subhankarg's picture
Upload folder using huggingface_hub
0558aa4 verified
# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import shutil
import tarfile
import tempfile
from pathlib import Path
from time import time
from typing import List
import tensorrt as trt
import torch
import yaml
from omegaconf import OmegaConf
from PIL import Image
from tensorrt_llm._common import check_max_num_tokens
from tensorrt_llm.builder import BuildConfig, Builder
from tensorrt_llm.commands.build import build as build_trtllm
from tensorrt_llm.mapping import Mapping
from tensorrt_llm.models import MLLaMAForCausalLM
from tensorrt_llm.plugin import PluginConfig
from transformers import AutoModel, AutoProcessor, MllamaForConditionalGeneration
from nemo.collections.multimodal.speech_llm.modules.perception_modules import AudioPerceptionModule
from nemo.core.classes.common import typecheck
from nemo.export.tensorrt_llm import TensorRTLLM
from nemo.export.trt_llm.nemo_ckpt_loader.nemo_file import load_nemo_model
from .converter import convert_mllama_nemo_to_hf
logger = trt.Logger(trt.Logger.INFO)
def build_trtllm_engine(
model_dir: str,
visual_checkpoint_path: str,
llm_checkpoint_path: str = None,
model_type: str = "neva",
llm_model_type: str = "llama",
tensor_parallelism_size: int = 1,
max_input_len: int = 256,
max_output_len: int = 256,
max_batch_size: int = 1,
max_multimodal_len: int = 1024,
dtype: str = "bfloat16",
use_lora_plugin: str = None,
lora_target_modules: List[str] = None,
max_lora_rank: int = 64,
lora_ckpt_list: List[str] = None,
):
"""Build TRTLLM engine by nemo export"""
trt_llm_exporter = TensorRTLLM(model_dir=model_dir, lora_ckpt_list=lora_ckpt_list, load_model=False)
trt_llm_exporter.export(
nemo_checkpoint_path=visual_checkpoint_path if llm_checkpoint_path is None else llm_checkpoint_path,
model_type=llm_model_type,
tensor_parallelism_size=tensor_parallelism_size,
max_input_len=max_input_len,
max_output_len=max_output_len,
max_seq_len=max_input_len + max_output_len,
max_batch_size=max_batch_size,
max_prompt_embedding_table_size=max_multimodal_len,
dtype=dtype,
load_model=False,
use_lora_plugin=use_lora_plugin,
lora_target_modules=lora_target_modules,
max_lora_rank=max_lora_rank,
use_mcore_path=False,
)
def build_mllama_trtllm_engine(
model_dir: str,
hf_model_path: str,
tensor_parallelism_size: int = 1,
max_input_len: int = 256,
max_output_len: int = 256,
max_batch_size: int = 1,
max_multimodal_len: int = 1024,
dtype: str = "bfloat16",
use_lora_plugin: str = None,
lora_target_modules: List[str] = None,
max_lora_rank: int = 64,
lora_ckpt_list: List[str] = None,
):
"""Build mllama TRTLLM engine from HF"""
if max_batch_size < 4:
print(
"TensorRT LLM may hit a runtime issue with batch size is smaller than 4 on some models." " Force set to 4"
)
max_batch_size = 4
plugin_config = PluginConfig()
plugin_config.gpt_attention_plugin = "auto"
plugin_config.gemm_plugin = "auto"
plugin_config.enable_paged_kv_cache(tokens_per_block=128)
plugin_config.remove_input_padding = True
plugin_config.use_paged_context_fmha = True
max_seq_len = max_input_len + max_output_len
max_num_tokens, opt_num_tokens = check_max_num_tokens(
max_num_tokens=None,
opt_num_tokens=None,
max_seq_len=max_seq_len,
max_batch_size=max_batch_size,
max_input_len=max_input_len,
max_beam_width=1,
remove_input_padding=True,
enable_context_fmha=plugin_config.context_fmha,
tokens_per_block=128,
multiple_profiles=False,
)
build_dict = {
'max_input_len': max_input_len,
'max_output_len': max_output_len,
'max_encoder_input_len': max_multimodal_len,
'max_batch_size': max_batch_size,
'max_beam_width': 1,
'max_seq_len': max_seq_len,
'max_num_tokens': max_num_tokens,
'opt_num_tokens': opt_num_tokens,
'strongly_typed': True,
'builder_opt': None,
}
build_config = BuildConfig.from_dict(build_dict, plugin_config=plugin_config)
for rank in range(tensor_parallelism_size):
mapping = Mapping(world_size=tensor_parallelism_size, rank=rank, tp_size=tensor_parallelism_size)
model = MLLaMAForCausalLM.from_hugging_face(
hf_model_path,
dtype,
mapping=mapping,
)
engine = build_trtllm(model, build_config)
engine.save(model_dir)
def export_visual_wrapper_onnx(
visual_wrapper, input, output_dir, input_names=['input'], dynamic_axes={'input': {0: 'batch'}}
):
"""Export visual wrapper to ONNX"""
logger.log(trt.Logger.INFO, "Exporting onnx")
os.makedirs(f'{output_dir}/onnx', exist_ok=True)
torch.onnx.export(
visual_wrapper,
input,
f'{output_dir}/onnx/visual_encoder.onnx',
opset_version=17,
input_names=input_names,
output_names=['output'],
dynamic_axes=dynamic_axes,
)
def export_perception_wrapper_onnx(
perception_wrapper,
input,
output_dir,
input_names=['processed_signal', 'processed_signal_length'],
output_names=['encoded', 'encoded_length'],
dynamic_axes={
'processed_signal': {0: 'batch', 2: 'time'},
'processed_signal_length': {0: 'batch'},
'encoded': {0: 'batch', 1: 'time'},
'encoded_length': {0: 'batch'},
},
):
"""Export perception wrapper to ONNX"""
logger.log(trt.Logger.INFO, "Exporting onnx")
os.makedirs(f'{output_dir}/onnx', exist_ok=True)
torch.onnx.export(
perception_wrapper,
input,
f'{output_dir}/onnx/perception_encoder.onnx',
opset_version=17,
input_names=input_names,
output_names=output_names,
dynamic_axes=dynamic_axes,
)
def build_trt_engine(
model_type,
input_sizes,
output_dir,
vision_max_batch_size,
dtype=torch.bfloat16,
image_size=None,
num_frames=None,
nemo_config=None,
part_name='visual_encoder',
):
"""Build TRT engine from onnx"""
onnx_file = '%s/onnx/%s.onnx' % (output_dir, part_name)
engine_file = '%s/%s.engine' % (output_dir, part_name)
config_file = '%s/%s' % (output_dir, "config.json")
nemo_config_file = '%s/%s' % (output_dir, "nemo_config.yaml")
with open(nemo_config_file, 'w') as f:
yaml.dump(nemo_config, f)
logger.log(trt.Logger.INFO, "Building TRT engine for %s" % part_name)
builder = trt.Builder(logger)
network = builder.create_network(1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
profile = builder.create_optimization_profile()
config_args = {"precision": str(dtype).split('.')[-1], "model_type": model_type}
if image_size is not None:
config_args["image_size"] = image_size
if num_frames is not None:
config_args["num_frames"] = num_frames
config_wrapper = Builder().create_builder_config(**config_args)
config = config_wrapper.trt_builder_config
parser = trt.OnnxParser(network, logger)
with open(onnx_file, 'rb') as model:
if not parser.parse(model.read(), os.path.abspath(onnx_file)):
logger.log(trt.Logger.ERROR, "Failed parsing %s" % onnx_file)
for error in range(parser.num_errors):
logger.log(trt.Logger.ERROR, parser.get_error(error))
logger.log(trt.Logger.INFO, "Succeeded parsing %s" % onnx_file)
# Delete onnx files since we don't need them now
shutil.rmtree(f'{output_dir}/onnx')
nBS = -1
nMinBS = 1
nOptBS = max(nMinBS, int(vision_max_batch_size / 2))
nMaxBS = vision_max_batch_size
inputT = network.get_input(0)
# input sizes can be a list of ints (e.g., [3, H, W]) when inputs are images,
# or a list of three int lists (e.g., [[1, 1, 2700], [1, 500, 2700], [1, 4096, 2700]]).
# or a list of three list of lists
# (e.g., [{input1: min_shape, input2: min_shape, }, \
# {input1: opt_shape, input2: opt_shape}, \
# {input1: max_shape, input2: max_shape}] )
assert isinstance(input_sizes, list), "input_sizes must be a list"
if isinstance(input_sizes[0], int):
logger.log(trt.Logger.INFO, f"Processed input sizes {input_sizes}")
inputT.shape = [nBS, *input_sizes]
min_size = opt_size = max_size = input_sizes
elif len(input_sizes) == 3 and isinstance(input_sizes[0], list):
min_size, opt_size, max_size = input_sizes
logger.log(trt.Logger.INFO, f"Processed min/opt/max input sizes {min_size}/{opt_size}/{max_size}")
elif len(input_sizes) == 3 and isinstance(input_sizes[0], dict):
logger.log(trt.Logger.INFO, f"Processed min/opt/max input sizes {input_sizes}")
else:
raise ValueError(f"invalid input sizes: {input_sizes}")
if isinstance(input_sizes[0], dict):
for i in range(network.num_inputs):
inputT = network.get_input(i)
input_name = inputT.name
min_size = input_sizes[0][input_name]
opt_size = input_sizes[1][input_name]
max_size = input_sizes[2][input_name]
logger.log(trt.Logger.INFO, f"{input_name} min/opt/max input sizes {min_size}/{opt_size}/{max_size}")
profile.set_shape(input_name, min_size, opt_size, max_size)
else:
profile.set_shape(inputT.name, [nMinBS, *min_size], [nOptBS, *opt_size], [nMaxBS, *max_size])
config.add_optimization_profile(profile)
t0 = time()
engine_string = builder.build_serialized_network(network, config)
t1 = time()
if engine_string is None:
raise RuntimeError("Failed building %s" % (engine_file))
else:
logger.log(trt.Logger.INFO, "Succeeded building %s in %d s" % (engine_file, t1 - t0))
with open(engine_file, 'wb') as f:
f.write(engine_string)
Builder.save_config(config_wrapper, config_file)
def build_neva_engine(
model_type: str,
model_dir: str,
visual_checkpoint_path: str,
vision_max_batch_size: int = 1,
):
"""Build neva visual engine"""
device = torch.device("cuda") if torch.cuda.is_available() else "cpu"
if os.path.isdir(visual_checkpoint_path):
# load untar checkpoint
config_path = os.path.join(visual_checkpoint_path, 'model_config.yaml')
with open(config_path, 'r') as f:
nemo_config = yaml.safe_load(f)
try:
weights_path = os.path.join(visual_checkpoint_path, 'model_weights.ckpt')
mp0_weights = torch.load(weights_path, map_location=device)
except FileNotFoundError:
weights_path = os.path.join(visual_checkpoint_path, 'mp_rank_00/model_weights.ckpt')
mp0_weights = torch.load(weights_path, map_location=device)
else:
# extract NeMo checkpoint
with tempfile.TemporaryDirectory() as temp:
temp_path = Path(temp)
mp0_weights, nemo_config, _ = load_nemo_model(visual_checkpoint_path, temp_path)
vision_config = nemo_config["mm_cfg"]["vision_encoder"]
class DownSampleBlock(torch.nn.Module):
# pylint: disable=C0115,C0116
def forward(self, x):
vit_embeds = x
h = w = int(vit_embeds.shape[1] ** 0.5)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
vit_embeds = self.flat_square(vit_embeds)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
return vit_embeds
def flat_square(self, x):
n, w, h, c = x.size()
if w % 2 == 1:
x = torch.cat([x, torch.zeros((n, 1, h, c), dtype=x.dtype).to(x.device)], dim=1).contiguous()
n, w, h, c = x.size()
if h % 2 == 1:
x = torch.cat([x, torch.zeros((n, w, 1, c), dtype=x.dtype).to(x.device)], dim=2).contiguous()
n, w, h, c = x.size()
x = x.view(n, w, int(h / 2), int(c * 2))
x = x.permute(0, 2, 1, 3).contiguous()
x = x.view(n, int(h / 2), int(w / 2), int(c * 4))
return x
class VisionEncoderWrapper(torch.nn.Module):
# pylint: disable=C0115,C0116
def __init__(self, encoder, connector):
super().__init__()
self.encoder = encoder
self.connector = connector
def forward(self, images):
vision_x = self.encoder(pixel_values=images, output_hidden_states=True)
vision_x = vision_x.hidden_states[-2]
vision_x = self.connector(vision_x)
return vision_x
encoder = AutoModel.from_pretrained(
vision_config["from_pretrained"],
torch_dtype=torch.bfloat16,
trust_remote_code=True,
attn_implementation='eager',
)
vision_encoder = encoder.vision_model
hf_config = encoder.config
dtype = hf_config.torch_dtype
# connector
if nemo_config["mm_cfg"]["mm_mlp_adapter_type"] == "mlp2x_gelu":
vision_connector = torch.nn.Sequential(
torch.nn.Linear(vision_config["hidden_size"], nemo_config["hidden_size"], bias=True),
torch.nn.GELU(),
torch.nn.Linear(nemo_config["hidden_size"], nemo_config["hidden_size"], bias=True),
).to(dtype=dtype)
key_prefix = "model.embedding.word_embeddings.adapter_layer.mm_projector_adapter.mm_projector"
for layer in range(0, 3, 2):
vision_connector[layer].load_state_dict(
{
'weight': mp0_weights[f"{key_prefix}.{layer}.weight"].to(dtype),
'bias': mp0_weights[f"{key_prefix}.{layer}.bias"].to(dtype),
}
)
elif nemo_config["mm_cfg"]["mm_mlp_adapter_type"] == "linear":
vision_connector = torch.nn.Linear(vision_config["hidden_size"], nemo_config["hidden_size"], bias=True)
key_prefix = "model.embedding.word_embeddings.adapter_layer.mm_projector_adapter.mm_projector"
vision_connector.load_state_dict(
{
'weight': mp0_weights[f"{key_prefix}.weight"].to(dtype),
'bias': mp0_weights[f"{key_prefix}.bias"].to(dtype),
}
)
elif nemo_config["mm_cfg"]["mm_mlp_adapter_type"] == "mlp_downsample":
vision_connector = torch.nn.Sequential(
DownSampleBlock(),
torch.nn.LayerNorm(vision_config["hidden_size"] * 4),
torch.nn.Linear(vision_config["hidden_size"] * 4, nemo_config["hidden_size"], bias=True),
torch.nn.GELU(),
torch.nn.Linear(nemo_config["hidden_size"], nemo_config["hidden_size"], bias=True),
).to(dtype=dtype)
key_prefix = "model.embedding.word_embeddings.adapter_layer.mm_projector_adapter.mm_projector"
for layer in [1, 2, 4]:
vision_connector[layer].load_state_dict(
{
'weight': mp0_weights[f"{key_prefix}.{layer}.weight"].to(dtype),
'bias': mp0_weights[f"{key_prefix}.{layer}.bias"].to(dtype),
}
)
else:
raise ValueError(f"Unknown projector type: {nemo_config['mm_cfg']['mm_mlp_adapter_type']}")
# export the whole wrapper
lita_num_frames = None
wrapper = VisionEncoderWrapper(vision_encoder, vision_connector).to(device, dtype)
if model_type == "lita" or model_type == "vila":
image_size = hf_config.image_size
if model_type == "lita":
lita_num_frames = nemo_config['mm_cfg']['lita']['sample_frames']
else:
image_size = hf_config.vision_config.image_size
if model_type == "vita":
lita_num_frames = nemo_config['mm_cfg']['lita']['sample_frames']
dummy_image = torch.empty(
1, 3, image_size, image_size, dtype=dtype, device=device
) # dummy image shape [B, C, H, W]
export_visual_wrapper_onnx(wrapper, dummy_image, model_dir)
build_trt_engine(
model_type,
[3, image_size, image_size],
model_dir,
vision_max_batch_size,
dtype,
image_size=image_size,
num_frames=lita_num_frames if model_type == "lita" or model_type == 'vita' else None,
nemo_config=nemo_config,
)
def build_video_neva_engine(
model_dir: str,
visual_checkpoint_path: str,
vision_max_batch_size: int = 1,
):
"""Build video neva visual engine"""
device = torch.device("cuda") if torch.cuda.is_available() else "cpu"
# extract NeMo checkpoint
with tarfile.open(visual_checkpoint_path) as tar:
nemo_config = yaml.safe_load(tar.extractfile("./model_config.yaml"))
try:
# trained without TP
mp0_weights = torch.load(tar.extractfile("./model_weights.ckpt"), map_location=device)
except KeyError:
# trained with TP
mp0_weights = torch.load(tar.extractfile("./mp_rank_00/model_weights.ckpt"), map_location=device)
vision_config = nemo_config["mm_cfg"]["vision_encoder"]
class VisionEncoderWrapper(torch.nn.Module):
# pylint: disable=C0115,C0116
def __init__(self, encoder, connector):
super().__init__()
self.encoder = encoder
self.connector = connector
def forward(self, images):
b, num_frames, c, h, w = images.shape
images = images.view(b * num_frames, c, h, w)
vision_x = self.encoder(pixel_values=images, output_hidden_states=True) # [(B num_frames), C, H, W]
vision_x = vision_x.hidden_states[-2]
vision_x = vision_x[:, 1:]
# reshape back to [B, num_frames, img_size, hidden_size]
vision_x = vision_x.view(b, num_frames, -1, vision_x.shape[-1])
vision_x = self.connector(vision_x)
return vision_x
encoder = AutoModel.from_pretrained(
vision_config["from_pretrained"],
torch_dtype=torch.bfloat16,
trust_remote_code=True,
attn_implementation='eager',
)
vision_encoder = encoder.vision_model
hf_config = encoder.config
dtype = hf_config.torch_dtype
# connector
assert nemo_config["mm_cfg"]["mm_mlp_adapter_type"] == "linear"
vision_connector = torch.nn.Linear(vision_config["hidden_size"], nemo_config["hidden_size"], bias=True)
key_prefix = "model.embedding.word_embeddings.adapter_layer.mm_projector_adapter.mm_projector"
vision_connector.load_state_dict(
{
'weight': mp0_weights[f"{key_prefix}.weight"].to(dtype),
'bias': mp0_weights[f"{key_prefix}.bias"].to(dtype),
}
)
# export the whole wrapper
wrapper = VisionEncoderWrapper(vision_encoder, vision_connector).to(device, dtype)
image_size = hf_config.vision_config.image_size
num_frames = nemo_config['data']['num_frames']
dummy_video = torch.empty(1, num_frames, 3, image_size, image_size, dtype=dtype, device=device) # dummy image
export_visual_wrapper_onnx(wrapper, dummy_video, model_dir)
build_trt_engine(
"video-neva",
[num_frames, 3, image_size, image_size], # [num_frames, 3, H, W]
model_dir,
vision_max_batch_size,
dtype,
image_size=image_size,
num_frames=num_frames,
)
def build_perception_engine(
model_dir: str,
perception_checkpoint_path: str,
model_type: str = "salm",
max_batch_size: int = 1,
):
"""Build perception engine"""
assert model_type == "salm", f"Invalid model type {model_type}"
def load_perception_model(perception_checkpoint_path):
weights = "model_weights.ckpt"
perception_state_dict = torch.load(os.path.join(perception_checkpoint_path, weights))
config = "model_config.yaml"
config = OmegaConf.load(os.path.join(perception_checkpoint_path, config))
perception = AudioPerceptionModule(cfg=config)
perception.load_state_dict(perception_state_dict)
perception.eval()
return perception
if not os.path.exists(model_dir):
os.makedirs(model_dir)
# load perception model
perception_model = load_perception_model(perception_checkpoint_path)
feature_extractor = perception_model.preprocessor
input_signal = torch.randn(1, 1000, dtype=torch.float32)
input_signal_length = torch.tensor([1000], dtype=torch.int32)
processed_signal, processed_signal_length = feature_extractor(
input_signal=input_signal, length=input_signal_length
)
processed_signal_length = processed_signal_length.to(torch.int32)
dump_path = model_dir + "/feature_extractor.ts" # dump the feature extractor as torchscript
feature_extractor.export(dump_path, (input_signal, input_signal_length))
class PerceptionWrapper(torch.nn.Module):
# pylint: disable=C0115,C0116
def __init__(self, encoder, modality_adapter, proj):
super().__init__()
self.encoder = encoder
self.modality_adapter = modality_adapter
self.proj = proj
@typecheck.disable_checks()
def forward(self, processed_signal, processed_signal_length):
encoded, encoded_len = self.encoder(audio_signal=processed_signal, length=processed_signal_length)
encoded, encoded_len = self.modality_adapter(audio_signal=encoded, length=encoded_len)
# b, c, t -> b, t, c
encoded = self.proj(encoded.transpose(1, 2))
encoded_len = encoded_len.to(torch.int32)
return encoded, encoded_len
perception = PerceptionWrapper(perception_model.encoder, perception_model.modality_adapter, perception_model.proj)
export_perception_wrapper_onnx(perception, (processed_signal, processed_signal_length), model_dir)
# export the onnx perception model to tensorrt engine
# 512 -> 5.12 sec, 3072 -> 30.72 sec
opt_batch_size = max(1, max_batch_size // 2)
shapes = [
{"processed_signal": [1, 80, 64], "processed_signal_length": [1]},
{"processed_signal": [opt_batch_size, 80, 512], "processed_signal_length": [opt_batch_size]},
{"processed_signal": [max_batch_size, 80, 3072], "processed_signal_length": [max_batch_size]},
]
build_trt_engine(
model_type,
shapes,
model_dir,
max_batch_size,
dtype=torch.float16,
nemo_config=None,
part_name='perception_encoder',
)
def build_mllama_visual_engine(
model_dir: str,
hf_model_path: str,
processor_name: str = "meta-llama/Llama-3.2-11B-Vision-Instruct",
vision_max_batch_size: int = 1,
):
"""Build mllama visual engine"""
hf_model = MllamaForConditionalGeneration.from_pretrained(hf_model_path, torch_dtype="auto", device_map="auto")
model_dtype = hf_model.dtype
class MLLaMAVisionWrapper(torch.nn.Module):
# pylint: disable=C0115,C0116
def __init__(self, vision_model, output_proj):
super().__init__()
self.vision_model = vision_model
self.output_proj = output_proj
def forward(self, pixel_values, aspect_ratio_ids, aspect_ratio_mask):
out = self.vision_model(pixel_values, aspect_ratio_ids, aspect_ratio_mask).last_hidden_state
out = self.output_proj(out)
return out
wrapper = MLLaMAVisionWrapper(hf_model.vision_model, hf_model.multi_modal_projector)
processor = AutoProcessor.from_pretrained(processor_name)
image = Image.new('RGB', [2048, 2688])
inputs = processor(images=image, return_tensors="pt").to(model_dtype)
export_visual_wrapper_onnx(
wrapper,
tuple([value for _, value in inputs.items()]),
model_dir,
input_names=[key for key in inputs],
dynamic_axes={key: {0: "batch"} for key in inputs},
)
shapes = [{k: list(v.shape) for k, v in inputs.items()}] * 3
shapes[2] = shapes[0].copy()
for k, v in shapes[2].items():
shapes[2][k] = [vision_max_batch_size] + v[1:]
build_trt_engine("mllama", shapes, model_dir, vision_max_batch_size, model_dtype)
def build_visual_engine(
model_dir: str,
visual_checkpoint_path: str,
model_type: str = "neva",
vision_max_batch_size: int = 1,
):
"""Build visual engine"""
model_list = ['neva', 'lita', 'vila', 'vita']
if model_type in model_list:
build_neva_engine(model_type, model_dir, visual_checkpoint_path, vision_max_batch_size)
elif model_type == "video-neva":
build_video_neva_engine(model_dir, visual_checkpoint_path, vision_max_batch_size)
else:
raise RuntimeError(f"Invalid model type {model_type}")
def extract_lora_ckpt(
lora_ckpt: str,
output_dir: str,
):
"""Extrace lora from checkpoint"""
if os.path.exists(os.path.join(lora_ckpt, "model_weights.ckpt")):
model_weight = torch.load(os.path.join(lora_ckpt, "model_weights.ckpt"))
elif os.path.exists(os.path.join(lora_ckpt, "mp_rank_00", "model_weights.ckpt")):
model_weight = torch.load(os.path.join(lora_ckpt, "mp_rank_00", "model_weights.ckpt"))
else:
raise RuntimeError("Imcompatible lora checkpoint format")
model_config = os.path.join(lora_ckpt, "model_config.yaml")
if not os.path.exists(model_config):
raise RuntimeError("Imcompatible lora checkpoint format")
llm_lora_weight = {}
for k, v in model_weight.items():
if "mm_projector" not in k:
llm_lora_weight[k] = v
llm_lora_path = os.path.join(output_dir, "llm_lora.nemo")
with tempfile.TemporaryDirectory() as tmp_dir:
llm_weight_path = os.path.join(tmp_dir, "model_weights.ckpt")
torch.save(llm_lora_weight, llm_weight_path)
with tarfile.open(llm_lora_path, "w") as tar:
tar.add(llm_weight_path, arcname="model_weights.ckpt")
tar.add(model_config, arcname="model_config.yaml")
return llm_lora_path
def build_mllama_engine(
model_dir: str,
checkpoint_path: str,
processor_name: str = "meta-llama/Llama-3.2-11B-Vision-Instruct",
vision_max_batch_size: int = 1,
tensor_parallelism_size: int = 1,
max_input_len: int = 256,
max_output_len: int = 256,
max_batch_size: int = 1,
max_multimodal_len: int = 1024,
dtype: str = "bfloat16",
use_lora_plugin: str = None,
lora_target_modules: List[str] = None,
max_lora_rank: int = 64,
lora_ckpt_list: List[str] = None,
):
"""Build mllama engine"""
new_state_dict, config = convert_mllama_nemo_to_hf(checkpoint_path, processor_name)
hf_model = MllamaForConditionalGeneration(config)
hf_model = hf_model.to(torch.bfloat16)
hf_model.load_state_dict(new_state_dict)
with tempfile.TemporaryDirectory() as tmp_dir:
hf_model_path = os.path.join(tmp_dir, "hf_checkpoint")
hf_model.save_pretrained(hf_model_path)
del hf_model, new_state_dict
build_mllama_visual_engine(
os.path.join(model_dir, "visual_engine"),
hf_model_path,
vision_max_batch_size=vision_max_batch_size,
)
build_mllama_trtllm_engine(
os.path.join(model_dir, "llm_engine"),
hf_model_path,
tensor_parallelism_size,
max_input_len,
max_output_len,
max_batch_size,
max_multimodal_len,
dtype,
)