File size: 9,054 Bytes
67ec8f1
16f3ba1
 
 
81d8cd8
16f3ba1
3cce116
67ec8f1
 
3cce116
67ec8f1
 
 
 
16f3ba1
3cce116
16f3ba1
3cce116
 
81d8cd8
 
3cce116
 
 
16f3ba1
3cce116
16f3ba1
 
 
 
3cce116
 
16f3ba1
3cce116
16f3ba1
81d8cd8
3cce116
81d8cd8
3cce116
 
 
16f3ba1
 
 
 
3cce116
 
 
 
16f3ba1
3cce116
 
 
 
 
 
16f3ba1
 
 
3cce116
 
 
 
 
 
 
81d8cd8
16f3ba1
 
 
 
81d8cd8
16f3ba1
81d8cd8
 
 
 
 
 
16f3ba1
81d8cd8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16f3ba1
 
 
 
81d8cd8
 
 
 
 
 
 
 
16f3ba1
 
 
 
 
 
 
 
 
 
 
 
 
81d8cd8
 
16f3ba1
81d8cd8
 
 
16f3ba1
3cce116
81d8cd8
 
 
 
16f3ba1
 
 
 
 
 
81d8cd8
16f3ba1
3cce116
 
 
81d8cd8
67ec8f1
81d8cd8
3cce116
67ec8f1
 
16f3ba1
 
 
 
 
 
3cce116
81d8cd8
 
 
 
 
67ec8f1
81d8cd8
3cce116
67ec8f1
3cce116
81d8cd8
 
3cce116
81d8cd8
3cce116
16f3ba1
81d8cd8
 
67ec8f1
3cce116
 
 
 
81d8cd8
67ec8f1
3cce116
67ec8f1
 
81d8cd8
67ec8f1
16f3ba1
 
3cce116
67ec8f1
81d8cd8
3cce116
 
 
 
 
67ec8f1
16f3ba1
 
 
 
 
 
 
67ec8f1
3cce116
16f3ba1
 
 
 
3cce116
67ec8f1
3cce116
16f3ba1
3cce116
 
 
 
 
 
 
 
 
16f3ba1
 
 
3cce116
 
 
 
16f3ba1
 
 
 
 
 
 
 
 
 
3cce116
 
67ec8f1
3cce116
67ec8f1
3cce116
16f3ba1
 
 
67ec8f1
3cce116
 
16f3ba1
3cce116
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# timesfm_backend.py
import time
import json
import logging
from typing import Any, Dict, List, Optional

import numpy as np
import torch

from backends_base import ChatBackend, ImagesBackend
from config import settings

logger = logging.getLogger(__name__)

# ---------------- TimesFM import (fallback-safe) ----------------
try:
    from timesfm import TimesFm  # Google TimesFM 2.5+
    _TIMESFM_AVAILABLE = True
except Exception as e:
    logger.warning("timesfm not available (%s) — using naive fallback.", e)
    TimesFm = None  # type: ignore
    _TIMESFM_AVAILABLE = False


# ---------------- helpers ----------------
def _parse_series(series: Any) -> np.ndarray:
    """
    Accepts: list[float|int], list[dict{'y'|'value'}], or dict with 'values'/'y'.
    Returns: 1D float32 numpy array.
    """
    if series is None:
        raise ValueError("series is required")

    if isinstance(series, dict):
        # allow {"values":[...]} or {"y":[...]}
        series = series.get("values") or series.get("y")

    vals: List[float] = []
    if isinstance(series, (list, tuple)):
        if series and isinstance(series[0], dict):
            for item in series:
                if "y" in item:
                    vals.append(float(item["y"]))
                elif "value" in item:
                    vals.append(float(item["value"]))
        else:
            vals = [float(x) for x in series]
    else:
        raise ValueError("series must be a list/tuple or dict with 'values'/'y'")

    if not vals:
        raise ValueError("series is empty")
    return np.asarray(vals, dtype=np.float32)


def _fallback_forecast(y: np.ndarray, horizon: int) -> np.ndarray:
    """
    Naive fallback: mean of last 4 (or all if <4), repeated H times.
    """
    if horizon <= 0:
        return np.zeros((0,), dtype=np.float32)
    k = 4 if y.shape[0] >= 4 else y.shape[0]
    base = float(np.mean(y[-k:]))
    return np.full((horizon,), base, dtype=np.float32)


def _extract_json_from_text(s: str) -> Optional[Dict[str, Any]]:
    """
    Try to parse JSON from a plain string or a fenced ```json block.
    Returns dict or None.
    """
    s = s.strip()
    # whole-string JSON object/array
    if (s.startswith("{") and s.endswith("}")) or (s.startswith("[") and s.endswith("]")):
        try:
            obj = json.loads(s)
            return obj if isinstance(obj, dict) else None
        except Exception:
            pass
    # fenced code blocks
    if "```" in s:
        parts = s.split("```")
        for i in range(1, len(parts), 2):
            block = parts[i]
            if block.lstrip().lower().startswith("json"):
                block = block.split("\n", 1)[-1]
            try:
                obj = json.loads(block.strip())
                return obj if isinstance(obj, dict) else None
            except Exception:
                continue
    return None


def _merge_openai_message_json(payload: Dict[str, Any]) -> Dict[str, Any]:
    """
    OpenAI chat format compatibility:
      payload["messages"] may hold user JSON in the last user message.
      content can be a plain string or a list of parts [{"type":"text","text":...}].
    If a JSON object is found, merge its keys into payload.
    """
    msgs = payload.get("messages")
    if not isinstance(msgs, list):
        return payload

    for m in reversed(msgs):
        if not isinstance(m, dict) or m.get("role") != "user":
            continue
        content = m.get("content")
        texts: List[str] = []
        if isinstance(content, list):
            texts = [
                p.get("text")
                for p in content
                if isinstance(p, dict) and p.get("type") == "text" and isinstance(p.get("text"), str)
            ]
        elif isinstance(content, str):
            texts = [content]

        for t in reversed(texts):
            obj = _extract_json_from_text(t)
            if isinstance(obj, dict):
                return {**payload, **obj}
        break  # only inspect last user
    return payload


# ---------------- backend ----------------
class TimesFMBackend(ChatBackend):
    """
    Accepts OpenAI chat-completions requests.
    Pulls timeseries config from:
      - top-level keys, OR
      - payload['data'] (CloudEvents wrapper), OR
      - last user message JSON (OpenAI format).
    Keys:
      series: list[float|int|{y|value}]
      horizon: int (>0)
      freq: optional str
    """

    def __init__(self, model_id: Optional[str] = None, device: Optional[str] = None):
        self.model_id = model_id or "google/timesfm-2.5-200m-pytorch"
        self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
        self._model: Optional[TimesFm] = None  # type: ignore

    def _ensure_model(self) -> None:
        if self._model is not None or not _TIMESFM_AVAILABLE:
            return
        try:
            # Set lengths compatible with the 2.5 checkpoints.
            self._model = TimesFm(
                context_len=512,
                horizon_len=128,
                input_patch_len=32,
            )
            self._model.load_from_checkpoint(self.model_id)
            try:
                self._model.to(self.device)  # type: ignore[attr-defined]
            except Exception:
                pass
            logger.info("TimesFM loaded from %s on %s", self.model_id, self.device)
        except Exception as e:
            logger.exception("TimesFM init failed; fallback only. %s", e)
            self._model = None

    async def forecast(self, payload: Dict[str, Any]) -> Dict[str, Any]:
        # unwrap CloudEvents .data and nested .timeseries
        if isinstance(payload.get("data"), dict):
            payload = {**payload, **payload["data"]}
        if isinstance(payload.get("timeseries"), dict):
            payload = {**payload, **payload["timeseries"]}

        # merge JSON embedded in last user message (OpenAI format)
        payload = _merge_openai_message_json(payload)

        y = _parse_series(payload.get("series"))
        horizon = int(payload.get("horizon", 0))
        freq = payload.get("freq")
        if horizon <= 0:
            raise ValueError("horizon must be a positive integer")

        self._ensure_model()

        note = None
        if _TIMESFM_AVAILABLE and self._model is not None:
            try:
                x = torch.tensor(y, dtype=torch.float32, device=self.device).unsqueeze(0)  # [1, T]
                preds = self._model.forecast_on_batch(x, horizon)  # -> [1, H]
                fc = preds[0].detach().cpu().numpy().astype(float).tolist()
            except Exception as e:
                logger.exception("TimesFM forecast failed; fallback used. %s", e)
                fc = _fallback_forecast(y, horizon).tolist()
                note = "fallback_used_due_to_predict_error"
        else:
            fc = _fallback_forecast(y, horizon).tolist()
            note = "fallback_used_timesfm_missing"

        return {
            "model": self.model_id,
            "horizon": horizon,
            "freq": freq,
            "forecast": fc,
            "note": note,
        }

    async def stream(self, request: Dict[str, Any]):
        """
        OA-compatible streaming shim:
        Emits exactly one chat.completion.chunk with compact JSON content.
        """
        rid = f"chatcmpl-timesfm-{int(time.time())}"
        now = int(time.time())
        payload = dict(request) if isinstance(request, dict) else {}

        try:
            result = await self.forecast(payload)
        except Exception as e:
            content = json.dumps({"error": str(e)}, separators=(",", ":"), ensure_ascii=False)
            yield {
                "id": rid,
                "object": "chat.completion.chunk",
                "created": now,
                "model": self.model_id,
                "choices": [
                    {"index": 0, "delta": {"role": "assistant", "content": content}, "finish_reason": "stop"}
                ],
            }
            return

        content = json.dumps(
            {
                "model": result["model"],
                "horizon": result["horizon"],
                "freq": result["freq"],
                "forecast": result["forecast"],
                "note": result.get("note"),
                "backend": "timesfm",
            },
            separators=(",", ":"),
            ensure_ascii=False,
        )
        yield {
            "id": rid,
            "object": "chat.completion.chunk",
            "created": now,
            "model": self.model_id,
            "choices": [
                {"index": 0, "delta": {"role": "assistant", "content": content}, "finish_reason": "stop"}
            ],
        }


# ---------------- images stub ----------------
class StubImagesBackend(ImagesBackend):
    async def generate_b64(self, request: Dict[str, Any]) -> str:
        logger.warning("Image generation not supported in TimesFM backend.")
        return "iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAQAAAC1HAwCAAAAC0lEQVR4nGP4BwQACfsD/etCJH0AAAAASUVORK5CYII="