜ ๋˜๋Š” ํ‰์  ์—ด์ด ๋ถ€์กฑํ•ฉ๋‹ˆ๋‹ค.")
    
    # (๋ฏธ์…˜9) ์„ ํƒ๋…„๋„ ํ‰์ ํ˜„ํ™ฉ - top 20 ์˜ต์…˜
    df_selected_score = df_valid[df_valid['๋ฆฌ๋ทฐ๋‚ ์งœ'].dt.year == selected_year_int].copy()
    if df_selected_score.shape[1] >= 5:
        df_selected_score['์˜ต์…˜์›๋ณธ'] = df_selected_score.iloc[:, 2].astype(str).fillna('')
        def get_first_option(opt_str):
            return opt_str.split(' / ')[0].strip()
        df_selected_score['์˜ต์…˜1'] = df_selected_score['์˜ต์…˜์›๋ณธ'].apply(get_first_option)
        df_selected_score['ํ‰์ '] = pd.to_numeric(df_selected_score.iloc[:, 4], errors='coerce')
        df_selected_score = df_selected_score.dropna(subset=['ํ‰์ '])
        group_9 = df_selected_score.groupby(['์˜ต์…˜1', 'ํ‰์ ']).size().unstack(fill_value=0)
        group_9 = group_9.reindex(columns=[5,4,3,2,1], fill_value=0)
        group_9['total_count'] = group_9.sum(axis=1)
        group_9 = group_9.sort_values(by='total_count', ascending=False)
        top20_9 = group_9.head(20).copy()
        others_9 = group_9.iloc[20:].copy()
        sum_others_5 = others_9[5].sum()
        sum_others_4 = others_9[4].sum()
        sum_others_3 = others_9[3].sum()
        sum_others_2 = others_9[2].sum()
        sum_others_1 = others_9[1].sum()
        row_ad = 5
        for opt_name, row_data in top20_9.iterrows():
            ws_dashboard.cell(row=row_ad, column=30, value=opt_name)
            ws_dashboard.cell(row=row_ad, column=32, value=row_data[5])
            ws_dashboard.cell(row=row_ad, column=33, value=row_data[4])
            ws_dashboard.cell(row=row_ad, column=34, value=row_data[3])
            ws_dashboard.cell(row=row_ad, column=35, value=row_data[2])
            ws_dashboard.cell(row=row_ad, column=36, value=row_data[1])
            row_ad += 1
        ws_dashboard.cell(row=25, column=32, value=sum_others_5)
        ws_dashboard.cell(row=25, column=33, value=sum_others_4)
        ws_dashboard.cell(row=25, column=34, value=sum_others_3)
        ws_dashboard.cell(row=25, column=35, value=sum_others_2)
        ws_dashboard.cell(row=25, column=36, value=sum_others_1)
    else:
        ws_dashboard.cell(row=5, column=30, value="์˜ต์…˜ ๋˜๋Š” ํ‰์  ์—ด์ด ๋ถ€์กฑํ•ฉ๋‹ˆ๋‹ค.")
    
    # ์ž„์‹œ ์—‘์…€ ํŒŒ์ผ ์ €์žฅ
    temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".xlsx")
    wb.save(temp_file.name)
    temp_file.close()
    
    # ์„ ํƒ๋…„๋„ Top20 ์˜ต์…˜ ๋ฆฌ์ŠคํŠธ ์ƒ์„ฑ (์ „์ฒด์˜ต์…˜๋ถ„์„ ํฌํ•จ)
    top20_option_list = ["์ „์ฒด์˜ต์…˜๋ถ„์„"]
    if df_selected_year.shape[1] >= 3:
        option_counts_selected = df_selected_year['์˜ต์…˜1'].value_counts().head(20)
        for opt_name, cnt in option_counts_selected.items():
            top20_option_list.append(f"{opt_name}({cnt})")
    return temp_file.name, top20_option_list

# ===================== (2) ๋ฆฌ๋ทฐ๋ถ„์„: ๋ฏธ์…˜ 10~12 ์‹คํ–‰ =====================
def analyze_reviews(partial_file, selected_option, llm_model_choice):
    """
    '๋ฆฌ๋ทฐ์˜ต์…˜๋ถ„์„' ๊ฒฐ๊ณผ ์—‘์…€๊ณผ ์„ ํƒ ์˜ต์…˜(๋˜๋Š” ์ „์ฒด์˜ต์…˜๋ถ„์„)์„ ๋ฐ”ํƒ•์œผ๋กœ
    ๋ฏธ์…˜ 10~12(์ฃผ์š”๊ธ์ •/๋ถ€์ • ๋ฆฌ๋ทฐ ์ถ”์ถœ + LLM ๋ถ„์„)๋ฅผ ์ˆ˜ํ–‰ํ•˜๊ณ ,
    ์ตœ์ข… ์—‘์…€ ํŒŒ์ผ๊ณผ ํ…์ŠคํŠธ ๋ถ„์„ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ˜ํ™˜ํ•œ๋‹ค.
    """
    if partial_file is None:
        return None, "", "", "", ""
    try:
        wb = openpyxl.load_workbook(partial_file)
    except Exception as e:
        return None, "", "", "", ""
    if "์›๋ณธ๋ฐ์ดํ„ฐ" not in wb.sheetnames:
        return None, "", "", "", ""
    ws_source = wb["์›๋ณธ๋ฐ์ดํ„ฐ"]
    data = ws_source.values
    cols = next(data)
    df_upload = pd.DataFrame(data, columns=cols)
    
    # (๋ฏธ์…˜10) ์ฃผ์š” ๋ฆฌ๋ทฐ ๋‚ด์šฉ ์‹œํŠธ ์ƒ์„ฑ
    if "์ฃผ์š” ๋ฆฌ๋ทฐ ๋‚ด์šฉ" in wb.sheetnames:
        ws_review = wb["์ฃผ์š” ๋ฆฌ๋ทฐ ๋‚ด์šฉ"]
        wb.remove(ws_review)
        ws_review = wb.create_sheet("์ฃผ์š” ๋ฆฌ๋ทฐ ๋‚ด์šฉ")
    else:
        ws_review = wb.create_sheet("์ฃผ์š” ๋ฆฌ๋ทฐ ๋‚ด์šฉ")
    if df_upload.shape[1] < 5:
        ws_review.cell(row=1, column=1, value="๋ฆฌ๋ทฐ๋‚ด์šฉ ๋ฐ ํ‰์  ์—ด์ด ๋ถ€์กฑํ•ฉ๋‹ˆ๋‹ค.")
        return None, "", "", "", ""
    df_upload['์˜ต์…˜์›๋ณธ'] = df_upload.iloc[:, 2].astype(str).fillna('')
    if selected_option == "์ „์ฒด์˜ต์…˜๋ถ„์„":
        df_filtered = df_upload.copy()
    else:
        selected_opt_name = selected_option.rsplit("(", 1)[0].strip()
        def get_first_option(opt_str):
            return opt_str.split(' / ')[0].strip()
        df_upload['์˜ต์…˜1'] = df_upload['์˜ต์…˜์›๋ณธ'].apply(get_first_option)
        df_filtered = df_upload[df_upload['์˜ต์…˜1'] == selected_opt_name].copy()
    
    # (๋ฏธ์…˜10) ์ฃผ์š” ๋ฆฌ๋ทฐ ๋‚ด์šฉ(ํ‰์ =3 ์ œ์™ธ) + ๊ธ€์ž์ˆ˜ ์—ด ์ƒ์„ฑ โ†’ ๋‚ด๋ฆผ์ฐจ์ˆœ ์ •๋ ฌ
    df_review = df_filtered.copy()
    df_review = df_review[df_review.iloc[:,4] != 3]
    df_review['๊ธ€์ž์ˆ˜'] = df_review.iloc[:,3].astype(str).apply(len)
    df_review = df_review.sort_values(by='๊ธ€์ž์ˆ˜', ascending=False)
    for r_idx, row in enumerate(dataframe_to_rows(df_review, index=False, header=True), start=1):
        for c_idx, value in enumerate(row, start=1):
            ws_review.cell(row=r_idx, column=c_idx, value=value)
    
    # (๋ฏธ์…˜11) ๊ธ์ •/๋ถ€์ • ๋ฆฌ๋ทฐ ์ถ”์ถœ
    df_positive = df_review[(df_review.iloc[:,4] == 5) & (df_review['๊ธ€์ž์ˆ˜'] < 500)].copy()
    if df_positive.shape[0] < 20:
        df_positive_4 = df_review[(df_review.iloc[:,4] == 4) & (df_review['๊ธ€์ž์ˆ˜'] < 500)]
        df_positive = pd.concat([df_positive, df_positive_4])
    df_positive = df_positive.head(20)
    positive_reviews = ""
    for idx, row in df_positive.iterrows():
        positive_reviews += f"์•„์ด๋””: {row.iloc[0]}, ์ ์ˆ˜: {row.iloc[4]}, ๊ธ€์ž์ˆ˜: {row['๊ธ€์ž์ˆ˜']}\n๋ฆฌ๋ทฐ: {row.iloc[3]}\n\n"
    
    df_negative = df_review[(df_review.iloc[:,4] == 1) & (df_review['๊ธ€์ž์ˆ˜'] < 500)].copy()
    if df_negative.shape[0] < 30:
        df_negative_2 = df_review[(df_review.iloc[:,4] == 2) & (df_review['๊ธ€์ž์ˆ˜'] < 500)]
        df_negative = pd.concat([df_negative, df_negative_2])
    df_negative = df_negative.head(30)
    negative_reviews = ""
    for idx, row in df_negative.iterrows():
        negative_reviews += f"์•„์ด๋””: {row.iloc[0]}, ์ ์ˆ˜: {row.iloc[4]}, ๊ธ€์ž์ˆ˜: {row['๊ธ€์ž์ˆ˜']}\n๋ฆฌ๋ทฐ: {row.iloc[3]}\n\n"
    
    # (๋ฏธ์…˜12) LLM์„ ์ด์šฉํ•œ ๋ฆฌ๋ทฐ ๋ถ„์„
    positive_system_msg = (
        "๐Ÿ“ ๊ธ์ •๋ฆฌ๋ทฐ ๋ถ„์„:\n"
        "๋„ˆ๋Š” ๋ฆฌ๋ทฐ ๋ฐ์ดํ„ฐ๋ฅผ ๋ถ„์„ํ•˜๋Š” ๋น…๋ฐ์ดํ„ฐ ๋ถ„์„๊ฐ€์ด๋‹ค. ๊ณ ๊ฐ์˜ ๋ฆฌ๋ทฐ ๋ฐ์ดํ„ฐ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๊ธ์ •์ ์ธ ์˜๊ฒฌ๋งŒ์„ ๋ถ„์„ํ•ด๋ผ. ๋ฐ˜๋“œ์‹œ ์ œ๊ณต๋œ ๋ฆฌ๋ทฐ ๋ฐ์ดํ„ฐ์—์„œ๋งŒ ๋ถ„์„ํ•˜๋ฉฐ, ๋„ˆ์˜ ์ƒ๊ฐ์€ ํฌํ•จํ•˜์ง€ ๋ง ๊ฒƒ.\n"
        "[๋ถ„์„ ์กฐ๊ฑด]\n"
        "- ๋ฐ˜๋“œ์‹œ ๊ธ์ •์ ์ธ ์˜๊ฒฌ๋งŒ ๋ถ„์„ํ•˜๊ณ , ๋ถ€์ •์ ์ธ ์˜๊ฒฌ์€ ์ œ์™ธํ•  ๊ฒƒ.\n"
        "- ๊ธฐ๋Šฅ ๋ฐ ์„ฑ๋Šฅ, ๊ฐ์„ฑ, ์‹ค์ œ ์‚ฌ์šฉ, ๋ฐฐ์†ก, ํƒ€๊ฒŸ๋ณ„ ๊ด€์ ์œผ๋กœ ๋ถ„์„ํ•  ๊ฒƒ.\n"
        "- ๋งˆ์ผ€ํŒ…์— ํ™œ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๊ณ ๊ฐ์˜ ์‹ค์ œ ๋ฆฌ๋ทฐ ๋‹จ์–ด๋ฅผ ๋ฐ˜๋“œ์‹œ ํฌํ•จํ•  ๊ฒƒ.\n"
        "[์ถœ๋ ฅ ํ˜•ํƒœ]\n"
        "- ๊ฐ๊ฐ์˜ ์ œ๋ชฉ ์•ž์—๋Š” '๐Ÿ“' ์ด๋ชจ์ง€๋ฅผ ์‚ฌ์šฉํ•˜๋ฉฐ, '#'๋‚˜ '##'์€ ์‚ฌ์šฉํ•˜์ง€ ๋ง ๊ฒƒ.\n"
        "- ๊ฐ€์žฅ ๋งˆ์ง€๋ง‰์—๋Š” \"๐Ÿ†์ข…ํ•ฉ์˜๊ฒฌ\"์ด๋ผ๋Š” ์ œ๋ชฉ์œผ๋กœ ์ข…ํ•ฉ ์˜๊ฒฌ์„ ์ž‘์„ฑํ•˜๋ผ.\n"
        "   - ์ข…ํ•ฉ์˜๊ฒฌ์—๋Š” ํ•ญ๋ชฉ๋ณ„ ์ œ๋ชฉ์„ ์ œ์™ธํ•˜๊ณ  ์„œ์ˆ ์‹ ๋ฌธ์žฅ์œผ๋กœ ์ž‘์„ฑํ•  ๊ฒƒ.\n"
        "   - ์ด์–ด์„œ '๐Ÿน ๊ฐ•์ '๊ณผ '๐Ÿน ๊ธฐํšŒ' ์ œ๋ชฉ์œผ๋กœ SWOT ๋ถ„์„ ๊ฒฐ๊ณผ๋ฅผ ์ œ๊ณตํ•  ๊ฒƒ.\n"
        "- ์‹ค์ œ ๊ณ ๊ฐ์˜ ๋ฆฌ๋ทฐ์—์„œ ์‚ฌ์šฉ๋œ ๋‹จ์–ด๋ฅผ ๋ฐ˜๋“œ์‹œ ํฌํ•จํ•  ๊ฒƒ."
    )
    positive_user_msg = "๋‹ค์Œ ๋ฆฌ๋ทฐ๋ฅผ ๋ถ„์„ํ•ด ์ฃผ์„ธ์š”:\n" + positive_reviews
    
    negative_system_msg = (
        "๐Ÿ“ ๋ถ€์ •๋ฆฌ๋ทฐ ๋ถ„์„:\n"
        "๋„ˆ๋Š” ๋ฆฌ๋ทฐ ๋ฐ์ดํ„ฐ๋ฅผ ๋ถ„์„ํ•˜๋Š” ๋น…๋ฐ์ดํ„ฐ ๋ถ„์„๊ฐ€์ด๋‹ค. ๊ณ ๊ฐ์˜ ๋ฆฌ๋ทฐ ๋ฐ์ดํ„ฐ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ๋ถ€์ •์ ์ธ ์˜๊ฒฌ๋งŒ์„ ๋ถ„์„ํ•ด๋ผ. ๋ฐ˜๋“œ์‹œ ์ œ๊ณต๋œ ๋ฆฌ๋ทฐ ๋ฐ์ดํ„ฐ์—์„œ๋งŒ ๋ถ„์„ํ•˜๋ฉฐ, ๋„ˆ์˜ ์ƒ๊ฐ์€ ํฌํ•จํ•˜์ง€ ๋ง ๊ฒƒ.\n"
        "[๋ถ„์„ ์กฐ๊ฑด]\n"
        "- ๋ถ€์ •์ ์ธ ์˜๊ฒฌ๋งŒ ๋ถ„์„ํ•˜๊ณ , ๊ธ์ •์ ์ธ ์˜๊ฒฌ์€ ์ œ์™ธํ•  ๊ฒƒ.\n"
        "- ๊ธฐ๋Šฅ ๋ฐ ์„ฑ๋Šฅ, ๊ฐ์„ฑ, ์‹ค์ œ ์‚ฌ์šฉ, ๋ฐฐ์†ก, ๊ณ ๊ฐ์˜ ๋ถ„๋…ธ ๊ด€์ ์œผ๋กœ ๋ถ„์„ํ•  ๊ฒƒ.\n"
        "- ๋ถ€์ •์ ์ธ ๋ฆฌ๋ทฐ ๋ถ„์„ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ '๊ฐœ์„ ํ•  ์ '์„ ์ถœ๋ ฅํ•  ๊ฒƒ.\n"
        "[์ถœ๋ ฅ ํ˜•ํƒœ]\n"
        "- ๊ฐ๊ฐ์˜ ์ œ๋ชฉ ์•ž์—๋Š” '๐Ÿ“' ์ด๋ชจ์ง€๋ฅผ ์‚ฌ์šฉํ•˜๋ฉฐ, '#'๋‚˜ '##'์€ ์‚ฌ์šฉํ•˜์ง€ ๋ง ๊ฒƒ.\n"
        "- ๊ฐ€์žฅ ๋งˆ์ง€๋ง‰์—๋Š” \"๐Ÿ“ข๊ฐœ์„ ํ•  ์ \"์ด๋ผ๋Š” ์ œ๋ชฉ์œผ๋กœ ๊ฐœ์„ ํ•  ์ ์„ ์ž‘์„ฑํ•˜๋ผ.\n"
        "   - ๊ฐœ์„ ํ•  ์ ์—๋Š” ํ•ญ๋ชฉ๋ณ„ ์ œ๋ชฉ์„ ์ œ์™ธํ•˜๊ณ  ์„œ์ˆ ์‹ ๋ฌธ์žฅ์œผ๋กœ ์ž‘์„ฑํ•  ๊ฒƒ.\n"
        "   - ์ด์–ด์„œ '๐Ÿ’‰ ์•ฝ์ '๊ณผ '๐Ÿ’‰ ์œ„ํ˜‘' ์ œ๋ชฉ์œผ๋กœ SWOT ๋ถ„์„ ๊ฒฐ๊ณผ๋ฅผ ์ œ๊ณตํ•  ๊ฒƒ.\n"
        "- ์‹ค์ œ ๊ณ ๊ฐ์˜ ๋ฆฌ๋ทฐ์—์„œ ์‚ฌ์šฉ๋œ ๋‹จ์–ด๋ฅผ ๋ฐ˜๋“œ์‹œ ํฌํ•จํ•  ๊ฒƒ."
    )
    negative_user_msg = "๋‹ค์Œ ๋ฆฌ๋ทฐ๋ฅผ ๋ถ„์„ํ•ด ์ฃผ์„ธ์š”:\n" + negative_reviews
    
    if llm_model_choice == "ChatGPT (gpt-4o-mini)":
        positive_analysis = call_api(
            positive_user_msg, positive_system_msg,
            max_tokens=15000, temperature=0.3, top_p=0.95
        )
        negative_analysis = call_api(
            negative_user_msg, negative_system_msg,
            max_tokens=15000, temperature=0.3, top_p=0.95
        )
    elif llm_model_choice == "Gemini Flash (gemini-2.0-flash)":
        positive_analysis = respond_gemini_qna(
            positive_user_msg, positive_system_msg,
            max_tokens=15000, temperature=0.3, top_p=0.95,
            model_id="gemini-2.0-flash"
        )
        negative_analysis = respond_gemini_qna(
            negative_user_msg, negative_system_msg,
            max_tokens=15000, temperature=0.3, top_p=0.95,
            model_id="gemini-2.0-flash"
        )
    elif llm_model_choice == "o1-mini":
        positive_analysis = respond_o1mini_qna(
            positive_user_msg, positive_system_msg,
            max_tokens=15000, temperature=1
        )
        negative_analysis = respond_o1mini_qna(
            negative_user_msg, negative_system_msg,
            max_tokens=15000, temperature=1
        )
    else:
        positive_analysis = "LLM ๋ชจ๋ธ ์„ ํƒ ์˜ค๋ฅ˜"
        negative_analysis = "LLM ๋ชจ๋ธ ์„ ํƒ ์˜ค๋ฅ˜"
    
    if "๋Œ€์‹œ๋ณด๋“œ๋ฐ์ดํ„ฐ" in wb.sheetnames:
        ws_dashboard = wb["๋Œ€์‹œ๋ณด๋“œ๋ฐ์ดํ„ฐ"]
        ws_dashboard["AL5"] = positive_analysis
        ws_dashboard["AM5"] = negative_analysis
    
    final_file = tempfile.NamedTemporaryFile(delete=False, suffix=".xlsx")
    wb.save(final_file.name)
    final_file.close()
    
    return final_file.name, positive_reviews, negative_reviews, positive_analysis, negative_analysis

# ===================== Gradio UI ๊ตฌ์„ฑ (HTML/CSS ์ปค์Šคํ„ฐ๋งˆ์ด์ง• ์ ์šฉ) =====================
custom_css = """
body {
    background: #f7f7f7;
    font-family: 'Arial', sans-serif;
}
.gradio-container {
    padding: 20px;
}
.custom-header {
    text-align: center;
    font-size: 36px;
    font-weight: bold;
    margin-bottom: 20px;
    color: #333;
}
.custom-frame {
    border: 2px solid #ccc;
    border-radius: 20px;
    padding: 20px;
    margin: 10px 0;
    background-color: #fff;
}
.custom-button {
    border-radius: 20px !important;
    background: #4caf50 !important;
    color: white !important;
    font-size: 20px !important;
    padding: 10px 20px !important;
}
.custom-title {
    font-size: 28px;
    font-weight: bold;
    margin-bottom: 10px;
    color: #555;
}
.custom-subtitle {
    font-size: 22px;
    font-weight: bold;
    margin-bottom: 8px;
    color: #666;
}
.instructions {
    background-color: #e0f7fa;
    border: 2px dashed #00796b;
    border-radius: 15px;
    padding: 15px;
    font-size: 18px;
    color: #004d40;
    margin-bottom: 20px;
    text-align: left;
}
"""

# ๊ฐ„๋‹จํ•˜๊ณ  ์ขŒ์ธก ์ •๋ ฌ๋œ ๋‹จ๊ณ„๋ณ„ ์‚ฌ์šฉ์„ค๋ช…์„œ (๋จผ์ € ์ •์˜)
usage_instructions = """
<div class="instructions">
  <p style="font-size:24px; font-weight:bold;">๐Ÿ“– ์‚ฌ์šฉ์„ค๋ช…์„œ</p>
  <p style="font-size:16px;">
    1๋‹จ๊ณ„: ์ขŒ์ธก "๐Ÿ“‘ ๋ฐ์ดํ„ฐ ์ž…๋ ฅ"์—์„œ ํŒŒ์ผ ์—…๋กœ๋“œ์™€ ๋ถ„์„๋…„๋„ ์„ ํƒ ํ›„, ๋ฆฌ๋ทฐ์˜ต์…˜๋ถ„์„ ๋ฒ„ํŠผ ํด๋ฆญ<br>
    2๋‹จ๊ณ„: ํ•˜๋‹จ "๐Ÿ“‘ ๋ฆฌ๋ทฐ๋ถ„์„ ์˜ต์…˜์„ ํƒ"์—์„œ LLM ๋ชจ๋ธ๊ณผ ์•„์ดํ…œ์˜ต์…˜ ์„ ํƒ ํ›„, ๋ฆฌ๋ทฐ๋ถ„์„ ์˜ต์…˜์„ ํƒ ๋ฒ„ํŠผ ํด๋ฆญ<br>
    3๋‹จ๊ณ„: ์šฐ์ธก "๐Ÿ“‘๋ถ„์„๋ณด๊ณ ์„œ ๋‹ค์šด๋กœ๋“œ"์—์„œ ๋ณด๊ณ ์„œ๋ฅผ ๋‹ค์šด๋กœ๋“œํ•˜๊ณ  ๊ฒฐ๊ณผ ํ™•์ธ<br>
  </p>
</div>
"""

with gr.Blocks(css=custom_css, title="๋ฆฌ๋ทฐ ๋ถ„์„ ์„œ๋น„์Šค") as demo:
    gr.HTML("<div class='custom-header'>๐ŸŒŸ ๊ณ ๊ฐ ๋ฆฌ๋ทฐ ๋ถ„์„ ์„œ๋น„์Šค ๐ŸŒŸ</div>")
    gr.HTML(usage_instructions)

    # [๋ฐ์ดํ„ฐ ์ž…๋ ฅ ๋ฐ ๋ถ„์„๋ณด๊ณ ์„œ ๋‹ค์šด๋กœ๋“œ ํ”„๋ ˆ์ž„] (์ขŒ/์šฐ ๋ฐฐ์น˜)
    with gr.Row():
         with gr.Column(elem_classes="custom-frame"):
              gr.HTML("<div class='custom-title'>๐Ÿ“‘ ๋ฐ์ดํ„ฐ ์ž…๋ ฅ</div>")
              file_input = gr.File(label="์›๋ณธ ์—‘์…€ ํŒŒ์ผ ์—…๋กœ๋“œ", file_types=[".xlsx"])
              year_radio = gr.Radio(
                  choices=[f"{str(y)[-2:]}๋…„" for y in range(datetime.datetime.now().year, datetime.datetime.now().year-5, -1)],
                  label="๋ถ„์„๋…„๋„ ์„ ํƒ",
                  value=f"{str(datetime.datetime.now().year)[-2:]}๋…„"
              )
              analyze_button = gr.Button("๋ฆฌ๋ทฐ์˜ต์…˜๋ถ„์„", elem_classes="custom-button")
         with gr.Column(elem_classes="custom-frame"):
              gr.HTML("<div class='custom-title'>๐Ÿ“‘๋ถ„์„๋ณด๊ณ ์„œ ๋‹ค์šด๋กœ๋“œ</div>")
              download_final_output = gr.File(label="๋ณด๊ณ ์„œ ๋‹ค์šด๋กœ๋“œ")
    
    # [๋ฆฌ๋ทฐ๋ถ„์„ ํ”„๋ ˆ์ž„] (๋ฐ์ดํ„ฐ ์ž…๋ ฅ ํ”„๋ ˆ์ž„๊ณผ ๋ณ„๋„; ์ดˆ๊ธฐ์—๋Š” ์ˆจ๊น€)
    with gr.Column(elem_classes="custom-frame", visible=False) as review_analysis_frame:
         gr.HTML("<div class='custom-title'>๋ฆฌ๋ทฐ๋ถ„์„ ์˜ต์…˜์„ ํƒ</div>")
         llm_model_radio = gr.Radio(
             choices=["ChatGPT (gpt-4o-mini)", "Gemini Flash (gemini-2.0-flash)", "o1-mini"],
             label="LLM ๋ชจ๋ธ ์„ ํƒ",
             value="ChatGPT (gpt-4o-mini)"
         )
         top20_dropdown = gr.Dropdown(
             label="์•„์ดํ…œ์˜ต์…˜ ๋ถ„์„",
             choices=["์ „์ฒด์˜ต์…˜๋ถ„์„"],
             value="์ „์ฒด์˜ต์…˜๋ถ„์„"
         )
         review_button = gr.Button("๐Ÿ“‘ ๋ฆฌ๋ทฐ๋ถ„์„ ์˜ต์…˜์„ ํƒ", elem_classes="custom-button")
    
    # [๋ถ„์„ ๊ฒฐ๊ณผ ํ”„๋ ˆ์ž„] - ์ƒ๋‹จ ์ œ๋ชฉ ์ถ”๊ฐ€: "๐Ÿ“‘ ์˜ต์…˜๋ณ„ ๋ฆฌ๋ทฐ๋ถ„์„"
    with gr.Column(elem_classes="custom-frame"):
         gr.HTML("<div class='custom-title'>๐Ÿ“‘ ์˜ต์…˜๋ณ„ ๋ฆฌ๋ทฐ๋ถ„์„</div>")
         with gr.Row():
              with gr.Column(elem_classes="custom-frame"):
                   gr.HTML("<div class='custom-subtitle'>โœจ ์ฃผ์š”๊ธ์ •๋ฆฌ๋ทฐ</div>")
                   positive_output = gr.Textbox(label="๊ธ์ •๋ฆฌ๋ทฐ๋ฆฌ์ŠคํŠธ(20๊ฐœ)", lines=10)
              with gr.Column(elem_classes="custom-frame"):
                   gr.HTML("<div class='custom-subtitle'>โœจ ์ฃผ์š”๋ถ€์ •๋ฆฌ๋ทฐ</div>")
                   negative_output = gr.Textbox(label="๋ถ€์ •๋ฆฌ๋ทฐ๋ฆฌ์ŠคํŠธ(30๊ฐœ)", lines=10)
         with gr.Row():
              with gr.Column(elem_classes="custom-frame"):
                   gr.HTML("<div class='custom-subtitle'>๐Ÿ“ข ๊ธ์ •๋ฆฌ๋ทฐ ๋ถ„์„</div>")
                   positive_analysis_output = gr.Textbox(label="๊ธ์ •๋ฆฌ๋ทฐ ๋ถ„์„", lines=8)
              with gr.Column(elem_classes="custom-frame"):
                   gr.HTML("<div class='custom-subtitle'>๐Ÿ“ข ๋ถ€์ •๋ฆฌ๋ทฐ ๋ถ„์„</div>")
                   negative_analysis_output = gr.Textbox(label="๋ถ€์ •๋ฆฌ๋ทฐ ๋ถ„์„", lines=8)
    
    # hidden state: ๋ฆฌ๋ทฐ์˜ต์…˜๋ถ„์„ ๊ฒฐ๊ณผ ์—‘์…€ ํŒŒ์ผ ์ €์žฅ
    partial_file_state = gr.State()

    # [๋ฐ์ดํ„ฐ ์ž…๋ ฅ] - ๋ฆฌ๋ทฐ์˜ต์…˜๋ถ„์„ ๋ฒ„ํŠผ ํด๋ฆญ ์‹œ ์‹คํ–‰:
    # ๋ฆฌ๋ทฐ์˜ต์…˜๋ถ„์„ ๊ฒฐ๊ณผ๋ฅผ ์ €์žฅํ•˜๊ณ , ๋ฆฌ๋ทฐ๋ถ„์„ ํ”„๋ ˆ์ž„์„ ๋ณด์ด๊ฒŒ ํ•˜๋ฉฐ ์•„์ดํ…œ์˜ต์…˜ ๋ถ„์„ ๋“œ๋กญ๋‹ค์šด ์—…๋ฐ์ดํŠธ
    def on_click_analyze_options(uploaded_file, selected_year):
         partial_file, top20_list = analyze_options(uploaded_file, selected_year, "ChatGPT (gpt-4o-mini)")
         return partial_file, gr.update(visible=True), gr.update(choices=top20_list, value="์ „์ฒด์˜ต์…˜๋ถ„์„")
    
    analyze_button.click(
         fn=on_click_analyze_options,
         inputs=[file_input, year_radio],
         outputs=[partial_file_state, review_analysis_frame, top20_dropdown]
    )
    
    # [๋ฆฌ๋ทฐ๋ถ„์„] - ๋ฆฌ๋ทฐ๋ถ„์„ ๋ฒ„ํŠผ ํด๋ฆญ ์‹œ ์‹คํ–‰
    def on_click_analyze_reviews(partial_file, selected_option, llm_model):
         final_file, pos_reviews, neg_reviews, pos_analysis, neg_analysis = analyze_reviews(
             partial_file, selected_option, llm_model
         )
         return final_file, pos_reviews, neg_reviews, pos_analysis, neg_analysis
    
    review_button.click(
         fn=on_click_analyze_reviews,
         inputs=[partial_file_state, top20_dropdown, llm_model_radio],
         outputs=[download_final_output, positive_output, negative_output, positive_analysis_output, negative_analysis_output]
    )

if __name__ == "__main__":
    demo.launch()