aditya-g07's picture
Add comprehensive API documentation and testing functionality
4f8340a
import os
import cv2
import torch
import numpy as np
import gradio as gr
import base64
from typing import List, Dict, Any
import tempfile
import time
from PIL import Image, ImageDraw
import json
import io
# Import RetinaFace model components with error handling
try:
from models.retinaface import RetinaFace
from utils.prior_box import PriorBox
from utils.py_cpu_nms import py_cpu_nms
from utils.box_utils import decode, decode_landm
print("βœ… All imports successful!")
except ImportError as e:
print(f"❌ Import error: {e}")
import sys
sys.exit(1)
# Global variables for models
mobilenet_model = None
resnet_model = None
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def load_models():
"""Load both MobileNet and ResNet RetinaFace models"""
global mobilenet_model, resnet_model
try:
print("Starting model loading...")
# Model configurations
mobilenet_cfg = {
'name': 'mobilenet0.25',
'min_sizes': [[16, 32], [64, 128], [256, 512]],
'steps': [8, 16, 32],
'variance': [0.1, 0.2],
'clip': False,
'loc_weight': 2.0,
'gpu_train': True,
'batch_size': 32,
'ngpu': 1,
'epoch': 250,
'decay1': 190,
'decay2': 220,
'image_size': 640,
'pretrain': False,
'return_layers': {'stage1': 1, 'stage2': 2, 'stage3': 3},
'in_channel': 32,
'out_channel': 64
}
resnet_cfg = {
'name': 'Resnet50',
'min_sizes': [[16, 32], [64, 128], [256, 512]],
'steps': [8, 16, 32],
'variance': [0.1, 0.2],
'clip': False,
'loc_weight': 2.0,
'gpu_train': True,
'batch_size': 24,
'ngpu': 4,
'epoch': 100,
'decay1': 70,
'decay2': 90,
'image_size': 840,
'pretrain': False,
'return_layers': {'layer2': 1, 'layer3': 2, 'layer4': 3},
'in_channel': 256,
'out_channel': 256
}
# Check if model files exist
if not os.path.exists('mobilenet0.25_Final.pth'):
print("❌ mobilenet0.25_Final.pth not found!")
return False
if not os.path.exists('Resnet50_Final.pth'):
print("❌ Resnet50_Final.pth not found!")
return False
print("Model files found, loading MobileNet...")
# Load MobileNet model with better error handling
try:
mobilenet_model = RetinaFace(cfg=mobilenet_cfg, phase='test')
print("βœ… MobileNet model instance created")
# Load state dict
mobilenet_state = torch.load('mobilenet0.25_Final.pth', map_location=device)
print(f"βœ… MobileNet state dict loaded with {len(mobilenet_state.keys())} keys")
# Try to load state dict with strict=False to handle key mismatches
missing_keys, unexpected_keys = mobilenet_model.load_state_dict(mobilenet_state, strict=False)
if missing_keys:
print(f"⚠️ Missing keys in MobileNet: {missing_keys[:5]}...") # Show first 5
if unexpected_keys:
print(f"⚠️ Unexpected keys in MobileNet: {unexpected_keys[:5]}...") # Show first 5
mobilenet_model.eval()
mobilenet_model = mobilenet_model.to(device)
print("βœ… MobileNet model loaded successfully!")
except Exception as e:
print(f"❌ Error loading MobileNet: {e}")
mobilenet_model = None
print("Loading ResNet...")
# Load ResNet model with better error handling
try:
resnet_model = RetinaFace(cfg=resnet_cfg, phase='test')
print("βœ… ResNet model instance created")
# Load state dict
resnet_state = torch.load('Resnet50_Final.pth', map_location=device)
print(f"βœ… ResNet state dict loaded with {len(resnet_state.keys())} keys")
# Try to load state dict with strict=False to handle key mismatches
missing_keys, unexpected_keys = resnet_model.load_state_dict(resnet_state, strict=False)
if missing_keys:
print(f"⚠️ Missing keys in ResNet: {missing_keys[:5]}...") # Show first 5
if unexpected_keys:
print(f"⚠️ Unexpected keys in ResNet: {unexpected_keys[:5]}...") # Show first 5
resnet_model.eval()
resnet_model = resnet_model.to(device)
print("βœ… ResNet model loaded successfully!")
except Exception as e:
print(f"❌ Error loading ResNet: {e}")
resnet_model = None
# Check if at least one model loaded
if mobilenet_model is not None or resnet_model is not None:
print("βœ… At least one model loaded successfully!")
return True
else:
print("❌ No models loaded successfully!")
return False
except Exception as e:
import traceback
print(f"❌ Error in load_models: {e}")
print(f"❌ Full traceback: {traceback.format_exc()}")
return False
def detect_faces(image, model_type="mobilenet", confidence_threshold=0.5, nms_threshold=0.4):
"""Core face detection function"""
try:
start_time = time.time()
# Choose model
if model_type == "resnet":
model = resnet_model
cfg = {
'min_sizes': [[16, 32], [64, 128], [256, 512]],
'steps': [8, 16, 32],
'variance': [0.1, 0.2],
'clip': False,
'image_size': 840
}
if model is None:
# Fallback to MobileNet if ResNet not available
print("⚠️ ResNet not available, falling back to MobileNet")
model = mobilenet_model
model_type = "mobilenet"
cfg['image_size'] = 640
else:
model = mobilenet_model
cfg = {
'min_sizes': [[16, 32], [64, 128], [256, 512]],
'steps': [8, 16, 32],
'variance': [0.1, 0.2],
'clip': False,
'image_size': 640
}
if model is None:
# Fallback to ResNet if MobileNet not available
print("⚠️ MobileNet not available, falling back to ResNet")
model = resnet_model
model_type = "resnet"
cfg['image_size'] = 840
if model is None:
return None, "❌ No models are loaded. Please check the model loading logs."
# Convert PIL to numpy array
if isinstance(image, Image.Image):
image = np.array(image)
# Preprocessing
img = np.float32(image)
im_height, im_width, _ = img.shape
scale = torch.Tensor([img.shape[1], img.shape[0], img.shape[1], img.shape[0]])
img -= (104, 117, 123)
img = img.transpose(2, 0, 1)
img = torch.from_numpy(img).unsqueeze(0)
img = img.to(device)
scale = scale.to(device)
# Forward pass
with torch.no_grad():
loc, conf, landms = model(img)
# Generate priors
priorbox = PriorBox(cfg, image_size=(im_height, im_width))
priors = priorbox.forward()
priors = priors.to(device)
prior_data = priors.data
boxes = decode(loc.data.squeeze(0), prior_data, cfg['variance'])
boxes = boxes * scale
boxes = boxes.cpu().numpy()
scores = conf.squeeze(0).data.cpu().numpy()[:, 1]
landms = decode_landm(landms.data.squeeze(0), prior_data, cfg['variance'])
scale1 = torch.Tensor([img.shape[3], img.shape[2], img.shape[3], img.shape[2],
img.shape[3], img.shape[2], img.shape[3], img.shape[2],
img.shape[3], img.shape[2]])
scale1 = scale1.to(device)
landms = landms * scale1
landms = landms.cpu().numpy()
# Ignore low scores
inds = np.where(scores > confidence_threshold)[0]
boxes = boxes[inds]
landms = landms[inds]
scores = scores[inds]
# Keep top-K before NMS
order = scores.argsort()[::-1][:5000]
boxes = boxes[order]
landms = landms[order]
scores = scores[order]
# Apply NMS
dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False)
keep = py_cpu_nms(dets, nms_threshold)
dets = dets[keep, :]
landms = landms[keep]
# Draw results
result_image = Image.fromarray(image)
draw = ImageDraw.Draw(result_image)
faces = []
for b, landmarks in zip(dets, landms):
if b[4] < confidence_threshold:
continue
# Draw bounding box
draw.rectangle([b[0], b[1], b[2], b[3]], outline="red", width=2)
# Draw confidence score
draw.text((b[0], b[1] - 15), f'{b[4]:.2f}', fill="red")
# Draw landmarks
for i in range(0, 10, 2):
draw.ellipse([landmarks[i]-2, landmarks[i+1]-2, landmarks[i]+2, landmarks[i+1]+2], fill="blue")
faces.append({
"bbox": {"x1": float(b[0]), "y1": float(b[1]), "x2": float(b[2]), "y2": float(b[3])},
"confidence": float(b[4]),
"landmarks": {
"left_eye": [float(landmarks[0]), float(landmarks[1])],
"right_eye": [float(landmarks[2]), float(landmarks[3])],
"nose": [float(landmarks[4]), float(landmarks[5])],
"left_mouth": [float(landmarks[6]), float(landmarks[7])],
"right_mouth": [float(landmarks[8]), float(landmarks[9])]
}
})
processing_time = time.time() - start_time
result_text = f"""
**Detection Results:**
- **Faces Detected:** {len(faces)}
- **Model Used:** {model_type}
- **Processing Time:** {processing_time:.3f}s
- **Confidence Threshold:** {confidence_threshold}
- **NMS Threshold:** {nms_threshold}
"""
return result_image, result_text
except Exception as e:
return None, f"Error: {str(e)}"
# Simple test function to debug model loading
def test_model_loading():
"""Test model loading step by step"""
try:
print("=== Testing Model Loading ===")
# Test basic imports
print("Testing RetinaFace import...")
test_cfg = {
'name': 'mobilenet0.25',
'min_sizes': [[16, 32], [64, 128], [256, 512]],
'steps': [8, 16, 32],
'variance': [0.1, 0.2],
'clip': False,
'pretrain': False,
'return_layers': {'stage1': 1, 'stage2': 2, 'stage3': 3},
'in_channel': 32,
'out_channel': 64
}
print("Creating RetinaFace instance...")
model = RetinaFace(cfg=test_cfg, phase='test')
print(f"βœ… Model created successfully: {type(model)}")
print("Checking model file...")
if os.path.exists('mobilenet0.25_Final.pth'):
print("βœ… Model file exists")
print("Loading state dict...")
state_dict = torch.load('mobilenet0.25_Final.pth', map_location='cpu')
print(f"βœ… State dict loaded, keys: {len(state_dict.keys())}")
print("Loading state dict into model...")
model.load_state_dict(state_dict)
print("βœ… State dict loaded successfully!")
return True
else:
print("❌ Model file not found")
return False
except Exception as e:
import traceback
print(f"❌ Test failed: {e}")
print(f"❌ Traceback: {traceback.format_exc()}")
return False
# API test function
def test_api_endpoint():
"""Test function to verify API is working"""
try:
# Create a simple test image
import numpy as np
test_img = np.random.randint(0, 255, (100, 100, 3), dtype=np.uint8)
test_pil = Image.fromarray(test_img)
# Test the detect_faces function directly
result_img, result_text = detect_faces(test_pil, "mobilenet", 0.5, 0.4)
if result_img is not None:
return "βœ… API function test passed - detection pipeline works"
else:
return f"❌ API function test failed: {result_text}"
except Exception as e:
return f"❌ API test error: {str(e)}"
# Load models on startup
print("Loading RetinaFace models...")
print("Running model loading test...")
test_result = test_model_loading()
if test_result:
print("Test passed, proceeding with full model loading...")
model_loaded = load_models()
else:
print("Test failed, skipping model loading...")
model_loaded = False
# Create simple Gradio interface
def create_interface():
with gr.Blocks(title="RetinaFace Face Detection") as demo:
gr.Markdown("# πŸ”₯ RetinaFace Face Detection API")
gr.Markdown("Real-time face detection using RetinaFace with MobileNet and ResNet backbones")
if model_loaded:
gr.Markdown("βœ… **Status**: Models loaded successfully!")
# Test API functionality
api_test_result = test_api_endpoint()
gr.Markdown(f"πŸ”§ **API Test**: {api_test_result}")
else:
gr.Markdown("❌ **Status**: Error loading models")
gr.Markdown("πŸ”§ **API Test**: Cannot test API - models not loaded")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Upload Image")
model_choice = gr.Dropdown(
choices=["mobilenet", "resnet"],
value="mobilenet",
label="Model"
)
confidence = gr.Slider(
minimum=0.1, maximum=1.0, value=0.5, step=0.1,
label="Confidence"
)
nms = gr.Slider(
minimum=0.1, maximum=1.0, value=0.4, step=0.1,
label="NMS Threshold"
)
detect_btn = gr.Button("πŸ” Detect Faces", variant="primary")
with gr.Column():
output_image = gr.Image(label="Results")
output_text = gr.Markdown()
detect_btn.click(
fn=detect_faces,
inputs=[input_image, model_choice, confidence, nms],
outputs=[output_image, output_text]
)
gr.Markdown("""
## πŸ”— API Information
**Your API is automatically available at these endpoints:**
### Main API Endpoint
```
POST /api/predict
```
**Request format:**
```json
{
"data": [
"<image_as_PIL_or_path>",
"mobilenet",
0.5,
0.4
]
}
```
**Response format:**
```json
{
"data": [
"<processed_image>",
"**Detection Results:**\\n- **Faces Detected:** 2\\n..."
]
}
```
### For Thunkable Integration:
- **URL:** `https://aditya-g07-retinaface-face-detection.hf.space/api/predict`
- **Method:** POST
- **Content-Type:** application/json
### API Status:
- βœ… **Gradio auto-generates API endpoints**
- βœ… **No additional configuration needed**
- βœ… **"No API found" message is normal for Gradio 4.36.0**
**Note:** The "No API found" error in the UI doesn't affect API functionality.
""")
return demo
# Create and launch the interface
demo = create_interface()
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True
)