Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,21 +1,34 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
def predict(image):
|
| 5 |
-
model_id = "google/vit-base-patch16-224"
|
| 6 |
-
classifier = pipeline("image-classification", model=model_id)
|
| 7 |
predictions = classifier(image)
|
| 8 |
# Sort predictions based on confidence and select the top one
|
| 9 |
top_prediction = sorted(predictions, key=lambda x: x['score'], reverse=True)[0]
|
|
|
|
| 10 |
|
| 11 |
-
# Generate
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
return tweet_text
|
| 15 |
|
| 16 |
-
title = "Image Classifier to
|
| 17 |
-
description = "This demo recognizes and classifies images using the 'google/vit-base-patch16-224' model
|
| 18 |
input_component = gr.Image(type="pil", label="Upload an image here")
|
| 19 |
-
output_component = gr.Textbox(label="Generated Promotional Tweet"
|
| 20 |
|
| 21 |
gr.Interface(fn=predict, inputs=input_component, outputs=output_component, title=title, description=description).launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
| 3 |
+
|
| 4 |
+
# Initialize the image classification pipeline
|
| 5 |
+
classifier = pipeline("image-classification", model="google/vit-base-patch16-224")
|
| 6 |
+
|
| 7 |
+
# Initialize the tokenizer and model for the generative text (GPT-like model)
|
| 8 |
+
tokenizer = AutoTokenizer.from_pretrained("gpt2") # Example model, replace with your choice
|
| 9 |
+
model = AutoModelForCausalLM.from_pretrained("gpt2")
|
| 10 |
+
|
| 11 |
+
def generate_tweet(label):
|
| 12 |
+
# Generate a promotional tweet using a GPT-like model
|
| 13 |
+
prompt = f"Write a creative and promotional tweet about {label}:"
|
| 14 |
+
inputs = tokenizer.encode(prompt, return_tensors="pt")
|
| 15 |
+
outputs = model.generate(inputs, max_length=280, num_return_sequences=1)
|
| 16 |
+
tweet = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 17 |
+
return tweet
|
| 18 |
|
| 19 |
def predict(image):
|
|
|
|
|
|
|
| 20 |
predictions = classifier(image)
|
| 21 |
# Sort predictions based on confidence and select the top one
|
| 22 |
top_prediction = sorted(predictions, key=lambda x: x['score'], reverse=True)[0]
|
| 23 |
+
label = top_prediction['label'].split(',')[0] # Clean up label if necessary
|
| 24 |
|
| 25 |
+
# Generate the tweet
|
| 26 |
+
tweet = generate_tweet(label)
|
| 27 |
+
return tweet
|
|
|
|
| 28 |
|
| 29 |
+
title = "Image Classifier to Generative Tweet"
|
| 30 |
+
description = "This demo recognizes and classifies images using the 'google/vit-base-patch16-224' model and generates a creative promotional tweet about the top prediction using a generative text model."
|
| 31 |
input_component = gr.Image(type="pil", label="Upload an image here")
|
| 32 |
+
output_component = gr.Textbox(label="Generated Promotional Tweet")
|
| 33 |
|
| 34 |
gr.Interface(fn=predict, inputs=input_component, outputs=output_component, title=title, description=description).launch()
|