File size: 9,054 Bytes
67ec8f1 16f3ba1 81d8cd8 16f3ba1 3cce116 67ec8f1 3cce116 67ec8f1 16f3ba1 3cce116 16f3ba1 3cce116 81d8cd8 3cce116 16f3ba1 3cce116 16f3ba1 3cce116 16f3ba1 3cce116 16f3ba1 81d8cd8 3cce116 81d8cd8 3cce116 16f3ba1 3cce116 16f3ba1 3cce116 16f3ba1 3cce116 81d8cd8 16f3ba1 81d8cd8 16f3ba1 81d8cd8 16f3ba1 81d8cd8 16f3ba1 81d8cd8 16f3ba1 81d8cd8 16f3ba1 81d8cd8 16f3ba1 3cce116 81d8cd8 16f3ba1 81d8cd8 16f3ba1 3cce116 81d8cd8 67ec8f1 81d8cd8 3cce116 67ec8f1 16f3ba1 3cce116 81d8cd8 67ec8f1 81d8cd8 3cce116 67ec8f1 3cce116 81d8cd8 3cce116 81d8cd8 3cce116 16f3ba1 81d8cd8 67ec8f1 3cce116 81d8cd8 67ec8f1 3cce116 67ec8f1 81d8cd8 67ec8f1 16f3ba1 3cce116 67ec8f1 81d8cd8 3cce116 67ec8f1 16f3ba1 67ec8f1 3cce116 16f3ba1 3cce116 67ec8f1 3cce116 16f3ba1 3cce116 16f3ba1 3cce116 16f3ba1 3cce116 67ec8f1 3cce116 67ec8f1 3cce116 16f3ba1 67ec8f1 3cce116 16f3ba1 3cce116 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
# timesfm_backend.py
import time
import json
import logging
from typing import Any, Dict, List, Optional
import numpy as np
import torch
from backends_base import ChatBackend, ImagesBackend
from config import settings
logger = logging.getLogger(__name__)
# ---------------- TimesFM import (fallback-safe) ----------------
try:
from timesfm import TimesFm # Google TimesFM 2.5+
_TIMESFM_AVAILABLE = True
except Exception as e:
logger.warning("timesfm not available (%s) — using naive fallback.", e)
TimesFm = None # type: ignore
_TIMESFM_AVAILABLE = False
# ---------------- helpers ----------------
def _parse_series(series: Any) -> np.ndarray:
"""
Accepts: list[float|int], list[dict{'y'|'value'}], or dict with 'values'/'y'.
Returns: 1D float32 numpy array.
"""
if series is None:
raise ValueError("series is required")
if isinstance(series, dict):
# allow {"values":[...]} or {"y":[...]}
series = series.get("values") or series.get("y")
vals: List[float] = []
if isinstance(series, (list, tuple)):
if series and isinstance(series[0], dict):
for item in series:
if "y" in item:
vals.append(float(item["y"]))
elif "value" in item:
vals.append(float(item["value"]))
else:
vals = [float(x) for x in series]
else:
raise ValueError("series must be a list/tuple or dict with 'values'/'y'")
if not vals:
raise ValueError("series is empty")
return np.asarray(vals, dtype=np.float32)
def _fallback_forecast(y: np.ndarray, horizon: int) -> np.ndarray:
"""
Naive fallback: mean of last 4 (or all if <4), repeated H times.
"""
if horizon <= 0:
return np.zeros((0,), dtype=np.float32)
k = 4 if y.shape[0] >= 4 else y.shape[0]
base = float(np.mean(y[-k:]))
return np.full((horizon,), base, dtype=np.float32)
def _extract_json_from_text(s: str) -> Optional[Dict[str, Any]]:
"""
Try to parse JSON from a plain string or a fenced ```json block.
Returns dict or None.
"""
s = s.strip()
# whole-string JSON object/array
if (s.startswith("{") and s.endswith("}")) or (s.startswith("[") and s.endswith("]")):
try:
obj = json.loads(s)
return obj if isinstance(obj, dict) else None
except Exception:
pass
# fenced code blocks
if "```" in s:
parts = s.split("```")
for i in range(1, len(parts), 2):
block = parts[i]
if block.lstrip().lower().startswith("json"):
block = block.split("\n", 1)[-1]
try:
obj = json.loads(block.strip())
return obj if isinstance(obj, dict) else None
except Exception:
continue
return None
def _merge_openai_message_json(payload: Dict[str, Any]) -> Dict[str, Any]:
"""
OpenAI chat format compatibility:
payload["messages"] may hold user JSON in the last user message.
content can be a plain string or a list of parts [{"type":"text","text":...}].
If a JSON object is found, merge its keys into payload.
"""
msgs = payload.get("messages")
if not isinstance(msgs, list):
return payload
for m in reversed(msgs):
if not isinstance(m, dict) or m.get("role") != "user":
continue
content = m.get("content")
texts: List[str] = []
if isinstance(content, list):
texts = [
p.get("text")
for p in content
if isinstance(p, dict) and p.get("type") == "text" and isinstance(p.get("text"), str)
]
elif isinstance(content, str):
texts = [content]
for t in reversed(texts):
obj = _extract_json_from_text(t)
if isinstance(obj, dict):
return {**payload, **obj}
break # only inspect last user
return payload
# ---------------- backend ----------------
class TimesFMBackend(ChatBackend):
"""
Accepts OpenAI chat-completions requests.
Pulls timeseries config from:
- top-level keys, OR
- payload['data'] (CloudEvents wrapper), OR
- last user message JSON (OpenAI format).
Keys:
series: list[float|int|{y|value}]
horizon: int (>0)
freq: optional str
"""
def __init__(self, model_id: Optional[str] = None, device: Optional[str] = None):
self.model_id = model_id or "google/timesfm-2.5-200m-pytorch"
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
self._model: Optional[TimesFm] = None # type: ignore
def _ensure_model(self) -> None:
if self._model is not None or not _TIMESFM_AVAILABLE:
return
try:
# Set lengths compatible with the 2.5 checkpoints.
self._model = TimesFm(
context_len=512,
horizon_len=128,
input_patch_len=32,
)
self._model.load_from_checkpoint(self.model_id)
try:
self._model.to(self.device) # type: ignore[attr-defined]
except Exception:
pass
logger.info("TimesFM loaded from %s on %s", self.model_id, self.device)
except Exception as e:
logger.exception("TimesFM init failed; fallback only. %s", e)
self._model = None
async def forecast(self, payload: Dict[str, Any]) -> Dict[str, Any]:
# unwrap CloudEvents .data and nested .timeseries
if isinstance(payload.get("data"), dict):
payload = {**payload, **payload["data"]}
if isinstance(payload.get("timeseries"), dict):
payload = {**payload, **payload["timeseries"]}
# merge JSON embedded in last user message (OpenAI format)
payload = _merge_openai_message_json(payload)
y = _parse_series(payload.get("series"))
horizon = int(payload.get("horizon", 0))
freq = payload.get("freq")
if horizon <= 0:
raise ValueError("horizon must be a positive integer")
self._ensure_model()
note = None
if _TIMESFM_AVAILABLE and self._model is not None:
try:
x = torch.tensor(y, dtype=torch.float32, device=self.device).unsqueeze(0) # [1, T]
preds = self._model.forecast_on_batch(x, horizon) # -> [1, H]
fc = preds[0].detach().cpu().numpy().astype(float).tolist()
except Exception as e:
logger.exception("TimesFM forecast failed; fallback used. %s", e)
fc = _fallback_forecast(y, horizon).tolist()
note = "fallback_used_due_to_predict_error"
else:
fc = _fallback_forecast(y, horizon).tolist()
note = "fallback_used_timesfm_missing"
return {
"model": self.model_id,
"horizon": horizon,
"freq": freq,
"forecast": fc,
"note": note,
}
async def stream(self, request: Dict[str, Any]):
"""
OA-compatible streaming shim:
Emits exactly one chat.completion.chunk with compact JSON content.
"""
rid = f"chatcmpl-timesfm-{int(time.time())}"
now = int(time.time())
payload = dict(request) if isinstance(request, dict) else {}
try:
result = await self.forecast(payload)
except Exception as e:
content = json.dumps({"error": str(e)}, separators=(",", ":"), ensure_ascii=False)
yield {
"id": rid,
"object": "chat.completion.chunk",
"created": now,
"model": self.model_id,
"choices": [
{"index": 0, "delta": {"role": "assistant", "content": content}, "finish_reason": "stop"}
],
}
return
content = json.dumps(
{
"model": result["model"],
"horizon": result["horizon"],
"freq": result["freq"],
"forecast": result["forecast"],
"note": result.get("note"),
"backend": "timesfm",
},
separators=(",", ":"),
ensure_ascii=False,
)
yield {
"id": rid,
"object": "chat.completion.chunk",
"created": now,
"model": self.model_id,
"choices": [
{"index": 0, "delta": {"role": "assistant", "content": content}, "finish_reason": "stop"}
],
}
# ---------------- images stub ----------------
class StubImagesBackend(ImagesBackend):
async def generate_b64(self, request: Dict[str, Any]) -> str:
logger.warning("Image generation not supported in TimesFM backend.")
return "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR4nGP4BwQACfsD/etCJH0AAAAASUVORK5CYII="
|