File size: 40,107 Bytes
bd80cb5 0d05102 840ed4e 0d05102 840ed4e 0d05102 840ed4e 0d05102 840ed4e 0d05102 840ed4e 0d05102 840ed4e 0d05102 840ed4e 0d05102 840ed4e 0d05102 840ed4e 0d05102 bd80cb5 0d05102 bd80cb5 0d05102 bd80cb5 0d05102 bd80cb5 0d05102 bd80cb5 7c5d537 bd80cb5 7c5d537 bd80cb5 7c5d537 bd80cb5 7c5d537 bd80cb5 7c5d537 bd80cb5 7c5d537 bd80cb5 7c5d537 bd80cb5 7c5d537 bd80cb5 7c5d537 bd80cb5 7c5d537 bd80cb5 7c5d537 bd80cb5 7c5d537 bd80cb5 7c5d537 bd80cb5 7c5d537 bd80cb5 7c5d537 bd80cb5 7c5d537 bd80cb5 7c5d537 bd80cb5 7c5d537 bd80cb5 7c5d537 bd80cb5 7c5d537 bd80cb5 7c5d537 bd80cb5 7c5d537 bd80cb5 0d05102 bd80cb5 0d05102 bd80cb5 0d05102 bd80cb5 0d05102 bd80cb5 0d05102 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 |
# app.py
import os, json, tempfile, logging
import gradio as gr
import pandas as pd
import numpy as np
# Quiet noisy logs
logging.getLogger("cmdstanpy").setLevel(logging.WARNING)
logging.getLogger("prophet").setLevel(logging.WARNING)
# ==== Tools (your @tool template) ============================================
from smolagents import tool, CodeAgent, OpenAIServerModel
# ---------- Helper (rounding) ----------
def _round_df(df: pd.DataFrame, places: int = 2) -> pd.DataFrame:
if df is None or df.empty:
return df
out = df.copy()
num_cols = out.select_dtypes(include=["number"]).columns
out[num_cols] = out[num_cols].astype(float).round(places)
return out
# ---------- Tool 1: Forecast ----------
from smolagents import tool
import json, pandas as pd, numpy as np
@tool
def forecast_tool(horizon_months: int = 1, use_demo: bool = True, history_csv_path: str = "",
use_covariates: bool = False) -> str:
"""
Forecast monthly demand using a GLOBAL N-HiTS model (fast & accurate).
Args:
horizon_months (int): Number of future months to forecast (>=1).
use_demo (bool): If True, generates synthetic history for FG100/FG200.
history_csv_path (str): Optional CSV with columns [product_id,date,qty,(optional extra covariates...)].
use_covariates (bool): If True and extra numeric columns exist, use them as past covariates
(for future effects you must provide future values too).
Returns:
str: JSON list of {"product_id","period_start","forecast_qty"} for the next horizon_months.
"""
# --- 1) Load data in long form ---
if use_demo or not history_csv_path:
rng = pd.date_range("2023-01-01", periods=24, freq="MS")
rows = []
np.random.seed(0)
for pid, base in [("FG100", 1800), ("FG200", 900)]:
season = 1 + 0.15 * np.sin(2 * np.pi * (np.arange(len(rng)) / 12.0))
qty = (base * season).astype(float)
for d, q in zip(rng, qty):
rows.append({"product_id": pid, "date": d, "qty": float(q)})
df = pd.DataFrame(rows)
else:
df = pd.read_csv(history_csv_path)
assert {"product_id","date","qty"} <= set(df.columns), "CSV must have product_id,date,qty"
df["date"] = pd.to_datetime(df["date"], errors="coerce")
df = df.dropna(subset=["date"])
df["qty"] = pd.to_numeric(df["qty"], errors="coerce").fillna(0.0)
# Ensure proper monthly frequency per SKU
df = df.copy()
df["product_id"] = df["product_id"].astype(str)
# --- 2) Build Darts series (GLOBAL model across SKUs) ---
from darts import TimeSeries
series_list = []
past_cov_list = [] # optional
extra_cols = [c for c in df.columns if c not in ["product_id","date","qty"]]
# keep only numeric covariates (categoricals must be pre-encoded)
num_covs = [c for c in extra_cols if pd.api.types.is_numeric_dtype(df[c])]
for pid, g in df.groupby("product_id"):
g = (g.set_index("date")
.sort_index()
.resample("MS")
.agg({**{"qty":"sum"}, **{c:"last" for c in num_covs}})
.fillna(method="ffill")
.fillna(0.0))
y = TimeSeries.from_dataframe(g.reset_index(), time_col="date", value_cols="qty", freq="MS")
series_list.append(y)
if use_covariates and num_covs:
pc = TimeSeries.from_dataframe(g.reset_index(), time_col="date", value_cols=num_covs, freq="MS")
past_cov_list.append(pc)
else:
past_cov_list.append(None)
# --- 3) Train N-HiTS (fast settings) ---
from darts.models import NHiTSModel
H = max(1, int(horizon_months))
# keep chunk length small for short histories; model is global
input_chunk = max(6, min(12, min(len(s) for s in series_list) - 1)) if series_list else 12
model = NHiTSModel(
input_chunk_length=input_chunk,
output_chunk_length=min(H, 3), # can roll to reach H
n_epochs=60, # keep fast; tune up if needed
batch_size=32,
random_state=0,
dropout=0.0,
)
if use_covariates and any(pc is not None for pc in past_cov_list):
model.fit(series=series_list, past_covariates=past_cov_list, verbose=False)
else:
model.fit(series=series_list, verbose=False)
# --- 4) Predict per SKU and return JSON ---
out = []
for pid, s, pc in zip(df["product_id"].unique(), series_list, past_cov_list):
if use_covariates and pc is not None:
pred = model.predict(n=H, series=s, past_covariates=pc)
else:
pred = model.predict(n=H, series=s)
for ts, val in zip(pred.time_index, pred.values().flatten()):
out.append({
"product_id": str(pid),
"period_start": pd.Timestamp(ts).strftime("%Y-%m-%d"),
"forecast_qty": float(val)
})
return json.dumps(out)
# ---------- Tool 2: Optimize (LP) ----------
@tool
def optimize_supply_tool(forecast_json: str) -> str:
"""
Optimize a single-month supply plan (LP) using the forecast.
Args:
forecast_json (str): JSON string returned by forecast_tool.
Returns:
str: JSON with summary + readable tables (not raw solver output).
"""
from scipy.optimize import linprog
rows = json.loads(forecast_json)
# Use first month per product
demand = {}
for r in rows:
p = r["product_id"]
if p not in demand:
demand[p] = float(r["forecast_qty"])
P = sorted(demand.keys()) or ["FG100", "FG200"]
price = {"FG100": 98.0, "FG200": 120.0}
conv = {"FG100": 12.5, "FG200": 15.0}
r1 = {"FG100": 0.03, "FG200": 0.05}
r2 = {"FG100": 0.02, "FG200": 0.01}
RMs = ["RM_A", "RM_B"]
rm_cost = {"RM_A": 20.0, "RM_B": 30.0}
rm_start = {"RM_A": 1000.0, "RM_B": 100.0}
rm_cap = {"RM_A": 5000.0, "RM_B": 5000.0}
bom = {
"FG100": {"RM_A": 0.8, "RM_B": 0.2 * 1.02},
"FG200": {"RM_A": 1.0, "RM_B": 0.1},
}
r1_cap, r2_cap = 320.0, 480.0
nP, nR = len(P), len(RMs)
pidx = {p:i for i,p in enumerate(P)}
ridx = {r:i for i,r in enumerate(RMs)}
def i_prod(p): return pidx[p]
def i_sell(p): return nP + pidx[p]
def i_einv(p): return 2*nP + pidx[p]
def i_pur(r): return 3*nP + ridx[r]
def i_einr(r): return 3*nP + nR + ridx[r]
n_vars = 3*nP + 2*nR
c = np.zeros(n_vars)
bounds = [None]*n_vars
for p in P:
c[i_prod(p)] += conv[p]
c[i_sell(p)] -= price[p]
c[i_einv(p)] += 0.0
bounds[i_prod(p)] = (0, None)
bounds[i_sell(p)] = (0, demand[p]) # demand as upper bound (no backorders)
bounds[i_einv(p)] = (0, None)
for r in RMs:
c[i_pur(r)] += rm_cost[r]
c[i_einr(r)] += 0.0
bounds[i_pur(r)] = (0, rm_cap[r])
bounds[i_einr(r)] = (0, None)
# Equalities
Aeq, beq = [], []
for p in P:
row = np.zeros(n_vars); row[i_prod(p)]=1; row[i_sell(p)]=-1; row[i_einv(p)]=-1
Aeq.append(row); beq.append(0.0) # start_inv=0 in this demo
for r in RMs:
row = np.zeros(n_vars); row[i_pur(r)]=1; row[i_einr(r)]=-1
for p in P: row[i_prod(p)] -= bom[p].get(r,0.0)
Aeq.append(row); beq.append(-rm_start[r])
# Inequalities (resources)
Aub, bub = [], []
row = np.zeros(n_vars); [row.__setitem__(i_prod(p), r1[p]) for p in P]; Aub.append(row); bub.append(r1_cap)
row = np.zeros(n_vars); [row.__setitem__(i_prod(p), r2[p]) for p in P]; Aub.append(row); bub.append(r2_cap)
from scipy.optimize import linprog
res = linprog(c, A_ub=np.array(Aub), b_ub=np.array(bub), A_eq=np.array(Aeq), b_eq=np.array(beq),
bounds=bounds, method="highs")
if not res.success:
return json.dumps({"status": "FAILED", "message": res.message})
x = res.x
def v(idx): return float(x[idx])
# Compose human-friendly tables
prod_tbl = []
revenue = 0.0; conv_cost = 0.0
for p in P:
produce = v(i_prod(p)); sell = v(i_sell(p))
prod_tbl.append({"Product": p, "Produce": produce, "Sell": sell, "Unit Price": price[p], "Conv. Cost/u": conv[p]})
revenue += sell*price[p]; conv_cost += produce*conv[p]
raw_tbl = []
rm_purch_cost = 0.0
for r in RMs:
purchase = v(i_pur(r))
cons = float(sum(bom[p].get(r,0.0)*v(i_prod(p)) for p in P))
cost = purchase*rm_cost[r]; rm_purch_cost += cost
raw_tbl.append({"Raw": r, "Purchase": purchase, "Consume": cons, "Cost/u": rm_cost[r], "Total Cost": cost})
r1_used = float(sum(r1[p]*v(i_prod(p)) for p in P))
r2_used = float(sum(r2[p]*v(i_prod(p)) for p in P))
res_tbl = [
{"Resource": "R1", "Used": r1_used, "Cap": r1_cap, "Slack": r1_cap - r1_used},
{"Resource": "R2", "Used": r2_used, "Cap": r2_cap, "Slack": r2_cap - r2_used},
]
profit = revenue - conv_cost - rm_purch_cost
out = {
"status": "OPTIMAL",
"kpis": {"Profit": profit, "Revenue": revenue, "Conv. Cost": conv_cost, "RM Purchase Cost": rm_purch_cost},
"products": prod_tbl,
"raw_materials": raw_tbl,
"resources": res_tbl
}
return json.dumps(out)
# ---------- Tool 3: MD61 (simulate) ----------
@tool
def update_sap_md61_tool(forecast_json: str, plant: str = "PLANT01", uom: str = "EA", mrp_area: str = "") -> str:
"""
Prepare an MD61-style demand upload (SIMULATION ONLY).
Args:
forecast_json (str): JSON string returned by forecast_tool.
plant (str): SAP plant (WERKS). Defaults to 'PLANT01'.
uom (str): Unit of measure. Defaults to 'EA'.
mrp_area (str): Optional MRP area.
Returns:
str: JSON with {"status":"SIMULATED","csv_path":"...","preview":[...]}.
"""
rows = json.loads(forecast_json)
md61 = [{
"Material": r["product_id"], "Plant": plant, "MRP_Area": mrp_area,
"Req_Date": r["period_start"], "Req_Qty": float(r["forecast_qty"]),
"UoM": uom, "Version": "00"
} for r in rows]
df = pd.DataFrame(md61)
tmp = tempfile.NamedTemporaryFile(delete=False, suffix=".csv")
df.to_csv(tmp.name, index=False)
return json.dumps({"status": "SIMULATED", "csv_path": tmp.name, "preview": md61[:5]})
# ---------- Upgrade A: Data Quality Guard ----------
@tool
def data_quality_guard_tool(use_demo: bool = True, history_csv_path: str = "", z: float = 3.5) -> str:
"""
Scan monthly history for outliers and likely stockout zeros. Demo-friendly.
Args:
use_demo (bool): If True, use synthetic FG100/FG200 history.
history_csv_path (str): Optional CSV path with columns [product_id,date,qty].
z (float): Robust z-threshold (MAD-based) for outlier flags. Default 3.5.
Returns:
str: JSON {"status":"OK","issues":[{product_id,period_start,qty,flag,suggested_action,suggested_value?}]}
"""
# Load history
if use_demo or not history_csv_path:
rng = pd.date_range("2023-01-01", periods=24, freq="MS")
rows = []
np.random.seed(0)
for pid, base in [("FG100", 1800), ("FG200", 900)]:
season = 1 + 0.15 * np.sin(2 * np.pi * (np.arange(len(rng)) / 12.0))
qty = (base * season).astype(float)
for d, q in zip(rng, qty):
rows.append({"product_id": pid, "date": d, "qty": float(q)})
df = pd.DataFrame(rows)
else:
df = pd.read_csv(history_csv_path)
assert {"product_id","date","qty"} <= set(df.columns), "CSV must have product_id,date,qty"
df["date"] = pd.to_datetime(df["date"], errors="coerce")
df = df.dropna(subset=["date"])
df["qty"] = pd.to_numeric(df["qty"], errors="coerce").fillna(0.0)
issues = []
for pid, g in df.groupby("product_id"):
s = g.set_index("date")["qty"].resample("MS").sum().asfreq("MS").fillna(0.0)
if len(s) < 6:
continue
med = s.rolling(6, min_periods=3).median()
mad = (s - med).abs().rolling(6, min_periods=3).median()
robust_z = (0.6745 * (s - med) / mad.replace(0, np.nan)).abs()
for ts, y in s.items():
flag = None; action = None; val = None
rz = robust_z.get(ts, np.nan)
# Outlier
if not np.isnan(rz) and rz > z:
flag = "OUTLIER"
action = "cap_to_rolling_median"
val = float(med.get(ts, np.nan)) if not np.isnan(med.get(ts, np.nan)) else None
# Likely stockout zero in-between non-zeros
prev_nonzero = s[:ts].iloc[:-1].ne(0).any() if len(s[:ts])>1 else False
next_nonzero = s[ts:].iloc[1:].ne(0).any() if len(s[ts:])>1 else False
if y == 0 and prev_nonzero and next_nonzero:
flag = flag or "ZERO_BETWEEN_NONZERO"
action = action or "impute_neighbor_avg"
idx = s.index.get_loc(ts)
neighbors = []
if idx>0: neighbors.append(s.iloc[idx-1])
if idx<len(s)-1: neighbors.append(s.iloc[idx+1])
val = float(np.mean(neighbors)) if neighbors else None
if flag:
issues.append({
"product_id": pid,
"period_start": ts.strftime("%Y-%m-%d"),
"qty": float(y),
"flag": flag,
"suggested_action": action,
"suggested_value": None if val is None or np.isnan(val) else float(val)
})
return json.dumps({"status":"OK","issues":issues})
# ---------- Upgrade B: Scenario Explorer ----------
@tool
def scenario_explorer_tool(forecast_json: str) -> str:
"""
Run a small set of what-if scenarios and summarize results.
Args:
forecast_json (str): JSON string from forecast_tool (uses first month per SKU).
Returns:
str: JSON {"status":"OK","scenarios":[{name,profit,r1_used,r1_slack,r2_used,r2_slack}]}
"""
from scipy.optimize import linprog
base_rows = json.loads(forecast_json)
demand = {}
for r in base_rows:
p = r["product_id"]
if p not in demand:
demand[p] = float(r["forecast_qty"])
P = sorted(demand.keys()) or ["FG100","FG200"]
# Base constants
price = {"FG100": 98.0, "FG200": 120.0}
conv = {"FG100": 12.5, "FG200": 15.0}
r1 = {"FG100": 0.03, "FG200": 0.05}
r2 = {"FG100": 0.02, "FG200": 0.01}
RMs = ["RM_A","RM_B"]
rm_cost = {"RM_A": 20.0, "RM_B": 30.0}
rm_start = {"RM_A": 1000.0, "RM_B": 100.0}
rm_cap = {"RM_A": 5000.0, "RM_B": 5000.0}
bom = {
"FG100": {"RM_A": 0.8, "RM_B": 0.2*1.02},
"FG200": {"RM_A": 1.0, "RM_B": 0.1},
}
r1_cap0, r2_cap0 = 320.0, 480.0
scenarios = [
{"name":"Base", "mult":1.0, "r1_cap":r1_cap0, "r2_cap":r2_cap0, "rm_cost_B_add":0.0, "conv_fg100_mult":1.0, "rmA_start_mult":1.0},
{"name":"+10% Demand", "demand_mult":1.10, "r1_cap":r1_cap0, "r2_cap":r2_cap0, "rm_cost_B_add":0.0, "conv_fg100_mult":1.0, "rmA_start_mult":1.0},
{"name":"-10% R1 Cap", "mult":1.0, "r1_cap":0.9*r1_cap0, "r2_cap":r2_cap0, "rm_cost_B_add":0.0, "conv_fg100_mult":1.0, "rmA_start_mult":1.0},
{"name":"+βΉ5 RM_B", "mult":1.0, "r1_cap":r1_cap0, "r2_cap":r2_cap0, "rm_cost_B_add":5.0, "conv_fg100_mult":1.0, "rmA_start_mult":1.0},
{"name":"+10% FG100 ConvCost", "mult":1.0, "r1_cap":r1_cap0, "r2_cap":r2_cap0, "rm_cost_B_add":0.0, "conv_fg100_mult":1.10, "rmA_start_mult":1.0},
{"name":"-20% RM_A Start", "mult":1.0, "r1_cap":r1_cap0, "r2_cap":r2_cap0, "rm_cost_B_add":0.0, "conv_fg100_mult":1.0, "rmA_start_mult":0.80},
]
results = []
for sc in scenarios:
dem_mult = sc.get("demand_mult", sc.get("mult",1.0))
d = {p: demand[p]*dem_mult for p in P}
r1_cap = sc["r1_cap"]; r2_cap = sc["r2_cap"]
rm_cost_local = rm_cost.copy(); rm_cost_local["RM_B"] += sc["rm_cost_B_add"]
conv_local = conv.copy(); conv_local["FG100"] = conv_local["FG100"] * sc["conv_fg100_mult"]
rm_start_local = rm_start.copy(); rm_start_local["RM_A"] = rm_start_local["RM_A"] * sc["rmA_start_mult"]
# Build and solve LP
nP, nR = len(P), len(RMs)
pidx = {p:i for i,p in enumerate(P)}; ridx = {r:i for i,r in enumerate(RMs)}
def i_prod(p): return pidx[p]
def i_sell(p): return nP + pidx[p]
def i_einv(p): return 2*nP + pidx[p]
def i_pur(r): return 3*nP + ridx[r]
def i_einr(r): return 3*nP + nR + ridx[r]
n_vars = 3*nP + 2*nR
c = np.zeros(n_vars); bounds = [None]*n_vars
for p in P:
c[i_prod(p)] += conv_local[p]; c[i_sell(p)] -= price[p]; c[i_einv(p)] += 0.0
bounds[i_prod(p)] = (0, None); bounds[i_sell(p)] = (0, d[p]); bounds[i_einv(p)] = (0, None)
for r in RMs:
c[i_pur(r)] += rm_cost_local[r]; c[i_einr(r)] += 0.0
bounds[i_pur(r)] = (0, rm_cap[r]); bounds[i_einr(r)] = (0, None)
Aeq, beq = [], []
for p in P:
row = np.zeros(n_vars); row[i_prod(p)]=1; row[i_sell(p)]=-1; row[i_einv(p)]=-1
Aeq.append(row); beq.append(0.0)
for r in RMs:
row = np.zeros(n_vars); row[i_pur(r)]=1; row[i_einr(r)]=-1
for p in P: row[i_prod(p)] -= bom[p].get(r,0.0)
Aeq.append(row); beq.append(-rm_start_local[r])
Aub, bub = [], []
row = np.zeros(n_vars); [row.__setitem__(i_prod(p), r1[p]) for p in P]; Aub.append(row); bub.append(r1_cap)
row = np.zeros(n_vars); [row.__setitem__(i_prod(p), r2[p]) for p in P]; Aub.append(row); bub.append(r2_cap)
from scipy.optimize import linprog
res = linprog(c, A_ub=np.array(Aub), b_ub=np.array(bub), A_eq=np.array(Aeq), b_eq=np.array(beq),
bounds=bounds, method="highs")
if not res.success:
results.append({"name": sc["name"], "status":"FAILED", "profit": None})
continue
x = res.x
def v(idx): return float(x[idx])
r1_used = float(sum(r1[p]*v(i_prod(p)) for p in P))
r2_used = float(sum(r2[p]*v(i_prod(p)) for p in P))
revenue = float(sum(price[p]*v(i_sell(p)) for p in P))
conv_cost = float(sum(conv_local[p]*v(i_prod(p)) for p in P))
rm_purch_cost = float(sum(v(i_pur(r))*rm_cost_local[r] for r in RMs))
profit = revenue - conv_cost - rm_purch_cost
results.append({
"name": sc["name"],
"status":"OPTIMAL",
"profit": profit,
"r1_used": r1_used, "r1_slack": r1_cap - r1_used,
"r2_used": r2_used, "r2_slack": r2_cap - r2_used
})
return json.dumps({"status":"OK","scenarios":results})
# ---------- Upgrade C: Plan Explainer ----------
@tool
def plan_explainer_tool(plan_json: str) -> str:
"""
Generate a plain-language explanation of the plan (demo assumptions).
Args:
plan_json (str): JSON from optimize_supply_tool.
Returns:
str: JSON {"status":"OK","summary": "... human-readable text ..."}
"""
d = json.loads(plan_json)
k = d.get("kpis", {})
products = d.get("products", [])
resources = d.get("resources", [])
# Contribution by product
contribs = []
for row in products:
rev = row["Sell"] * row["Unit Price"]
conv = row["Produce"] * row["Conv. Cost/u"]
contribs.append((row["Product"], rev - conv))
contribs.sort(key=lambda x: x[1], reverse=True)
top_prod = contribs[0][0] if contribs else "N/A"
# Binding resource (min slack)
bind_res = None
if resources:
r_sorted = sorted(resources, key=lambda r: r.get("Slack", 0.0))
bind_res = r_sorted[0]["Resource"]
summary = (
f"Profit: βΉ{k.get('Profit',0):,.2f} (Revenue βΉ{k.get('Revenue',0):,.2f} β "
f"Conv. Cost βΉ{k.get('Conv. Cost',0):,.2f} β RM Cost βΉ{k.get('RM Purchase Cost',0):,.2f}). "
f"Top driver: {top_prod}. "
f"Bottleneck check: {bind_res} has the least slack."
)
return json.dumps({"status":"OK","summary": summary})
# ---------- NEW: Bottleneck Search (finite-difference + policy) ----------
@tool
def bottleneck_search_tool(forecast_json: str, policy_json: str = "") -> str:
"""
Find the best practical lever to relax (within ~1 month) via small scenario probes.
Supports resource overtime, RM expedite (cap), and demand_lift (promo ROI-checked).
Args:
forecast_json (str): JSON from forecast_tool (first month per SKU used).
policy_json (str): Optional JSON with levers and costs.
Returns:
str: JSON {"status":"OK","diagnostics":{...},"recommendations":[...]}
"""
import json, numpy as np
from scipy.optimize import linprog
# --- Defaults (edit to your reality) ---
policy = {
"R1_overtime": {"type":"resource","target":"R1","step":10.0,"max_delta":80.0,"unit_cost":600.0},
"R2_overtime": {"type":"resource","target":"R2","step":10.0,"max_delta":40.0,"unit_cost":800.0},
"RM_A_expedite": {"type":"rm_expedite","target":"RM_A","step":200.0,"max_delta":1500.0,"unit_premium":8.0},
"RM_B_expedite": {"type":"rm_expedite","target":"RM_B","step":100.0,"max_delta":800.0,"unit_premium":12.0},
"Factory_expansion": {"type":"blocked","reason":"Not relaxable within 1 month"}
# You can add demand levers via policy_json:
# "promo_FG100": {"type":"demand_lift","target":"FG100","step":100,"max_delta":600,"unit_cost":10}
}
if policy_json:
try: policy.update(json.loads(policy_json))
except Exception: pass
# --- Problem primitives (same as your optimizer) ---
rows = json.loads(forecast_json)
demand = {}
for r in rows:
p = r["product_id"]
if p not in demand:
demand[p] = float(r["forecast_qty"])
P = sorted(demand.keys()) or ["FG100","FG200"]
price = {"FG100":98.0,"FG200":120.0}
conv = {"FG100":12.5,"FG200":15.0}
r1 = {"FG100":0.03,"FG200":0.05}
r2 = {"FG100":0.02,"FG200":0.01}
RMs = ["RM_A","RM_B"]
rm_cost = {"RM_A":20.0,"RM_B":30.0}
rm_start = {"RM_A":1000.0,"RM_B":100.0}
rm_cap = {"RM_A":5000.0,"RM_B":5000.0}
bom = {"FG100":{"RM_A":0.8,"RM_B":0.204},"FG200":{"RM_A":1.0,"RM_B":0.1}}
r1_cap0, r2_cap0 = 320.0, 480.0
# Helpful unit margin for demand_lift (approx variable cost)
unit_var_cost = {p: conv[p] + sum(bom[p].get(rm,0.0)*rm_cost[rm] for rm in RMs) for p in P}
unit_margin = {p: price[p] - unit_var_cost[p] for p in P}
# --- LP builder (inner solve) ---
def solve(dem, r1_cap, r2_cap, rm_cap_adj):
nP, nR = len(P), len(RMs)
pidx = {p:i for i,p in enumerate(P)}; ridx = {r:i for i,r in enumerate(RMs)}
def i_prod(p): return pidx[p]
def i_sell(p): return nP + pidx[p]
def i_einv(p): return 2*nP + pidx[p]
def i_pur(r): return 3*nP + ridx[r]
def i_einr(r): return 3*nP + nR + ridx[r]
n_vars = 3*nP + 2*nR
c = np.zeros(n_vars); bounds=[None]*n_vars
for p in P:
c[i_prod(p)] += conv[p]
c[i_sell(p)] -= price[p]
bounds[i_prod(p)] = (0,None)
bounds[i_sell(p)] = (0, dem[p])
bounds[i_einv(p)] = (0,None)
for r in RMs:
c[i_pur(r)] += rm_cost[r]
bounds[i_pur(r)] = (0, rm_cap_adj[r])
bounds[i_einr(r)] = (0,None)
Aeq, beq = [], []
for p in P:
row = np.zeros(n_vars); row[i_prod(p)]=1; row[i_sell(p)]=-1; row[i_einv(p)]=-1
Aeq.append(row); beq.append(0.0)
for r in RMs:
row = np.zeros(n_vars); row[i_pur(r)]=1; row[i_einr(r)]=-1
for p in P: row[i_prod(p)] -= bom[p].get(r,0.0)
Aeq.append(row); beq.append(-rm_start[r])
Aub, bub = [], []
row = np.zeros(n_vars); [row.__setitem__(i_prod(p), r1[p]) for p in P]; Aub.append(row); bub.append(r1_cap)
row = np.zeros(n_vars); [row.__setitem__(i_prod(p), r2[p]) for p in P]; Aub.append(row); bub.append(r2_cap)
res = linprog(c, A_ub=np.array(Aub), b_ub=np.array(bub), A_eq=np.array(Aeq), b_eq=np.array(beq),
bounds=bounds, method="highs")
if not res.success:
return None
x = res.x
def v(idx): return float(x[idx])
revenue = sum(price[p]*v(i_sell(p)) for p in P)
conv_cost = sum(conv[p]*v(i_prod(p)) for p in P)
rm_purch_cost = sum(v(i_pur(r))*rm_cost[r] for r in RMs)
r1_used = sum(r1[p]*v(i_prod(p)) for p in P)
r2_used = sum(r2[p]*v(i_prod(p)) for p in P)
return {
"profit": revenue - conv_cost - rm_purch_cost,
"r1_used": r1_used, "r2_used": r2_used,
}
# Baseline
base = solve(demand, r1_cap0, r2_cap0, rm_cap.copy())
if base is None:
return json.dumps({"status":"FAILED","message":"Baseline infeasible."})
base_profit = float(base["profit"])
diag = {
"demand_met": True, # sells hit demand ceiling in this model
"r1_slack": round(r1_cap0 - base["r1_used"], 2),
"r2_slack": round(r2_cap0 - base["r2_used"], 2),
"rm_caps_hit": {rm: False for rm in RMs}
}
# If everything is slack, tell the user plainly
all_slack = (diag["r1_slack"] > 1e-3 and diag["r2_slack"] > 1e-3)
# --- Probe levers ---
recs = []
for name, cfg in policy.items():
if cfg.get("type") == "blocked":
recs.append({"lever":name,"recommended":0,"est_profit_lift":0,"est_net_gain":0,
"rationale":cfg.get("reason","Not feasible in horizon")})
continue
best_gain = 0.0; best_delta = 0.0; best_lift = 0.0
step = float(cfg.get("step",0)); maxd = float(cfg.get("max_delta",0))
d = 0.0
while d <= maxd + 1e-6:
dem = demand.copy()
r1_cap = r1_cap0; r2_cap = r2_cap0
rm_cap_adj = rm_cap.copy()
relax_cost = 0.0
t = cfg["type"]
if t == "resource" and cfg["target"] == "R1":
r1_cap += d; relax_cost = d * float(cfg["unit_cost"])
elif t == "resource" and cfg["target"] == "R2":
r2_cap += d; relax_cost = d * float(cfg["unit_cost"])
elif t == "rm_expedite":
key = "RM_A" if cfg["target"]=="RM_A" else "RM_B"
rm_cap_adj[key] = rm_cap[key] + d
relax_cost = d * float(cfg["unit_premium"])
elif t == "demand_lift":
sku = cfg["target"]
if sku in dem:
dem[sku] = dem[sku] + d
relax_cost = d * float(cfg["unit_cost"])
else:
d += step; continue
else:
d += step; continue
res = solve(dem, r1_cap, r2_cap, rm_cap_adj)
if res is None:
d += step; continue
lift = float(res["profit"] - base_profit)
net = lift - relax_cost
if net > best_gain:
best_gain, best_delta, best_lift = net, d, lift
d += step
rationale = ("Beneficial at small Ξ" if best_gain>0 else
("Capacity not binding; try demand/cost levers" if all_slack else
"No positive net gain within feasible range"))
recs.append({"lever":name,"recommended":round(best_delta,2),
"est_profit_lift":round(best_lift,2),
"est_net_gain":round(best_gain,2),
"rationale":rationale})
recs.sort(key=lambda r: r["est_net_gain"], reverse=True)
return json.dumps({"status":"OK","diagnostics":diag,"recommendations":recs})
# ==== Agent (end-to-end) ======================================================
def make_agent():
api_key = os.environ.get("OPENAI_API_KEY", "")
if not api_key:
raise RuntimeError("OPENAI_API_KEY not set. Add it as a Space secret.")
model = OpenAIServerModel(model_id="gpt-4o-mini", api_key=api_key, temperature=0)
return CodeAgent(tools=[
forecast_tool, optimize_supply_tool, update_sap_md61_tool,
data_quality_guard_tool, scenario_explorer_tool, plan_explainer_tool, bottleneck_search_tool
], model=model, add_base_tools=False, stream_outputs=False)
SYSTEM_PLAN = (
"Run the pipeline and return one JSON:\n"
"1) forecast_tool(...)\n"
"2) optimize_supply_tool(forecast_json)\n"
"3) update_sap_md61_tool(forecast_json, ...)\n"
"Return: {'forecast': <json>, 'plan': <json>, 'md61': <json>}"
)
def run_agentic(h, plant, demo_flag, file_obj):
agent = make_agent()
if file_obj is not None:
path = file_obj.name
prompt = (f"{SYSTEM_PLAN}\n"
f"Use forecast_tool(horizon_months={int(h)}, use_demo=False, history_csv_path='{path}'). "
f"Then run the other two steps as specified. Return only the final JSON.")
else:
prompt = (f"{SYSTEM_PLAN}\n"
f"Use forecast_tool(horizon_months={int(h)}, use_demo={bool(demo_flag)}). "
f"Then run the other two steps as specified. Return only the final JSON.")
return agent.run(prompt)
# ==== UI Helpers (pretty) =====================================================
def parse_forecast(json_str):
df = pd.DataFrame(json.loads(json_str))
df = df[["product_id","period_start","forecast_qty"]].rename(columns={
"product_id":"Product","period_start":"Period Start","forecast_qty":"Forecast Qty"
})
return _round_df(df)
def parse_plan(json_str):
d = json.loads(json_str)
kpis = pd.DataFrame([d["kpis"]]).rename(columns={
"Conv. Cost":"Conversion Cost", "RM Purchase Cost":"RM Purchase Cost"
})
prod = pd.DataFrame(d["products"])
raw = pd.DataFrame(d["raw_materials"])
res = pd.DataFrame(d["resources"])
return d["status"], _round_df(kpis), _round_df(prod), _round_df(raw), _round_df(res)
def parse_md61(json_str):
d = json.loads(json_str)
prev = _round_df(pd.DataFrame(d.get("preview", [])))
path = d.get("csv_path", "")
return d.get("status",""), prev, path
def parse_data_quality(json_str):
d = json.loads(json_str)
df = _round_df(pd.DataFrame(d.get("issues", [])))
return df
def parse_scenarios(json_str):
d = json.loads(json_str)
df = _round_df(pd.DataFrame(d.get("scenarios", [])))
if not df.empty:
cols = ["name","status","profit","r1_used","r1_slack","r2_used","r2_slack"]
df = df[cols]
df = df.rename(columns={"name":"Scenario","status":"Status","profit":"Profit",
"r1_used":"R1 Used","r1_slack":"R1 Slack","r2_used":"R2 Used","r2_slack":"R2 Slack"})
return df
def parse_recs(json_str):
d = json.loads(json_str)
df = _round_df(pd.DataFrame(d.get("recommendations", [])))
if not df.empty:
df = df.rename(columns={
"lever":"Lever","recommended":"Recommended Ξ","est_profit_lift":"Est. Profit Lift",
"est_net_gain":"Est. Net Gain","rationale":"Rationale"
})
return df
# ==== Gradio UI ==============================================================
with gr.Blocks(title="Forecast β Optimize β SAP MD61") as demo:
gr.Markdown("## π§ Workflow\n"
"### 1) **Forecast** β 2) **Optimize Supply** β 3) **Prepare MD61**\n"
"Run them **manually** below, or use the **agent** to do end-to-end in one click.")
with gr.Tab("Manual (Step-by-step)"):
with gr.Row():
horizon = gr.Number(label="Horizon (months)", value=1, precision=0)
plant = gr.Textbox(label="SAP Plant (WERKS)", value="PLANT01")
with gr.Row():
use_demo = gr.Checkbox(label="Use demo synthetic history", value=True)
file = gr.File(label="Or upload history.csv (product_id,date,qty)", file_types=[".csv"])
# States
forecast_state = gr.State("")
plan_state = gr.State("")
md61_state = gr.State("")
gr.Markdown("### β€ Step 1: Forecast")
run_f = gr.Button("Run Step 1 β Forecast")
forecast_tbl = gr.Dataframe(label="Forecast (first horizon month per SKU)", interactive=False)
forecast_note = gr.Markdown("")
gr.Markdown("### β€ Step 2: Optimize Supply")
run_o = gr.Button("Run Step 2 β Optimize")
plan_status = gr.Markdown("")
plan_kpis = gr.Dataframe(label="KPIs", interactive=False)
plan_prod = gr.Dataframe(label="Products Plan", interactive=False)
plan_raw = gr.Dataframe(label="Raw Materials", interactive=False)
plan_res = gr.Dataframe(label="Resources", interactive=False)
gr.Markdown("### β€ Step 3: Prepare MD61 (Simulated)")
run_m = gr.Button("Run Step 3 β MD61")
md61_status = gr.Markdown("")
md61_prev = gr.Dataframe(label="MD61 Preview", interactive=False)
md61_file = gr.File(label="Download CSV", interactive=False)
# Handlers
def do_forecast(h, demo_flag, f):
hist_path = "" if (f is None) else f.name
fj = forecast_tool(horizon_months=int(h), use_demo=(f is None) and bool(demo_flag),
history_csv_path=hist_path)
df = parse_forecast(fj)
return fj, df, f"Forecast generated for {df['Product'].nunique()} product(s)."
run_f.click(do_forecast, inputs=[horizon, use_demo, file], outputs=[forecast_state, forecast_tbl, forecast_note])
def do_optimize(fj):
if not fj:
return "", pd.DataFrame(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame(), "β οΈ Run Step 1 first."
pj = optimize_supply_tool(fj)
status, kpis, prod, raw, res = parse_plan(pj)
return pj, kpis, prod, raw, res, f"Optimization status: **{status}**"
run_o.click(do_optimize, inputs=[forecast_state],
outputs=[plan_state, plan_kpis, plan_prod, plan_raw, plan_res, plan_status])
def do_md61(fj, plant):
if not fj:
return "", pd.DataFrame(), None, "β οΈ Run Step 1 first."
mj = update_sap_md61_tool(fj, plant=plant, uom="EA")
status, prev, path = parse_md61(mj)
return mj, prev, path, f"MD61 status: **{status}**"
run_m.click(do_md61, inputs=[forecast_state, plant], outputs=[md61_state, md61_prev, md61_file, md61_status])
with gr.Tab("Agentic (End-to-end)"):
gr.Markdown("One click: the agent runs all three steps with OpenAI.")
with gr.Row():
a_horizon = gr.Number(label="Horizon (months)", value=1, precision=0)
a_plant = gr.Textbox(label="SAP Plant (WERKS)", value="PLANT01")
with gr.Row():
a_demo = gr.Checkbox(label="Use demo synthetic history", value=True)
a_file = gr.File(label="Or upload history.csv", file_types=[".csv"])
run_all = gr.Button("Run End-to-end (Agent)")
out_json = gr.Textbox(label="Agent Raw JSON (for inspection)", lines=6)
with gr.Accordion("Pretty Outputs", open=True):
a_forecast_tbl = gr.Dataframe(label="Forecast", interactive=False)
a_plan_kpis = gr.Dataframe(label="KPIs", interactive=False)
a_plan_prod = gr.Dataframe(label="Products Plan", interactive=False)
a_plan_raw = gr.Dataframe(label="Raw Materials", interactive=False)
a_plan_res = gr.Dataframe(label="Resources", interactive=False)
a_md61_prev = gr.Dataframe(label="MD61 Preview", interactive=False)
a_md61_file = gr.File(label="Download MD61 CSV", interactive=False)
def do_agent(h, p, demo_flag, f):
def to_obj(x):
return x if isinstance(x, (dict, list)) else json.loads(x)
def to_str(x):
return x if isinstance(x, str) else json.dumps(x)
try:
res = run_agentic(h, p, demo_flag, f) # may be dict or str
out = to_obj(res)
forecast_json = to_str(out["forecast"])
plan_json = to_str(out["plan"])
md61_json = to_str(out["md61"])
f_df = parse_forecast(forecast_json)
_, kpis, prod, raw, res_tbl = parse_plan(plan_json)
_, prev, csv_path = parse_md61(md61_json)
pretty = {
"forecast": json.loads(forecast_json),
"plan": json.loads(plan_json),
"md61": json.loads(md61_json),
}
return (json.dumps(pretty, indent=2), f_df, kpis, prod, raw, res_tbl, prev, csv_path)
except Exception as e:
return (f"Agent error: {e}", pd.DataFrame(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame(),
pd.DataFrame(), pd.DataFrame(), None)
run_all.click(do_agent, inputs=[a_horizon, a_plant, a_demo, a_file],
outputs=[out_json, a_forecast_tbl, a_plan_kpis, a_plan_prod, a_plan_raw, a_plan_res, a_md61_prev, a_md61_file])
# --------- Upgrades ---------
with gr.Tab("Upgrades"):
gr.Markdown("### π§Ή Data Quality Guard")
with gr.Row():
dq_use_demo = gr.Checkbox(label="Use demo synthetic history", value=True)
dq_file = gr.File(label="Or upload history.csv", file_types=[".csv"])
dq_z = gr.Number(label="Robust z-threshold", value=3.5)
run_dq = gr.Button("Run Data Quality Guard")
dq_tbl = gr.Dataframe(label="Issues (flags & suggestions)", interactive=False)
def do_dq(demo_flag, f, zval):
hist_path = "" if (f is None) else f.name
out = data_quality_guard_tool(use_demo=(f is None) and bool(demo_flag),
history_csv_path=hist_path, z=float(zval))
return parse_data_quality(out)
run_dq.click(do_dq, inputs=[dq_use_demo, dq_file, dq_z], outputs=[dq_tbl])
gr.Markdown("### π Scenario Explorer")
run_sc = gr.Button("Run Scenarios on current Forecast (Step 1)")
sc_tbl = gr.Dataframe(label="Scenario Outcomes", interactive=False)
def do_sc(fj):
if not fj:
return pd.DataFrame()
out = scenario_explorer_tool(fj)
return parse_scenarios(out)
run_sc.click(do_sc, inputs=[forecast_state], outputs=[sc_tbl])
gr.Markdown("### π Plan Explainer")
run_ex = gr.Button("Explain Current Plan (Step 2)")
expl_md = gr.Markdown("")
def do_explain(pj):
if not pj:
return "β οΈ Run Step 2 first."
out = plan_explainer_tool(pj)
return json.loads(out)["summary"]
run_ex.click(do_explain, inputs=[plan_state], outputs=[expl_md])
gr.Markdown("### π― Bottleneck Finder (Practical Levers)")
policy_box = gr.Textbox(
label="Optional policy JSON (overtime/expedite limits & costs). Leave blank for sensible defaults.",
lines=4, value=""
)
run_bn = gr.Button("Find Best Bottleneck (uses current Forecast)")
bn_tbl = gr.Dataframe(label="Ranked Recommendations", interactive=False)
def do_bn(fj, policy):
if not fj:
return pd.DataFrame()
out = bottleneck_search_tool(fj, policy_json=policy or "")
return parse_recs(out)
run_bn.click(do_bn, inputs=[forecast_state, policy_box], outputs=[bn_tbl])
if __name__ == "__main__":
# Needs OPENAI_API_KEY in env for agent tab; manual tabs work without it.
if not os.environ.get("OPENAI_API_KEY"):
print("β οΈ Set OPENAI_API_KEY (Space secret) to use Agentic tab.")
demo.launch()
|