|
|
|
|
|
import os, json, tempfile, logging |
|
|
import gradio as gr |
|
|
import pandas as pd |
|
|
import numpy as np |
|
|
|
|
|
|
|
|
logging.getLogger("cmdstanpy").setLevel(logging.WARNING) |
|
|
logging.getLogger("prophet").setLevel(logging.WARNING) |
|
|
|
|
|
|
|
|
from smolagents import tool, CodeAgent, OpenAIServerModel |
|
|
|
|
|
|
|
|
def _round_df(df: pd.DataFrame, places: int = 2) -> pd.DataFrame: |
|
|
if df is None or df.empty: |
|
|
return df |
|
|
out = df.copy() |
|
|
num_cols = out.select_dtypes(include=["number"]).columns |
|
|
out[num_cols] = out[num_cols].astype(float).round(places) |
|
|
return out |
|
|
|
|
|
|
|
|
from smolagents import tool |
|
|
import json, pandas as pd, numpy as np |
|
|
|
|
|
@tool |
|
|
def forecast_tool(horizon_months: int = 1, use_demo: bool = True, history_csv_path: str = "", |
|
|
use_covariates: bool = False) -> str: |
|
|
""" |
|
|
Forecast monthly demand using a GLOBAL N-HiTS model (fast & accurate). |
|
|
|
|
|
Args: |
|
|
horizon_months (int): Number of future months to forecast (>=1). |
|
|
use_demo (bool): If True, generates synthetic history for FG100/FG200. |
|
|
history_csv_path (str): Optional CSV with columns [product_id,date,qty,(optional extra covariates...)]. |
|
|
use_covariates (bool): If True and extra numeric columns exist, use them as past covariates |
|
|
(for future effects you must provide future values too). |
|
|
|
|
|
Returns: |
|
|
str: JSON list of {"product_id","period_start","forecast_qty"} for the next horizon_months. |
|
|
""" |
|
|
|
|
|
if use_demo or not history_csv_path: |
|
|
rng = pd.date_range("2023-01-01", periods=24, freq="MS") |
|
|
rows = [] |
|
|
np.random.seed(0) |
|
|
for pid, base in [("FG100", 1800), ("FG200", 900)]: |
|
|
season = 1 + 0.15 * np.sin(2 * np.pi * (np.arange(len(rng)) / 12.0)) |
|
|
qty = (base * season).astype(float) |
|
|
for d, q in zip(rng, qty): |
|
|
rows.append({"product_id": pid, "date": d, "qty": float(q)}) |
|
|
df = pd.DataFrame(rows) |
|
|
else: |
|
|
df = pd.read_csv(history_csv_path) |
|
|
assert {"product_id","date","qty"} <= set(df.columns), "CSV must have product_id,date,qty" |
|
|
df["date"] = pd.to_datetime(df["date"], errors="coerce") |
|
|
df = df.dropna(subset=["date"]) |
|
|
df["qty"] = pd.to_numeric(df["qty"], errors="coerce").fillna(0.0) |
|
|
|
|
|
|
|
|
df = df.copy() |
|
|
df["product_id"] = df["product_id"].astype(str) |
|
|
|
|
|
|
|
|
from darts import TimeSeries |
|
|
series_list = [] |
|
|
past_cov_list = [] |
|
|
|
|
|
extra_cols = [c for c in df.columns if c not in ["product_id","date","qty"]] |
|
|
|
|
|
num_covs = [c for c in extra_cols if pd.api.types.is_numeric_dtype(df[c])] |
|
|
|
|
|
for pid, g in df.groupby("product_id"): |
|
|
g = (g.set_index("date") |
|
|
.sort_index() |
|
|
.resample("MS") |
|
|
.agg({**{"qty":"sum"}, **{c:"last" for c in num_covs}}) |
|
|
.fillna(method="ffill") |
|
|
.fillna(0.0)) |
|
|
y = TimeSeries.from_dataframe(g.reset_index(), time_col="date", value_cols="qty", freq="MS") |
|
|
series_list.append(y) |
|
|
|
|
|
if use_covariates and num_covs: |
|
|
pc = TimeSeries.from_dataframe(g.reset_index(), time_col="date", value_cols=num_covs, freq="MS") |
|
|
past_cov_list.append(pc) |
|
|
else: |
|
|
past_cov_list.append(None) |
|
|
|
|
|
|
|
|
from darts.models import NHiTSModel |
|
|
|
|
|
H = max(1, int(horizon_months)) |
|
|
|
|
|
input_chunk = max(6, min(12, min(len(s) for s in series_list) - 1)) if series_list else 12 |
|
|
|
|
|
model = NHiTSModel( |
|
|
input_chunk_length=input_chunk, |
|
|
output_chunk_length=min(H, 3), |
|
|
n_epochs=60, |
|
|
batch_size=32, |
|
|
random_state=0, |
|
|
dropout=0.0, |
|
|
) |
|
|
|
|
|
if use_covariates and any(pc is not None for pc in past_cov_list): |
|
|
model.fit(series=series_list, past_covariates=past_cov_list, verbose=False) |
|
|
else: |
|
|
model.fit(series=series_list, verbose=False) |
|
|
|
|
|
|
|
|
out = [] |
|
|
for pid, s, pc in zip(df["product_id"].unique(), series_list, past_cov_list): |
|
|
if use_covariates and pc is not None: |
|
|
pred = model.predict(n=H, series=s, past_covariates=pc) |
|
|
else: |
|
|
pred = model.predict(n=H, series=s) |
|
|
for ts, val in zip(pred.time_index, pred.values().flatten()): |
|
|
out.append({ |
|
|
"product_id": str(pid), |
|
|
"period_start": pd.Timestamp(ts).strftime("%Y-%m-%d"), |
|
|
"forecast_qty": float(val) |
|
|
}) |
|
|
|
|
|
return json.dumps(out) |
|
|
|
|
|
|
|
|
@tool |
|
|
def optimize_supply_tool(forecast_json: str) -> str: |
|
|
""" |
|
|
Optimize a single-month supply plan (LP) using the forecast. |
|
|
|
|
|
Args: |
|
|
forecast_json (str): JSON string returned by forecast_tool. |
|
|
|
|
|
Returns: |
|
|
str: JSON with summary + readable tables (not raw solver output). |
|
|
""" |
|
|
from scipy.optimize import linprog |
|
|
|
|
|
rows = json.loads(forecast_json) |
|
|
|
|
|
demand = {} |
|
|
for r in rows: |
|
|
p = r["product_id"] |
|
|
if p not in demand: |
|
|
demand[p] = float(r["forecast_qty"]) |
|
|
|
|
|
P = sorted(demand.keys()) or ["FG100", "FG200"] |
|
|
price = {"FG100": 98.0, "FG200": 120.0} |
|
|
conv = {"FG100": 12.5, "FG200": 15.0} |
|
|
r1 = {"FG100": 0.03, "FG200": 0.05} |
|
|
r2 = {"FG100": 0.02, "FG200": 0.01} |
|
|
|
|
|
RMs = ["RM_A", "RM_B"] |
|
|
rm_cost = {"RM_A": 20.0, "RM_B": 30.0} |
|
|
rm_start = {"RM_A": 1000.0, "RM_B": 100.0} |
|
|
rm_cap = {"RM_A": 5000.0, "RM_B": 5000.0} |
|
|
bom = { |
|
|
"FG100": {"RM_A": 0.8, "RM_B": 0.2 * 1.02}, |
|
|
"FG200": {"RM_A": 1.0, "RM_B": 0.1}, |
|
|
} |
|
|
r1_cap, r2_cap = 320.0, 480.0 |
|
|
|
|
|
nP, nR = len(P), len(RMs) |
|
|
pidx = {p:i for i,p in enumerate(P)} |
|
|
ridx = {r:i for i,r in enumerate(RMs)} |
|
|
|
|
|
def i_prod(p): return pidx[p] |
|
|
def i_sell(p): return nP + pidx[p] |
|
|
def i_einv(p): return 2*nP + pidx[p] |
|
|
def i_pur(r): return 3*nP + ridx[r] |
|
|
def i_einr(r): return 3*nP + nR + ridx[r] |
|
|
|
|
|
n_vars = 3*nP + 2*nR |
|
|
c = np.zeros(n_vars) |
|
|
bounds = [None]*n_vars |
|
|
|
|
|
for p in P: |
|
|
c[i_prod(p)] += conv[p] |
|
|
c[i_sell(p)] -= price[p] |
|
|
c[i_einv(p)] += 0.0 |
|
|
bounds[i_prod(p)] = (0, None) |
|
|
bounds[i_sell(p)] = (0, demand[p]) |
|
|
bounds[i_einv(p)] = (0, None) |
|
|
for r in RMs: |
|
|
c[i_pur(r)] += rm_cost[r] |
|
|
c[i_einr(r)] += 0.0 |
|
|
bounds[i_pur(r)] = (0, rm_cap[r]) |
|
|
bounds[i_einr(r)] = (0, None) |
|
|
|
|
|
|
|
|
Aeq, beq = [], [] |
|
|
for p in P: |
|
|
row = np.zeros(n_vars); row[i_prod(p)]=1; row[i_sell(p)]=-1; row[i_einv(p)]=-1 |
|
|
Aeq.append(row); beq.append(0.0) |
|
|
for r in RMs: |
|
|
row = np.zeros(n_vars); row[i_pur(r)]=1; row[i_einr(r)]=-1 |
|
|
for p in P: row[i_prod(p)] -= bom[p].get(r,0.0) |
|
|
Aeq.append(row); beq.append(-rm_start[r]) |
|
|
|
|
|
|
|
|
Aub, bub = [], [] |
|
|
row = np.zeros(n_vars); [row.__setitem__(i_prod(p), r1[p]) for p in P]; Aub.append(row); bub.append(r1_cap) |
|
|
row = np.zeros(n_vars); [row.__setitem__(i_prod(p), r2[p]) for p in P]; Aub.append(row); bub.append(r2_cap) |
|
|
|
|
|
from scipy.optimize import linprog |
|
|
res = linprog(c, A_ub=np.array(Aub), b_ub=np.array(bub), A_eq=np.array(Aeq), b_eq=np.array(beq), |
|
|
bounds=bounds, method="highs") |
|
|
if not res.success: |
|
|
return json.dumps({"status": "FAILED", "message": res.message}) |
|
|
|
|
|
x = res.x |
|
|
def v(idx): return float(x[idx]) |
|
|
|
|
|
|
|
|
prod_tbl = [] |
|
|
revenue = 0.0; conv_cost = 0.0 |
|
|
for p in P: |
|
|
produce = v(i_prod(p)); sell = v(i_sell(p)) |
|
|
prod_tbl.append({"Product": p, "Produce": produce, "Sell": sell, "Unit Price": price[p], "Conv. Cost/u": conv[p]}) |
|
|
revenue += sell*price[p]; conv_cost += produce*conv[p] |
|
|
|
|
|
raw_tbl = [] |
|
|
rm_purch_cost = 0.0 |
|
|
for r in RMs: |
|
|
purchase = v(i_pur(r)) |
|
|
cons = float(sum(bom[p].get(r,0.0)*v(i_prod(p)) for p in P)) |
|
|
cost = purchase*rm_cost[r]; rm_purch_cost += cost |
|
|
raw_tbl.append({"Raw": r, "Purchase": purchase, "Consume": cons, "Cost/u": rm_cost[r], "Total Cost": cost}) |
|
|
|
|
|
r1_used = float(sum(r1[p]*v(i_prod(p)) for p in P)) |
|
|
r2_used = float(sum(r2[p]*v(i_prod(p)) for p in P)) |
|
|
res_tbl = [ |
|
|
{"Resource": "R1", "Used": r1_used, "Cap": r1_cap, "Slack": r1_cap - r1_used}, |
|
|
{"Resource": "R2", "Used": r2_used, "Cap": r2_cap, "Slack": r2_cap - r2_used}, |
|
|
] |
|
|
profit = revenue - conv_cost - rm_purch_cost |
|
|
|
|
|
out = { |
|
|
"status": "OPTIMAL", |
|
|
"kpis": {"Profit": profit, "Revenue": revenue, "Conv. Cost": conv_cost, "RM Purchase Cost": rm_purch_cost}, |
|
|
"products": prod_tbl, |
|
|
"raw_materials": raw_tbl, |
|
|
"resources": res_tbl |
|
|
} |
|
|
return json.dumps(out) |
|
|
|
|
|
|
|
|
@tool |
|
|
def update_sap_md61_tool(forecast_json: str, plant: str = "PLANT01", uom: str = "EA", mrp_area: str = "") -> str: |
|
|
""" |
|
|
Prepare an MD61-style demand upload (SIMULATION ONLY). |
|
|
|
|
|
Args: |
|
|
forecast_json (str): JSON string returned by forecast_tool. |
|
|
plant (str): SAP plant (WERKS). Defaults to 'PLANT01'. |
|
|
uom (str): Unit of measure. Defaults to 'EA'. |
|
|
mrp_area (str): Optional MRP area. |
|
|
|
|
|
Returns: |
|
|
str: JSON with {"status":"SIMULATED","csv_path":"...","preview":[...]}. |
|
|
""" |
|
|
rows = json.loads(forecast_json) |
|
|
md61 = [{ |
|
|
"Material": r["product_id"], "Plant": plant, "MRP_Area": mrp_area, |
|
|
"Req_Date": r["period_start"], "Req_Qty": float(r["forecast_qty"]), |
|
|
"UoM": uom, "Version": "00" |
|
|
} for r in rows] |
|
|
df = pd.DataFrame(md61) |
|
|
tmp = tempfile.NamedTemporaryFile(delete=False, suffix=".csv") |
|
|
df.to_csv(tmp.name, index=False) |
|
|
return json.dumps({"status": "SIMULATED", "csv_path": tmp.name, "preview": md61[:5]}) |
|
|
|
|
|
|
|
|
@tool |
|
|
def data_quality_guard_tool(use_demo: bool = True, history_csv_path: str = "", z: float = 3.5) -> str: |
|
|
""" |
|
|
Scan monthly history for outliers and likely stockout zeros. Demo-friendly. |
|
|
|
|
|
Args: |
|
|
use_demo (bool): If True, use synthetic FG100/FG200 history. |
|
|
history_csv_path (str): Optional CSV path with columns [product_id,date,qty]. |
|
|
z (float): Robust z-threshold (MAD-based) for outlier flags. Default 3.5. |
|
|
|
|
|
Returns: |
|
|
str: JSON {"status":"OK","issues":[{product_id,period_start,qty,flag,suggested_action,suggested_value?}]} |
|
|
""" |
|
|
|
|
|
if use_demo or not history_csv_path: |
|
|
rng = pd.date_range("2023-01-01", periods=24, freq="MS") |
|
|
rows = [] |
|
|
np.random.seed(0) |
|
|
for pid, base in [("FG100", 1800), ("FG200", 900)]: |
|
|
season = 1 + 0.15 * np.sin(2 * np.pi * (np.arange(len(rng)) / 12.0)) |
|
|
qty = (base * season).astype(float) |
|
|
for d, q in zip(rng, qty): |
|
|
rows.append({"product_id": pid, "date": d, "qty": float(q)}) |
|
|
df = pd.DataFrame(rows) |
|
|
else: |
|
|
df = pd.read_csv(history_csv_path) |
|
|
assert {"product_id","date","qty"} <= set(df.columns), "CSV must have product_id,date,qty" |
|
|
df["date"] = pd.to_datetime(df["date"], errors="coerce") |
|
|
df = df.dropna(subset=["date"]) |
|
|
df["qty"] = pd.to_numeric(df["qty"], errors="coerce").fillna(0.0) |
|
|
|
|
|
issues = [] |
|
|
for pid, g in df.groupby("product_id"): |
|
|
s = g.set_index("date")["qty"].resample("MS").sum().asfreq("MS").fillna(0.0) |
|
|
if len(s) < 6: |
|
|
continue |
|
|
med = s.rolling(6, min_periods=3).median() |
|
|
mad = (s - med).abs().rolling(6, min_periods=3).median() |
|
|
robust_z = (0.6745 * (s - med) / mad.replace(0, np.nan)).abs() |
|
|
|
|
|
for ts, y in s.items(): |
|
|
flag = None; action = None; val = None |
|
|
rz = robust_z.get(ts, np.nan) |
|
|
|
|
|
if not np.isnan(rz) and rz > z: |
|
|
flag = "OUTLIER" |
|
|
action = "cap_to_rolling_median" |
|
|
val = float(med.get(ts, np.nan)) if not np.isnan(med.get(ts, np.nan)) else None |
|
|
|
|
|
prev_nonzero = s[:ts].iloc[:-1].ne(0).any() if len(s[:ts])>1 else False |
|
|
next_nonzero = s[ts:].iloc[1:].ne(0).any() if len(s[ts:])>1 else False |
|
|
if y == 0 and prev_nonzero and next_nonzero: |
|
|
flag = flag or "ZERO_BETWEEN_NONZERO" |
|
|
action = action or "impute_neighbor_avg" |
|
|
idx = s.index.get_loc(ts) |
|
|
neighbors = [] |
|
|
if idx>0: neighbors.append(s.iloc[idx-1]) |
|
|
if idx<len(s)-1: neighbors.append(s.iloc[idx+1]) |
|
|
val = float(np.mean(neighbors)) if neighbors else None |
|
|
if flag: |
|
|
issues.append({ |
|
|
"product_id": pid, |
|
|
"period_start": ts.strftime("%Y-%m-%d"), |
|
|
"qty": float(y), |
|
|
"flag": flag, |
|
|
"suggested_action": action, |
|
|
"suggested_value": None if val is None or np.isnan(val) else float(val) |
|
|
}) |
|
|
return json.dumps({"status":"OK","issues":issues}) |
|
|
|
|
|
|
|
|
@tool |
|
|
def scenario_explorer_tool(forecast_json: str) -> str: |
|
|
""" |
|
|
Run a small set of what-if scenarios and summarize results. |
|
|
|
|
|
Args: |
|
|
forecast_json (str): JSON string from forecast_tool (uses first month per SKU). |
|
|
|
|
|
Returns: |
|
|
str: JSON {"status":"OK","scenarios":[{name,profit,r1_used,r1_slack,r2_used,r2_slack}]} |
|
|
""" |
|
|
from scipy.optimize import linprog |
|
|
|
|
|
base_rows = json.loads(forecast_json) |
|
|
demand = {} |
|
|
for r in base_rows: |
|
|
p = r["product_id"] |
|
|
if p not in demand: |
|
|
demand[p] = float(r["forecast_qty"]) |
|
|
P = sorted(demand.keys()) or ["FG100","FG200"] |
|
|
|
|
|
|
|
|
price = {"FG100": 98.0, "FG200": 120.0} |
|
|
conv = {"FG100": 12.5, "FG200": 15.0} |
|
|
r1 = {"FG100": 0.03, "FG200": 0.05} |
|
|
r2 = {"FG100": 0.02, "FG200": 0.01} |
|
|
RMs = ["RM_A","RM_B"] |
|
|
rm_cost = {"RM_A": 20.0, "RM_B": 30.0} |
|
|
rm_start = {"RM_A": 1000.0, "RM_B": 100.0} |
|
|
rm_cap = {"RM_A": 5000.0, "RM_B": 5000.0} |
|
|
bom = { |
|
|
"FG100": {"RM_A": 0.8, "RM_B": 0.2*1.02}, |
|
|
"FG200": {"RM_A": 1.0, "RM_B": 0.1}, |
|
|
} |
|
|
r1_cap0, r2_cap0 = 320.0, 480.0 |
|
|
|
|
|
scenarios = [ |
|
|
{"name":"Base", "mult":1.0, "r1_cap":r1_cap0, "r2_cap":r2_cap0, "rm_cost_B_add":0.0, "conv_fg100_mult":1.0, "rmA_start_mult":1.0}, |
|
|
{"name":"+10% Demand", "demand_mult":1.10, "r1_cap":r1_cap0, "r2_cap":r2_cap0, "rm_cost_B_add":0.0, "conv_fg100_mult":1.0, "rmA_start_mult":1.0}, |
|
|
{"name":"-10% R1 Cap", "mult":1.0, "r1_cap":0.9*r1_cap0, "r2_cap":r2_cap0, "rm_cost_B_add":0.0, "conv_fg100_mult":1.0, "rmA_start_mult":1.0}, |
|
|
{"name":"+βΉ5 RM_B", "mult":1.0, "r1_cap":r1_cap0, "r2_cap":r2_cap0, "rm_cost_B_add":5.0, "conv_fg100_mult":1.0, "rmA_start_mult":1.0}, |
|
|
{"name":"+10% FG100 ConvCost", "mult":1.0, "r1_cap":r1_cap0, "r2_cap":r2_cap0, "rm_cost_B_add":0.0, "conv_fg100_mult":1.10, "rmA_start_mult":1.0}, |
|
|
{"name":"-20% RM_A Start", "mult":1.0, "r1_cap":r1_cap0, "r2_cap":r2_cap0, "rm_cost_B_add":0.0, "conv_fg100_mult":1.0, "rmA_start_mult":0.80}, |
|
|
] |
|
|
|
|
|
results = [] |
|
|
for sc in scenarios: |
|
|
dem_mult = sc.get("demand_mult", sc.get("mult",1.0)) |
|
|
d = {p: demand[p]*dem_mult for p in P} |
|
|
r1_cap = sc["r1_cap"]; r2_cap = sc["r2_cap"] |
|
|
rm_cost_local = rm_cost.copy(); rm_cost_local["RM_B"] += sc["rm_cost_B_add"] |
|
|
conv_local = conv.copy(); conv_local["FG100"] = conv_local["FG100"] * sc["conv_fg100_mult"] |
|
|
rm_start_local = rm_start.copy(); rm_start_local["RM_A"] = rm_start_local["RM_A"] * sc["rmA_start_mult"] |
|
|
|
|
|
|
|
|
nP, nR = len(P), len(RMs) |
|
|
pidx = {p:i for i,p in enumerate(P)}; ridx = {r:i for i,r in enumerate(RMs)} |
|
|
def i_prod(p): return pidx[p] |
|
|
def i_sell(p): return nP + pidx[p] |
|
|
def i_einv(p): return 2*nP + pidx[p] |
|
|
def i_pur(r): return 3*nP + ridx[r] |
|
|
def i_einr(r): return 3*nP + nR + ridx[r] |
|
|
n_vars = 3*nP + 2*nR |
|
|
c = np.zeros(n_vars); bounds = [None]*n_vars |
|
|
|
|
|
for p in P: |
|
|
c[i_prod(p)] += conv_local[p]; c[i_sell(p)] -= price[p]; c[i_einv(p)] += 0.0 |
|
|
bounds[i_prod(p)] = (0, None); bounds[i_sell(p)] = (0, d[p]); bounds[i_einv(p)] = (0, None) |
|
|
for r in RMs: |
|
|
c[i_pur(r)] += rm_cost_local[r]; c[i_einr(r)] += 0.0 |
|
|
bounds[i_pur(r)] = (0, rm_cap[r]); bounds[i_einr(r)] = (0, None) |
|
|
|
|
|
Aeq, beq = [], [] |
|
|
for p in P: |
|
|
row = np.zeros(n_vars); row[i_prod(p)]=1; row[i_sell(p)]=-1; row[i_einv(p)]=-1 |
|
|
Aeq.append(row); beq.append(0.0) |
|
|
for r in RMs: |
|
|
row = np.zeros(n_vars); row[i_pur(r)]=1; row[i_einr(r)]=-1 |
|
|
for p in P: row[i_prod(p)] -= bom[p].get(r,0.0) |
|
|
Aeq.append(row); beq.append(-rm_start_local[r]) |
|
|
|
|
|
Aub, bub = [], [] |
|
|
row = np.zeros(n_vars); [row.__setitem__(i_prod(p), r1[p]) for p in P]; Aub.append(row); bub.append(r1_cap) |
|
|
row = np.zeros(n_vars); [row.__setitem__(i_prod(p), r2[p]) for p in P]; Aub.append(row); bub.append(r2_cap) |
|
|
|
|
|
from scipy.optimize import linprog |
|
|
res = linprog(c, A_ub=np.array(Aub), b_ub=np.array(bub), A_eq=np.array(Aeq), b_eq=np.array(beq), |
|
|
bounds=bounds, method="highs") |
|
|
if not res.success: |
|
|
results.append({"name": sc["name"], "status":"FAILED", "profit": None}) |
|
|
continue |
|
|
|
|
|
x = res.x |
|
|
def v(idx): return float(x[idx]) |
|
|
|
|
|
r1_used = float(sum(r1[p]*v(i_prod(p)) for p in P)) |
|
|
r2_used = float(sum(r2[p]*v(i_prod(p)) for p in P)) |
|
|
revenue = float(sum(price[p]*v(i_sell(p)) for p in P)) |
|
|
conv_cost = float(sum(conv_local[p]*v(i_prod(p)) for p in P)) |
|
|
rm_purch_cost = float(sum(v(i_pur(r))*rm_cost_local[r] for r in RMs)) |
|
|
profit = revenue - conv_cost - rm_purch_cost |
|
|
|
|
|
results.append({ |
|
|
"name": sc["name"], |
|
|
"status":"OPTIMAL", |
|
|
"profit": profit, |
|
|
"r1_used": r1_used, "r1_slack": r1_cap - r1_used, |
|
|
"r2_used": r2_used, "r2_slack": r2_cap - r2_used |
|
|
}) |
|
|
|
|
|
return json.dumps({"status":"OK","scenarios":results}) |
|
|
|
|
|
|
|
|
@tool |
|
|
def plan_explainer_tool(plan_json: str) -> str: |
|
|
""" |
|
|
Generate a plain-language explanation of the plan (demo assumptions). |
|
|
|
|
|
Args: |
|
|
plan_json (str): JSON from optimize_supply_tool. |
|
|
|
|
|
Returns: |
|
|
str: JSON {"status":"OK","summary": "... human-readable text ..."} |
|
|
""" |
|
|
d = json.loads(plan_json) |
|
|
k = d.get("kpis", {}) |
|
|
products = d.get("products", []) |
|
|
resources = d.get("resources", []) |
|
|
|
|
|
|
|
|
contribs = [] |
|
|
for row in products: |
|
|
rev = row["Sell"] * row["Unit Price"] |
|
|
conv = row["Produce"] * row["Conv. Cost/u"] |
|
|
contribs.append((row["Product"], rev - conv)) |
|
|
contribs.sort(key=lambda x: x[1], reverse=True) |
|
|
top_prod = contribs[0][0] if contribs else "N/A" |
|
|
|
|
|
|
|
|
bind_res = None |
|
|
if resources: |
|
|
r_sorted = sorted(resources, key=lambda r: r.get("Slack", 0.0)) |
|
|
bind_res = r_sorted[0]["Resource"] |
|
|
|
|
|
summary = ( |
|
|
f"Profit: βΉ{k.get('Profit',0):,.2f} (Revenue βΉ{k.get('Revenue',0):,.2f} β " |
|
|
f"Conv. Cost βΉ{k.get('Conv. Cost',0):,.2f} β RM Cost βΉ{k.get('RM Purchase Cost',0):,.2f}). " |
|
|
f"Top driver: {top_prod}. " |
|
|
f"Bottleneck check: {bind_res} has the least slack." |
|
|
) |
|
|
|
|
|
return json.dumps({"status":"OK","summary": summary}) |
|
|
|
|
|
|
|
|
@tool |
|
|
def bottleneck_search_tool(forecast_json: str, policy_json: str = "") -> str: |
|
|
""" |
|
|
Find the best practical lever to relax (within ~1 month) via small scenario probes. |
|
|
Supports resource overtime, RM expedite (cap), and demand_lift (promo ROI-checked). |
|
|
|
|
|
Args: |
|
|
forecast_json (str): JSON from forecast_tool (first month per SKU used). |
|
|
policy_json (str): Optional JSON with levers and costs. |
|
|
|
|
|
Returns: |
|
|
str: JSON {"status":"OK","diagnostics":{...},"recommendations":[...]} |
|
|
""" |
|
|
import json, numpy as np |
|
|
from scipy.optimize import linprog |
|
|
|
|
|
|
|
|
policy = { |
|
|
"R1_overtime": {"type":"resource","target":"R1","step":10.0,"max_delta":80.0,"unit_cost":600.0}, |
|
|
"R2_overtime": {"type":"resource","target":"R2","step":10.0,"max_delta":40.0,"unit_cost":800.0}, |
|
|
"RM_A_expedite": {"type":"rm_expedite","target":"RM_A","step":200.0,"max_delta":1500.0,"unit_premium":8.0}, |
|
|
"RM_B_expedite": {"type":"rm_expedite","target":"RM_B","step":100.0,"max_delta":800.0,"unit_premium":12.0}, |
|
|
"Factory_expansion": {"type":"blocked","reason":"Not relaxable within 1 month"} |
|
|
|
|
|
|
|
|
} |
|
|
if policy_json: |
|
|
try: policy.update(json.loads(policy_json)) |
|
|
except Exception: pass |
|
|
|
|
|
|
|
|
rows = json.loads(forecast_json) |
|
|
demand = {} |
|
|
for r in rows: |
|
|
p = r["product_id"] |
|
|
if p not in demand: |
|
|
demand[p] = float(r["forecast_qty"]) |
|
|
P = sorted(demand.keys()) or ["FG100","FG200"] |
|
|
|
|
|
price = {"FG100":98.0,"FG200":120.0} |
|
|
conv = {"FG100":12.5,"FG200":15.0} |
|
|
r1 = {"FG100":0.03,"FG200":0.05} |
|
|
r2 = {"FG100":0.02,"FG200":0.01} |
|
|
RMs = ["RM_A","RM_B"] |
|
|
rm_cost = {"RM_A":20.0,"RM_B":30.0} |
|
|
rm_start = {"RM_A":1000.0,"RM_B":100.0} |
|
|
rm_cap = {"RM_A":5000.0,"RM_B":5000.0} |
|
|
bom = {"FG100":{"RM_A":0.8,"RM_B":0.204},"FG200":{"RM_A":1.0,"RM_B":0.1}} |
|
|
r1_cap0, r2_cap0 = 320.0, 480.0 |
|
|
|
|
|
|
|
|
unit_var_cost = {p: conv[p] + sum(bom[p].get(rm,0.0)*rm_cost[rm] for rm in RMs) for p in P} |
|
|
unit_margin = {p: price[p] - unit_var_cost[p] for p in P} |
|
|
|
|
|
|
|
|
def solve(dem, r1_cap, r2_cap, rm_cap_adj): |
|
|
nP, nR = len(P), len(RMs) |
|
|
pidx = {p:i for i,p in enumerate(P)}; ridx = {r:i for i,r in enumerate(RMs)} |
|
|
def i_prod(p): return pidx[p] |
|
|
def i_sell(p): return nP + pidx[p] |
|
|
def i_einv(p): return 2*nP + pidx[p] |
|
|
def i_pur(r): return 3*nP + ridx[r] |
|
|
def i_einr(r): return 3*nP + nR + ridx[r] |
|
|
|
|
|
n_vars = 3*nP + 2*nR |
|
|
c = np.zeros(n_vars); bounds=[None]*n_vars |
|
|
|
|
|
for p in P: |
|
|
c[i_prod(p)] += conv[p] |
|
|
c[i_sell(p)] -= price[p] |
|
|
bounds[i_prod(p)] = (0,None) |
|
|
bounds[i_sell(p)] = (0, dem[p]) |
|
|
bounds[i_einv(p)] = (0,None) |
|
|
for r in RMs: |
|
|
c[i_pur(r)] += rm_cost[r] |
|
|
bounds[i_pur(r)] = (0, rm_cap_adj[r]) |
|
|
bounds[i_einr(r)] = (0,None) |
|
|
|
|
|
Aeq, beq = [], [] |
|
|
for p in P: |
|
|
row = np.zeros(n_vars); row[i_prod(p)]=1; row[i_sell(p)]=-1; row[i_einv(p)]=-1 |
|
|
Aeq.append(row); beq.append(0.0) |
|
|
for r in RMs: |
|
|
row = np.zeros(n_vars); row[i_pur(r)]=1; row[i_einr(r)]=-1 |
|
|
for p in P: row[i_prod(p)] -= bom[p].get(r,0.0) |
|
|
Aeq.append(row); beq.append(-rm_start[r]) |
|
|
|
|
|
Aub, bub = [], [] |
|
|
row = np.zeros(n_vars); [row.__setitem__(i_prod(p), r1[p]) for p in P]; Aub.append(row); bub.append(r1_cap) |
|
|
row = np.zeros(n_vars); [row.__setitem__(i_prod(p), r2[p]) for p in P]; Aub.append(row); bub.append(r2_cap) |
|
|
|
|
|
res = linprog(c, A_ub=np.array(Aub), b_ub=np.array(bub), A_eq=np.array(Aeq), b_eq=np.array(beq), |
|
|
bounds=bounds, method="highs") |
|
|
if not res.success: |
|
|
return None |
|
|
x = res.x |
|
|
def v(idx): return float(x[idx]) |
|
|
|
|
|
revenue = sum(price[p]*v(i_sell(p)) for p in P) |
|
|
conv_cost = sum(conv[p]*v(i_prod(p)) for p in P) |
|
|
rm_purch_cost = sum(v(i_pur(r))*rm_cost[r] for r in RMs) |
|
|
r1_used = sum(r1[p]*v(i_prod(p)) for p in P) |
|
|
r2_used = sum(r2[p]*v(i_prod(p)) for p in P) |
|
|
return { |
|
|
"profit": revenue - conv_cost - rm_purch_cost, |
|
|
"r1_used": r1_used, "r2_used": r2_used, |
|
|
} |
|
|
|
|
|
|
|
|
base = solve(demand, r1_cap0, r2_cap0, rm_cap.copy()) |
|
|
if base is None: |
|
|
return json.dumps({"status":"FAILED","message":"Baseline infeasible."}) |
|
|
base_profit = float(base["profit"]) |
|
|
diag = { |
|
|
"demand_met": True, |
|
|
"r1_slack": round(r1_cap0 - base["r1_used"], 2), |
|
|
"r2_slack": round(r2_cap0 - base["r2_used"], 2), |
|
|
"rm_caps_hit": {rm: False for rm in RMs} |
|
|
} |
|
|
|
|
|
all_slack = (diag["r1_slack"] > 1e-3 and diag["r2_slack"] > 1e-3) |
|
|
|
|
|
|
|
|
recs = [] |
|
|
for name, cfg in policy.items(): |
|
|
if cfg.get("type") == "blocked": |
|
|
recs.append({"lever":name,"recommended":0,"est_profit_lift":0,"est_net_gain":0, |
|
|
"rationale":cfg.get("reason","Not feasible in horizon")}) |
|
|
continue |
|
|
|
|
|
best_gain = 0.0; best_delta = 0.0; best_lift = 0.0 |
|
|
step = float(cfg.get("step",0)); maxd = float(cfg.get("max_delta",0)) |
|
|
d = 0.0 |
|
|
while d <= maxd + 1e-6: |
|
|
dem = demand.copy() |
|
|
r1_cap = r1_cap0; r2_cap = r2_cap0 |
|
|
rm_cap_adj = rm_cap.copy() |
|
|
relax_cost = 0.0 |
|
|
|
|
|
t = cfg["type"] |
|
|
if t == "resource" and cfg["target"] == "R1": |
|
|
r1_cap += d; relax_cost = d * float(cfg["unit_cost"]) |
|
|
elif t == "resource" and cfg["target"] == "R2": |
|
|
r2_cap += d; relax_cost = d * float(cfg["unit_cost"]) |
|
|
elif t == "rm_expedite": |
|
|
key = "RM_A" if cfg["target"]=="RM_A" else "RM_B" |
|
|
rm_cap_adj[key] = rm_cap[key] + d |
|
|
relax_cost = d * float(cfg["unit_premium"]) |
|
|
elif t == "demand_lift": |
|
|
sku = cfg["target"] |
|
|
if sku in dem: |
|
|
dem[sku] = dem[sku] + d |
|
|
relax_cost = d * float(cfg["unit_cost"]) |
|
|
else: |
|
|
d += step; continue |
|
|
else: |
|
|
d += step; continue |
|
|
|
|
|
res = solve(dem, r1_cap, r2_cap, rm_cap_adj) |
|
|
if res is None: |
|
|
d += step; continue |
|
|
lift = float(res["profit"] - base_profit) |
|
|
net = lift - relax_cost |
|
|
if net > best_gain: |
|
|
best_gain, best_delta, best_lift = net, d, lift |
|
|
d += step |
|
|
|
|
|
rationale = ("Beneficial at small Ξ" if best_gain>0 else |
|
|
("Capacity not binding; try demand/cost levers" if all_slack else |
|
|
"No positive net gain within feasible range")) |
|
|
recs.append({"lever":name,"recommended":round(best_delta,2), |
|
|
"est_profit_lift":round(best_lift,2), |
|
|
"est_net_gain":round(best_gain,2), |
|
|
"rationale":rationale}) |
|
|
|
|
|
recs.sort(key=lambda r: r["est_net_gain"], reverse=True) |
|
|
return json.dumps({"status":"OK","diagnostics":diag,"recommendations":recs}) |
|
|
|
|
|
|
|
|
def make_agent(): |
|
|
api_key = os.environ.get("OPENAI_API_KEY", "") |
|
|
if not api_key: |
|
|
raise RuntimeError("OPENAI_API_KEY not set. Add it as a Space secret.") |
|
|
model = OpenAIServerModel(model_id="gpt-4o-mini", api_key=api_key, temperature=0) |
|
|
return CodeAgent(tools=[ |
|
|
forecast_tool, optimize_supply_tool, update_sap_md61_tool, |
|
|
data_quality_guard_tool, scenario_explorer_tool, plan_explainer_tool, bottleneck_search_tool |
|
|
], model=model, add_base_tools=False, stream_outputs=False) |
|
|
|
|
|
SYSTEM_PLAN = ( |
|
|
"Run the pipeline and return one JSON:\n" |
|
|
"1) forecast_tool(...)\n" |
|
|
"2) optimize_supply_tool(forecast_json)\n" |
|
|
"3) update_sap_md61_tool(forecast_json, ...)\n" |
|
|
"Return: {'forecast': <json>, 'plan': <json>, 'md61': <json>}" |
|
|
) |
|
|
|
|
|
def run_agentic(h, plant, demo_flag, file_obj): |
|
|
agent = make_agent() |
|
|
if file_obj is not None: |
|
|
path = file_obj.name |
|
|
prompt = (f"{SYSTEM_PLAN}\n" |
|
|
f"Use forecast_tool(horizon_months={int(h)}, use_demo=False, history_csv_path='{path}'). " |
|
|
f"Then run the other two steps as specified. Return only the final JSON.") |
|
|
else: |
|
|
prompt = (f"{SYSTEM_PLAN}\n" |
|
|
f"Use forecast_tool(horizon_months={int(h)}, use_demo={bool(demo_flag)}). " |
|
|
f"Then run the other two steps as specified. Return only the final JSON.") |
|
|
return agent.run(prompt) |
|
|
|
|
|
|
|
|
def parse_forecast(json_str): |
|
|
df = pd.DataFrame(json.loads(json_str)) |
|
|
df = df[["product_id","period_start","forecast_qty"]].rename(columns={ |
|
|
"product_id":"Product","period_start":"Period Start","forecast_qty":"Forecast Qty" |
|
|
}) |
|
|
return _round_df(df) |
|
|
|
|
|
def parse_plan(json_str): |
|
|
d = json.loads(json_str) |
|
|
kpis = pd.DataFrame([d["kpis"]]).rename(columns={ |
|
|
"Conv. Cost":"Conversion Cost", "RM Purchase Cost":"RM Purchase Cost" |
|
|
}) |
|
|
prod = pd.DataFrame(d["products"]) |
|
|
raw = pd.DataFrame(d["raw_materials"]) |
|
|
res = pd.DataFrame(d["resources"]) |
|
|
return d["status"], _round_df(kpis), _round_df(prod), _round_df(raw), _round_df(res) |
|
|
|
|
|
def parse_md61(json_str): |
|
|
d = json.loads(json_str) |
|
|
prev = _round_df(pd.DataFrame(d.get("preview", []))) |
|
|
path = d.get("csv_path", "") |
|
|
return d.get("status",""), prev, path |
|
|
|
|
|
def parse_data_quality(json_str): |
|
|
d = json.loads(json_str) |
|
|
df = _round_df(pd.DataFrame(d.get("issues", []))) |
|
|
return df |
|
|
|
|
|
def parse_scenarios(json_str): |
|
|
d = json.loads(json_str) |
|
|
df = _round_df(pd.DataFrame(d.get("scenarios", []))) |
|
|
if not df.empty: |
|
|
cols = ["name","status","profit","r1_used","r1_slack","r2_used","r2_slack"] |
|
|
df = df[cols] |
|
|
df = df.rename(columns={"name":"Scenario","status":"Status","profit":"Profit", |
|
|
"r1_used":"R1 Used","r1_slack":"R1 Slack","r2_used":"R2 Used","r2_slack":"R2 Slack"}) |
|
|
return df |
|
|
|
|
|
def parse_recs(json_str): |
|
|
d = json.loads(json_str) |
|
|
df = _round_df(pd.DataFrame(d.get("recommendations", []))) |
|
|
if not df.empty: |
|
|
df = df.rename(columns={ |
|
|
"lever":"Lever","recommended":"Recommended Ξ","est_profit_lift":"Est. Profit Lift", |
|
|
"est_net_gain":"Est. Net Gain","rationale":"Rationale" |
|
|
}) |
|
|
return df |
|
|
|
|
|
|
|
|
with gr.Blocks(title="Forecast β Optimize β SAP MD61") as demo: |
|
|
gr.Markdown("## π§ Workflow\n" |
|
|
"### 1) **Forecast** β 2) **Optimize Supply** β 3) **Prepare MD61**\n" |
|
|
"Run them **manually** below, or use the **agent** to do end-to-end in one click.") |
|
|
|
|
|
with gr.Tab("Manual (Step-by-step)"): |
|
|
with gr.Row(): |
|
|
horizon = gr.Number(label="Horizon (months)", value=1, precision=0) |
|
|
plant = gr.Textbox(label="SAP Plant (WERKS)", value="PLANT01") |
|
|
with gr.Row(): |
|
|
use_demo = gr.Checkbox(label="Use demo synthetic history", value=True) |
|
|
file = gr.File(label="Or upload history.csv (product_id,date,qty)", file_types=[".csv"]) |
|
|
|
|
|
|
|
|
forecast_state = gr.State("") |
|
|
plan_state = gr.State("") |
|
|
md61_state = gr.State("") |
|
|
|
|
|
gr.Markdown("### β€ Step 1: Forecast") |
|
|
run_f = gr.Button("Run Step 1 β Forecast") |
|
|
forecast_tbl = gr.Dataframe(label="Forecast (first horizon month per SKU)", interactive=False) |
|
|
forecast_note = gr.Markdown("") |
|
|
|
|
|
gr.Markdown("### β€ Step 2: Optimize Supply") |
|
|
run_o = gr.Button("Run Step 2 β Optimize") |
|
|
plan_status = gr.Markdown("") |
|
|
plan_kpis = gr.Dataframe(label="KPIs", interactive=False) |
|
|
plan_prod = gr.Dataframe(label="Products Plan", interactive=False) |
|
|
plan_raw = gr.Dataframe(label="Raw Materials", interactive=False) |
|
|
plan_res = gr.Dataframe(label="Resources", interactive=False) |
|
|
|
|
|
gr.Markdown("### β€ Step 3: Prepare MD61 (Simulated)") |
|
|
run_m = gr.Button("Run Step 3 β MD61") |
|
|
md61_status = gr.Markdown("") |
|
|
md61_prev = gr.Dataframe(label="MD61 Preview", interactive=False) |
|
|
md61_file = gr.File(label="Download CSV", interactive=False) |
|
|
|
|
|
|
|
|
def do_forecast(h, demo_flag, f): |
|
|
hist_path = "" if (f is None) else f.name |
|
|
fj = forecast_tool(horizon_months=int(h), use_demo=(f is None) and bool(demo_flag), |
|
|
history_csv_path=hist_path) |
|
|
df = parse_forecast(fj) |
|
|
return fj, df, f"Forecast generated for {df['Product'].nunique()} product(s)." |
|
|
|
|
|
run_f.click(do_forecast, inputs=[horizon, use_demo, file], outputs=[forecast_state, forecast_tbl, forecast_note]) |
|
|
|
|
|
def do_optimize(fj): |
|
|
if not fj: |
|
|
return "", pd.DataFrame(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame(), "β οΈ Run Step 1 first." |
|
|
pj = optimize_supply_tool(fj) |
|
|
status, kpis, prod, raw, res = parse_plan(pj) |
|
|
return pj, kpis, prod, raw, res, f"Optimization status: **{status}**" |
|
|
|
|
|
run_o.click(do_optimize, inputs=[forecast_state], |
|
|
outputs=[plan_state, plan_kpis, plan_prod, plan_raw, plan_res, plan_status]) |
|
|
|
|
|
def do_md61(fj, plant): |
|
|
if not fj: |
|
|
return "", pd.DataFrame(), None, "β οΈ Run Step 1 first." |
|
|
mj = update_sap_md61_tool(fj, plant=plant, uom="EA") |
|
|
status, prev, path = parse_md61(mj) |
|
|
return mj, prev, path, f"MD61 status: **{status}**" |
|
|
|
|
|
run_m.click(do_md61, inputs=[forecast_state, plant], outputs=[md61_state, md61_prev, md61_file, md61_status]) |
|
|
|
|
|
with gr.Tab("Agentic (End-to-end)"): |
|
|
gr.Markdown("One click: the agent runs all three steps with OpenAI.") |
|
|
with gr.Row(): |
|
|
a_horizon = gr.Number(label="Horizon (months)", value=1, precision=0) |
|
|
a_plant = gr.Textbox(label="SAP Plant (WERKS)", value="PLANT01") |
|
|
with gr.Row(): |
|
|
a_demo = gr.Checkbox(label="Use demo synthetic history", value=True) |
|
|
a_file = gr.File(label="Or upload history.csv", file_types=[".csv"]) |
|
|
run_all = gr.Button("Run End-to-end (Agent)") |
|
|
out_json = gr.Textbox(label="Agent Raw JSON (for inspection)", lines=6) |
|
|
with gr.Accordion("Pretty Outputs", open=True): |
|
|
a_forecast_tbl = gr.Dataframe(label="Forecast", interactive=False) |
|
|
a_plan_kpis = gr.Dataframe(label="KPIs", interactive=False) |
|
|
a_plan_prod = gr.Dataframe(label="Products Plan", interactive=False) |
|
|
a_plan_raw = gr.Dataframe(label="Raw Materials", interactive=False) |
|
|
a_plan_res = gr.Dataframe(label="Resources", interactive=False) |
|
|
a_md61_prev = gr.Dataframe(label="MD61 Preview", interactive=False) |
|
|
a_md61_file = gr.File(label="Download MD61 CSV", interactive=False) |
|
|
|
|
|
def do_agent(h, p, demo_flag, f): |
|
|
def to_obj(x): |
|
|
return x if isinstance(x, (dict, list)) else json.loads(x) |
|
|
def to_str(x): |
|
|
return x if isinstance(x, str) else json.dumps(x) |
|
|
|
|
|
try: |
|
|
res = run_agentic(h, p, demo_flag, f) |
|
|
out = to_obj(res) |
|
|
|
|
|
forecast_json = to_str(out["forecast"]) |
|
|
plan_json = to_str(out["plan"]) |
|
|
md61_json = to_str(out["md61"]) |
|
|
|
|
|
f_df = parse_forecast(forecast_json) |
|
|
_, kpis, prod, raw, res_tbl = parse_plan(plan_json) |
|
|
_, prev, csv_path = parse_md61(md61_json) |
|
|
|
|
|
pretty = { |
|
|
"forecast": json.loads(forecast_json), |
|
|
"plan": json.loads(plan_json), |
|
|
"md61": json.loads(md61_json), |
|
|
} |
|
|
return (json.dumps(pretty, indent=2), f_df, kpis, prod, raw, res_tbl, prev, csv_path) |
|
|
except Exception as e: |
|
|
return (f"Agent error: {e}", pd.DataFrame(), pd.DataFrame(), pd.DataFrame(), pd.DataFrame(), |
|
|
pd.DataFrame(), pd.DataFrame(), None) |
|
|
|
|
|
run_all.click(do_agent, inputs=[a_horizon, a_plant, a_demo, a_file], |
|
|
outputs=[out_json, a_forecast_tbl, a_plan_kpis, a_plan_prod, a_plan_raw, a_plan_res, a_md61_prev, a_md61_file]) |
|
|
|
|
|
|
|
|
with gr.Tab("Upgrades"): |
|
|
gr.Markdown("### π§Ή Data Quality Guard") |
|
|
with gr.Row(): |
|
|
dq_use_demo = gr.Checkbox(label="Use demo synthetic history", value=True) |
|
|
dq_file = gr.File(label="Or upload history.csv", file_types=[".csv"]) |
|
|
dq_z = gr.Number(label="Robust z-threshold", value=3.5) |
|
|
run_dq = gr.Button("Run Data Quality Guard") |
|
|
dq_tbl = gr.Dataframe(label="Issues (flags & suggestions)", interactive=False) |
|
|
|
|
|
def do_dq(demo_flag, f, zval): |
|
|
hist_path = "" if (f is None) else f.name |
|
|
out = data_quality_guard_tool(use_demo=(f is None) and bool(demo_flag), |
|
|
history_csv_path=hist_path, z=float(zval)) |
|
|
return parse_data_quality(out) |
|
|
|
|
|
run_dq.click(do_dq, inputs=[dq_use_demo, dq_file, dq_z], outputs=[dq_tbl]) |
|
|
|
|
|
gr.Markdown("### π Scenario Explorer") |
|
|
run_sc = gr.Button("Run Scenarios on current Forecast (Step 1)") |
|
|
sc_tbl = gr.Dataframe(label="Scenario Outcomes", interactive=False) |
|
|
|
|
|
def do_sc(fj): |
|
|
if not fj: |
|
|
return pd.DataFrame() |
|
|
out = scenario_explorer_tool(fj) |
|
|
return parse_scenarios(out) |
|
|
|
|
|
run_sc.click(do_sc, inputs=[forecast_state], outputs=[sc_tbl]) |
|
|
|
|
|
gr.Markdown("### π Plan Explainer") |
|
|
run_ex = gr.Button("Explain Current Plan (Step 2)") |
|
|
expl_md = gr.Markdown("") |
|
|
|
|
|
def do_explain(pj): |
|
|
if not pj: |
|
|
return "β οΈ Run Step 2 first." |
|
|
out = plan_explainer_tool(pj) |
|
|
return json.loads(out)["summary"] |
|
|
|
|
|
run_ex.click(do_explain, inputs=[plan_state], outputs=[expl_md]) |
|
|
|
|
|
gr.Markdown("### π― Bottleneck Finder (Practical Levers)") |
|
|
policy_box = gr.Textbox( |
|
|
label="Optional policy JSON (overtime/expedite limits & costs). Leave blank for sensible defaults.", |
|
|
lines=4, value="" |
|
|
) |
|
|
run_bn = gr.Button("Find Best Bottleneck (uses current Forecast)") |
|
|
bn_tbl = gr.Dataframe(label="Ranked Recommendations", interactive=False) |
|
|
|
|
|
def do_bn(fj, policy): |
|
|
if not fj: |
|
|
return pd.DataFrame() |
|
|
out = bottleneck_search_tool(fj, policy_json=policy or "") |
|
|
return parse_recs(out) |
|
|
|
|
|
run_bn.click(do_bn, inputs=[forecast_state, policy_box], outputs=[bn_tbl]) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
if not os.environ.get("OPENAI_API_KEY"): |
|
|
print("β οΈ Set OPENAI_API_KEY (Space secret) to use Agentic tab.") |
|
|
demo.launch() |
|
|
|