Rui1121's picture
Update app.py
6136248 verified
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
BENCHMARK_COLS,
COLS,
EVAL_COLS,
EVAL_TYPES,
AutoEvalColumn,
ModelType,
fields,
WeightType,
Precision
)
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
from src.populate import get_evaluation_queue_df, get_leaderboard_df
from src.submission.submit import add_new_eval
def restart_space():
API.restart_space(repo_id=REPO_ID)
# --- Space Initialisation ---
try:
print(EVAL_REQUESTS_PATH)
snapshot_download(
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
try:
print(EVAL_RESULTS_PATH)
snapshot_download(
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
)
except Exception:
restart_space()
# --- Data Loading ---
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
# --- ๐Ÿ“Œ Define Column Groups ---
# Tab 1: Generation (Table 1)
COLS_GEN = [
"Model",
# LongText2Video
"LongText2Video / CLIP", "LongText2Video / DINO", "LongText2Video / MLLM",
# Entities2Video
"Entities2Video / CLIP", "Entities2Video / DINO", "Entities2Video / MLLM",
# Video2Video
"Video2Video / CLIP", "Video2Video / DINO", "Video2Video / MLLM"
]
# Tab 2: Perception & Editing (Table 2)
COLS_LONG = [
"Model",
"LongVideo QA / Acc", # Understanding
"Editing / CLIP", # Editing
"Editing / DINO",
"Editing / MLLM",
"Segmentation / J", # Segmentation
"Segmentation / F",
"Segmentation / J&F"
]
# --- UI Layout ---
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
# === Tab 1: Generation (Table 1) ===
with gr.TabItem("๐ŸŽฌ Generation", elem_id="tab-gen", id=0):
gr.Markdown("### Table 1: Comparison across LongText2Video, Entities2Video and Video2Video")
# 1. Select Columns
valid_gen_cols = [c for c in COLS_GEN if c in LEADERBOARD_DF.columns]
df_gen = LEADERBOARD_DF[valid_gen_cols].copy()
# 2. Filter Rows (Only specific models for Table 1)
target_models_gen = ["UniVA", "LTX-Video", "Wan", "Seedance"]
if "Model" in df_gen.columns:
df_gen = df_gen[df_gen["Model"].isin(target_models_gen)]
# 3. Sort by defined order (Using Categorical)
df_gen["Model"] = pd.Categorical(df_gen["Model"], categories=target_models_gen, ordered=True)
df_gen = df_gen.sort_values("Model")
# ๐Ÿ”ดใ€ๅ…ณ้”ฎไฟฎๅคใ€‘ๆŽ’ๅบๅฎŒๅŽ๏ผŒๅฟ…้กป่ฝฌๅ›ž string ็ฑปๅž‹๏ผŒๅฆๅˆ™ๅŽ้ข fillna("-") ไผšๆŠฅ้”™
df_gen["Model"] = df_gen["Model"].astype(str)
# 4. Clean up: Replace NaN with "-"
df_gen = df_gen.fillna("-")
gr.Dataframe(
value=df_gen,
headers=valid_gen_cols,
datatype="markdown",
elem_id="leaderboard-table-gen",
interactive=False,
visible=True,
)
# === Tab 2: Perception & Editing (Table 2) ===
with gr.TabItem("๐Ÿง  Perception & Editing", elem_id="tab-long", id=1):
gr.Markdown("### Table 2: Understanding, Editing, and Segmentation")
# 1. Select Columns
valid_long_cols = [c for c in COLS_LONG if c in LEADERBOARD_DF.columns]
df_long = LEADERBOARD_DF[valid_long_cols].copy()
# 2. Filter Rows (Only specific models for Table 2)
target_models_long = [
"UniVA",
"InternVL3-38B",
"Qwen2.5-VL-72B",
"Gemini 2.5 Pro",
"GPT-4o",
"Vace",
"SA2VA"
]
if "Model" in df_long.columns:
df_long = df_long[df_long["Model"].isin(target_models_long)]
# 3. Sort: Default by Understanding Acc
sort_col = "LongVideo QA / Acc"
if sort_col in df_long.columns:
df_long = df_long.sort_values(by=sort_col, ascending=False)
# 4. Clean up: Replace NaN with "-"
df_long = df_long.fillna("-")
gr.Dataframe(
value=df_long,
headers=valid_long_cols,
datatype="markdown",
elem_id="leaderboard-table-long",
interactive=False,
visible=True,
)
# === Tab 3: About ===
with gr.TabItem("๐Ÿ“ About", elem_id="llm-benchmark-tab-table", id=2):
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
# === Tab 4: Submit ===
with gr.TabItem("๐Ÿš€ Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
with gr.Column():
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Column():
with gr.Accordion(
f"โœ… Finished Evaluations ({len(finished_eval_queue_df)})",
open=False,
):
with gr.Row():
finished_eval_table = gr.components.Dataframe(
value=finished_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"๐Ÿ”„ Running Evaluation Queue ({len(running_eval_queue_df)})",
open=False,
):
with gr.Row():
running_eval_table = gr.components.Dataframe(
value=running_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"โณ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
open=False,
):
with gr.Row():
pending_eval_table = gr.components.Dataframe(
value=pending_eval_queue_df,
headers=EVAL_COLS,
datatype=EVAL_TYPES,
row_count=5,
)
with gr.Row():
gr.Markdown("# โœ‰๏ธโœจ Submit your model here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
model_type = gr.Dropdown(
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
label="Model type",
multiselect=False,
value=None,
interactive=True,
)
with gr.Column():
precision = gr.Dropdown(
choices=[i.value.name for i in Precision if i != Precision.Unknown],
label="Precision",
multiselect=False,
value="float16",
interactive=True,
)
weight_type = gr.Dropdown(
choices=[i.value.name for i in WeightType],
label="Weights type",
multiselect=False,
value="Original",
interactive=True,
)
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
[
model_name_textbox,
base_model_name_textbox,
revision_name_textbox,
precision,
weight_type,
model_type,
],
submission_result,
)
# --- Citation ---
with gr.Row():
with gr.Accordion("๐Ÿ“™ Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()