Spaces:
Running
on
Zero
Running
on
Zero
| #============================================================================================ | |
| # https://huggingface.co/spaces/projectlosangeles/Orpheus-MIDI-Loops-Mixer | |
| #============================================================================================ | |
| print('=' * 70) | |
| print('Orpheus MIDI Loops Mixer Gradio App') | |
| print('=' * 70) | |
| print('Loading core Orpheus MIDI Loops Mixer modules...') | |
| import os | |
| import copy | |
| import time as reqtime | |
| import datetime | |
| from pytz import timezone | |
| print('=' * 70) | |
| print('Loading main Orpheus MIDI Loops Mixer modules...') | |
| os.environ['USE_FLASH_ATTENTION'] = '1' | |
| import torch | |
| torch.set_float32_matmul_precision('high') | |
| torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul | |
| torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn | |
| torch.backends.cuda.enable_flash_sdp(True) | |
| from huggingface_hub import hf_hub_download | |
| import TMIDIX | |
| from midi_to_colab_audio import midi_to_colab_audio | |
| from x_transformer_2_3_1 import * | |
| import random | |
| import tqdm | |
| print('=' * 70) | |
| print('Loading aux Orpheus MIDI Loops Mixer modules...') | |
| import matplotlib.pyplot as plt | |
| import gradio as gr | |
| import spaces | |
| print('=' * 70) | |
| print('PyTorch version:', torch.__version__) | |
| print('=' * 70) | |
| print('Done!') | |
| print('Enjoy! :)') | |
| print('=' * 70) | |
| #================================================================================== | |
| MODEL_CHECKPOINT = 'Orpheus_Bridge_Music_Transformer_Trained_Model_43450_steps_0.8334_loss_0.7629_acc.pth' | |
| SOUDFONT_PATH = 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2' | |
| #================================================================================== | |
| print('=' * 70) | |
| print('Instantiating model...') | |
| device_type = 'cuda' | |
| dtype = 'bfloat16' | |
| ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype] | |
| ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype) | |
| SEQ_LEN = 1668 | |
| PAD_IDX = 18819 | |
| model = TransformerWrapper(num_tokens = PAD_IDX+1, | |
| max_seq_len = SEQ_LEN, | |
| attn_layers = Decoder(dim = 2048, | |
| depth = 8, | |
| heads = 32, | |
| rotary_pos_emb = True, | |
| attn_flash = True | |
| ) | |
| ) | |
| model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX) | |
| print('=' * 70) | |
| print('Loading model checkpoint...') | |
| model_checkpoint = hf_hub_download(repo_id='asigalov61/Orpheus-Music-Transformer', | |
| filename=MODEL_CHECKPOINT | |
| ) | |
| model.load_state_dict(torch.load(model_checkpoint, | |
| map_location=device_type, | |
| weights_only=True | |
| ) | |
| ) | |
| model = torch.compile(model, mode='max-autotune') | |
| model.to(device_type) | |
| model.eval() | |
| print('=' * 70) | |
| print('Done!') | |
| print('=' * 70) | |
| print('Model will use', dtype, 'precision...') | |
| print('=' * 70) | |
| #================================================================================== | |
| print('=' * 70) | |
| print('Loading Orpheus MIDI Loops dataset...') | |
| orpheus_loops_dataset_file = hf_hub_download(repo_id='asigalov61/Orpheus-Music-Transformer', | |
| filename='orpheus_data/190191_Orpheus_MIDI_Loops_MP_Dataset_CC_BY_NC_SA.pickle' | |
| ) | |
| loops_data = TMIDIX.Tegridy_Any_Pickle_File_Reader(orpheus_loops_dataset_file) | |
| print('=' * 70) | |
| print('Done!') | |
| print('=' * 70) | |
| print('Loaded', len(loops_data), 'loops') | |
| print('=' * 70) | |
| #================================================================================== | |
| def tokens_to_score(tokens, abs_time): | |
| song_f = [] | |
| time = abs_time | |
| dur = 1 | |
| vel = 90 | |
| pitch = 60 | |
| channel = 0 | |
| patch = 0 | |
| patches = [-1] * 16 | |
| channels = [0] * 16 | |
| channels[9] = 1 | |
| for ss in tokens: | |
| if 0 <= ss < 256: | |
| time += ss * 16 | |
| if 256 <= ss < 16768: | |
| patch = (ss-256) // 128 | |
| if patch < 128: | |
| if patch not in patches: | |
| if 0 in channels: | |
| cha = channels.index(0) | |
| channels[cha] = 1 | |
| else: | |
| cha = 15 | |
| patches[cha] = patch | |
| channel = patches.index(patch) | |
| else: | |
| channel = patches.index(patch) | |
| if patch == 128: | |
| channel = 9 | |
| pitch = (ss-256) % 128 | |
| if 16768 <= ss < 18816: | |
| dur = ((ss-16768) // 8) * 16 | |
| vel = (((ss-16768) % 8)+1) * 15 | |
| song_f.append(['note', time, dur, channel, pitch, vel, patch]) | |
| return song_f, time | |
| #================================================================================== | |
| def Mix_MIDI_Loops(num_loops_to_mix, | |
| use_one_loop, | |
| model_temperature, | |
| model_sampling_top_k | |
| ): | |
| #=============================================================================== | |
| print('=' * 70) | |
| print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
| start_time = reqtime.time() | |
| print('=' * 70) | |
| print('=' * 70) | |
| print('Requested settings:') | |
| print('=' * 70) | |
| print('Num loops to mix:', num_loops_to_mix) | |
| print('Use one loop:', use_one_loop) | |
| print('Model temperature:', model_temperature) | |
| print('Model top k:', model_sampling_top_k) | |
| print('=' * 70) | |
| #================================================================== | |
| print('Generating...') | |
| song = [] | |
| song_indexes = [] | |
| song_titles = [] | |
| song_parts = [] | |
| while len(song) <= 512: | |
| lidx = random.randint(0, len(loops_data)-1) | |
| song = loops_data[lidx][1] | |
| song_indexes.append(lidx) | |
| song_titles.append(loops_data[lidx][0]) | |
| song_parts.append(loops_data[lidx][1]) | |
| for i in tqdm.tqdm(range(num_loops_to_mix-1)): | |
| left_chunk = [1] + loops_data[lidx][1][2:] | |
| if use_one_loop: | |
| right_chunk = [1] + loops_data[lidx][1][2:] | |
| else: | |
| right_chunk = [] | |
| ridx = [-1] | |
| rlen = -1 | |
| while ridx and rlen <= 512: | |
| rlen = len(loops_data[ridx[0]][1]) | |
| ridx = [l for l in loops_data[lidx][2] if l not in song_indexes] | |
| if ridx: | |
| ridx = ridx[0] | |
| right_chunk = [1] + loops_data[ridx][1][2:] | |
| lidx = ridx | |
| song_titles.append(loops_data[lidx][0]) | |
| song_indexes.append(lidx) | |
| else: | |
| break | |
| seq = [18815] + left_chunk[-512:] + [18816] + right_chunk[:512] + [18817] + left_chunk[-64:] | |
| x = torch.LongTensor(seq).cuda() | |
| y_val = [] | |
| rcount = 0 | |
| while y_val != right_chunk[:64]: | |
| with ctx: | |
| out = model.generate(x, | |
| 576, | |
| temperature=model_temperature, | |
| filter_logits_fn=top_k, | |
| filter_kwargs={'k': model_sampling_top_k}, | |
| eos_token=18818, | |
| return_prime=False, | |
| verbose=False) | |
| y = out.tolist() | |
| y_val = y[-64:] | |
| if y_val != right_chunk[:64]: | |
| rcount += 1 | |
| print('Regenerating attempt #', rcount) | |
| if rcount == 3: | |
| break | |
| song = song + y[:-64] + right_chunk | |
| song_parts.append(y[:-64]) | |
| song_parts.append(right_chunk) | |
| #================================================================== | |
| print('=' * 70) | |
| print('Done!') | |
| print('=' * 70) | |
| #=============================================================================== | |
| print('Rendering results...') | |
| used_loops_titles = 'Composition used ' + str(len(song_titles)) + ' loops from the following titles:\n\n' | |
| for i, t in enumerate(song_titles): | |
| used_loops_titles += 'Loop #' + str(i+1) + ': ' + str(t) + '\n' | |
| #=============================================================================== | |
| print('=' * 70) | |
| print('Sample INTs', song[:15]) | |
| print('=' * 70) | |
| output_score = [] | |
| abs_time = 1000 | |
| for i, part in enumerate(song_parts): | |
| if i == 0: | |
| part = part[1:] | |
| if not use_one_loop: | |
| part_idx = song_indexes[i // 2] | |
| else: | |
| part_idx = song_indexes[0] | |
| if i % 2 == 0: | |
| if not use_one_loop: | |
| part_title = song_titles[i // 2] | |
| else: | |
| part_title = song_titles[0] | |
| output_score.append(['text_event', abs_time + (part[0] * 16), 'Loop #' + str((i // 2)+1) + ' / IDX #' + str(part_idx) + ' / ' + part_title]) | |
| else: | |
| tidx = [i for i in range(20) if part[i] < 256][0] | |
| output_score.append(['text_event', abs_time + (part[tidx] * 16), 'AI-generated bridge']) | |
| score, abs_time= tokens_to_score(part, abs_time) | |
| output_score.extend(score) | |
| #=============================================================================== | |
| patched_score, patches, overflow_patches = TMIDIX.patch_enhanced_score_notes(output_score) | |
| fn1 = "Orpheus-MIDI-Loops-Mixer-Composition" | |
| detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(patched_score, | |
| output_signature = 'Orpheus MIDI Loops Mixer', | |
| output_file_name = fn1, | |
| track_name='Project Los Angeles', | |
| list_of_MIDI_patches=patches | |
| ) | |
| #=============================================================================== | |
| new_fn = fn1+'.mid' | |
| #=============================================================================== | |
| audio = midi_to_colab_audio(new_fn, | |
| soundfont_path=SOUDFONT_PATH, | |
| sample_rate=16000, | |
| volume_scale=10, | |
| output_for_gradio=True | |
| ) | |
| #=============================================================================== | |
| print('Done!') | |
| print('=' * 70) | |
| #======================================================== | |
| output_midi = str(new_fn) | |
| output_audio = (16000, audio) | |
| output_plot = TMIDIX.plot_ms_SONG(patched_score, | |
| plot_title=output_midi, | |
| return_plt=True | |
| ) | |
| #=============================================================================== | |
| print(used_loops_titles) | |
| print('=' * 70) | |
| #======================================================== | |
| print('-' * 70) | |
| print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
| print('-' * 70) | |
| print('Req execution time:', (reqtime.time() - start_time), 'sec') | |
| return used_loops_titles, output_audio, output_plot, output_midi | |
| #================================================================================== | |
| PDT = timezone('US/Pacific') | |
| print('=' * 70) | |
| print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
| print('=' * 70) | |
| #================================================================================== | |
| with gr.Blocks() as demo: | |
| #================================================================================== | |
| gr.Markdown("<h1 style='text-align: left; margin-bottom: 1rem'>Orpheus MIDI Loops Mixer</h1>") | |
| gr.Markdown("<h1 style='text-align: left; margin-bottom: 1rem'>Mix several MIDI loops into one composition by bridging</h1>") | |
| gr.HTML(""" | |
| <p> | |
| <a href="https://huggingface.co/spaces/projectlosangeles/Orpheus-MIDI-Loops-Mixer?duplicate=true"> | |
| <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate in Hugging Face"> | |
| </a> | |
| </p> | |
| for faster execution and endless generation! | |
| """) | |
| #================================================================================== | |
| gr.Markdown("## Generation options") | |
| num_loops_to_mix = gr.Slider(2, 10, value=5, step=1, label="Number of loops to mix") | |
| use_one_loop = gr.Checkbox(value=False, label="Use only one randomly selected loop") | |
| model_temperature = gr.Slider(0.1, 1, value=1.0, step=0.01, label="Model temperature") | |
| model_sampling_top_k = gr.Slider(1, 100, value=5, step=1, label="Model sampling top k value") | |
| generate_btn = gr.Button("Mix Loops", variant="primary") | |
| gr.Markdown("## Generation results") | |
| used_loops_titles = gr.Textbox(label="MIDI loops titles") | |
| output_audio = gr.Audio(label="MIDI audio", format="wav", elem_id="midi_audio") | |
| output_plot = gr.Plot(label="MIDI score plot") | |
| output_midi = gr.File(label="MIDI file", file_types=[".mid"]) | |
| generate_btn.click(Mix_MIDI_Loops, | |
| [num_loops_to_mix, | |
| use_one_loop, | |
| model_temperature, | |
| model_sampling_top_k | |
| ], | |
| [used_loops_titles, | |
| output_audio, | |
| output_plot, | |
| output_midi | |
| ] | |
| ) | |
| #================================================================================== | |
| demo.launch() | |
| #================================================================================== |