Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,9 +3,9 @@ import numpy as np
|
|
| 3 |
import pandas as pd
|
| 4 |
import plotly.express as px
|
| 5 |
import plotly.graph_objects as go
|
|
|
|
| 6 |
import shap
|
| 7 |
import matplotlib.pyplot as plt
|
| 8 |
-
|
| 9 |
from datetime import datetime, timedelta
|
| 10 |
from sklearn.model_selection import train_test_split
|
| 11 |
from sklearn.compose import ColumnTransformer
|
|
@@ -14,75 +14,89 @@ from sklearn.pipeline import Pipeline
|
|
| 14 |
from sklearn.ensemble import RandomForestRegressor
|
| 15 |
from sklearn.linear_model import LinearRegression
|
| 16 |
from sklearn.metrics import r2_score, mean_absolute_error
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
# Custom CSS for better UI
|
| 21 |
st.markdown("""
|
| 22 |
<style>
|
| 23 |
.main-header {
|
| 24 |
-
font-size: 2.
|
| 25 |
font-weight: 700;
|
| 26 |
color: #1f77b4;
|
|
|
|
| 27 |
margin-bottom: 0.5rem;
|
|
|
|
| 28 |
}
|
| 29 |
.sub-header {
|
| 30 |
-
font-size: 1.
|
| 31 |
color: #666;
|
|
|
|
| 32 |
margin-bottom: 2rem;
|
| 33 |
}
|
| 34 |
.insight-box {
|
| 35 |
-
background:
|
|
|
|
| 36 |
padding: 1.5rem;
|
| 37 |
-
border-radius: 10px;
|
| 38 |
-
color: white;
|
| 39 |
margin: 1rem 0;
|
|
|
|
|
|
|
| 40 |
}
|
| 41 |
-
.
|
| 42 |
background: white;
|
|
|
|
|
|
|
| 43 |
padding: 1.5rem;
|
| 44 |
-
|
| 45 |
-
box-shadow: 0
|
| 46 |
-
|
| 47 |
}
|
| 48 |
-
.recommendation-card {
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
border-radius: 8px;
|
| 52 |
-
border-left: 4px solid #22c55e;
|
| 53 |
-
margin: 0.5rem 0;
|
| 54 |
}
|
| 55 |
-
.
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
}
|
| 62 |
</style>
|
| 63 |
""", unsafe_allow_html=True)
|
| 64 |
|
| 65 |
# -----------------------------
|
| 66 |
-
# Data Generation
|
| 67 |
# -----------------------------
|
| 68 |
@st.cache_data(show_spinner=False)
|
| 69 |
-
def generate_synthetic_data(days=
|
| 70 |
rng = np.random.default_rng(seed)
|
| 71 |
start_date = datetime.today().date() - timedelta(days=days)
|
| 72 |
dates = pd.date_range(start_date, periods=days, freq="D")
|
| 73 |
-
|
| 74 |
products = ["Premium Widget", "Standard Widget", "Economy Widget", "Deluxe Widget"]
|
| 75 |
-
regions = ["
|
| 76 |
channels = ["Direct Sales", "Distribution Partners", "E-Commerce"]
|
| 77 |
|
| 78 |
base_price = {"Premium Widget": 120, "Standard Widget": 135, "Economy Widget": 110, "Deluxe Widget": 150}
|
| 79 |
-
base_cost
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
region_cost_bump = {"North America": 1.00, "Europe": 1.02, "Asia Pacific": 1.01}
|
| 83 |
-
|
| 84 |
channel_discount_mean = {"Direct Sales": 0.06, "Distribution Partners": 0.12, "E-Commerce": 0.04}
|
| 85 |
-
channel_discount_std
|
| 86 |
|
| 87 |
seg_epsilon = {}
|
| 88 |
for p in products:
|
|
@@ -103,16 +117,17 @@ def generate_synthetic_data(days=90, seed=42, rows_per_day=800):
|
|
| 103 |
|
| 104 |
n = rows_per_day
|
| 105 |
prod = rng.choice(products, size=n, p=[0.35, 0.3, 0.2, 0.15])
|
| 106 |
-
reg
|
| 107 |
-
ch
|
| 108 |
|
| 109 |
base_p = np.array([base_price[x] for x in prod]) * np.array([region_price_bump[x] for x in reg])
|
| 110 |
-
base_c = np.array([base_cost[x]
|
| 111 |
|
| 112 |
discount = np.clip(
|
| 113 |
np.array([channel_discount_mean[x] for x in ch]) +
|
| 114 |
rng.normal(0, [channel_discount_std[x] for x in ch]), 0, 0.45
|
| 115 |
)
|
|
|
|
| 116 |
list_price = rng.normal(base_p, 5)
|
| 117 |
net_price = np.clip(list_price * (1 - discount), 20, None)
|
| 118 |
unit_cost = np.clip(rng.normal(base_c, 4), 10, None)
|
|
@@ -123,433 +138,636 @@ def generate_synthetic_data(days=90, seed=42, rows_per_day=800):
|
|
| 123 |
qty = np.maximum(1, rng.poisson(8 * dow_mult * macro * qty_mu))
|
| 124 |
|
| 125 |
revenue = net_price * qty
|
| 126 |
-
cogs
|
| 127 |
-
gm_val
|
| 128 |
-
gm_pct
|
| 129 |
|
| 130 |
for i in range(n):
|
| 131 |
records.append({
|
| 132 |
-
"date": d,
|
| 133 |
-
"
|
| 134 |
-
"
|
| 135 |
-
"
|
| 136 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
})
|
| 138 |
-
return pd.DataFrame(records)
|
| 139 |
|
| 140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
feats_num = ["net_price", "unit_cost", "qty", "discount_pct", "list_price", "dow"]
|
| 142 |
feats_cat = ["product", "region", "channel"]
|
| 143 |
-
|
| 144 |
df = df.sort_values("date").copy()
|
| 145 |
seg = ["product", "region", "channel"]
|
| 146 |
df["price_per_unit"] = df["net_price"]
|
| 147 |
-
df["cost_per_unit"]
|
| 148 |
-
|
| 149 |
df["roll7_qty"] = df.groupby(seg)["qty"].transform(lambda s: s.rolling(7, min_periods=1).median())
|
| 150 |
df["roll7_price"] = df.groupby(seg)["price_per_unit"].transform(lambda s: s.rolling(7, min_periods=1).median())
|
| 151 |
-
df["roll7_cost"]
|
| 152 |
-
|
| 153 |
feats_num += ["price_per_unit", "cost_per_unit", "roll7_qty", "roll7_price", "roll7_cost"]
|
| 154 |
-
|
|
|
|
| 155 |
|
| 156 |
@st.cache_resource(show_spinner=False)
|
| 157 |
-
def train_model(
|
| 158 |
-
X = df[feats_num + feats_cat]
|
| 159 |
-
y = df[target]
|
| 160 |
-
|
| 161 |
pre = ColumnTransformer(
|
| 162 |
transformers=[
|
| 163 |
("cat", OneHotEncoder(handle_unknown="ignore"), feats_cat),
|
| 164 |
("num", "passthrough", feats_num),
|
| 165 |
]
|
| 166 |
)
|
| 167 |
-
model = RandomForestRegressor(n_estimators=
|
| 168 |
pipe = Pipeline([("pre", pre), ("rf", model)])
|
| 169 |
-
|
| 170 |
-
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, shuffle=False)
|
| 171 |
pipe.fit(X_train, y_train)
|
| 172 |
pred = pipe.predict(X_test)
|
|
|
|
|
|
|
|
|
|
| 173 |
|
| 174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 175 |
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
preproc = _pipe.named_steps["pre"]
|
| 180 |
-
rf = _pipe.named_steps["rf"]
|
| 181 |
-
feature_names = list(preproc.named_transformers_["cat"].get_feature_names_out(feats_cat)) + feats_num
|
| 182 |
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
|
|
|
| 186 |
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
joined = pd.concat([X_sample.reset_index(drop=True), shap_df.reset_index(drop=True)], axis=1)
|
| 198 |
-
return shap_df, X_sample.reset_index(drop=True), feature_names, joined
|
| 199 |
|
| 200 |
-
def estimate_segment_elasticity(df
|
| 201 |
seg_df = df[(df["product"]==product)&(df["region"]==region)&(df["channel"]==channel)]
|
| 202 |
if len(seg_df) < 100 or seg_df["net_price"].std() < 1e-6 or seg_df["qty"].std() < 1e-6:
|
| 203 |
return -0.5, False
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
|
|
|
|
|
|
|
|
|
| 208 |
|
| 209 |
-
def
|
| 210 |
if segment_df.empty:
|
| 211 |
return None
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
if
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
st.session_state["feats_cat"] = feats_cat
|
| 249 |
-
st.session_state["data_loaded"] = True
|
| 250 |
-
|
| 251 |
-
df = st.session_state["df"]
|
| 252 |
-
joined = st.session_state["joined"]
|
| 253 |
-
metrics = st.session_state["metrics"]
|
| 254 |
-
shap_df = st.session_state["shap_df"]
|
| 255 |
-
|
| 256 |
-
# -----------------------------
|
| 257 |
-
# HEADER
|
| 258 |
-
# -----------------------------
|
| 259 |
-
st.markdown('<p class="main-header">π° Profitability Intelligence Dashboard</p>', unsafe_allow_html=True)
|
| 260 |
-
st.markdown('<p class="sub-header">AI-powered insights to understand and optimize your gross margin drivers</p>', unsafe_allow_html=True)
|
| 261 |
|
| 262 |
# -----------------------------
|
| 263 |
-
#
|
| 264 |
# -----------------------------
|
| 265 |
-
st.markdown("## π Executive Summary")
|
| 266 |
|
| 267 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 268 |
daily["gm_pct"] = np.where(daily["revenue"]>0, daily["gm_value"]/daily["revenue"], 0.0)
|
|
|
|
| 269 |
today_row = daily.iloc[-1]
|
| 270 |
yesterday_row = daily.iloc[-2] if len(daily) > 1 else today_row
|
|
|
|
| 271 |
roll7 = daily["gm_pct"].tail(7).mean()
|
| 272 |
-
|
|
|
|
|
|
|
| 273 |
|
| 274 |
col1, col2, col3, col4 = st.columns(4)
|
| 275 |
|
| 276 |
with col1:
|
| 277 |
-
|
| 278 |
-
st.metric(
|
| 279 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 280 |
|
| 281 |
with col2:
|
| 282 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 283 |
|
| 284 |
with col3:
|
| 285 |
-
|
| 286 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 287 |
|
| 288 |
with col4:
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
mode='lines', name='7-Day Average', line=dict(color='#ff7f0e', width=2, dash='dash')))
|
| 297 |
-
fig_trend.update_layout(title="Gross Margin % Trend", xaxis_title="Date", yaxis_title="GM %",
|
| 298 |
-
height=300, hovermode='x unified')
|
| 299 |
-
st.plotly_chart(fig_trend, use_container_width=True)
|
| 300 |
-
|
| 301 |
-
# Key Insight Box
|
| 302 |
-
gm_change = (today_row["gm_pct"] - roll30) * 100
|
| 303 |
-
if abs(gm_change) > 0.5:
|
| 304 |
-
trend_word = "improved" if gm_change > 0 else "declined"
|
| 305 |
-
st.markdown(f"""
|
| 306 |
-
<div class="insight-box">
|
| 307 |
-
<h3>π‘ Key Insight</h3>
|
| 308 |
-
<p>Your gross margin has <strong>{trend_word} by {abs(gm_change):.1f} percentage points</strong> compared to the 30-day average.
|
| 309 |
-
The analysis below identifies the specific drivers and business segments responsible for this change.</p>
|
| 310 |
-
</div>
|
| 311 |
-
""", unsafe_allow_html=True)
|
| 312 |
|
| 313 |
-
|
|
|
|
| 314 |
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
|
|
|
| 319 |
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
""
|
| 324 |
-
|
| 325 |
-
#
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
if "discount" in name.lower():
|
| 331 |
-
return "Discount Level"
|
| 332 |
-
elif "cost_per_unit" in name.lower() or "unit_cost" in name.lower():
|
| 333 |
-
return "Unit Cost"
|
| 334 |
-
elif "price_per_unit" in name.lower() or "net_price" in name.lower():
|
| 335 |
-
return "Selling Price"
|
| 336 |
-
elif "qty" in name.lower():
|
| 337 |
-
return "Volume"
|
| 338 |
-
elif "product_" in name.lower():
|
| 339 |
-
return name.replace("product_", "Product: ")
|
| 340 |
-
elif "channel_" in name.lower():
|
| 341 |
-
return name.replace("channel_", "Channel: ")
|
| 342 |
-
elif "region_" in name.lower():
|
| 343 |
-
return name.replace("region_", "Region: ")
|
| 344 |
-
return name
|
| 345 |
-
|
| 346 |
-
# Top 10 drivers
|
| 347 |
-
top_drivers = mean_abs.head(10)
|
| 348 |
-
driver_names = [simplify_feature_name(f) for f in top_drivers.index]
|
| 349 |
-
|
| 350 |
-
fig_drivers = go.Figure(go.Bar(
|
| 351 |
-
y=driver_names[::-1],
|
| 352 |
-
x=top_drivers.values[::-1],
|
| 353 |
-
orientation='h',
|
| 354 |
-
marker=dict(color=top_drivers.values[::-1], colorscale='Blues', showscale=False)
|
| 355 |
-
))
|
| 356 |
-
fig_drivers.update_layout(
|
| 357 |
-
title="Top 10 Profit Margin Drivers (Impact Strength)",
|
| 358 |
-
xaxis_title="Impact on Gross Margin",
|
| 359 |
-
yaxis_title="",
|
| 360 |
-
height=400,
|
| 361 |
-
showlegend=False
|
| 362 |
)
|
| 363 |
-
st.plotly_chart(fig_drivers, use_container_width=True)
|
| 364 |
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 371 |
|
| 372 |
st.markdown("---")
|
| 373 |
|
| 374 |
-
#
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
|
|
|
|
|
|
| 378 |
|
| 379 |
-
|
|
|
|
|
|
|
| 380 |
|
| 381 |
-
#
|
| 382 |
-
|
| 383 |
-
grp = joined.groupby(["product","region","channel"]).mean(numeric_only=True)
|
| 384 |
-
rank_cols = [c for c in grp.columns if c in key_feats]
|
| 385 |
-
segment_impact = grp[rank_cols].sum(axis=1).sort_values()
|
| 386 |
|
| 387 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 388 |
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 398 |
|
| 399 |
-
with
|
| 400 |
-
st.markdown("###
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
st.dataframe(best_df[['Segment', 'Performance']], hide_index=True, use_container_width=True)
|
| 408 |
|
| 409 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 410 |
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 415 |
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
Select a segment and adjust the levers to see the projected outcome.
|
| 419 |
-
""")
|
| 420 |
|
| 421 |
-
|
| 422 |
-
last_day = df["date"].max()
|
| 423 |
-
seg_today = df[df["date"]==last_day][["product","region","channel"]].drop_duplicates().sort_values(["product","region","channel"])
|
| 424 |
-
seg_options = seg_today.apply(lambda r: f"{r['product']} β’ {r['region']} β’ {r['channel']}", axis=1).tolist()
|
| 425 |
|
| 426 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 427 |
|
| 428 |
-
|
| 429 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 430 |
|
| 431 |
-
with col2:
|
| 432 |
-
st.markdown("**Scenario Type:**")
|
| 433 |
-
scenario = st.radio("", ["Optimize Discount", "Reduce Costs", "Custom"], horizontal=True, label_visibility="collapsed")
|
| 434 |
-
|
| 435 |
-
prod_sel, reg_sel, ch_sel = [s.strip() for s in selected_segment.split("β’")]
|
| 436 |
-
seg_hist = df[(df["product"]==prod_sel)&(df["region"]==reg_sel)&(df["channel"]==ch_sel)].sort_values("date")
|
| 437 |
-
elasticity, _ = estimate_segment_elasticity(seg_hist, prod_sel, reg_sel, ch_sel)
|
| 438 |
-
|
| 439 |
-
# Pre-set scenarios
|
| 440 |
-
if scenario == "Optimize Discount":
|
| 441 |
-
delta_disc = -2.0
|
| 442 |
-
delta_cost = 0.0
|
| 443 |
-
st.info("π Testing a 2 percentage point discount reduction to improve margin")
|
| 444 |
-
elif scenario == "Reduce Costs":
|
| 445 |
-
delta_disc = 0.0
|
| 446 |
-
delta_cost = -3.0
|
| 447 |
-
st.info("π° Testing a $3 reduction in unit cost through operational efficiency")
|
| 448 |
-
else:
|
| 449 |
-
col1, col2 = st.columns(2)
|
| 450 |
-
with col1:
|
| 451 |
-
delta_disc = st.slider("Adjust Discount (percentage points)", -10.0, 10.0, -2.0, 0.5,
|
| 452 |
-
help="Negative = tighter discount, Positive = deeper discount")
|
| 453 |
-
with col2:
|
| 454 |
-
delta_cost = st.slider("Adjust Unit Cost ($)", -10.0, 10.0, 0.0, 0.5,
|
| 455 |
-
help="Negative = cost reduction, Positive = cost increase")
|
| 456 |
-
|
| 457 |
-
# Run simulation
|
| 458 |
-
sim_res = simulate_action(seg_hist, elasticity, delta_discount=delta_disc/100.0, delta_unit_cost=delta_cost)
|
| 459 |
-
|
| 460 |
-
if sim_res:
|
| 461 |
-
st.markdown("### π Projected Impact")
|
| 462 |
-
|
| 463 |
-
# Results in clean columns
|
| 464 |
-
metric_col1, metric_col2, metric_col3, metric_col4 = st.columns(4)
|
| 465 |
-
|
| 466 |
-
with metric_col1:
|
| 467 |
-
price_change = ((sim_res['new_price'] - sim_res['baseline_price']) / sim_res['baseline_price']) * 100
|
| 468 |
-
st.metric("Price per Unit", f"${sim_res['new_price']:.2f}", f"{price_change:+.1f}%")
|
| 469 |
-
|
| 470 |
-
with metric_col2:
|
| 471 |
-
cost_change = ((sim_res['new_cost'] - sim_res['baseline_cost']) / sim_res['baseline_cost']) * 100
|
| 472 |
-
st.metric("Cost per Unit", f"${sim_res['new_cost']:.2f}", f"{cost_change:+.1f}%")
|
| 473 |
-
|
| 474 |
-
with metric_col3:
|
| 475 |
-
qty_change = ((sim_res['new_qty'] - sim_res['baseline_qty']) / sim_res['baseline_qty']) * 100
|
| 476 |
-
st.metric("Volume", f"{sim_res['new_qty']:.0f} units", f"{qty_change:+.1f}%")
|
| 477 |
-
|
| 478 |
-
with metric_col4:
|
| 479 |
-
gm_change = (sim_res['gm1_pct'] - sim_res['gm0_pct']) * 100
|
| 480 |
-
st.metric("Gross Margin %", f"{sim_res['gm1_pct']*100:.1f}%", f"{gm_change:+.1f} pts")
|
| 481 |
-
|
| 482 |
-
# Financial impact
|
| 483 |
-
if sim_res['gm_delta_value'] > 0:
|
| 484 |
-
st.markdown(f"""
|
| 485 |
-
<div class="recommendation-card">
|
| 486 |
-
<h4>β
Positive Impact: +${sim_res['gm_delta_value']:.2f} in daily gross profit</h4>
|
| 487 |
-
<p>This strategy would <strong>improve profitability</strong> for this segment.
|
| 488 |
-
Expected price elasticity of {elasticity:.2f} means volume {('decreases' if elasticity < 0 and delta_disc < 0 else 'adjusts')}
|
| 489 |
-
as prices change, but margin improvement outweighs volume impact.</p>
|
| 490 |
-
</div>
|
| 491 |
-
""", unsafe_allow_html=True)
|
| 492 |
-
else:
|
| 493 |
st.markdown(f"""
|
| 494 |
-
<div class="
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 498 |
</div>
|
| 499 |
""", unsafe_allow_html=True)
|
| 500 |
|
| 501 |
-
st.markdown("
|
| 502 |
|
| 503 |
-
|
| 504 |
-
|
| 505 |
-
|
| 506 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 507 |
|
| 508 |
-
|
| 509 |
-
|
| 510 |
-
|
| 511 |
-
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
|
| 515 |
-
|
| 516 |
-
|
| 517 |
-
|
| 518 |
-
|
| 519 |
-
|
| 520 |
-
|
| 521 |
-
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
|
| 531 |
-
|
| 532 |
-
|
| 533 |
-
|
| 534 |
-
|
| 535 |
-
|
| 536 |
-
|
| 537 |
-
|
| 538 |
-
|
| 539 |
-
|
| 540 |
-
|
| 541 |
-
|
| 542 |
-
|
| 543 |
-
|
| 544 |
-
|
| 545 |
-
|
| 546 |
-
|
| 547 |
-
|
| 548 |
-
|
| 549 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 550 |
|
| 551 |
st.markdown("---")
|
| 552 |
-
|
| 553 |
-
#
|
| 554 |
-
|
| 555 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
import pandas as pd
|
| 4 |
import plotly.express as px
|
| 5 |
import plotly.graph_objects as go
|
| 6 |
+
from plotly.subplots import make_subplots
|
| 7 |
import shap
|
| 8 |
import matplotlib.pyplot as plt
|
|
|
|
| 9 |
from datetime import datetime, timedelta
|
| 10 |
from sklearn.model_selection import train_test_split
|
| 11 |
from sklearn.compose import ColumnTransformer
|
|
|
|
| 14 |
from sklearn.ensemble import RandomForestRegressor
|
| 15 |
from sklearn.linear_model import LinearRegression
|
| 16 |
from sklearn.metrics import r2_score, mean_absolute_error
|
| 17 |
+
import warnings
|
| 18 |
+
warnings.filterwarnings('ignore')
|
| 19 |
+
|
| 20 |
+
# Enhanced page config
|
| 21 |
+
st.set_page_config(
|
| 22 |
+
page_title="Profitability Intelligence Suite",
|
| 23 |
+
page_icon="π",
|
| 24 |
+
layout="wide",
|
| 25 |
+
initial_sidebar_state="collapsed"
|
| 26 |
+
)
|
| 27 |
|
| 28 |
+
# Custom CSS for premium look
|
|
|
|
|
|
|
| 29 |
st.markdown("""
|
| 30 |
<style>
|
| 31 |
.main-header {
|
| 32 |
+
font-size: 2.8rem;
|
| 33 |
font-weight: 700;
|
| 34 |
color: #1f77b4;
|
| 35 |
+
text-align: center;
|
| 36 |
margin-bottom: 0.5rem;
|
| 37 |
+
text-shadow: 2px 2px 4px rgba(0,0,0,0.1);
|
| 38 |
}
|
| 39 |
.sub-header {
|
| 40 |
+
font-size: 1.2rem;
|
| 41 |
color: #666;
|
| 42 |
+
text-align: center;
|
| 43 |
margin-bottom: 2rem;
|
| 44 |
}
|
| 45 |
.insight-box {
|
| 46 |
+
background: #f8f9fa;
|
| 47 |
+
border-left: 5px solid #1f77b4;
|
| 48 |
padding: 1.5rem;
|
|
|
|
|
|
|
| 49 |
margin: 1rem 0;
|
| 50 |
+
border-radius: 8px;
|
| 51 |
+
box-shadow: 0 4px 8px rgba(0,0,0,0.05);
|
| 52 |
}
|
| 53 |
+
.recommendation-card {
|
| 54 |
background: white;
|
| 55 |
+
border: 2px solid #e9ecef;
|
| 56 |
+
border-radius: 12px;
|
| 57 |
padding: 1.5rem;
|
| 58 |
+
margin: 1rem 0;
|
| 59 |
+
box-shadow: 0 4px 12px rgba(0,0,0,0.08);
|
| 60 |
+
transition: transform 0.2s;
|
| 61 |
}
|
| 62 |
+
.recommendation-card:hover {
|
| 63 |
+
transform: translateY(-5px);
|
| 64 |
+
box-shadow: 0 8px 20px rgba(0,0,0,0.12);
|
|
|
|
|
|
|
|
|
|
| 65 |
}
|
| 66 |
+
.positive-impact {
|
| 67 |
+
color: #28a745;
|
| 68 |
+
font-weight: 700;
|
| 69 |
+
font-size: 1.5rem;
|
| 70 |
+
}
|
| 71 |
+
.stTabs [data-baseweb="tab-list"] {
|
| 72 |
+
gap: 2rem;
|
| 73 |
+
}
|
| 74 |
+
.stTabs [data-baseweb="tab"] {
|
| 75 |
+
height: 3rem;
|
| 76 |
+
font-size: 1.1rem;
|
| 77 |
+
font-weight: 600;
|
| 78 |
}
|
| 79 |
</style>
|
| 80 |
""", unsafe_allow_html=True)
|
| 81 |
|
| 82 |
# -----------------------------
|
| 83 |
+
# Data Generation
|
| 84 |
# -----------------------------
|
| 85 |
@st.cache_data(show_spinner=False)
|
| 86 |
+
def generate_synthetic_data(days=60, seed=42, rows_per_day=600):
|
| 87 |
rng = np.random.default_rng(seed)
|
| 88 |
start_date = datetime.today().date() - timedelta(days=days)
|
| 89 |
dates = pd.date_range(start_date, periods=days, freq="D")
|
|
|
|
| 90 |
products = ["Premium Widget", "Standard Widget", "Economy Widget", "Deluxe Widget"]
|
| 91 |
+
regions = ["Americas", "EMEA", "Asia Pacific"]
|
| 92 |
channels = ["Direct Sales", "Distribution Partners", "E-Commerce"]
|
| 93 |
|
| 94 |
base_price = {"Premium Widget": 120, "Standard Widget": 135, "Economy Widget": 110, "Deluxe Widget": 150}
|
| 95 |
+
base_cost = {"Premium Widget": 70, "Standard Widget": 88, "Economy Widget": 60, "Deluxe Widget": 95}
|
| 96 |
+
region_price_bump = {"Americas": 1.00, "EMEA": 1.03, "Asia Pacific": 0.97}
|
| 97 |
+
region_cost_bump = {"Americas": 1.00, "EMEA": 1.02, "Asia Pacific": 1.01}
|
|
|
|
|
|
|
| 98 |
channel_discount_mean = {"Direct Sales": 0.06, "Distribution Partners": 0.12, "E-Commerce": 0.04}
|
| 99 |
+
channel_discount_std = {"Direct Sales": 0.02, "Distribution Partners": 0.03, "E-Commerce": 0.02}
|
| 100 |
|
| 101 |
seg_epsilon = {}
|
| 102 |
for p in products:
|
|
|
|
| 117 |
|
| 118 |
n = rows_per_day
|
| 119 |
prod = rng.choice(products, size=n, p=[0.35, 0.3, 0.2, 0.15])
|
| 120 |
+
reg = rng.choice(regions, size=n, p=[0.4, 0.35, 0.25])
|
| 121 |
+
ch = rng.choice(channels, size=n, p=[0.45, 0.35, 0.20])
|
| 122 |
|
| 123 |
base_p = np.array([base_price[x] for x in prod]) * np.array([region_price_bump[x] for x in reg])
|
| 124 |
+
base_c = np.array([base_cost[x] for x in prod]) * np.array([region_cost_bump[x] for x in reg])
|
| 125 |
|
| 126 |
discount = np.clip(
|
| 127 |
np.array([channel_discount_mean[x] for x in ch]) +
|
| 128 |
rng.normal(0, [channel_discount_std[x] for x in ch]), 0, 0.45
|
| 129 |
)
|
| 130 |
+
|
| 131 |
list_price = rng.normal(base_p, 5)
|
| 132 |
net_price = np.clip(list_price * (1 - discount), 20, None)
|
| 133 |
unit_cost = np.clip(rng.normal(base_c, 4), 10, None)
|
|
|
|
| 138 |
qty = np.maximum(1, rng.poisson(8 * dow_mult * macro * qty_mu))
|
| 139 |
|
| 140 |
revenue = net_price * qty
|
| 141 |
+
cogs = unit_cost * qty
|
| 142 |
+
gm_val = revenue - cogs
|
| 143 |
+
gm_pct = np.where(revenue > 0, gm_val / revenue, 0.0)
|
| 144 |
|
| 145 |
for i in range(n):
|
| 146 |
records.append({
|
| 147 |
+
"date": d,
|
| 148 |
+
"product": prod[i],
|
| 149 |
+
"region": reg[i],
|
| 150 |
+
"channel": ch[i],
|
| 151 |
+
"list_price": float(list_price[i]),
|
| 152 |
+
"discount_pct": float(discount[i]),
|
| 153 |
+
"net_price": float(net_price[i]),
|
| 154 |
+
"unit_cost": float(unit_cost[i]),
|
| 155 |
+
"qty": int(qty[i]),
|
| 156 |
+
"revenue": float(revenue[i]),
|
| 157 |
+
"cogs": float(cogs[i]),
|
| 158 |
+
"gm_value": float(gm_val[i]),
|
| 159 |
+
"gm_pct": float(gm_pct[i]),
|
| 160 |
+
"dow": dow
|
| 161 |
})
|
|
|
|
| 162 |
|
| 163 |
+
df = pd.DataFrame(records)
|
| 164 |
+
return df
|
| 165 |
+
|
| 166 |
+
@st.cache_data(show_spinner=False)
|
| 167 |
+
def build_features(_df):
|
| 168 |
+
df = _df.copy()
|
| 169 |
feats_num = ["net_price", "unit_cost", "qty", "discount_pct", "list_price", "dow"]
|
| 170 |
feats_cat = ["product", "region", "channel"]
|
|
|
|
| 171 |
df = df.sort_values("date").copy()
|
| 172 |
seg = ["product", "region", "channel"]
|
| 173 |
df["price_per_unit"] = df["net_price"]
|
| 174 |
+
df["cost_per_unit"] = df["unit_cost"]
|
|
|
|
| 175 |
df["roll7_qty"] = df.groupby(seg)["qty"].transform(lambda s: s.rolling(7, min_periods=1).median())
|
| 176 |
df["roll7_price"] = df.groupby(seg)["price_per_unit"].transform(lambda s: s.rolling(7, min_periods=1).median())
|
| 177 |
+
df["roll7_cost"] = df.groupby(seg)["cost_per_unit"].transform(lambda s: s.rolling(7, min_periods=1).median())
|
|
|
|
| 178 |
feats_num += ["price_per_unit", "cost_per_unit", "roll7_qty", "roll7_price", "roll7_cost"]
|
| 179 |
+
target = "gm_pct"
|
| 180 |
+
return df, feats_num, feats_cat, target
|
| 181 |
|
| 182 |
@st.cache_resource(show_spinner=False)
|
| 183 |
+
def train_model(feats_num, feats_cat, target, _X, _y):
|
|
|
|
|
|
|
|
|
|
| 184 |
pre = ColumnTransformer(
|
| 185 |
transformers=[
|
| 186 |
("cat", OneHotEncoder(handle_unknown="ignore"), feats_cat),
|
| 187 |
("num", "passthrough", feats_num),
|
| 188 |
]
|
| 189 |
)
|
| 190 |
+
model = RandomForestRegressor(n_estimators=100, max_depth=10, random_state=42, n_jobs=-1)
|
| 191 |
pipe = Pipeline([("pre", pre), ("rf", model)])
|
| 192 |
+
X_train, X_test, y_train, y_test = train_test_split(_X, _y, test_size=0.25, shuffle=False, random_state=42)
|
|
|
|
| 193 |
pipe.fit(X_train, y_train)
|
| 194 |
pred = pipe.predict(X_test)
|
| 195 |
+
r2 = r2_score(y_test, pred)
|
| 196 |
+
mae = mean_absolute_error(y_test, pred)
|
| 197 |
+
return pipe, {"r2": r2, "mae": mae}, X_test
|
| 198 |
|
| 199 |
+
@st.cache_data(show_spinner=False)
|
| 200 |
+
def compute_shap_values(_pipe, _X_sample, feats_num, feats_cat, shap_sample=500):
|
| 201 |
+
try:
|
| 202 |
+
np.random.seed(42)
|
| 203 |
+
# Get sample
|
| 204 |
+
X_sample = _X_sample.copy() if hasattr(_X_sample, 'copy') else pd.DataFrame(_X_sample)
|
| 205 |
|
| 206 |
+
if len(X_sample) > shap_sample:
|
| 207 |
+
sample_idx = np.random.choice(len(X_sample), size=shap_sample, replace=False)
|
| 208 |
+
X_sample = X_sample.iloc[sample_idx]
|
|
|
|
|
|
|
|
|
|
| 209 |
|
| 210 |
+
# Transform data
|
| 211 |
+
X_t = _pipe.named_steps["pre"].transform(X_sample)
|
| 212 |
+
if hasattr(X_t, 'toarray'):
|
| 213 |
+
X_t = X_t.toarray()
|
| 214 |
|
| 215 |
+
# Get feature names
|
| 216 |
+
cat_features = list(_pipe.named_steps["pre"].named_transformers_["cat"].get_feature_names_out(feats_cat))
|
| 217 |
+
feature_names = cat_features + feats_num
|
| 218 |
+
|
| 219 |
+
# Compute SHAP
|
| 220 |
+
explainer = shap.TreeExplainer(_pipe.named_steps["rf"])
|
| 221 |
+
shap_values = explainer.shap_values(X_t)
|
| 222 |
+
|
| 223 |
+
# Create DataFrame
|
| 224 |
+
shap_df = pd.DataFrame(shap_values, columns=feature_names)
|
| 225 |
|
| 226 |
+
return shap_df, X_sample.reset_index(drop=True), feature_names
|
| 227 |
+
except Exception as e:
|
| 228 |
+
st.error(f"Error computing SHAP: {str(e)}")
|
| 229 |
+
return None, None, None
|
|
|
|
|
|
|
| 230 |
|
| 231 |
+
def estimate_segment_elasticity(df, product, region, channel):
|
| 232 |
seg_df = df[(df["product"]==product)&(df["region"]==region)&(df["channel"]==channel)]
|
| 233 |
if len(seg_df) < 100 or seg_df["net_price"].std() < 1e-6 or seg_df["qty"].std() < 1e-6:
|
| 234 |
return -0.5, False
|
| 235 |
+
try:
|
| 236 |
+
x = np.log(np.clip(seg_df["net_price"].values, 1e-6, None)).reshape(-1,1)
|
| 237 |
+
y = np.log(np.clip(seg_df["qty"].values, 1e-6, None))
|
| 238 |
+
lin = LinearRegression().fit(x, y)
|
| 239 |
+
return float(lin.coef_[0]), True
|
| 240 |
+
except:
|
| 241 |
+
return -0.5, False
|
| 242 |
|
| 243 |
+
def simulate_pricing_action(segment_df, elasticity, discount_reduction_pct):
|
| 244 |
if segment_df.empty:
|
| 245 |
return None
|
| 246 |
+
try:
|
| 247 |
+
base = segment_df.iloc[-1]
|
| 248 |
+
p0 = base["net_price"]
|
| 249 |
+
c0 = base["unit_cost"]
|
| 250 |
+
q0 = base["qty"]
|
| 251 |
+
d0 = base["discount_pct"]
|
| 252 |
+
|
| 253 |
+
new_discount = np.clip(d0 - (discount_reduction_pct/100), 0.0, 0.45)
|
| 254 |
+
p1 = max(0.01, base["list_price"] * (1 - new_discount))
|
| 255 |
+
c1 = c0
|
| 256 |
+
|
| 257 |
+
if p0 <= 0:
|
| 258 |
+
q1 = q0
|
| 259 |
+
else:
|
| 260 |
+
q1 = max(0.0, q0 * (p1 / p0) ** elasticity)
|
| 261 |
+
|
| 262 |
+
rev0 = p0 * q0
|
| 263 |
+
cogs0 = c0 * q0
|
| 264 |
+
rev1 = p1 * q1
|
| 265 |
+
cogs1 = c1 * q1
|
| 266 |
+
|
| 267 |
+
gm_delta_value = (rev1 - cogs1) - (rev0 - cogs0)
|
| 268 |
+
gm0_pct = (rev0 - cogs0)/rev0 if rev0>0 else 0.0
|
| 269 |
+
gm1_pct = (rev1 - cogs1)/rev1 if rev1>0 else 0.0
|
| 270 |
+
|
| 271 |
+
return {
|
| 272 |
+
"baseline_price": p0, "new_price": p1,
|
| 273 |
+
"baseline_cost": c0, "new_cost": c1,
|
| 274 |
+
"baseline_qty": q0, "new_qty": q1,
|
| 275 |
+
"baseline_discount": d0*100, "new_discount": new_discount*100,
|
| 276 |
+
"gm_delta_value": gm_delta_value,
|
| 277 |
+
"gm0_pct": gm0_pct, "gm1_pct": gm1_pct,
|
| 278 |
+
"revenue_delta": rev1 - rev0
|
| 279 |
+
}
|
| 280 |
+
except:
|
| 281 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 282 |
|
| 283 |
# -----------------------------
|
| 284 |
+
# Main App
|
| 285 |
# -----------------------------
|
|
|
|
| 286 |
|
| 287 |
+
# Header
|
| 288 |
+
st.markdown('<h1 class="main-header">π― Profitability Intelligence Suite</h1>', unsafe_allow_html=True)
|
| 289 |
+
st.markdown('<p class="sub-header">AI-Powered Margin Analysis & Strategic Recommendations</p>', unsafe_allow_html=True)
|
| 290 |
+
|
| 291 |
+
# Generate data
|
| 292 |
+
with st.spinner("π Loading business data..."):
|
| 293 |
+
df = generate_synthetic_data(days=60, seed=42, rows_per_day=600)
|
| 294 |
+
df_feat, feats_num, feats_cat, target = build_features(df)
|
| 295 |
+
|
| 296 |
+
# Calculate KPIs
|
| 297 |
+
daily = df.groupby("date").agg(
|
| 298 |
+
revenue=("revenue","sum"),
|
| 299 |
+
cogs=("cogs","sum"),
|
| 300 |
+
gm_value=("gm_value","sum")
|
| 301 |
+
).reset_index()
|
| 302 |
daily["gm_pct"] = np.where(daily["revenue"]>0, daily["gm_value"]/daily["revenue"], 0.0)
|
| 303 |
+
|
| 304 |
today_row = daily.iloc[-1]
|
| 305 |
yesterday_row = daily.iloc[-2] if len(daily) > 1 else today_row
|
| 306 |
+
week_ago_row = daily.iloc[-8] if len(daily) > 7 else today_row
|
| 307 |
roll7 = daily["gm_pct"].tail(7).mean()
|
| 308 |
+
|
| 309 |
+
# Executive Dashboard Section
|
| 310 |
+
st.markdown("### π Executive Performance Dashboard")
|
| 311 |
|
| 312 |
col1, col2, col3, col4 = st.columns(4)
|
| 313 |
|
| 314 |
with col1:
|
| 315 |
+
delta_gm = (today_row["gm_pct"] - yesterday_row["gm_pct"]) * 100
|
| 316 |
+
st.metric(
|
| 317 |
+
label="Gross Margin %",
|
| 318 |
+
value=f"{today_row['gm_pct']*100:.1f}%",
|
| 319 |
+
delta=f"{delta_gm:+.2f}pp vs yesterday",
|
| 320 |
+
delta_color="normal"
|
| 321 |
+
)
|
| 322 |
|
| 323 |
with col2:
|
| 324 |
+
delta_rev = ((today_row["revenue"] - yesterday_row["revenue"]) / yesterday_row["revenue"] * 100) if yesterday_row["revenue"] > 0 else 0
|
| 325 |
+
st.metric(
|
| 326 |
+
label="Revenue (Today)",
|
| 327 |
+
value=f"${today_row['revenue']/1e6:.2f}M",
|
| 328 |
+
delta=f"{delta_rev:+.1f}% DoD",
|
| 329 |
+
delta_color="normal"
|
| 330 |
+
)
|
| 331 |
|
| 332 |
with col3:
|
| 333 |
+
st.metric(
|
| 334 |
+
label="Gross Margin $ (Today)",
|
| 335 |
+
value=f"${today_row['gm_value']/1e6:.2f}M",
|
| 336 |
+
delta=f"${(today_row['gm_value'] - yesterday_row['gm_value'])/1e6:+.2f}M",
|
| 337 |
+
delta_color="normal"
|
| 338 |
+
)
|
| 339 |
|
| 340 |
with col4:
|
| 341 |
+
avg_gm_vs_week = (today_row["gm_pct"] - week_ago_row["gm_pct"]) * 100
|
| 342 |
+
st.metric(
|
| 343 |
+
label="7-Day Avg GM%",
|
| 344 |
+
value=f"{roll7*100:.1f}%",
|
| 345 |
+
delta=f"{avg_gm_vs_week:+.2f}pp WoW",
|
| 346 |
+
delta_color="normal"
|
| 347 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 348 |
|
| 349 |
+
# Trend visualization
|
| 350 |
+
st.markdown("#### π Performance Trend Analysis")
|
| 351 |
|
| 352 |
+
fig_trends = make_subplots(
|
| 353 |
+
rows=1, cols=2,
|
| 354 |
+
subplot_titles=("Gross Margin % Trend", "Revenue & Margin $ Trend"),
|
| 355 |
+
specs=[[{"secondary_y": False}, {"secondary_y": True}]]
|
| 356 |
+
)
|
| 357 |
|
| 358 |
+
fig_trends.add_trace(
|
| 359 |
+
go.Scatter(
|
| 360 |
+
x=daily["date"],
|
| 361 |
+
y=daily["gm_pct"]*100,
|
| 362 |
+
name="GM%",
|
| 363 |
+
line=dict(color="#1f77b4", width=3),
|
| 364 |
+
fill='tozeroy',
|
| 365 |
+
fillcolor="rgba(31, 119, 180, 0.1)"
|
| 366 |
+
),
|
| 367 |
+
row=1, col=1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 368 |
)
|
|
|
|
| 369 |
|
| 370 |
+
fig_trends.add_trace(
|
| 371 |
+
go.Scatter(
|
| 372 |
+
x=daily["date"],
|
| 373 |
+
y=daily["revenue"]/1e6,
|
| 374 |
+
name="Revenue",
|
| 375 |
+
line=dict(color="#2ca02c", width=2)
|
| 376 |
+
),
|
| 377 |
+
row=1, col=2
|
| 378 |
+
)
|
| 379 |
+
|
| 380 |
+
fig_trends.add_trace(
|
| 381 |
+
go.Scatter(
|
| 382 |
+
x=daily["date"],
|
| 383 |
+
y=daily["gm_value"]/1e6,
|
| 384 |
+
name="GM Value",
|
| 385 |
+
line=dict(color="#ff7f0e", width=2, dash="dash")
|
| 386 |
+
),
|
| 387 |
+
row=1, col=2, secondary_y=True
|
| 388 |
+
)
|
| 389 |
+
|
| 390 |
+
fig_trends.update_xaxes(title_text="Date", row=1, col=1)
|
| 391 |
+
fig_trends.update_xaxes(title_text="Date", row=1, col=2)
|
| 392 |
+
fig_trends.update_yaxes(title_text="Gross Margin %", row=1, col=1)
|
| 393 |
+
fig_trends.update_yaxes(title_text="Revenue ($M)", row=1, col=2)
|
| 394 |
+
fig_trends.update_yaxes(title_text="GM Value ($M)", row=1, col=2, secondary_y=True)
|
| 395 |
+
|
| 396 |
+
fig_trends.update_layout(height=400, showlegend=True, hovermode="x unified")
|
| 397 |
+
st.plotly_chart(fig_trends, use_container_width=True)
|
| 398 |
|
| 399 |
st.markdown("---")
|
| 400 |
|
| 401 |
+
# Train model
|
| 402 |
+
with st.spinner("π€ Training AI model..."):
|
| 403 |
+
X = df_feat[feats_num + feats_cat].copy()
|
| 404 |
+
y = df_feat[target].copy()
|
| 405 |
+
pipe, metrics, X_test = train_model(feats_num, feats_cat, target, X, y)
|
| 406 |
+
st.success(f"β
Model trained: RΒ² = {metrics['r2']:.3f}, MAE = {metrics['mae']:.4f}")
|
| 407 |
|
| 408 |
+
# Compute SHAP once for all tabs
|
| 409 |
+
with st.spinner("π¬ Analyzing profitability drivers..."):
|
| 410 |
+
shap_df, X_test_sample, feature_names = compute_shap_values(pipe, X_test, feats_num, feats_cat, shap_sample=500)
|
| 411 |
|
| 412 |
+
# Tabs for different sections
|
| 413 |
+
tab1, tab2, tab3 = st.tabs(["π Key Drivers Analysis", "π― Strategic Recommendations", "π§ͺ What-If Simulator"])
|
|
|
|
|
|
|
|
|
|
| 414 |
|
| 415 |
+
with tab1:
|
| 416 |
+
st.markdown("### Understanding What Drives Your Profitability")
|
| 417 |
+
st.markdown("""
|
| 418 |
+
<div class="insight-box">
|
| 419 |
+
<b>π Business Insight:</b> This analysis reveals which business factors have the strongest impact on gross margin.
|
| 420 |
+
Understanding these drivers helps prioritize strategic initiatives and operational improvements.
|
| 421 |
+
</div>
|
| 422 |
+
""", unsafe_allow_html=True)
|
| 423 |
|
| 424 |
+
if shap_df is not None and X_test_sample is not None:
|
| 425 |
+
# Calculate mean absolute SHAP
|
| 426 |
+
mean_abs = shap_df.abs().mean().sort_values(ascending=False)
|
| 427 |
+
|
| 428 |
+
# Map technical names to business names
|
| 429 |
+
business_name_map = {
|
| 430 |
+
"discount_pct": "Discount Level",
|
| 431 |
+
"unit_cost": "Unit Cost",
|
| 432 |
+
"net_price": "Net Selling Price",
|
| 433 |
+
"list_price": "List Price",
|
| 434 |
+
"qty": "Order Quantity",
|
| 435 |
+
"price_per_unit": "Price per Unit",
|
| 436 |
+
"cost_per_unit": "Cost per Unit",
|
| 437 |
+
"roll7_qty": "7-Day Avg Quantity",
|
| 438 |
+
"roll7_price": "7-Day Avg Price",
|
| 439 |
+
"roll7_cost": "7-Day Avg Cost",
|
| 440 |
+
"dow": "Day of Week"
|
| 441 |
+
}
|
| 442 |
+
|
| 443 |
+
# Get top drivers with business names
|
| 444 |
+
top_drivers = []
|
| 445 |
+
for feat, val in mean_abs.head(10).items():
|
| 446 |
+
bus_name = feat
|
| 447 |
+
for key, name in business_name_map.items():
|
| 448 |
+
if key in feat.lower():
|
| 449 |
+
bus_name = name
|
| 450 |
+
break
|
| 451 |
+
if feat.startswith("cat__"):
|
| 452 |
+
parts = feat.replace("cat__", "").replace("product_", "").replace("region_", "").replace("channel_", "")
|
| 453 |
+
if "product" in feat.lower():
|
| 454 |
+
bus_name = f"Product: {parts}"
|
| 455 |
+
elif "region" in feat.lower():
|
| 456 |
+
bus_name = f"Region: {parts}"
|
| 457 |
+
elif "channel" in feat.lower():
|
| 458 |
+
bus_name = f"Channel: {parts}"
|
| 459 |
+
top_drivers.append({"Driver": bus_name, "Impact Score": val})
|
| 460 |
+
|
| 461 |
+
drivers_df = pd.DataFrame(top_drivers)
|
| 462 |
+
|
| 463 |
+
col_a, col_b = st.columns([1, 1])
|
| 464 |
+
|
| 465 |
+
with col_a:
|
| 466 |
+
st.markdown("#### Top 10 Profitability Drivers")
|
| 467 |
+
|
| 468 |
+
fig_drivers = go.Figure()
|
| 469 |
+
fig_drivers.add_trace(go.Bar(
|
| 470 |
+
y=drivers_df["Driver"][::-1],
|
| 471 |
+
x=drivers_df["Impact Score"][::-1],
|
| 472 |
+
orientation='h',
|
| 473 |
+
marker=dict(
|
| 474 |
+
color=drivers_df["Impact Score"][::-1],
|
| 475 |
+
colorscale='Blues',
|
| 476 |
+
line=dict(color='rgb(8,48,107)', width=1.5)
|
| 477 |
+
),
|
| 478 |
+
text=[f"{v:.4f}" for v in drivers_df["Impact Score"][::-1]],
|
| 479 |
+
textposition='outside',
|
| 480 |
+
))
|
| 481 |
+
|
| 482 |
+
fig_drivers.update_layout(
|
| 483 |
+
title="Ranked by Average Impact on Gross Margin",
|
| 484 |
+
xaxis_title="Impact Score",
|
| 485 |
+
yaxis_title="",
|
| 486 |
+
height=500,
|
| 487 |
+
showlegend=False
|
| 488 |
+
)
|
| 489 |
+
st.plotly_chart(fig_drivers, use_container_width=True)
|
| 490 |
+
|
| 491 |
+
with col_b:
|
| 492 |
+
st.markdown("#### Key Insights")
|
| 493 |
+
|
| 494 |
+
top_3 = drivers_df.head(3)
|
| 495 |
+
|
| 496 |
+
st.markdown(f"""
|
| 497 |
+
<div class="insight-box">
|
| 498 |
+
<b>π₯ Primary Driver:</b> {top_3.iloc[0]['Driver']}<br>
|
| 499 |
+
<small>Impact Score: {top_3.iloc[0]['Impact Score']:.4f}</small>
|
| 500 |
+
</div>
|
| 501 |
+
""", unsafe_allow_html=True)
|
| 502 |
+
|
| 503 |
+
st.markdown(f"""
|
| 504 |
+
<div class="insight-box">
|
| 505 |
+
<b>π₯ Secondary Driver:</b> {top_3.iloc[1]['Driver']}<br>
|
| 506 |
+
<small>Impact Score: {top_3.iloc[1]['Impact Score']:.4f}</small>
|
| 507 |
+
</div>
|
| 508 |
+
""", unsafe_allow_html=True)
|
| 509 |
+
|
| 510 |
+
st.markdown(f"""
|
| 511 |
+
<div class="insight-box">
|
| 512 |
+
<b>π₯ Tertiary Driver:</b> {top_3.iloc[2]['Driver']}<br>
|
| 513 |
+
<small>Impact Score: {top_3.iloc[2]['Impact Score']:.4f}</small>
|
| 514 |
+
</div>
|
| 515 |
+
""", unsafe_allow_html=True)
|
| 516 |
+
|
| 517 |
+
st.markdown("#### Segment Performance")
|
| 518 |
+
|
| 519 |
+
# Safely join SHAP with original data
|
| 520 |
+
try:
|
| 521 |
+
cat_cols = ["product", "region", "channel"]
|
| 522 |
+
joined = pd.concat([X_test_sample[cat_cols].reset_index(drop=True),
|
| 523 |
+
shap_df.reset_index(drop=True)], axis=1)
|
| 524 |
+
|
| 525 |
+
grp = joined.groupby(cat_cols, as_index=False).mean(numeric_only=True)
|
| 526 |
+
key_shap_cols = [c for c in shap_df.columns if c in grp.columns]
|
| 527 |
+
grp["net_impact"] = grp[key_shap_cols].sum(axis=1)
|
| 528 |
+
|
| 529 |
+
top_negative = grp.nsmallest(5, "net_impact")
|
| 530 |
+
top_positive = grp.nlargest(5, "net_impact")
|
| 531 |
+
|
| 532 |
+
st.markdown("**β οΈ Segments Reducing Margin:**")
|
| 533 |
+
for _, row in top_negative.head(3).iterrows():
|
| 534 |
+
st.markdown(f"β’ **{row['product']}** β’ {row['region']} β’ {row['channel']} *(Impact: {row['net_impact']:.4f})*")
|
| 535 |
+
|
| 536 |
+
st.markdown("**β
Segments Boosting Margin:**")
|
| 537 |
+
for _, row in top_positive.head(3).iterrows():
|
| 538 |
+
st.markdown(f"β’ **{row['product']}** β’ {row['region']} β’ {row['channel']} *(Impact: {row['net_impact']:.4f})*")
|
| 539 |
+
except Exception as e:
|
| 540 |
+
st.warning(f"Unable to compute segment analysis: {str(e)}")
|
| 541 |
+
else:
|
| 542 |
+
st.error("Unable to compute driver analysis. Please check your data.")
|
| 543 |
|
| 544 |
+
with tab2:
|
| 545 |
+
st.markdown("### AI-Generated Strategic Recommendations")
|
| 546 |
+
st.markdown("""
|
| 547 |
+
<div class="insight-box">
|
| 548 |
+
<b>π‘ How This Works:</b> The AI identifies segments with margin pressure and suggests specific pricing actions
|
| 549 |
+
to improve profitability. Recommendations are ranked by expected financial impact.
|
| 550 |
+
</div>
|
| 551 |
+
""", unsafe_allow_html=True)
|
|
|
|
| 552 |
|
| 553 |
+
if shap_df is not None and X_test_sample is not None:
|
| 554 |
+
with st.spinner("π§ Generating strategic recommendations..."):
|
| 555 |
+
try:
|
| 556 |
+
joined = pd.concat([X_test_sample.reset_index(drop=True), shap_df.reset_index(drop=True)], axis=1)
|
| 557 |
+
joined["key"] = joined["product"] + "|" + joined["region"] + "|" + joined["channel"]
|
| 558 |
+
|
| 559 |
+
cand_cols = [c for c in joined.columns if ("discount" in c.lower() or "cost" in c.lower() or "price" in c.lower()) and c in shap_df.columns]
|
| 560 |
+
seg_scores = joined.groupby("key")[cand_cols].mean().sum(axis=1)
|
| 561 |
+
worst_keys = seg_scores.sort_values().head(15).index.tolist()
|
| 562 |
+
|
| 563 |
+
recs = []
|
| 564 |
+
for key in worst_keys:
|
| 565 |
+
p, r, c = key.split("|")
|
| 566 |
+
hist = df[(df["product"]==p)&(df["region"]==r)&(df["channel"]==c)].sort_values("date")
|
| 567 |
+
if hist.empty or len(hist) < 50:
|
| 568 |
+
continue
|
| 569 |
+
|
| 570 |
+
eps, _ = estimate_segment_elasticity(hist, p, r, c)
|
| 571 |
+
prop_disc_pts = np.clip(abs(seg_scores[key])*10, 1.0, 3.0)
|
| 572 |
+
sim = simulate_pricing_action(hist, eps, prop_disc_pts)
|
| 573 |
+
|
| 574 |
+
if sim is None or sim["gm_delta_value"] <= 0:
|
| 575 |
+
continue
|
| 576 |
+
|
| 577 |
+
daily_transactions = len(hist) / ((hist["date"].max() - hist["date"].min()).days + 1)
|
| 578 |
+
annual_impact = sim["gm_delta_value"] * daily_transactions * 365
|
| 579 |
+
|
| 580 |
+
recs.append({
|
| 581 |
+
"Segment": f"{p}",
|
| 582 |
+
"Region": r,
|
| 583 |
+
"Channel": c,
|
| 584 |
+
"Current Discount": f"{sim['baseline_discount']:.1f}%",
|
| 585 |
+
"Recommended Discount": f"{sim['new_discount']:.1f}%",
|
| 586 |
+
"Expected GM Uplift": sim["gm_delta_value"],
|
| 587 |
+
"Annual Impact Estimate": annual_impact,
|
| 588 |
+
"Current GM%": sim["gm0_pct"]*100,
|
| 589 |
+
"Projected GM%": sim["gm1_pct"]*100
|
| 590 |
+
})
|
| 591 |
+
|
| 592 |
+
recs_df = pd.DataFrame(recs).sort_values("Expected GM Uplift", ascending=False)
|
| 593 |
+
|
| 594 |
+
if len(recs_df) > 0:
|
| 595 |
+
st.markdown("#### π Top 3 Priority Actions")
|
| 596 |
+
|
| 597 |
+
for i, (idx, rec) in enumerate(recs_df.head(3).iterrows()):
|
| 598 |
+
st.markdown(f"""
|
| 599 |
+
<div class="recommendation-card">
|
| 600 |
+
<h4>#{i+1}: {rec['Segment']} β’ {rec['Region']} β’ {rec['Channel']}</h4>
|
| 601 |
+
<p style="font-size: 1.1rem; margin: 0.5rem 0;">
|
| 602 |
+
<b>Recommended Action:</b> Reduce discount from <b>{rec['Current Discount']}</b> to <b>{rec['Recommended Discount']}</b>
|
| 603 |
+
</p>
|
| 604 |
+
<p style="font-size: 1rem; color: #666; margin: 0.5rem 0;">
|
| 605 |
+
Current GM: <b>{rec['Current GM%']:.1f}%</b> β Projected GM: <b style="color: #28a745;">{rec['Projected GM%']:.1f}%</b>
|
| 606 |
+
</p>
|
| 607 |
+
<p class="positive-impact">
|
| 608 |
+
π° Expected Daily Impact: ${rec['Expected GM Uplift']:.2f}
|
| 609 |
+
</p>
|
| 610 |
+
<p style="font-size: 0.95rem; color: #666;">
|
| 611 |
+
π Estimated Annual Impact: <b>${rec['Annual Impact Estimate']/1e3:.1f}K</b>
|
| 612 |
+
</p>
|
| 613 |
+
</div>
|
| 614 |
+
""", unsafe_allow_html=True)
|
| 615 |
+
|
| 616 |
+
st.markdown("---")
|
| 617 |
+
st.markdown("#### π Complete Recommendations List")
|
| 618 |
+
st.dataframe(recs_df, use_container_width=True, height=400)
|
| 619 |
+
|
| 620 |
+
total_daily_impact = recs_df["Expected GM Uplift"].sum()
|
| 621 |
+
total_annual_impact = recs_df["Annual Impact Estimate"].sum()
|
| 622 |
+
|
| 623 |
+
st.markdown(f"""
|
| 624 |
+
<div class="insight-box" style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; border: none;">
|
| 625 |
+
<h3 style="color: white; margin-top: 0;">π Total Opportunity</h3>
|
| 626 |
+
<p style="font-size: 1.3rem; margin: 0.5rem 0;">
|
| 627 |
+
<b>Daily GM Impact:</b> ${total_daily_impact:.2f}
|
| 628 |
+
</p>
|
| 629 |
+
<p style="font-size: 1.6rem; margin: 0.5rem 0;">
|
| 630 |
+
<b>Estimated Annual Impact:</b> ${total_annual_impact/1e6:.2f}M
|
| 631 |
+
</p>
|
| 632 |
+
</div>
|
| 633 |
+
""", unsafe_allow_html=True)
|
| 634 |
+
else:
|
| 635 |
+
st.info("No significant optimization opportunities detected in current data.")
|
| 636 |
+
except Exception as e:
|
| 637 |
+
st.error(f"Error generating recommendations: {str(e)}")
|
| 638 |
+
else:
|
| 639 |
+
st.error("Unable to generate recommendations. Please check your data.")
|
| 640 |
|
| 641 |
+
with tab3:
|
| 642 |
+
st.markdown("### Custom What-If Analysis")
|
| 643 |
+
st.markdown("""
|
| 644 |
+
<div class="insight-box">
|
| 645 |
+
<b>π§ͺ Interactive Simulation:</b> Test different pricing strategies for specific segments to understand
|
| 646 |
+
the potential impact on revenue, volume, and profitability.
|
| 647 |
+
</div>
|
| 648 |
+
""", unsafe_allow_html=True)
|
| 649 |
|
| 650 |
+
last_day = df["date"].max()
|
| 651 |
+
seg_today = df[df["date"]==last_day][["product","region","channel"]].drop_duplicates()
|
|
|
|
|
|
|
| 652 |
|
| 653 |
+
col_sim1, col_sim2, col_sim3 = st.columns(3)
|
|
|
|
|
|
|
|
|
|
| 654 |
|
| 655 |
+
with col_sim1:
|
| 656 |
+
selected_product = st.selectbox("π¦ Select Product", sorted(seg_today["product"].unique()))
|
| 657 |
+
with col_sim2:
|
| 658 |
+
selected_region = st.selectbox("π Select Region", sorted(seg_today["region"].unique()))
|
| 659 |
+
with col_sim3:
|
| 660 |
+
selected_channel = st.selectbox("π Select Channel", sorted(seg_today["channel"].unique()))
|
| 661 |
|
| 662 |
+
seg_hist = df[
|
| 663 |
+
(df["product"]==selected_product) &
|
| 664 |
+
(df["region"]==selected_region) &
|
| 665 |
+
(df["channel"]==selected_channel)
|
| 666 |
+
].sort_values("date")
|
| 667 |
+
|
| 668 |
+
if not seg_hist.empty and len(seg_hist) >= 50:
|
| 669 |
+
elasticity, _ = estimate_segment_elasticity(seg_hist, selected_product, selected_region, selected_channel)
|
| 670 |
+
current = seg_hist.iloc[-1]
|
| 671 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 672 |
st.markdown(f"""
|
| 673 |
+
<div class="insight-box">
|
| 674 |
+
<b>π Current State:</b><br>
|
| 675 |
+
β’ Current Discount: <b>{current['discount_pct']*100:.1f}%</b><br>
|
| 676 |
+
β’ Net Price: <b>${current['net_price']:.2f}</b><br>
|
| 677 |
+
β’ Unit Cost: <b>${current['unit_cost']:.2f}</b><br>
|
| 678 |
+
β’ Avg Daily Volume: <b>{seg_hist.tail(7)['qty'].mean():.0f} units</b><br>
|
| 679 |
+
β’ Current GM%: <b>{current['gm_pct']*100:.1f}%</b><br>
|
| 680 |
+
β’ Price Elasticity: <b>{elasticity:.2f}</b>
|
| 681 |
</div>
|
| 682 |
""", unsafe_allow_html=True)
|
| 683 |
|
| 684 |
+
st.markdown("#### π― Test Pricing Strategy")
|
| 685 |
|
| 686 |
+
discount_change = st.slider(
|
| 687 |
+
"Adjust Discount Level (percentage points)",
|
| 688 |
+
min_value=-10.0,
|
| 689 |
+
max_value=5.0,
|
| 690 |
+
value=0.0,
|
| 691 |
+
step=0.5,
|
| 692 |
+
help="Negative values reduce discount (increase price)"
|
| 693 |
+
)
|
| 694 |
|
| 695 |
+
if discount_change != 0:
|
| 696 |
+
sim = simulate_pricing_action(seg_hist, elasticity, -discount_change)
|
| 697 |
+
|
| 698 |
+
if sim:
|
| 699 |
+
col_res1, col_res2 = st.columns(2)
|
| 700 |
+
|
| 701 |
+
with col_res1:
|
| 702 |
+
comparison_data = pd.DataFrame({
|
| 703 |
+
'Metric': ['Price', 'Volume', 'GM%'],
|
| 704 |
+
'Current': [sim['baseline_price'], sim['baseline_qty'], sim['gm0_pct']*100],
|
| 705 |
+
'Projected': [sim['new_price'], sim['new_qty'], sim['gm1_pct']*100]
|
| 706 |
+
})
|
| 707 |
+
|
| 708 |
+
fig_comp = go.Figure()
|
| 709 |
+
fig_comp.add_trace(go.Bar(
|
| 710 |
+
name='Current',
|
| 711 |
+
x=comparison_data['Metric'],
|
| 712 |
+
y=comparison_data['Current'],
|
| 713 |
+
marker_color='#94a3b8'
|
| 714 |
+
))
|
| 715 |
+
fig_comp.add_trace(go.Bar(
|
| 716 |
+
name='Projected',
|
| 717 |
+
x=comparison_data['Metric'],
|
| 718 |
+
y=comparison_data['Projected'],
|
| 719 |
+
marker_color='#3b82f6'
|
| 720 |
+
))
|
| 721 |
+
|
| 722 |
+
fig_comp.update_layout(
|
| 723 |
+
title="Current vs. Projected Performance",
|
| 724 |
+
barmode='group',
|
| 725 |
+
height=350
|
| 726 |
+
)
|
| 727 |
+
st.plotly_chart(fig_comp, use_container_width=True)
|
| 728 |
+
|
| 729 |
+
with col_res2:
|
| 730 |
+
st.markdown("#### π Simulation Results")
|
| 731 |
+
|
| 732 |
+
gm_change = sim['gm1_pct'] - sim['gm0_pct']
|
| 733 |
+
|
| 734 |
+
st.metric(
|
| 735 |
+
"Gross Margin Impact",
|
| 736 |
+
f"{sim['gm1_pct']*100:.1f}%",
|
| 737 |
+
f"{gm_change*100:+.1f}pp"
|
| 738 |
+
)
|
| 739 |
+
|
| 740 |
+
st.metric(
|
| 741 |
+
"Revenue Impact",
|
| 742 |
+
f"${sim['new_price'] * sim['new_qty']:.2f}",
|
| 743 |
+
f"${sim['revenue_delta']:+.2f}"
|
| 744 |
+
)
|
| 745 |
+
|
| 746 |
+
vol_change = sim['new_qty'] - sim['baseline_qty']
|
| 747 |
+
st.metric(
|
| 748 |
+
"Volume Impact",
|
| 749 |
+
f"{sim['new_qty']:.0f} units",
|
| 750 |
+
f"{vol_change:+.0f} units"
|
| 751 |
+
)
|
| 752 |
+
|
| 753 |
+
st.markdown(f"""
|
| 754 |
+
<div class="insight-box" style="margin-top: 1rem;">
|
| 755 |
+
<b>π° Daily P&L Impact:</b><br>
|
| 756 |
+
<span style="font-size: 1.5rem; {'color: #28a745' if sim['gm_delta_value'] > 0 else 'color: #dc3545'}">
|
| 757 |
+
${sim['gm_delta_value']:+.2f}
|
| 758 |
+
</span>
|
| 759 |
+
</div>
|
| 760 |
+
""", unsafe_allow_html=True)
|
| 761 |
+
else:
|
| 762 |
+
st.info("π Adjust the discount slider above to simulate different pricing strategies")
|
| 763 |
+
else:
|
| 764 |
+
st.warning("β οΈ Insufficient data for selected segment. Please choose a different combination.")
|
| 765 |
|
| 766 |
st.markdown("---")
|
| 767 |
+
st.markdown("""
|
| 768 |
+
<div style="text-align: center; color: #666; padding: 2rem 0;">
|
| 769 |
+
<small>
|
| 770 |
+
π Demo Mode: Using synthetic SAP-style data for illustration purposes
|
| 771 |
+
</small>
|
| 772 |
+
</div>
|
| 773 |
+
""", unsafe_allow_html=True)
|