File size: 10,050 Bytes
ab79110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc636da
ab79110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc636da
ab79110
 
 
 
 
 
 
 
5cf44e1
 
e9db7ac
dc636da
5cf44e1
 
 
 
 
 
 
dc636da
 
2359165
dc636da
 
 
e9db7ac
 
 
 
 
 
dc636da
 
 
ab79110
dc636da
ab79110
 
 
 
 
dc636da
 
 
5cf44e1
 
 
 
 
dc636da
e9db7ac
 
 
5cf44e1
e9db7ac
6136248
 
e9db7ac
5cf44e1
6136248
 
 
dc636da
6136248
2359165
 
dc636da
 
5cf44e1
e9db7ac
dc636da
 
 
 
 
e9db7ac
 
 
dc636da
e9db7ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6136248
e9db7ac
 
 
dc636da
6136248
2359165
 
dc636da
 
e9db7ac
dc636da
 
 
 
 
ab79110
dc636da
ab79110
 
 
dc636da
ab79110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc636da
ab79110
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc636da
ab79110
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    BENCHMARK_COLS,
    COLS,
    EVAL_COLS,
    EVAL_TYPES,
    AutoEvalColumn,
    ModelType,
    fields,
    WeightType,
    Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval

def restart_space():
    API.restart_space(repo_id=REPO_ID)

# --- Space Initialisation ---
try:
    print(EVAL_REQUESTS_PATH)
    snapshot_download(
        repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()
try:
    print(EVAL_RESULTS_PATH)
    snapshot_download(
        repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
    )
except Exception:
    restart_space()

# --- Data Loading ---
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)

(
    finished_eval_queue_df,
    running_eval_queue_df,
    pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)

# --- ๐Ÿ“Œ Define Column Groups ---

# Tab 1: Generation (Table 1)
COLS_GEN = [
    "Model",
    # LongText2Video
    "LongText2Video / CLIP", "LongText2Video / DINO", "LongText2Video / MLLM",
    # Entities2Video
    "Entities2Video / CLIP", "Entities2Video / DINO", "Entities2Video / MLLM",
    # Video2Video
    "Video2Video / CLIP", "Video2Video / DINO", "Video2Video / MLLM"
]

# Tab 2: Perception & Editing (Table 2)
COLS_LONG = [
    "Model", 
    "LongVideo QA / Acc",      # Understanding
    "Editing / CLIP",          # Editing
    "Editing / DINO",
    "Editing / MLLM",
    "Segmentation / J",        # Segmentation
    "Segmentation / F",
    "Segmentation / J&F"       
]

# --- UI Layout ---
demo = gr.Blocks(css=custom_css)

with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        
        # === Tab 1: Generation (Table 1) ===
        with gr.TabItem("๐ŸŽฌ Generation", elem_id="tab-gen", id=0):
            gr.Markdown("### Table 1: Comparison across LongText2Video, Entities2Video and Video2Video")
            
            # 1. Select Columns
            valid_gen_cols = [c for c in COLS_GEN if c in LEADERBOARD_DF.columns]
            df_gen = LEADERBOARD_DF[valid_gen_cols].copy()
            
            # 2. Filter Rows (Only specific models for Table 1)
            target_models_gen = ["UniVA", "LTX-Video", "Wan", "Seedance"]
            
            if "Model" in df_gen.columns:
                df_gen = df_gen[df_gen["Model"].isin(target_models_gen)]
                
                # 3. Sort by defined order (Using Categorical)
                df_gen["Model"] = pd.Categorical(df_gen["Model"], categories=target_models_gen, ordered=True)
                df_gen = df_gen.sort_values("Model")
                
                # ๐Ÿ”ดใ€ๅ…ณ้”ฎไฟฎๅคใ€‘ๆŽ’ๅบๅฎŒๅŽ๏ผŒๅฟ…้กป่ฝฌๅ›ž string ็ฑปๅž‹๏ผŒๅฆๅˆ™ๅŽ้ข fillna("-") ไผšๆŠฅ้”™
                df_gen["Model"] = df_gen["Model"].astype(str)

            # 4. Clean up: Replace NaN with "-"
            df_gen = df_gen.fillna("-")

            gr.Dataframe(
                value=df_gen,
                headers=valid_gen_cols,
                datatype="markdown",
                elem_id="leaderboard-table-gen",
                interactive=False,
                visible=True,
            )

        # === Tab 2: Perception & Editing (Table 2) ===
        with gr.TabItem("๐Ÿง  Perception & Editing", elem_id="tab-long", id=1):
            gr.Markdown("### Table 2: Understanding, Editing, and Segmentation")
            
            # 1. Select Columns
            valid_long_cols = [c for c in COLS_LONG if c in LEADERBOARD_DF.columns]
            df_long = LEADERBOARD_DF[valid_long_cols].copy()

            # 2. Filter Rows (Only specific models for Table 2)
            target_models_long = [
                "UniVA", 
                "InternVL3-38B", 
                "Qwen2.5-VL-72B", 
                "Gemini 2.5 Pro", 
                "GPT-4o", 
                "Vace", 
                "SA2VA"
            ]

            if "Model" in df_long.columns:
                df_long = df_long[df_long["Model"].isin(target_models_long)]
                
                # 3. Sort: Default by Understanding Acc
                sort_col = "LongVideo QA / Acc"
                if sort_col in df_long.columns:
                    df_long = df_long.sort_values(by=sort_col, ascending=False)
            
            # 4. Clean up: Replace NaN with "-"
            df_long = df_long.fillna("-")

            gr.Dataframe(
                value=df_long,
                headers=valid_long_cols,
                datatype="markdown",
                elem_id="leaderboard-table-long",
                interactive=False,
                visible=True,
            )

        # === Tab 3: About ===
        with gr.TabItem("๐Ÿ“ About", elem_id="llm-benchmark-tab-table", id=2):
            gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

        # === Tab 4: Submit ===
        with gr.TabItem("๐Ÿš€ Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
            with gr.Column():
                with gr.Row():
                    gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")

                with gr.Column():
                    with gr.Accordion(
                        f"โœ… Finished Evaluations ({len(finished_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            finished_eval_table = gr.components.Dataframe(
                                value=finished_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )
                    with gr.Accordion(
                        f"๐Ÿ”„ Running Evaluation Queue ({len(running_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            running_eval_table = gr.components.Dataframe(
                                value=running_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )
                    with gr.Accordion(
                        f"โณ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
                        open=False,
                    ):
                        with gr.Row():
                            pending_eval_table = gr.components.Dataframe(
                                value=pending_eval_queue_df,
                                headers=EVAL_COLS,
                                datatype=EVAL_TYPES,
                                row_count=5,
                            )

            with gr.Row():
                gr.Markdown("# โœ‰๏ธโœจ Submit your model here!", elem_classes="markdown-text")

            with gr.Row():
                with gr.Column():
                    model_name_textbox = gr.Textbox(label="Model name")
                    revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
                    model_type = gr.Dropdown(
                        choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
                        label="Model type",
                        multiselect=False,
                        value=None,
                        interactive=True,
                    )

                with gr.Column():
                    precision = gr.Dropdown(
                        choices=[i.value.name for i in Precision if i != Precision.Unknown],
                        label="Precision",
                        multiselect=False,
                        value="float16",
                        interactive=True,
                    )
                    weight_type = gr.Dropdown(
                        choices=[i.value.name for i in WeightType],
                        label="Weights type",
                        multiselect=False,
                        value="Original",
                        interactive=True,
                    )
                    base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")

            submit_button = gr.Button("Submit Eval")
            submission_result = gr.Markdown()
            submit_button.click(
                add_new_eval,
                [
                    model_name_textbox,
                    base_model_name_textbox,
                    revision_name_textbox,
                    precision,
                    weight_type,
                    model_type,
                ],
                submission_result,
            )

    # --- Citation ---
    with gr.Row():
        with gr.Accordion("๐Ÿ“™ Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True,
            )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()