File size: 44,154 Bytes
3e42629
 
 
3b3e0b9
3e42629
bb4f8ed
3b3e0b9
 
 
 
 
b3ad8fa
 
 
 
3b3e0b9
b3ad8fa
 
 
 
3b3e0b9
9fa396f
3b3e0b9
 
 
 
 
 
 
 
2940309
 
 
 
3b3e0b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2940309
 
 
 
 
 
3b3e0b9
 
 
 
 
 
 
 
3e42629
 
 
 
 
 
 
3b3e0b9
3e42629
 
 
 
 
 
 
 
 
 
 
 
296015b
3e42629
 
 
 
 
 
 
 
 
 
 
 
 
2940309
296015b
3e42629
296015b
3b3e0b9
 
 
3e42629
 
 
3b3e0b9
3e42629
 
 
 
 
3b3e0b9
 
 
 
 
 
 
3e42629
 
 
3b3e0b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e42629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b3e0b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e42629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b3e0b9
3e42629
 
 
 
3b3e0b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e42629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b3e0b9
 
 
 
 
 
 
 
 
 
 
 
 
3e42629
 
 
 
 
 
 
 
 
 
3b3e0b9
 
3e42629
 
3b3e0b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e42629
 
3b3e0b9
 
 
 
 
 
 
 
 
 
 
3e42629
3b3e0b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e42629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b3e0b9
 
 
 
 
 
3e42629
 
 
 
 
 
 
 
 
 
 
 
 
3b3e0b9
 
3e42629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b3e0b9
 
3e42629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b3e0b9
 
 
 
 
 
 
 
 
 
 
3e42629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b3e0b9
3e42629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b3e0b9
 
3e42629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b3e0b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e42629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b3e0b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e42629
 
 
 
 
 
 
 
 
 
 
3b3e0b9
 
 
 
 
 
3e42629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b3e0b9
 
 
 
 
 
 
 
3e42629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b3e0b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e42629
 
 
 
 
 
 
 
 
 
 
 
3b3e0b9
 
3e42629
 
 
 
3b3e0b9
 
3e42629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b3e0b9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
import PyPDF2
import re
from collections import Counter
import os
import nltk
import transformers, logging, contextlib

def setup_cache_directories():
    """Setup cache directories for transformers and torch with proper permissions"""
    try:
        # Create cache directories in /app with proper permissions
        cache_dirs = {
             'HF_HOME': '/app/.cache/huggingface',
             'TORCH_HOME': '/app/.cache/torch'
        }
        
        for env_var, path in cache_dirs.items():
            os.makedirs(path, exist_ok=True)
            os.chmod(path, 0o777)
            os.environ[env_var] = path
        
        # print(f"Cache directories setup complete: {cache_dirs}")
        
    except Exception as e:
        print(f"Warning: Cache directory setup failed: {e}")

# Set NLTK data path BEFORE any other NLTK imports
def setup_nltk_data():
    """Setup NLTK data directory in container-writable location"""
    try:
         #  Silence HuggingFace / Transformers logging
        transformers.utils.logging.set_verbosity_error()
        logging.getLogger("transformers").setLevel(logging.ERROR)

        # Use the app directory for NLTK data in container
        nltk_data_dir = '/app/nltk_data'
        
        # Ensure directory exists and is writable
        os.makedirs(nltk_data_dir, exist_ok=True)
        
        # Set NLTK data path - this must be done first
        nltk.data.path.clear()
        nltk.data.path.append(nltk_data_dir)
        
        # Also set the NLTK_DATA environment variable
        os.environ['NLTK_DATA'] = nltk_data_dir
        
        # Setup cache directories for transformers and torch
        setup_cache_directories()
        
        # Download required resources if not present
        required_resources = [
            'punkt',
            'punkt_tab', 
            'stopwords',
            'wordnet',
            'omw-1.4'
        ]
        
        for resource in required_resources:
            try:
                nltk.data.find(f'tokenizers/{resource}' if 'punkt' in resource else f'corpora/{resource}')
            except LookupError:
                 with contextlib.redirect_stdout(None):
                    with contextlib.redirect_stderr(None):
                        try:
                            nltk.download(resource, download_dir=nltk_data_dir, quiet=True)
                        except:
                            pass  # completely silent fallback
                    
    except Exception as e:
        print(f"Warning: NLTK setup failed: {e}")

# Call setup immediately after basic imports
setup_nltk_data()

# Now import NLTK modules after setup
from nltk.tokenize import sent_tokenize, word_tokenize
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
import string
from datetime import datetime, timedelta
import json
import torch
from transformers import T5ForConditionalGeneration, T5Tokenizer, pipeline, BlipProcessor, BlipForConditionalGeneration, AutoTokenizer, AutoModelForSeq2SeqLM
import warnings
import fitz  # PyMuPDF
from PIL import Image, ImageEnhance, ImageFilter
import io
import base64
import os
import pytesseract
import hashlib
import logging
import getpass
import tempfile
import shutil
import numpy as np
from fastapi import FastAPI
from fastapi.staticfiles import StaticFiles
from pydantic import BaseModel
from typing import List, Dict, Any, Optional

from cryptography.fernet import Fernet
from cryptography.hazmat.primitives import hashes
from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC
try:
    import cv2
    import numpy as np
    OPENCV_AVAILABLE = True
except ImportError:
   # print("OpenCV not available. Using PIL for image preprocessing.")
    from PIL import Image
    OPENCV_AVAILABLE = False
    
from questions import THESIS_QUESTIONS
from pubtator_annotator import PubTatorAnnotator

warnings.filterwarnings('ignore')

app = FastAPI(title='AI (PDF→Summary+QnA+Scores)', version='0.2.1')
app.mount("/static", StaticFiles(directory="static"), name="static")

class HIPAALogger:
    """HIPAA-compliant audit logging system"""
    
    def __init__(self, log_file="hipaa_audit.log"):
        # Create logs directory if it doesn't exist
        log_dir = '/app/logs'
        os.makedirs(log_dir, exist_ok=True)
        
        # Use the new log file path
        self.log_file = os.path.join(log_dir, log_file)
        self.logger = None
        self.setup_logging()
    
    def setup_logging(self):
        """Setup secure audit logging with fallback to console"""
        try:
            # Try to create file handler
            logging.basicConfig(
                filename=self.log_file,
                level=logging.INFO,
                format='%(asctime)s - %(levelname)s - %(message)s',
                datefmt='%Y-%m-%d %H:%M:%S'
            )
            self.logger = logging.getLogger('HIPAA_AUDIT')
            print(f"HIPAA logging initialized: {self.log_file}")
        except PermissionError:
            # Fallback to console logging if file writing fails
            logging.basicConfig(
                level=logging.INFO,
                format='%(asctime)s - %(levelname)s - %(message)s',
                datefmt='%Y-%m-%d %H:%M:%S'
            )
            self.logger = logging.getLogger('HIPAA_AUDIT')
            print(f"Warning: Cannot write to {self.log_file}, using console logging")
        except Exception as e:
            # Fallback to console logging for any other error
            logging.basicConfig(
                level=logging.INFO,
                format='%(asctime)s - %(levelname)s - %(message)s',
                datefmt='%Y-%m-%d %H:%M:%S'
            )
            self.logger = logging.getLogger('HIPAA_AUDIT')
            print(f"Warning: Logging setup failed ({e}), using console logging")
    
    def log_access(self, user_id, action, resource, success=True):
        """Log access attempts and actions"""
        status = "SUCCESS" if success else "FAILURE"
        message = f"USER:{user_id} ACTION:{action} RESOURCE:{resource} STATUS:{status}"
        self.logger.info(message)
    
    def log_phi_processing(self, user_id, document_hash, action):
        """Log PHI processing events"""
        message = f"PHI_PROCESSING USER:{user_id} DOC_HASH:{document_hash} ACTION:{action}"
        self.logger.info(message)

class SecureFileHandler:
    """Secure file handling with encryption and secure deletion"""
    
    def __init__(self, password=None):
        self.password = password
        self.key = self._derive_key(password) if password else None
        self.fernet = Fernet(self.key) if self.key else None
    
    def _derive_key(self, password):
        """Derive encryption key from password"""
        password_bytes = password.encode()
        kdf = PBKDF2HMAC(
            algorithm=hashes.SHA256(),
            length=32,
            salt=b'hipaa_thesis_analyzer_salt',
            iterations=100000,
        )
        key = base64.urlsafe_b64encode(kdf.derive(password_bytes))
        return key
    
    def encrypt_data(self, data):
        """Encrypt sensitive data"""
        if not self.fernet:
            return data
        
        if isinstance(data, str):
            data = data.encode()
        return self.fernet.encrypt(data)
    
    def decrypt_data(self, encrypted_data):
        """Decrypt sensitive data"""
        if not self.fernet:
            return encrypted_data
        
        decrypted = self.fernet.decrypt(encrypted_data)
        return decrypted.decode()
    
    def secure_save(self, data, filepath):
        """Save data with encryption"""
        try:
            if self.fernet:
                encrypted_data = self.encrypt_data(json.dumps(data))
                with open(filepath + '.enc', 'wb') as f:
                    f.write(encrypted_data)
            else:
                with open(filepath, 'w', encoding='utf-8') as f:
                    json.dump(data, f, indent=2)
        except PermissionError:
            print(f"Warning: Cannot write to {filepath}, saving to /tmp instead")
            # Fallback to /tmp directory
            import tempfile
            temp_path = os.path.join(tempfile.gettempdir(), os.path.basename(filepath))
            if self.fernet:
                encrypted_data = self.encrypt_data(json.dumps(data))
                with open(temp_path + '.enc', 'wb') as f:
                    f.write(encrypted_data)
            else:
                with open(temp_path, 'w', encoding='utf-8') as f:
                    json.dump(data, f, indent=2)
            print(f"Data saved to: {temp_path}")
        except Exception as e:
            print(f"Error saving data: {e}")
            # Still try to save to /tmp as last resort
            try:
                import tempfile
                temp_path = os.path.join(tempfile.gettempdir(), os.path.basename(filepath))
                if self.fernet:
                    encrypted_data = self.encrypt_data(json.dumps(data))
                    with open(temp_path + '.enc', 'wb') as f:
                        f.write(encrypted_data)
                else:
                    with open(temp_path, 'w', encoding='utf-8') as f:
                        json.dump(data, f, indent=2)
                print(f"Data saved to fallback location: {temp_path}")
            except Exception as fallback_error:
                print(f"Failed to save data even to fallback location: {fallback_error}")
    
    def secure_load(self, filepath):
        """Load encrypted data"""
        if self.fernet and os.path.exists(filepath + '.enc'):
            with open(filepath + '.enc', 'rb') as f:
                encrypted_data = f.read()
            decrypted_data = self.decrypt_data(encrypted_data)
            return json.loads(decrypted_data)
        elif os.path.exists(filepath):
            with open(filepath, 'r', encoding='utf-8') as f:
                return json.load(f)
        return None
    
    def secure_delete(self, filepath):
        """Securely delete files by overwriting"""
        if os.path.exists(filepath):
            # Overwrite file multiple times before deletion
            file_size = os.path.getsize(filepath)
            with open(filepath, 'rb+') as f:
                for _ in range(3):  # DoD 5220.22-M standard
                    f.seek(0)
                    f.write(os.urandom(file_size))
                    f.flush()
            os.remove(filepath)
        
        # Also check for encrypted version
        if os.path.exists(filepath + '.enc'):
            file_size = os.path.getsize(filepath + '.enc')
            with open(filepath + '.enc', 'rb+') as f:
                for _ in range(3):
                    f.seek(0)
                    f.write(os.urandom(file_size))
                    f.flush()
            os.remove(filepath + '.enc')

class HIPAACompliantThesisAnalyzer:
    """HIPAA-compliant version of the thesis analyzer"""
    
    def __init__(self, user_id=None, password=None, session_timeout=30, model_name="t5-small"):
        self.user_id = user_id or getpass.getuser()
        self.session_timeout = session_timeout  # minutes
        self.session_start = datetime.now()
        self.last_activity = datetime.now()
        self.model_name = model_name
        
        # Map model names to their optimal tasks and parameters
        self.model_configs = {
            "t5-small": {"task": "text2text-generation", "summarizer_task": "summarization"},
            "t5-base": {"task": "text2text-generation", "summarizer_task": "summarization"},
            "t5-large": {"task": "text2text-generation", "summarizer_task": "summarization"},
            "bart-large-cnn": {"task": "text2text-generation", "summarizer_task": "summarization"},
            "facebook/bart-base": {"task": "text2text-generation", "summarizer_task": "summarization"},
            "distilbart-cnn-12-6": {"task": "text2text-generation", "summarizer_task": "summarization"},
            "sshleifer/distilbart-cnn-6-6": {"task": "text2text-generation", "summarizer_task": "summarization"},
            "pegasus-large": {"task": "text2text-generation", "summarizer_task": "summarization"},
            "flan-t5-base": {"task": "text2text-generation", "summarizer_task": "summarization"},
            "flan-t5-large": {"task": "text2text-generation", "summarizer_task": "summarization"}
        }
        
        # Initialize HIPAA compliance components
        self.hipaa_logger = HIPAALogger()
        self.secure_handler = SecureFileHandler(password)
        
        # Log session start
        self.hipaa_logger.log_access(self.user_id, "SESSION_START", "THESIS_ANALYZER")
        
        # Initialize base analyzer components
        self._initialize_analyzer()
        
        print(f"HIPAA-Compliant Thesis Analyzer initialized for user: {self.user_id}")
        print(f"Session timeout: {session_timeout} minutes")
        print(f"Encryption enabled: {'Yes' if password else 'No'}")
    
    def _initialize_analyzer(self):
        """Initialize the core analyzer components"""
        try:
            self.lemmatizer = WordNetLemmatizer()
            self.stop_words = set(stopwords.words('english'))
        except LookupError as e:
            print(f"NLTK resource error: {e}")
            self._download_nltk_resources()
            try:
                self.lemmatizer = WordNetLemmatizer()
                self.stop_words = set(stopwords.words('english'))
            except Exception as e2:
                print(f"Failed to initialize NLTK after download: {e2}")
                # Fallback to basic functionality
                self.lemmatizer = None
                self.stop_words = set(['the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by'])
        except Exception as e:
            print(f"Error initializing NLTK: {e}")
            # Fallback to basic functionality
            self.lemmatizer = None
            self.stop_words = set(['the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by'])

        self.thesis_text = ""
        self.sentences = []
        self.key_terms = []
        self.extracted_images = []
        self.image_descriptions = []
        self.ocr_results = []
        self.use_ocr = True
        self.use_blip = True

        # Initialize Model
        print(f"Loading {self.model_name} model (HIPAA-compliant local processing)...")
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        
        try:
            # Try to load with explicit cache directory
            cache_dir = '/app/.cache/huggingface'
            self.tokenizer = AutoTokenizer.from_pretrained(self.model_name, cache_dir=cache_dir)
            self.model = AutoModelForSeq2SeqLM.from_pretrained(self.model_name, cache_dir=cache_dir)
            self.model.to(self.device)
            print(f"{self.model_name} loaded successfully from cache")
        except Exception as e:
            print(f"Error loading {self.model_name}: {e}")
            print("Attempting to load with fallback cache directory...")
            try:
                # Fallback to default cache
                self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
                self.model = AutoModelForSeq2SeqLM.from_pretrained(self.model_name)
                self.model.to(self.device)
                print(f"{self.model_name} loaded with fallback cache")
            except Exception as e2:
                print(f"Failed to load {self.model_name}: {e2}")
                # Fallback to t5-small if requested model fails
                if self.model_name != "t5-small":
                    print("Falling back to t5-small...")
                    self.model_name = "t5-small"
                    self.tokenizer = AutoTokenizer.from_pretrained("t5-small")
                    self.model = AutoModelForSeq2SeqLM.from_pretrained("t5-small")
                    self.model.to(self.device)
                else:
                    raise e2

        # Initialize pipelines
        try:
            self.summarizer = pipeline(
                "summarization",
                model=self.model,
                tokenizer=self.tokenizer,
                device=0 if torch.cuda.is_available() else -1,
                max_length=200,
                min_length=50,
                do_sample=True,
                temperature=0.7
            )

            self.qa_pipeline = pipeline(
                "text2text-generation",
                model=self.model,
                tokenizer=self.tokenizer,
                device=0 if torch.cuda.is_available() else -1,
                max_length=512,
                do_sample=True,
                temperature=0.7
            )
            print("Pipelines initialized successfully")
        except Exception as e:
            print(f"Error initializing pipelines: {e}")
            # Create fallback pipelines
            self.summarizer = None
            self.qa_pipeline = None

        # Initialize BLIP if enabled
        if self.use_blip:
            try:
                self.blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
                self.blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
                self.blip_model.to(self.device)
                print("BLIP model loaded for local image analysis")
            except Exception as e:
                print(f"BLIP model loading failed: {e}")
                self.use_blip = False

        # Check OCR availability
        if self.use_ocr:
            try:
                pytesseract.get_tesseract_version()
                print("Tesseract OCR available for local processing")
            except Exception as e:
                print(f"Tesseract OCR not available: {e}")
                self.use_ocr = False
    
    def _download_nltk_resources(self):
        """Download required NLTK resources to user directory"""
        # Use the same user-writable directory
        nltk_data_dir = os.path.join(os.path.expanduser('~'), 'nltk_data')
        os.makedirs(nltk_data_dir, exist_ok=True)
        nltk.data.path.append(nltk_data_dir)
        
        resources = [
            ('tokenizers/punkt', 'punkt'),
            ('tokenizers/punkt_tab', 'punkt_tab'),
            ('corpora/stopwords', 'stopwords'),
            ('corpora/wordnet', 'wordnet'),
            ('corpora/omw-1.4', 'omw-1.4')
        ]

        for resource_path, resource_name in resources:
            try:
                nltk.data.find(resource_path)
            except LookupError:
                try:
                    nltk.download(resource_name, download_dir=nltk_data_dir, quiet=True)
                    print(f"Downloaded NLTK resource: {resource_name}")
                except Exception as e:
                    print(f"Warning: Failed to download {resource_name}: {e}")
    
    def check_session_timeout(self):
        """Check if session has timed out"""
        time_since_start = datetime.now() - self.session_start
        time_since_activity = datetime.now() - self.last_activity
        
        if time_since_activity.total_seconds() > (self.session_timeout * 60):
            self.hipaa_logger.log_access(self.user_id, "SESSION_TIMEOUT", "THESIS_ANALYZER")
            raise Exception("Session timed out due to inactivity. Please restart for security.")
        
        self.last_activity = datetime.now()
    
    def calculate_document_hash(self, content):
        """Calculate secure hash of document content"""
        return hashlib.sha256(content.encode()).hexdigest()
    
    def _prepare_document(self, pdf_path):
        """Common method to prepare document for processing (extract text/images/OCR)"""
        self.check_session_timeout()
        
        # Calculate document hash for audit trail
        with open(pdf_path, 'rb') as f:
            doc_content = f.read()
            doc_hash = hashlib.sha256(doc_content).hexdigest()[:16]
        
        self.hipaa_logger.log_phi_processing(self.user_id, doc_hash, "DOCUMENT_LOAD")
        
        try:
            # Extract text and images
            text, images = self._extract_text_and_images(pdf_path)
            self.hipaa_logger.log_phi_processing(self.user_id, doc_hash, "TEXT_EXTRACTION")
            
            # Perform OCR if enabled
            ocr_results = []
            if self.use_ocr and images:
                ocr_results = self._perform_secure_ocr(images)
                self.hipaa_logger.log_phi_processing(self.user_id, doc_hash, "OCR_PROCESSING")
            
            # Analyze images if BLIP enabled
            image_descriptions = []
            if self.use_blip and images:
                image_descriptions = self._analyze_images_securely(images)
                self.hipaa_logger.log_phi_processing(self.user_id, doc_hash, "IMAGE_ANALYSIS")
            
            # Combine all text
            ocr_text = " ".join([result['ocr_text'] for result in ocr_results if result.get('ocr_text')])
            combined_text = text + " " + ocr_text
            
            return combined_text, images, ocr_results, doc_hash
            
        except Exception as e:
            self.hipaa_logger.log_access(self.user_id, "PREPARATION_ERROR", pdf_path, success=False)
            raise e

    def process_document_securely(self, pdf_path, questions, output_file=None):
        """Process document with full HIPAA compliance"""
        combined_text, images, ocr_results, doc_hash = self._prepare_document(pdf_path)
        
        try:
            # Generate analysis
            sections = self._extract_key_sections(combined_text)
            key_terms = self._extract_key_terms(combined_text)
            summary = self._generate_summary_secure(combined_text)
            question_answers = self._answer_questions_secure(questions, combined_text)
            
            self.hipaa_logger.log_phi_processing(self.user_id, doc_hash, "ANALYSIS_COMPLETE")
            
            # Compile HIPAA-compliant report
            report = {
                "hipaa_compliance": {
                    "processed_locally": True,
                    "encrypted_storage": bool(self.secure_handler.fernet),
                    "audit_logged": True,
                    "user_id": self.user_id,
                    "session_id": hashlib.md5(f"{self.user_id}{self.session_start}".encode()).hexdigest()[:8],
                    "document_hash": doc_hash,
                    "processing_timestamp": datetime.now().isoformat(),
                    "no_external_apis": True,
                    "local_processing_only": True
                },
                "document_info": {
                    "file_path": os.path.basename(pdf_path),  # Only filename for privacy
                    "analysis_timestamp": datetime.now().isoformat(),
                    "total_characters": len(combined_text),
                    "total_images": len(images),
                    "device_used": str(self.device)
                },
                "text_analysis": {
                    "summary": summary,
                    "key_terms": key_terms[:15],
                    "sections_found": list(sections.keys())
                },
                "image_analysis": {
                    "total_images_extracted": len(images),
                    "images_with_text": len([r for r in ocr_results if r.get('has_text', False)]),
                    "ocr_available": self.use_ocr,
                    "blip_available": self.use_blip
                },
                "question_responses": question_answers,
                "statistics": {
                    "total_text_characters": len(combined_text),
                    "ocr_text_characters": len([r['ocr_text'] for r in ocr_results if r.get('ocr_text')]), # Approximate
                    "questions_processed": len(questions),
                    "sections_identified": len(sections),
                    "key_terms_extracted": len(key_terms)
                }
            }
            
            # Save securely if output file specified
            if output_file:
                self.secure_handler.secure_save(report, output_file)
                self.hipaa_logger.log_access(self.user_id, "REPORT_SAVE", output_file)
            
            return report
            
        except Exception as e:
            self.hipaa_logger.log_access(self.user_id, "PROCESSING_ERROR", pdf_path, success=False)
            raise e

    def process_summary_only(self, pdf_path, output_file=None):
        """Process document for summary only"""
        combined_text, images, ocr_results, doc_hash = self._prepare_document(pdf_path)
        
        try:
            # Generate summary
            summary = self._generate_summary_secure(combined_text)
            key_terms = self._extract_key_terms(combined_text)
            sections = self._extract_key_sections(combined_text)
            
            self.hipaa_logger.log_phi_processing(self.user_id, doc_hash, "SUMMARY_COMPLETE")
            
            report = {
                "hipaa_compliance": {
                    "processed_locally": True,
                    "user_id": self.user_id,
                    "document_hash": doc_hash,
                    "processing_timestamp": datetime.now().isoformat()
                },
                "text_analysis": {
                    "summary": summary,
                    "key_terms": key_terms[:15],
                    "sections_found": list(sections.keys())
                }
            }
            
            if output_file:
                self.secure_handler.secure_save(report, output_file)
            
            return report
        except Exception as e:
            self.hipaa_logger.log_access(self.user_id, "SUMMARY_ERROR", pdf_path, success=False)
            raise e

    def process_questions_only(self, pdf_path, questions, output_file=None):
        """Process document for Q&A only"""
        combined_text, images, ocr_results, doc_hash = self._prepare_document(pdf_path)
        
        try:
            # Generate answers
            question_answers = self._answer_questions_secure(questions, combined_text)
            
            self.hipaa_logger.log_phi_processing(self.user_id, doc_hash, "QA_COMPLETE")
            
            report = {
                "hipaa_compliance": {
                    "processed_locally": True,
                    "user_id": self.user_id,
                    "document_hash": doc_hash,
                    "processing_timestamp": datetime.now().isoformat()
                },
                "question_responses": question_answers
            }
            
            if output_file:
                self.secure_handler.secure_save(report, output_file)
            
            return report
        except Exception as e:
            self.hipaa_logger.log_access(self.user_id, "QA_ERROR", pdf_path, success=False)
            raise e

    def process_annotations_only(self, pdf_path, output_file=None):
        """Process document for PubTator annotations only"""
        combined_text, images, ocr_results, doc_hash = self._prepare_document(pdf_path)
        
        try:
            # Initialize PubTator Annotator
            # Note: PubTator legacy API might have issues, but we integrate as requested
            # Using 'Gene' as a valid concept example, though API might still error
            annotator = PubTatorAnnotator(bioconcept="Gene", output_format="JSON")
            
            print("Submitting text to PubTator for annotation...")
            annotations = annotator.annotate_text(combined_text)
            
            self.hipaa_logger.log_phi_processing(self.user_id, doc_hash, "ANNOTATION_COMPLETE")
            
            report = {
                "hipaa_compliance": {
                    "processed_locally": False, # PubTator is external
                    "user_id": self.user_id,
                    "document_hash": doc_hash,
                    "processing_timestamp": datetime.now().isoformat(),
                    "external_api_used": "PubTator Legacy"
                },
                "annotations": annotations if annotations is not None else "Failed to retrieve annotations"
            }
            
            if output_file:
                self.secure_handler.secure_save(report, output_file)
            
            return report
        except Exception as e:
            self.hipaa_logger.log_access(self.user_id, "ANNOTATION_ERROR", pdf_path, success=False)
            raise e
    
    def _extract_text_and_images(self, pdf_path):
        """Securely extract text and images from PDF"""
        text = ""
        images = []
        
        try:
            # Use PyMuPDF for comprehensive extraction
            doc = fitz.open(pdf_path)
            
            for page_num in range(len(doc)):
                page = doc.load_page(page_num)
                
                # Extract text
                page_text = page.get_text()
                if page_text.strip():
                    text += page_text + "\n"
                
                # Extract images
                image_list = page.get_images()
                
                for img_index, img in enumerate(image_list):
                    try:
                        xref = img[0]
                        pix = fitz.Pixmap(doc, xref)
                        
                        if pix.n - pix.alpha < 4:
                            img_data = pix.tobytes("ppm")
                            img_pil = Image.open(io.BytesIO(img_data))
                            
                            image_info = {
                                'page': page_num + 1,
                                'index': img_index,
                                'image': img_pil,
                                'size': img_pil.size,
                                'format': img_pil.format or 'Unknown'
                            }
                            images.append(image_info)
                            
                        pix = None
                        
                    except Exception as e:
                        print(f"Error extracting image {img_index} from page {page_num + 1}: {e}")
                        continue
            
            doc.close()
            
        except Exception as e:
            print(f"Error in secure extraction: {e}")
        
        return text, images
    
    def _perform_secure_ocr(self, images):
        """Perform OCR with audit logging"""
        ocr_results = []
        
        for i, img_info in enumerate(images):
            try:
                img = img_info['image']
                if img.mode != 'RGB':
                    img = img.convert('RGB')
                
                # Preprocess for OCR
                if OPENCV_AVAILABLE:
                    img_array = np.array(img)
                    gray = cv2.cvtColor(img_array, cv2.COLOR_RGB2GRAY)
                    denoised = cv2.medianBlur(gray, 3)
                    clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
                    enhanced = clahe.apply(denoised)
                    _, thresh = cv2.threshold(enhanced, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
                    processed_img = Image.fromarray(thresh)
                else:
                    gray = img.convert('L')
                    enhancer = ImageEnhance.Contrast(gray)
                    enhanced = enhancer.enhance(2.0)
                    processed_img = enhanced.filter(ImageFilter.SHARPEN)
                
                # Perform OCR locally
                ocr_text = pytesseract.image_to_string(processed_img, config='--psm 6')
                
                ocr_result = {
                    'page': img_info['page'],
                    'image_index': img_info['index'],
                    'ocr_text': ocr_text.strip(),
                    'has_text': bool(ocr_text.strip()),
                    'processing_method': 'Local_OCR'
                }
                
                ocr_results.append(ocr_result)
                
            except Exception as e:
                ocr_results.append({
                    'page': img_info['page'],
                    'image_index': img_info['index'],
                    'ocr_text': '',
                    'has_text': False,
                    'error': str(e)
                })
        
        return ocr_results
    
    def _analyze_images_securely(self, images):
        """Analyze images locally with BLIP"""
        if not self.use_blip:
            return []
        
        descriptions = []
        
        for img_info in images:
            try:
                image = img_info['image']
                if image.mode != 'RGB':
                    image = image.convert('RGB')
                
                inputs = self.blip_processor(image, return_tensors="pt").to(self.device)
                
                with torch.no_grad():
                    out = self.blip_model.generate(**inputs, max_length=100, num_beams=5)
                
                caption = self.blip_processor.decode(out[0], skip_special_tokens=True)
                
                description = {
                    'page': img_info['page'],
                    'image_index': img_info['index'],
                    'caption': caption,
                    'processing_method': 'Local_BLIP'
                }
                
                descriptions.append(description)
                
            except Exception as e:
                descriptions.append({
                    'page': img_info['page'],
                    'image_index': img_info['index'],
                    'caption': 'Analysis failed',
                    'error': str(e)
                })
        
        return descriptions
    
    def _extract_key_sections(self, text):
        """Extract key sections from text"""
        sections = {}
        section_patterns = {
            'abstract': r'abstract\s*:?\s*(.*?)(?=\n\s*(?:introduction|chapter|acknowledgment|table of contents))',
            'introduction': r'introduction\s*:?\s*(.*?)(?=\n\s*(?:literature review|methodology|chapter|background))',
            'methodology': r'(?:methodology|methods)\s*:?\s*(.*?)(?=\n\s*(?:results|findings|analysis|chapter))',
            'results': r'(?:results|findings)\s*:?\s*(.*?)(?=\n\s*(?:discussion|conclusion|chapter))',
            'conclusion': r'conclusion\s*:?\s*(.*?)(?=\n\s*(?:references|bibliography|appendix))'
        }

        for section_name, pattern in section_patterns.items():
            match = re.search(pattern, text.lower(), re.DOTALL | re.IGNORECASE)
            if match:
                sections[section_name] = match.group(1).strip()[:1000]  # Truncate for privacy

        return sections
    
    def _extract_key_terms(self, text):
        """Extract key terms securely"""
        try:
            words = re.findall(r'\b[a-zA-Z]+\b', text.lower())
            
            # Handle case where lemmatizer might be None
            if self.lemmatizer is not None:
                words = [
                    self.lemmatizer.lemmatize(word)
                    for word in words
                    if word not in self.stop_words
                       and len(word) > 3
                       and word.isalpha()
                ]
            else:
                # Fallback without lemmatization
                words = [
                    word
                    for word in words
                    if word not in self.stop_words
                       and len(word) > 3
                       and word.isalpha()
                ]

            word_freq = Counter(words)
            return [term for term, freq in word_freq.most_common(20)]

        except Exception as e:
            print(f"Error in key term extraction: {e}")
            return []
    
    def _generate_summary_secure(self, text):
        """Generate summary using local T5 model"""
        try:
            if self.summarizer is None:
                print("Summarizer not available, using fallback method")
                # Fallback to extractive summary
                sentences = re.split(r'[.!?]+', text)
                return " ".join(sentences[:3]) + "..."
            
            clean_text = re.sub(r'\s+', ' ', text).strip()
            
            # Chunk text for processing
            max_length = 1000
            if len(clean_text) > max_length:
                clean_text = clean_text[:max_length]
            
            summary = self.summarizer(
                clean_text,
                max_length=200,
                min_length=150,
                do_sample=True,
                temperature=0.7
            )
            
            return summary[0]['summary_text']
            
        except Exception as e:
            print(f"Error in T5 summarization: {e}")
            # Fallback to extractive summary
            sentences = re.split(r'[.!?]+', text)
            return " ".join(sentences[:3]) + "..."
    
    def _answer_questions_secure(self, questions, text):
        """Answer questions using local T5 model"""
        answers = {}
        
        for question in questions:
            try:
                if self.qa_pipeline is None:
                    answers[question] = {
                        'answer': 'Q&A pipeline not available - using fallback',
                        'method': 'Fallback',
                        'processed_securely': True
                    }
                    continue
                
                prompt = f"question: {question} context: {text[:1000]}"
                
                answer_result = self.qa_pipeline(
                    prompt,
                    max_length=200,
                    min_length=30,
                    do_sample=True,
                    temperature=0.7,
                    num_return_sequences=1
                )
                
                answer = answer_result[0]['generated_text']
                answer = re.sub(r'^(answer:|Answer:)', '', answer).strip()
                
                answers[question] = {
                    'answer': answer,
                    'method': 'Local_T5',
                    'processed_securely': True
                }
                
            except Exception as e:
                answers[question] = {
                    'answer': 'Unable to process question securely',
                    'error': str(e),
                    'method': 'Error'
                }
        
        return answers
    
    def cleanup_session(self):
        """Clean up session data securely"""
        self.hipaa_logger.log_access(self.user_id, "SESSION_END", "THESIS_ANALYZER")
        
        # Clear sensitive data from memory
        self.thesis_text = ""
        self.extracted_images = []
        self.ocr_results = []
        self.image_descriptions = []
        
        # Clear model cache if needed
        if hasattr(torch.cuda, 'empty_cache'):
            torch.cuda.empty_cache()
        
        print("Session cleaned up securely")

class AnalyzeReq(BaseModel):
    storageKey: str  # path to PDF on disk (or adjust to your storage scheme)
    projectId: Optional[str] = None
    documentId: Optional[str] = None
    ocr: bool = False
    blip: bool = False
    userId:str
    password:str
    useEncryption: bool =False
    model_name: Optional[str] = "t5-small"

@app.post('/get_summary')
def get_summary(req: AnalyzeReq):
    """Get summary only"""
    try:
        analyzer = HIPAACompliantThesisAnalyzer(
            user_id=req.userId,
            password=req.password,
            session_timeout=30,
            model_name=req.model_name
        )
        
        report = analyzer.process_summary_only(
            pdf_path=req.storageKey,
            output_file="hipaa_summary_only"
        )
        
        analyzer.cleanup_session()
        return report
    except Exception as e:
        print(f"Error in get_summary: {e}")
        return {"error": str(e)}

@app.post('/get_answer')
def get_answer(req: AnalyzeReq):
    """Get answers only"""
    try:
        analyzer = HIPAACompliantThesisAnalyzer(
            user_id=req.userId,
            password=req.password,
            session_timeout=30,
            model_name=req.model_name
        )
        
        # Use questions from separate file
        questions = THESIS_QUESTIONS
        
        report = analyzer.process_questions_only(
            pdf_path=req.storageKey,
            questions=questions,
            output_file="hipaa_answers_only"
        )
        
        analyzer.cleanup_session()
        return report
    except Exception as e:
        print(f"Error in get_answer: {e}")
        return {"error": str(e)}

@app.post('/get_annotations')
def get_annotations(req: AnalyzeReq):
    """Get PubTator annotations only"""
    try:
        analyzer = HIPAACompliantThesisAnalyzer(
            user_id=req.userId,
            password=req.password,
            session_timeout=30,
            model_name=req.model_name
        )
        
        report = analyzer.process_annotations_only(
            pdf_path=req.storageKey,
            output_file="hipaa_annotations_only"
        )
        
        analyzer.cleanup_session()
        return report
    except Exception as e:
        print(f"Error in get_annotations: {e}")
        return {"error": str(e)}

@app.post('/analyze')
def analyze(req: AnalyzeReq):
    """Main function with HIPAA compliance demonstration"""
    print("HIPAA-COMPLIANT THESIS ANALYZER")
    print("=" * 50)

    try:
        # Initialize HIPAA-compliant analyzer
        analyzer = HIPAACompliantThesisAnalyzer(
            user_id=req.userId,
            password=req.password,
            session_timeout=30,
            model_name=req.model_name
        )
        
        pdf_path = req.storageKey

        # Use questions from separate file
        questions = THESIS_QUESTIONS
        
        # Process document securely
        print("\nProcessing document with HIPAA compliance...")
        report = analyzer.process_document_securely(
            pdf_path=pdf_path,
            questions=questions,
            output_file="hipaa_compliant_analysis"
        )
        
        print("\n" + "="*60)
        print("HIPAA-COMPLIANT ANALYSIS COMPLETE")
        print("="*60)
        print(f"βœ“ Processed locally: {report['hipaa_compliance']['processed_locally']}")
        print(f"βœ“ Encrypted storage: {report['hipaa_compliance']['encrypted_storage']}")
        print(f"βœ“ Audit logged: {report['hipaa_compliance']['audit_logged']}")
        print(f"βœ“ No external APIs: {report['hipaa_compliance']['no_external_apis']}")
        print(f"βœ“ Session ID: {report['hipaa_compliance']['session_id']}")
        
        # Cleanup
        analyzer.cleanup_session()

        return report
    except Exception as e:
        print(f"Error: {e}")
        print("Ensure all requirements are installed and Tesseract is available.")

#if __name__ == "__main__":
    print("""
HIPAA-COMPLIANT THESIS ANALYZER
===============================

HIPAA COMPLIANCE FEATURES:
βœ“ Local processing only - no external API calls
βœ“ Encryption at rest with password protection
βœ“ Comprehensive audit logging
βœ“ Session timeout and access controls
βœ“ Secure file deletion
βœ“ PHI processing audit trail
βœ“ User authentication
βœ“ Data integrity verification

INSTALLATION:
pip install torch transformers PyPDF2 nltk PyMuPDF pillow pytesseract cryptography

SECURITY FEATURES:
- All processing happens locally
- Optional file encryption
- Secure memory cleanup
- Audit trail for all operations
- Session management with timeouts
- Secure file overwriting for deletion

COMPLIANCE NOTES:
- This tool provides technical safeguards
- You must implement administrative and physical safeguards
- Ensure your workstation meets HIPAA requirements
- Regular security assessments recommended

""")
    
    #main()