Spaces:
Running
Running
| import gradio as gr | |
| from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns | |
| import pandas as pd | |
| from apscheduler.schedulers.background import BackgroundScheduler | |
| from huggingface_hub import snapshot_download | |
| from src.about import ( | |
| CITATION_BUTTON_LABEL, | |
| CITATION_BUTTON_TEXT, | |
| EVALUATION_QUEUE_TEXT, | |
| INTRODUCTION_TEXT, | |
| LLM_BENCHMARKS_TEXT, | |
| TITLE, | |
| ) | |
| from src.display.css_html_js import custom_css | |
| from src.display.utils import ( | |
| BENCHMARK_COLS, | |
| COLS, | |
| EVAL_COLS, | |
| EVAL_TYPES, | |
| AutoEvalColumn, | |
| ModelType, | |
| fields, | |
| WeightType, | |
| Precision | |
| ) | |
| from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN | |
| from src.populate import get_evaluation_queue_df, get_leaderboard_df | |
| from src.submission.submit import add_new_eval | |
| def restart_space(): | |
| API.restart_space(repo_id=REPO_ID) | |
| # --- Space Initialisation --- | |
| try: | |
| print(EVAL_REQUESTS_PATH) | |
| snapshot_download( | |
| repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
| ) | |
| except Exception: | |
| restart_space() | |
| try: | |
| print(EVAL_RESULTS_PATH) | |
| snapshot_download( | |
| repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
| ) | |
| except Exception: | |
| restart_space() | |
| # --- Data Loading --- | |
| LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS) | |
| ( | |
| finished_eval_queue_df, | |
| running_eval_queue_df, | |
| pending_eval_queue_df, | |
| ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) | |
| # --- ๐ Define Column Groups --- | |
| # Tab 1: Generation (Table 1) | |
| COLS_GEN = [ | |
| "Model", | |
| # LongText2Video | |
| "LongText2Video / CLIP", "LongText2Video / DINO", "LongText2Video / MLLM", | |
| # Entities2Video | |
| "Entities2Video / CLIP", "Entities2Video / DINO", "Entities2Video / MLLM", | |
| # Video2Video | |
| "Video2Video / CLIP", "Video2Video / DINO", "Video2Video / MLLM" | |
| ] | |
| # Tab 2: Perception & Editing (Table 2) | |
| COLS_LONG = [ | |
| "Model", | |
| "LongVideo QA / Acc", # Understanding | |
| "Editing / CLIP", # Editing | |
| "Editing / DINO", | |
| "Editing / MLLM", | |
| "Segmentation / J", # Segmentation | |
| "Segmentation / F", | |
| "Segmentation / J&F" | |
| ] | |
| # --- UI Layout --- | |
| demo = gr.Blocks(css=custom_css) | |
| with demo: | |
| gr.HTML(TITLE) | |
| gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
| with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
| # === Tab 1: Generation (Table 1) === | |
| with gr.TabItem("๐ฌ Generation", elem_id="tab-gen", id=0): | |
| gr.Markdown("### Table 1: Comparison across LongText2Video, Entities2Video and Video2Video") | |
| # 1. Select Columns | |
| valid_gen_cols = [c for c in COLS_GEN if c in LEADERBOARD_DF.columns] | |
| df_gen = LEADERBOARD_DF[valid_gen_cols].copy() | |
| # 2. Filter Rows (Only specific models for Table 1) | |
| target_models_gen = ["UniVA", "LTX-Video", "Wan", "Seedance"] | |
| if "Model" in df_gen.columns: | |
| df_gen = df_gen[df_gen["Model"].isin(target_models_gen)] | |
| # 3. Sort by defined order (Using Categorical) | |
| df_gen["Model"] = pd.Categorical(df_gen["Model"], categories=target_models_gen, ordered=True) | |
| df_gen = df_gen.sort_values("Model") | |
| # ๐ดใๅ ณ้ฎไฟฎๅคใๆๅบๅฎๅ๏ผๅฟ ้กป่ฝฌๅ string ็ฑปๅ๏ผๅฆๅๅ้ข fillna("-") ไผๆฅ้ | |
| df_gen["Model"] = df_gen["Model"].astype(str) | |
| # 4. Clean up: Replace NaN with "-" | |
| df_gen = df_gen.fillna("-") | |
| gr.Dataframe( | |
| value=df_gen, | |
| headers=valid_gen_cols, | |
| datatype="markdown", | |
| elem_id="leaderboard-table-gen", | |
| interactive=False, | |
| visible=True, | |
| ) | |
| # === Tab 2: Perception & Editing (Table 2) === | |
| with gr.TabItem("๐ง Perception & Editing", elem_id="tab-long", id=1): | |
| gr.Markdown("### Table 2: Understanding, Editing, and Segmentation") | |
| # 1. Select Columns | |
| valid_long_cols = [c for c in COLS_LONG if c in LEADERBOARD_DF.columns] | |
| df_long = LEADERBOARD_DF[valid_long_cols].copy() | |
| # 2. Filter Rows (Only specific models for Table 2) | |
| target_models_long = [ | |
| "UniVA", | |
| "InternVL3-38B", | |
| "Qwen2.5-VL-72B", | |
| "Gemini 2.5 Pro", | |
| "GPT-4o", | |
| "Vace", | |
| "SA2VA" | |
| ] | |
| if "Model" in df_long.columns: | |
| df_long = df_long[df_long["Model"].isin(target_models_long)] | |
| # 3. Sort: Default by Understanding Acc | |
| sort_col = "LongVideo QA / Acc" | |
| if sort_col in df_long.columns: | |
| df_long = df_long.sort_values(by=sort_col, ascending=False) | |
| # 4. Clean up: Replace NaN with "-" | |
| df_long = df_long.fillna("-") | |
| gr.Dataframe( | |
| value=df_long, | |
| headers=valid_long_cols, | |
| datatype="markdown", | |
| elem_id="leaderboard-table-long", | |
| interactive=False, | |
| visible=True, | |
| ) | |
| # === Tab 3: About === | |
| with gr.TabItem("๐ About", elem_id="llm-benchmark-tab-table", id=2): | |
| gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
| # === Tab 4: Submit === | |
| with gr.TabItem("๐ Submit here! ", elem_id="llm-benchmark-tab-table", id=3): | |
| with gr.Column(): | |
| with gr.Row(): | |
| gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") | |
| with gr.Column(): | |
| with gr.Accordion( | |
| f"โ Finished Evaluations ({len(finished_eval_queue_df)})", | |
| open=False, | |
| ): | |
| with gr.Row(): | |
| finished_eval_table = gr.components.Dataframe( | |
| value=finished_eval_queue_df, | |
| headers=EVAL_COLS, | |
| datatype=EVAL_TYPES, | |
| row_count=5, | |
| ) | |
| with gr.Accordion( | |
| f"๐ Running Evaluation Queue ({len(running_eval_queue_df)})", | |
| open=False, | |
| ): | |
| with gr.Row(): | |
| running_eval_table = gr.components.Dataframe( | |
| value=running_eval_queue_df, | |
| headers=EVAL_COLS, | |
| datatype=EVAL_TYPES, | |
| row_count=5, | |
| ) | |
| with gr.Accordion( | |
| f"โณ Pending Evaluation Queue ({len(pending_eval_queue_df)})", | |
| open=False, | |
| ): | |
| with gr.Row(): | |
| pending_eval_table = gr.components.Dataframe( | |
| value=pending_eval_queue_df, | |
| headers=EVAL_COLS, | |
| datatype=EVAL_TYPES, | |
| row_count=5, | |
| ) | |
| with gr.Row(): | |
| gr.Markdown("# โ๏ธโจ Submit your model here!", elem_classes="markdown-text") | |
| with gr.Row(): | |
| with gr.Column(): | |
| model_name_textbox = gr.Textbox(label="Model name") | |
| revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main") | |
| model_type = gr.Dropdown( | |
| choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown], | |
| label="Model type", | |
| multiselect=False, | |
| value=None, | |
| interactive=True, | |
| ) | |
| with gr.Column(): | |
| precision = gr.Dropdown( | |
| choices=[i.value.name for i in Precision if i != Precision.Unknown], | |
| label="Precision", | |
| multiselect=False, | |
| value="float16", | |
| interactive=True, | |
| ) | |
| weight_type = gr.Dropdown( | |
| choices=[i.value.name for i in WeightType], | |
| label="Weights type", | |
| multiselect=False, | |
| value="Original", | |
| interactive=True, | |
| ) | |
| base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)") | |
| submit_button = gr.Button("Submit Eval") | |
| submission_result = gr.Markdown() | |
| submit_button.click( | |
| add_new_eval, | |
| [ | |
| model_name_textbox, | |
| base_model_name_textbox, | |
| revision_name_textbox, | |
| precision, | |
| weight_type, | |
| model_type, | |
| ], | |
| submission_result, | |
| ) | |
| # --- Citation --- | |
| with gr.Row(): | |
| with gr.Accordion("๐ Citation", open=False): | |
| citation_button = gr.Textbox( | |
| value=CITATION_BUTTON_TEXT, | |
| label=CITATION_BUTTON_LABEL, | |
| lines=20, | |
| elem_id="citation-button", | |
| show_copy_button=True, | |
| ) | |
| scheduler = BackgroundScheduler() | |
| scheduler.add_job(restart_space, "interval", seconds=1800) | |
| scheduler.start() | |
| demo.queue(default_concurrency_limit=40).launch() |