Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| import torch.nn as nn | |
| from transformers import XLNetTokenizer, XLNetModel | |
| import numpy as np | |
| class TextEncoder(nn.Module): | |
| def __init__(self): | |
| super().__init__() | |
| self.transformer = XLNetModel.from_pretrained("xlnet-base-cased") | |
| def forward(self, input_ids, token_type_ids, attention_mask): | |
| hidden = self.transformer(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask).last_hidden_state | |
| context = hidden.mean(dim=1) | |
| context = context.view(*context.shape, 1, 1) | |
| return context | |
| class Generator(nn.Module): | |
| def __init__(self, nz=100, ngf=64, nt=768, nc=3): | |
| super().__init__() | |
| self.layer1 = nn.Sequential( | |
| nn.ConvTranspose2d(nz+nt, ngf*8, 4, 1, 0, bias=False), | |
| nn.BatchNorm2d(ngf*8) | |
| ) | |
| self.layer2 = nn.Sequential( | |
| nn.Conv2d(ngf*8, ngf*2, 1, 1), | |
| nn.Dropout2d(inplace=True), | |
| nn.BatchNorm2d(ngf*2), | |
| nn.ReLU(True) | |
| ) | |
| self.layer3 = nn.Sequential( | |
| nn.Conv2d(ngf*2, ngf*2, 3, 1, 1), | |
| nn.Dropout2d(inplace=True), | |
| nn.BatchNorm2d(ngf*2), | |
| nn.ReLU(True) | |
| ) | |
| self.layer4 = nn.Sequential( | |
| nn.Conv2d(ngf*2, ngf*8, 3, 1, 1), | |
| nn.Dropout2d(inplace=True), | |
| nn.BatchNorm2d(ngf*8), | |
| nn.ReLU(True) | |
| ) | |
| self.layer5 = nn.Sequential( | |
| nn.ConvTranspose2d(ngf*8, ngf*4, 4, 2, 1, bias=False), | |
| nn.BatchNorm2d(ngf*4), | |
| nn.ReLU(True) | |
| ) | |
| self.layer6 = nn.Sequential( | |
| nn.Conv2d(ngf*4, ngf, 1, 1), | |
| nn.Dropout2d(inplace=True), | |
| nn.BatchNorm2d(ngf), | |
| nn.ReLU(True) | |
| ) | |
| self.layer7 = nn.Sequential( | |
| nn.Conv2d(ngf, ngf, 3, 1, 1), | |
| nn.Dropout2d(inplace=True), | |
| nn.BatchNorm2d(ngf), | |
| nn.ReLU(True) | |
| ) | |
| self.layer8 = nn.Sequential( | |
| nn.Conv2d(ngf, ngf*4, 3, 1, 1), | |
| nn.Dropout2d(inplace=True), | |
| nn.BatchNorm2d(ngf*4), | |
| nn.ReLU(True) | |
| ) | |
| self.layer9 = nn.Sequential( | |
| nn.ConvTranspose2d(ngf*4, ngf*2, 4, 2, 1, bias=False), | |
| nn.BatchNorm2d(ngf*2), | |
| nn.ReLU(True) | |
| ) | |
| self.layer10 = nn.Sequential( | |
| nn.ConvTranspose2d(ngf*2, ngf, 4, 2, 1, bias=False), | |
| nn.BatchNorm2d(ngf), | |
| nn.ReLU(True) | |
| ) | |
| self.layer11 = nn.Sequential( | |
| nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False), | |
| nn.Tanh() | |
| ) | |
| def forward(self, noise, encoded_text): | |
| x = torch.cat([noise, encoded_text], dim=1) | |
| x = self.layer1(x) | |
| x = self.layer2(x) | |
| x = self.layer3(x) | |
| x = self.layer4(x) | |
| x = self.layer5(x) | |
| x = self.layer6(x) | |
| x = self.layer7(x) | |
| x = self.layer8(x) | |
| x = self.layer9(x) | |
| x = self.layer10(x) | |
| x = self.layer11(x) | |
| return x | |
| # Load the model and tokenizer | |
| model_path = "checkpoint.pth" # Adjust as necessary | |
| tokenizer = XLNetTokenizer.from_pretrained('xlnet-base-cased') | |
| text_encoder = TextEncoder() | |
| model = Generator() | |
| model_state_dict = torch.load(model_path, map_location="cpu") | |
| generator = model_state_dict['models']['generator'] | |
| model.load_state_dict(generator) | |
| text_encoder.to("cpu") | |
| model.to("cpu") | |
| model.eval() | |
| def generate_image(enc_text): | |
| noise = torch.randn((1, 100, 1, 1), device="cpu") | |
| with torch.no_grad(): | |
| generated_image = model(noise, enc_text).detach().squeeze().cpu() | |
| gen_image_np = generated_image.numpy() | |
| gen_image_np = np.transpose(gen_image_np, (1, 2, 0)) # Change from CHW to HWC | |
| gen_image_np = (gen_image_np - gen_image_np.min()) / (gen_image_np.max() - gen_image_np.min()) # Normalize to [0, 1] | |
| gen_image_np = (gen_image_np * 255).astype(np.uint8) | |
| return gen_image_np | |
| def encode_text(text): | |
| inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True) | |
| encoded_text = text_encoder(**inputs) | |
| return encoded_text | |
| def on_generate_button_click(text_input): | |
| if text_input: | |
| encoded_text = encode_text(text_input) | |
| generated_image = generate_image(encoded_text) | |
| return generated_image | |
| return None | |
| # Create the Gradio interface | |
| with gr.Blocks() as demo: | |
| gr.Markdown("## Flower Image Generator") | |
| text_input = gr.Textbox(label="Enter a flower-related description", value="A beautiful red rose") | |
| generate_button = gr.Button("Generate Image") | |
| output_image = gr.Image(type="numpy") # Ensure output type is correct | |
| generate_button.click(on_generate_button_click, inputs=text_input, outputs=output_image) | |
| # Launch the Gradio app | |
| demo.launch() | |