File size: 16,704 Bytes
b10b0ba 2d98925 b10b0ba e586088 b10b0ba e586088 2d98925 e586088 c4c0f29 e586088 b10b0ba c4c0f29 b10b0ba c4c0f29 b10b0ba e586088 c4c0f29 e586088 2d98925 b10b0ba 2d98925 b10b0ba 2d98925 b10b0ba 2d98925 b10b0ba 2d98925 c4c0f29 b10b0ba 2d98925 c4c0f29 b10b0ba 2d98925 c4c0f29 2d98925 b10b0ba 2d98925 b10b0ba 2d98925 b10b0ba 2d98925 b10b0ba 2d98925 b10b0ba 2d98925 b10b0ba a0cfc96 4f8340a b10b0ba a0cfc96 b10b0ba 2d98925 4f8340a 2d98925 4f8340a 2d98925 b10b0ba 2d98925 b10b0ba 2d98925 b10b0ba 2d98925 b10b0ba 2d98925 b10b0ba 2d98925 b10b0ba 2d98925 b10b0ba 2d98925 4f8340a b10b0ba 4f8340a b10b0ba 4f8340a b10b0ba 2d98925 b10b0ba 2d98925 b10b0ba 2d98925 b10b0ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 |
import os
import cv2
import torch
import numpy as np
import gradio as gr
import base64
from typing import List, Dict, Any
import tempfile
import time
from PIL import Image, ImageDraw
import json
import io
# Import RetinaFace model components with error handling
try:
from models.retinaface import RetinaFace
from utils.prior_box import PriorBox
from utils.py_cpu_nms import py_cpu_nms
from utils.box_utils import decode, decode_landm
print("β
All imports successful!")
except ImportError as e:
print(f"β Import error: {e}")
import sys
sys.exit(1)
# Global variables for models
mobilenet_model = None
resnet_model = None
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def load_models():
"""Load both MobileNet and ResNet RetinaFace models"""
global mobilenet_model, resnet_model
try:
print("Starting model loading...")
# Model configurations
mobilenet_cfg = {
'name': 'mobilenet0.25',
'min_sizes': [[16, 32], [64, 128], [256, 512]],
'steps': [8, 16, 32],
'variance': [0.1, 0.2],
'clip': False,
'loc_weight': 2.0,
'gpu_train': True,
'batch_size': 32,
'ngpu': 1,
'epoch': 250,
'decay1': 190,
'decay2': 220,
'image_size': 640,
'pretrain': False,
'return_layers': {'stage1': 1, 'stage2': 2, 'stage3': 3},
'in_channel': 32,
'out_channel': 64
}
resnet_cfg = {
'name': 'Resnet50',
'min_sizes': [[16, 32], [64, 128], [256, 512]],
'steps': [8, 16, 32],
'variance': [0.1, 0.2],
'clip': False,
'loc_weight': 2.0,
'gpu_train': True,
'batch_size': 24,
'ngpu': 4,
'epoch': 100,
'decay1': 70,
'decay2': 90,
'image_size': 840,
'pretrain': False,
'return_layers': {'layer2': 1, 'layer3': 2, 'layer4': 3},
'in_channel': 256,
'out_channel': 256
}
# Check if model files exist
if not os.path.exists('mobilenet0.25_Final.pth'):
print("β mobilenet0.25_Final.pth not found!")
return False
if not os.path.exists('Resnet50_Final.pth'):
print("β Resnet50_Final.pth not found!")
return False
print("Model files found, loading MobileNet...")
# Load MobileNet model with better error handling
try:
mobilenet_model = RetinaFace(cfg=mobilenet_cfg, phase='test')
print("β
MobileNet model instance created")
# Load state dict
mobilenet_state = torch.load('mobilenet0.25_Final.pth', map_location=device)
print(f"β
MobileNet state dict loaded with {len(mobilenet_state.keys())} keys")
# Try to load state dict with strict=False to handle key mismatches
missing_keys, unexpected_keys = mobilenet_model.load_state_dict(mobilenet_state, strict=False)
if missing_keys:
print(f"β οΈ Missing keys in MobileNet: {missing_keys[:5]}...") # Show first 5
if unexpected_keys:
print(f"β οΈ Unexpected keys in MobileNet: {unexpected_keys[:5]}...") # Show first 5
mobilenet_model.eval()
mobilenet_model = mobilenet_model.to(device)
print("β
MobileNet model loaded successfully!")
except Exception as e:
print(f"β Error loading MobileNet: {e}")
mobilenet_model = None
print("Loading ResNet...")
# Load ResNet model with better error handling
try:
resnet_model = RetinaFace(cfg=resnet_cfg, phase='test')
print("β
ResNet model instance created")
# Load state dict
resnet_state = torch.load('Resnet50_Final.pth', map_location=device)
print(f"β
ResNet state dict loaded with {len(resnet_state.keys())} keys")
# Try to load state dict with strict=False to handle key mismatches
missing_keys, unexpected_keys = resnet_model.load_state_dict(resnet_state, strict=False)
if missing_keys:
print(f"β οΈ Missing keys in ResNet: {missing_keys[:5]}...") # Show first 5
if unexpected_keys:
print(f"β οΈ Unexpected keys in ResNet: {unexpected_keys[:5]}...") # Show first 5
resnet_model.eval()
resnet_model = resnet_model.to(device)
print("β
ResNet model loaded successfully!")
except Exception as e:
print(f"β Error loading ResNet: {e}")
resnet_model = None
# Check if at least one model loaded
if mobilenet_model is not None or resnet_model is not None:
print("β
At least one model loaded successfully!")
return True
else:
print("β No models loaded successfully!")
return False
except Exception as e:
import traceback
print(f"β Error in load_models: {e}")
print(f"β Full traceback: {traceback.format_exc()}")
return False
def detect_faces(image, model_type="mobilenet", confidence_threshold=0.5, nms_threshold=0.4):
"""Core face detection function"""
try:
start_time = time.time()
# Choose model
if model_type == "resnet":
model = resnet_model
cfg = {
'min_sizes': [[16, 32], [64, 128], [256, 512]],
'steps': [8, 16, 32],
'variance': [0.1, 0.2],
'clip': False,
'image_size': 840
}
if model is None:
# Fallback to MobileNet if ResNet not available
print("β οΈ ResNet not available, falling back to MobileNet")
model = mobilenet_model
model_type = "mobilenet"
cfg['image_size'] = 640
else:
model = mobilenet_model
cfg = {
'min_sizes': [[16, 32], [64, 128], [256, 512]],
'steps': [8, 16, 32],
'variance': [0.1, 0.2],
'clip': False,
'image_size': 640
}
if model is None:
# Fallback to ResNet if MobileNet not available
print("β οΈ MobileNet not available, falling back to ResNet")
model = resnet_model
model_type = "resnet"
cfg['image_size'] = 840
if model is None:
return None, "β No models are loaded. Please check the model loading logs."
# Convert PIL to numpy array
if isinstance(image, Image.Image):
image = np.array(image)
# Preprocessing
img = np.float32(image)
im_height, im_width, _ = img.shape
scale = torch.Tensor([img.shape[1], img.shape[0], img.shape[1], img.shape[0]])
img -= (104, 117, 123)
img = img.transpose(2, 0, 1)
img = torch.from_numpy(img).unsqueeze(0)
img = img.to(device)
scale = scale.to(device)
# Forward pass
with torch.no_grad():
loc, conf, landms = model(img)
# Generate priors
priorbox = PriorBox(cfg, image_size=(im_height, im_width))
priors = priorbox.forward()
priors = priors.to(device)
prior_data = priors.data
boxes = decode(loc.data.squeeze(0), prior_data, cfg['variance'])
boxes = boxes * scale
boxes = boxes.cpu().numpy()
scores = conf.squeeze(0).data.cpu().numpy()[:, 1]
landms = decode_landm(landms.data.squeeze(0), prior_data, cfg['variance'])
scale1 = torch.Tensor([img.shape[3], img.shape[2], img.shape[3], img.shape[2],
img.shape[3], img.shape[2], img.shape[3], img.shape[2],
img.shape[3], img.shape[2]])
scale1 = scale1.to(device)
landms = landms * scale1
landms = landms.cpu().numpy()
# Ignore low scores
inds = np.where(scores > confidence_threshold)[0]
boxes = boxes[inds]
landms = landms[inds]
scores = scores[inds]
# Keep top-K before NMS
order = scores.argsort()[::-1][:5000]
boxes = boxes[order]
landms = landms[order]
scores = scores[order]
# Apply NMS
dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False)
keep = py_cpu_nms(dets, nms_threshold)
dets = dets[keep, :]
landms = landms[keep]
# Draw results
result_image = Image.fromarray(image)
draw = ImageDraw.Draw(result_image)
faces = []
for b, landmarks in zip(dets, landms):
if b[4] < confidence_threshold:
continue
# Draw bounding box
draw.rectangle([b[0], b[1], b[2], b[3]], outline="red", width=2)
# Draw confidence score
draw.text((b[0], b[1] - 15), f'{b[4]:.2f}', fill="red")
# Draw landmarks
for i in range(0, 10, 2):
draw.ellipse([landmarks[i]-2, landmarks[i+1]-2, landmarks[i]+2, landmarks[i+1]+2], fill="blue")
faces.append({
"bbox": {"x1": float(b[0]), "y1": float(b[1]), "x2": float(b[2]), "y2": float(b[3])},
"confidence": float(b[4]),
"landmarks": {
"left_eye": [float(landmarks[0]), float(landmarks[1])],
"right_eye": [float(landmarks[2]), float(landmarks[3])],
"nose": [float(landmarks[4]), float(landmarks[5])],
"left_mouth": [float(landmarks[6]), float(landmarks[7])],
"right_mouth": [float(landmarks[8]), float(landmarks[9])]
}
})
processing_time = time.time() - start_time
result_text = f"""
**Detection Results:**
- **Faces Detected:** {len(faces)}
- **Model Used:** {model_type}
- **Processing Time:** {processing_time:.3f}s
- **Confidence Threshold:** {confidence_threshold}
- **NMS Threshold:** {nms_threshold}
"""
return result_image, result_text
except Exception as e:
return None, f"Error: {str(e)}"
# Simple test function to debug model loading
def test_model_loading():
"""Test model loading step by step"""
try:
print("=== Testing Model Loading ===")
# Test basic imports
print("Testing RetinaFace import...")
test_cfg = {
'name': 'mobilenet0.25',
'min_sizes': [[16, 32], [64, 128], [256, 512]],
'steps': [8, 16, 32],
'variance': [0.1, 0.2],
'clip': False,
'pretrain': False,
'return_layers': {'stage1': 1, 'stage2': 2, 'stage3': 3},
'in_channel': 32,
'out_channel': 64
}
print("Creating RetinaFace instance...")
model = RetinaFace(cfg=test_cfg, phase='test')
print(f"β
Model created successfully: {type(model)}")
print("Checking model file...")
if os.path.exists('mobilenet0.25_Final.pth'):
print("β
Model file exists")
print("Loading state dict...")
state_dict = torch.load('mobilenet0.25_Final.pth', map_location='cpu')
print(f"β
State dict loaded, keys: {len(state_dict.keys())}")
print("Loading state dict into model...")
model.load_state_dict(state_dict)
print("β
State dict loaded successfully!")
return True
else:
print("β Model file not found")
return False
except Exception as e:
import traceback
print(f"β Test failed: {e}")
print(f"β Traceback: {traceback.format_exc()}")
return False
# API test function
def test_api_endpoint():
"""Test function to verify API is working"""
try:
# Create a simple test image
import numpy as np
test_img = np.random.randint(0, 255, (100, 100, 3), dtype=np.uint8)
test_pil = Image.fromarray(test_img)
# Test the detect_faces function directly
result_img, result_text = detect_faces(test_pil, "mobilenet", 0.5, 0.4)
if result_img is not None:
return "β
API function test passed - detection pipeline works"
else:
return f"β API function test failed: {result_text}"
except Exception as e:
return f"β API test error: {str(e)}"
# Load models on startup
print("Loading RetinaFace models...")
print("Running model loading test...")
test_result = test_model_loading()
if test_result:
print("Test passed, proceeding with full model loading...")
model_loaded = load_models()
else:
print("Test failed, skipping model loading...")
model_loaded = False
# Create simple Gradio interface
def create_interface():
with gr.Blocks(title="RetinaFace Face Detection") as demo:
gr.Markdown("# π₯ RetinaFace Face Detection API")
gr.Markdown("Real-time face detection using RetinaFace with MobileNet and ResNet backbones")
if model_loaded:
gr.Markdown("β
**Status**: Models loaded successfully!")
# Test API functionality
api_test_result = test_api_endpoint()
gr.Markdown(f"π§ **API Test**: {api_test_result}")
else:
gr.Markdown("β **Status**: Error loading models")
gr.Markdown("π§ **API Test**: Cannot test API - models not loaded")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Upload Image")
model_choice = gr.Dropdown(
choices=["mobilenet", "resnet"],
value="mobilenet",
label="Model"
)
confidence = gr.Slider(
minimum=0.1, maximum=1.0, value=0.5, step=0.1,
label="Confidence"
)
nms = gr.Slider(
minimum=0.1, maximum=1.0, value=0.4, step=0.1,
label="NMS Threshold"
)
detect_btn = gr.Button("π Detect Faces", variant="primary")
with gr.Column():
output_image = gr.Image(label="Results")
output_text = gr.Markdown()
detect_btn.click(
fn=detect_faces,
inputs=[input_image, model_choice, confidence, nms],
outputs=[output_image, output_text]
)
gr.Markdown("""
## π API Information
**Your API is automatically available at these endpoints:**
### Main API Endpoint
```
POST /api/predict
```
**Request format:**
```json
{
"data": [
"<image_as_PIL_or_path>",
"mobilenet",
0.5,
0.4
]
}
```
**Response format:**
```json
{
"data": [
"<processed_image>",
"**Detection Results:**\\n- **Faces Detected:** 2\\n..."
]
}
```
### For Thunkable Integration:
- **URL:** `https://aditya-g07-retinaface-face-detection.hf.space/api/predict`
- **Method:** POST
- **Content-Type:** application/json
### API Status:
- β
**Gradio auto-generates API endpoints**
- β
**No additional configuration needed**
- β
**"No API found" message is normal for Gradio 4.36.0**
**Note:** The "No API found" error in the UI doesn't affect API functionality.
""")
return demo
# Create and launch the interface
demo = create_interface()
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True
)
|