File size: 6,202 Bytes
4e89892
cf85a3a
4e89892
ab4dfe6
cf85a3a
ab4dfe6
 
4e89892
cf85a3a
ab4dfe6
cf85a3a
4e89892
 
 
 
cf85a3a
ab4dfe6
4e89892
cf85a3a
4e89892
 
ab4dfe6
4e89892
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cf85a3a
0b37765
 
 
 
 
 
 
ab4dfe6
0b37765
 
 
 
 
 
 
 
 
 
 
 
 
 
4e89892
 
ab4dfe6
0b37765
 
 
 
 
 
 
 
 
ab4dfe6
4e89892
 
 
0b37765
4e89892
0b37765
4e89892
0b37765
4e89892
0b37765
 
4e89892
0b37765
 
4e89892
0b37765
4e89892
 
0b37765
 
 
 
 
 
 
 
4e89892
0b37765
 
4e89892
 
 
 
 
 
0b37765
4e89892
0b37765
 
 
 
 
 
4e89892
0b37765
 
 
 
4e89892
 
0b37765
4e89892
0b37765
4e89892
0b37765
 
4e89892
0b37765
4e89892
0b37765
 
 
 
 
4e89892
 
 
 
 
cf85a3a
 
0b37765
cf85a3a
 
4e89892
 
 
cf85a3a
 
4e89892
 
cf85a3a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import re
import gradio as gr
import torch
from transformers import PreTrainedTokenizerFast, T5ForConditionalGeneration

# โœ… KoT5 ์š”์•ฝ ๋ชจ๋ธ
MODEL_NAME = "psyche/KoT5-summarization"

tokenizer = PreTrainedTokenizerFast.from_pretrained(MODEL_NAME)
model = T5ForConditionalGeneration.from_pretrained(MODEL_NAME)

# CPU ๋™์  ์–‘์žํ™” ์ ์šฉ
try:
    model = torch.quantization.quantize_dynamic(
        model, {torch.nn.Linear}, dtype=torch.qint8
    )
except:
    pass

model.eval()

# ===== ์œ ํ‹ธ =====
def normalize_text(text: str) -> str:
    return re.sub(r"\s+", " ", text).strip()

def split_into_sentences(text: str):
    text = text.replace("\n", " ")
    parts = re.split(r"(?<=[\.!?])\s+", text)
    return [p.strip() for p in parts if p.strip()]

def token_length(s: str) -> int:
    return len(tokenizer.encode(s, add_special_tokens=False))

def chunk_by_tokens(sentences, max_tokens=900):
    chunks, cur, cur_tokens = [], [], 0
    for s in sentences:
        tl = token_length(s)
        if tl > max_tokens:
            piece_size = max(200, int(len(s) * (max_tokens / tl)))
            for i in range(0, len(s), piece_size):
                sub = s[i:i+piece_size]
                if sub.strip():
                    chunks.append(sub.strip())
            cur, cur_tokens = [], 0
            continue
        if cur_tokens + tl <= max_tokens:
            cur.append(s)
            cur_tokens += tl
        else:
            if cur:
                chunks.append(" ".join(cur))
            cur, cur_tokens = [s], tl
    if cur:
        chunks.append(" ".join(cur))
    return chunks

# ===== ๋ฐ˜๋ณต ์ œ๊ฑฐ =====
def derpeat(text: str) -> str:
    text = re.sub(r'(.)\1{2,}', r'\1\1', text)  # ๋‹จ์ผ ๋ฌธ์ž 3ํšŒ ์ด์ƒ ๋ฐ˜๋ณต โ†’ 2ํšŒ
    text = re.sub(r'(\b\w+\b)(\s+\1){1,}', r'\1', text)  # ๋‹จ์–ด ๋ฐ˜๋ณต ์ œ๊ฑฐ
    text = re.sub(r'([\.!?\-~])\1{2,}', r'\1\1', text)  # ๊ตฌ๋‘์  ๋ฐ˜๋ณต ์ถ•์†Œ
    return text.strip()

# ===== ์š”์•ฝ =====
def approx_tokens_from_chars(n_chars: int) -> int:
    return max(1, n_chars // 2)  # ํ•œ๊ธ€ ๋Œ€๋žต 1ํ† ํฐ โ‰ˆ 2๋ฌธ์ž

def summarize_raw_t5(input_text: str, target_chars: int, input_tokens: int) -> str:
    safe_target_chars = min(target_chars, max(120, int(len(input_text) * 0.9)))
    max_new = max(40, min(approx_tokens_from_chars(safe_target_chars), 300))

    if input_tokens <= 200:
        max_new = min(max_new, max(40, int(input_tokens * 0.6)))
    if input_tokens <= 60:
        max_new = min(max_new, 60)

    input_ids = tokenizer.encode(input_text, return_tensors="pt", truncation=True, max_length=1024)

    with torch.no_grad():
        summary_ids = model.generate(
            input_ids,
            max_new_tokens=max_new,
            do_sample=True,
            top_p=0.92,
            temperature=0.7,
            num_beams=1,
            no_repeat_ngram_size=4,
            encoder_no_repeat_ngram_size=4,
            repetition_penalty=1.2,
            renormalize_logits=True,
            early_stopping=True
        )
    return tokenizer.decode(summary_ids[0], skip_special_tokens=True)

def apply_style_prompt_t5(text: str, mode: str, final: bool=False) -> str:
    if mode == "concise":
        tag = "๊ฐ„๊ฒฐ ์š”์•ฝ:"
    elif mode == "explanatory":
        tag = "์„ค๋ช… ์š”์•ฝ:"
    else:
        tag = "๋ถˆ๋ฆฟ ์š”์•ฝ:"
    guide = ""
    if final:
        guide = " (์›๋ž˜ ๋ฌธ์„œ์˜ ์ˆœ์„œ๋ฅผ ์œ ์ง€ํ•˜๊ณ  ์ค‘๋ณต์„ ์ œ๊ฑฐํ•˜์„ธ์š”.)"
    return f"{tag}{guide}\n{text}"

def postprocess_strict(summary: str, mode: str) -> str:
    s = summary.strip()
    s = re.sub(r"\s+", " ", s)
    s = derpeat(s)
    seen, outs = set(), []
    for sent in re.split(r"(?<=[\.!?])\s+", s):
        ss = sent.strip()
        if ss and ss not in seen:
            seen.add(ss)
            outs.append(ss)
    s = " ".join(outs)
    if mode == "bullets":
        parts = [p for p in outs if p]
        s = "\n".join([f"- {p}" for p in parts[:12]])
    return s

def summarize_long(text: str, target_chars: int, mode: str):
    text = normalize_text(text)
    if not text:
        return "โš ๏ธ ์š”์•ฝํ•  ํ…์ŠคํŠธ๋ฅผ ์ž…๋ ฅํ•˜์„ธ์š”."

    approx_tokens = token_length(text)

    if approx_tokens <= 60:
        prompt = apply_style_prompt_t5(text, mode, final=False)
        out = summarize_raw_t5(prompt, min(target_chars, 300), approx_tokens)
        return postprocess_strict(out, mode)

    if approx_tokens <= 1000:
        prompt = apply_style_prompt_t5(text, mode, final=False)
        out = summarize_raw_t5(prompt, target_chars, approx_tokens)
        return postprocess_strict(out, mode)

    sentences = split_into_sentences(text)
    chunks = chunk_by_tokens(sentences, max_tokens=900)

    partial_summaries = []
    per_chunk_chars = max(180, int(target_chars * 1.2 / max(1, len(chunks))))
    for c in chunks:
        prompt = apply_style_prompt_t5(c, mode, final=False)
        psum = summarize_raw_t5(prompt, per_chunk_chars, token_length(c))
        partial_summaries.append(psum)

    merged = normalize_text(" ".join(partial_summaries))
    merged = derpeat(merged)

    final_prompt = apply_style_prompt_t5(merged, mode, final=True)
    final = summarize_raw_t5(final_prompt, target_chars, token_length(merged))
    return postprocess_strict(final, mode)

# ===== Gradio UI =====
def ui_summarize(text, target_len, style):
    mode = {"๊ฐ„๊ฒฐํ˜•":"concise", "์„ค๋ช…ํ˜•":"explanatory", "ํ•ต์‹ฌ bullet":"bullets"}[style]
    return summarize_long(text, int(target_len), mode)

with gr.Blocks() as demo:
    gr.Markdown("## ๐Ÿ“ KoT5 ํ•œ๊ตญ์–ด ์š”์•ฝ๊ธฐ (๋ฐ˜๋ณต ์–ต์ œ + ์ˆœ์„œ ๋ณด์กด)")
    with gr.Row():
        with gr.Column():
            input_text = gr.Textbox(label="์›๋ฌธ ์ž…๋ ฅ", lines=16)
            style = gr.Radio(["๊ฐ„๊ฒฐํ˜•", "์„ค๋ช…ํ˜•", "ํ•ต์‹ฌ bullet"], value="๊ฐ„๊ฒฐํ˜•", label="์š”์•ฝ ์Šคํƒ€์ผ")
            target_len = gr.Slider(300, 1500, value=1000, step=50, label="๋ชฉํ‘œ ์š”์•ฝ ๊ธธ์ด(๋ฌธ์ž)")
            btn = gr.Button("์š”์•ฝ ์‹คํ–‰")
        with gr.Column():
            output_text = gr.Textbox(label="์š”์•ฝ ๊ฒฐ๊ณผ", lines=16)
    btn.click(ui_summarize, inputs=[input_text, target_len, style], outputs=output_text)

if __name__ == "__main__":
    demo.launch()