subhankarg's picture
Upload folder using huggingface_hub
0558aa4 verified
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import List
import numpy as np
import omegaconf
import torch
from hydra.utils import instantiate
from lightning.pytorch import Trainer
from lightning.pytorch.loggers import WandbLogger
from omegaconf import DictConfig
from torch import nn
from nemo.collections.tts.losses.aligner_loss import BinLoss, ForwardSumLoss
from nemo.collections.tts.models.base import NeedsNormalizer
from nemo.collections.tts.parts.utils.helpers import (
binarize_attention,
g2p_backward_compatible_support,
get_mask_from_lengths,
plot_alignment_to_numpy,
)
from nemo.core.classes import ModelPT
from nemo.core.classes.common import PretrainedModelInfo
from nemo.utils import logging, model_utils
HAVE_WANDB = True
try:
import wandb
except ModuleNotFoundError:
HAVE_WANDB = False
class AlignerModel(NeedsNormalizer, ModelPT):
"""Speech-to-text alignment model (https://arxiv.org/pdf/2108.10447.pdf) that is used to learn alignments between mel spectrogram and text."""
def __init__(self, cfg: DictConfig, trainer: 'Trainer' = None):
# Convert to Hydra 1.0 compatible DictConfig
cfg = model_utils.convert_model_config_to_dict_config(cfg)
cfg = model_utils.maybe_update_config_version(cfg)
# Setup normalizer
self.normalizer = None
self.text_normalizer_call = None
self.text_normalizer_call_kwargs = {}
self._setup_normalizer(cfg)
# Setup tokenizer
self.tokenizer = None
self._setup_tokenizer(cfg)
assert self.tokenizer is not None
num_tokens = len(self.tokenizer.tokens)
self.tokenizer_pad = self.tokenizer.pad
self.tokenizer_unk = self.tokenizer.oov
super().__init__(cfg=cfg, trainer=trainer)
self.embed = nn.Embedding(num_tokens, cfg.symbols_embedding_dim)
self.preprocessor = instantiate(cfg.preprocessor)
self.alignment_encoder = instantiate(cfg.alignment_encoder)
self.forward_sum_loss = ForwardSumLoss()
self.bin_loss = BinLoss()
self.add_bin_loss = False
self.bin_loss_scale = 0.0
self.bin_loss_start_ratio = cfg.bin_loss_start_ratio
self.bin_loss_warmup_epochs = cfg.bin_loss_warmup_epochs
def _setup_tokenizer(self, cfg):
text_tokenizer_kwargs = {}
if "g2p" in cfg.text_tokenizer:
# for backward compatibility
if (
self._is_model_being_restored()
and (cfg.text_tokenizer.g2p.get('_target_', None) is not None)
and cfg.text_tokenizer.g2p["_target_"].startswith("nemo_text_processing.g2p")
):
cfg.text_tokenizer.g2p["_target_"] = g2p_backward_compatible_support(
cfg.text_tokenizer.g2p["_target_"]
)
g2p_kwargs = {}
if "phoneme_dict" in cfg.text_tokenizer.g2p:
g2p_kwargs["phoneme_dict"] = self.register_artifact(
'text_tokenizer.g2p.phoneme_dict',
cfg.text_tokenizer.g2p.phoneme_dict,
)
if "heteronyms" in cfg.text_tokenizer.g2p:
g2p_kwargs["heteronyms"] = self.register_artifact(
'text_tokenizer.g2p.heteronyms',
cfg.text_tokenizer.g2p.heteronyms,
)
text_tokenizer_kwargs["g2p"] = instantiate(cfg.text_tokenizer.g2p, **g2p_kwargs)
self.tokenizer = instantiate(cfg.text_tokenizer, **text_tokenizer_kwargs)
def forward(self, *, spec, spec_len, text, text_len, attn_prior=None):
with torch.amp.autocast(self.device.type, enabled=False):
attn_soft, attn_logprob = self.alignment_encoder(
queries=spec,
keys=self.embed(text).transpose(1, 2),
mask=get_mask_from_lengths(text_len).unsqueeze(-1) == 0,
attn_prior=attn_prior,
)
return attn_soft, attn_logprob
def _metrics(self, attn_soft, attn_logprob, spec_len, text_len):
loss, bin_loss, attn_hard = 0.0, None, None
forward_sum_loss = self.forward_sum_loss(attn_logprob=attn_logprob, in_lens=text_len, out_lens=spec_len)
loss += forward_sum_loss
if self.add_bin_loss:
attn_hard = binarize_attention(attn_soft, text_len, spec_len)
bin_loss = self.bin_loss(hard_attention=attn_hard, soft_attention=attn_soft)
loss += bin_loss
return loss, forward_sum_loss, bin_loss, attn_hard
def on_train_epoch_start(self):
bin_loss_start_epoch = np.ceil(self.bin_loss_start_ratio * self._trainer.max_epochs)
# Add bin loss when current_epoch >= bin_start_epoch
if not self.add_bin_loss and self.current_epoch >= bin_loss_start_epoch:
logging.info(f"Using hard attentions after epoch: {self.current_epoch}")
self.add_bin_loss = True
if self.add_bin_loss:
self.bin_loss_scale = min((self.current_epoch - bin_loss_start_epoch) / self.bin_loss_warmup_epochs, 1.0)
def training_step(self, batch, batch_idx):
audio, audio_len, text, text_len, attn_prior = batch
spec, spec_len = self.preprocessor(input_signal=audio, length=audio_len)
attn_soft, attn_logprob = self(
spec=spec, spec_len=spec_len, text=text, text_len=text_len, attn_prior=attn_prior
)
loss, forward_sum_loss, bin_loss, _ = self._metrics(attn_soft, attn_logprob, spec_len, text_len)
train_log = {
'train_forward_sum_loss': forward_sum_loss,
'train_bin_loss': torch.tensor(1.0).to(forward_sum_loss.device) if bin_loss is None else bin_loss,
}
return {'loss': loss, 'progress_bar': {k: v.detach() for k, v in train_log.items()}, 'log': train_log}
def validation_step(self, batch, batch_idx):
audio, audio_len, text, text_len, attn_prior = batch
spec, spec_len = self.preprocessor(input_signal=audio, length=audio_len)
attn_soft, attn_logprob = self(
spec=spec, spec_len=spec_len, text=text, text_len=text_len, attn_prior=attn_prior
)
loss, forward_sum_loss, bin_loss, attn_hard = self._metrics(attn_soft, attn_logprob, spec_len, text_len)
# plot once per epoch
if batch_idx == 0 and isinstance(self.logger, WandbLogger) and HAVE_WANDB:
if attn_hard is None:
attn_hard = binarize_attention(attn_soft, text_len, spec_len)
attn_matrices = []
for i in range(min(5, audio.shape[0])):
attn_matrices.append(
wandb.Image(
plot_alignment_to_numpy(
np.fliplr(np.rot90(attn_soft[i, 0, : spec_len[i], : text_len[i]].data.cpu().numpy()))
),
caption=f"attn soft",
),
)
attn_matrices.append(
wandb.Image(
plot_alignment_to_numpy(
np.fliplr(np.rot90(attn_hard[i, 0, : spec_len[i], : text_len[i]].data.cpu().numpy()))
),
caption=f"attn hard",
)
)
self.logger.experiment.log({"attn_matrices": attn_matrices})
val_log = {
'val_loss': loss,
'val_forward_sum_loss': forward_sum_loss,
'val_bin_loss': torch.tensor(1.0).to(forward_sum_loss.device) if bin_loss is None else bin_loss,
}
self.log_dict(val_log, prog_bar=False, on_epoch=True, logger=True, sync_dist=True)
def _loader(self, cfg):
try:
_ = cfg.dataset.manifest_filepath
except omegaconf.errors.MissingMandatoryValue:
logging.warning("manifest_filepath was skipped. No dataset for this model.")
return None
dataset = instantiate(
cfg.dataset,
text_normalizer=self.normalizer,
text_normalizer_call_kwargs=self.text_normalizer_call_kwargs,
text_tokenizer=self.tokenizer,
)
return torch.utils.data.DataLoader( # noqa
dataset=dataset,
collate_fn=dataset.collate_fn,
**cfg.dataloader_params,
)
def setup_training_data(self, cfg):
self._train_dl = self._loader(cfg)
def setup_validation_data(self, cfg):
self._validation_dl = self._loader(cfg)
def setup_test_data(self, cfg):
"""Omitted."""
pass
@classmethod
def list_available_models(cls) -> List[PretrainedModelInfo]:
"""
This method returns a list of pre-trained model which can be instantiated directly from NVIDIA's NGC cloud.
Returns:
List of available pre-trained models.
"""
list_of_models = []
# en-US, ARPABET-based
model = PretrainedModelInfo(
pretrained_model_name="tts_en_radtts_aligner",
location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/tts_en_radtts_aligner/versions/ARPABET_1.11.0/files/Aligner.nemo",
description="This model is trained on LJSpeech sampled at 22050Hz with and can be used to align text and audio.",
class_=cls,
)
list_of_models.append(model)
# en-US, IPA-based
model = PretrainedModelInfo(
pretrained_model_name="tts_en_radtts_aligner_ipa",
location="https://api.ngc.nvidia.com/v2/models/nvidia/nemo/tts_en_radtts_aligner/versions/IPA_1.13.0/files/Aligner.nemo",
description="This model is trained on LJSpeech sampled at 22050Hz with and can be used to align text and audio.",
class_=cls,
)
list_of_models.append(model)
return list_of_models