Spaces:
Runtime error
Runtime error
| # Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ | |
| Example: | |
| torchrun --nproc_per_node=8 scripts/vlm/llava_next_finetune.py \ | |
| --devices=8 --tp=4 --data_type=mock | |
| torchrun --nproc_per_node=8 scripts/vlm/llava_next_finetune.py \ | |
| --devices=8 --tp=4 --data_type=energon --data_path='' \ | |
| --language_model_path=/root/.cache/nemo/models/lmsys/vicuna-7b-v1.5 | |
| """ | |
| import argparse | |
| import torch | |
| from lightning.pytorch.loggers import WandbLogger | |
| from megatron.core.optimizer import OptimizerConfig | |
| from nemo import lightning as nl | |
| from nemo.collections import llm, vlm | |
| from nemo.lightning.pytorch.optim import CosineAnnealingScheduler | |
| from nemo.lightning.pytorch.optim.megatron import MegatronOptimizerModule | |
| from nemo.utils.exp_manager import TimingCallback | |
| def main(args): | |
| # pylint: disable=C0115,C0116 | |
| # Global and micro batch sizes | |
| gbs = args.gbs | |
| mbs = args.mbs | |
| max_steps = args.max_steps | |
| decoder_seq_length = 4096 | |
| if args.data_type == "energon": | |
| from transformers import AutoProcessor | |
| from nemo.collections.common.tokenizers.huggingface.auto_tokenizer import AutoTokenizer | |
| from nemo.collections.multimodal.data.energon import EnergonMultiModalDataModule | |
| from nemo.collections.multimodal.data.energon.config import MultiModalSampleConfig | |
| from nemo.collections.vlm import LlavaNextTaskEncoder | |
| data_path = args.data_path | |
| model_id = "llava-hf/llava-v1.6-vicuna-7b-hf" | |
| processor = AutoProcessor.from_pretrained(model_id) | |
| tokenizer = AutoTokenizer(model_id) | |
| multimodal_sample_config = MultiModalSampleConfig() | |
| task_encoder = LlavaNextTaskEncoder( | |
| tokenizer=tokenizer.tokenizer, | |
| image_processor=processor.image_processor, | |
| multimodal_sample_config=multimodal_sample_config, | |
| packed_sequence=args.use_packed_sequence, | |
| packed_sequence_size=decoder_seq_length, | |
| ) | |
| data = EnergonMultiModalDataModule( | |
| path=data_path, | |
| tokenizer=tokenizer, | |
| image_processor=processor.image_processor, | |
| num_workers=32, | |
| micro_batch_size=mbs, | |
| global_batch_size=gbs, | |
| multimodal_sample_config=multimodal_sample_config, | |
| task_encoder=task_encoder, | |
| packing_buffer_size=200 if args.use_packed_sequence else None, | |
| virtual_epoch_length=1000, | |
| ) | |
| elif args.data_type == "mock": | |
| data = vlm.LlavaNextMockDataModule( | |
| seq_length=decoder_seq_length, | |
| global_batch_size=gbs, | |
| micro_batch_size=mbs, | |
| tokenizer=None, | |
| image_processor=None, | |
| num_workers=4, | |
| ) | |
| else: | |
| raise ValueError(f"Data type {args.data_type} not supported") | |
| # Submodules configurations | |
| language_transformer_config = llm.Llama2Config7B( | |
| seq_length=decoder_seq_length, | |
| ) | |
| vision_transformer_config = vlm.HFCLIPVisionConfig(pretrained_model_name_or_path=args.vision_encoder_model_path) | |
| vision_projection_config = vlm.MultimodalProjectorConfig( | |
| projector_type=args.projector_type, | |
| input_size=vision_transformer_config.hidden_size, | |
| hidden_size=language_transformer_config.hidden_size, | |
| ffn_hidden_size=language_transformer_config.hidden_size, | |
| ) | |
| # Llava Next model configuration | |
| llava_next_config = vlm.LlavaNextConfig( | |
| language_transformer_config=language_transformer_config, | |
| vision_transformer_config=vision_transformer_config, | |
| vision_projection_config=vision_projection_config, | |
| language_model_from_pretrained=args.language_model_path, | |
| freeze_language_model=False, | |
| freeze_vision_model=True, | |
| ) | |
| model = vlm.LlavaNextModel(llava_next_config, tokenizer=data.tokenizer) | |
| # Training strategy setup | |
| strategy = nl.MegatronStrategy( | |
| tensor_model_parallel_size=args.tp_size, | |
| pipeline_model_parallel_size=args.pp_size, | |
| encoder_pipeline_model_parallel_size=args.encoder_pp_size, | |
| context_parallel_size=args.cp_size, | |
| pipeline_dtype=torch.bfloat16, | |
| sequence_parallel=False, # True if args.tp_size > 1 else False, | |
| ) | |
| # Checkpoint callback setup | |
| checkpoint_callback = nl.ModelCheckpoint( | |
| save_last=True, | |
| monitor="reduced_train_loss", | |
| save_top_k=2, | |
| every_n_train_steps=1000, | |
| dirpath=args.log_dir, | |
| ) | |
| # Trainer setup | |
| trainer = nl.Trainer( | |
| num_nodes=args.num_nodes, | |
| devices=args.devices, | |
| max_steps=max_steps, | |
| accelerator="gpu", | |
| strategy=strategy, | |
| plugins=nl.MegatronMixedPrecision(precision="bf16-mixed"), | |
| callbacks=[checkpoint_callback, TimingCallback()], | |
| val_check_interval=500, | |
| limit_val_batches=gbs, | |
| log_every_n_steps=1, | |
| num_sanity_val_steps=0, | |
| ) | |
| # Logger setup | |
| nemo_logger = nl.NeMoLogger( | |
| log_dir=args.log_dir, | |
| name=args.name, | |
| wandb=WandbLogger(project=args.wandb_project, name=args.name) if args.wandb_project is not None else None, | |
| ) | |
| # Auto resume setup | |
| resume = nl.AutoResume( | |
| resume_if_exists=True, | |
| resume_ignore_no_checkpoint=True, | |
| resume_from_directory=args.log_dir, | |
| restore_config=nl.RestoreConfig(path=args.restore_path) if args.restore_path is not None else None, | |
| ) | |
| # Optimizer and scheduler setup | |
| opt_config = OptimizerConfig( | |
| optimizer='adam', | |
| lr=args.lr, | |
| adam_beta1=0.9, | |
| adam_beta2=0.95, | |
| use_distributed_optimizer=True, | |
| bf16=True, | |
| ) | |
| sched = CosineAnnealingScheduler( | |
| max_steps=trainer.max_steps, | |
| warmup_steps=150, | |
| constant_steps=0, | |
| min_lr=2.0e-07, | |
| ) | |
| opt = MegatronOptimizerModule(opt_config, sched) | |
| # PEFT setup | |
| if args.peft == 'lora': | |
| peft = vlm.peft.LoRA( | |
| target_modules=[ | |
| "linear_qkv", | |
| "linear_proj", | |
| "linear_fc1", | |
| "linear_fc2", | |
| ] | |
| ) | |
| else: | |
| peft = None | |
| llm.finetune( | |
| model=model, | |
| data=data, | |
| trainer=trainer, | |
| peft=peft, | |
| log=nemo_logger, | |
| optim=opt, | |
| resume=resume, | |
| ) | |
| if __name__ == "__main__": | |
| parser = argparse.ArgumentParser(description="Llava Next Finetuning Script") | |
| # Argument parsing | |
| parser.add_argument("--data_type", type=str, required=False, default="mock", help="mock | energon") | |
| parser.add_argument("--data_path", type=str, required=False, default=None, help="Path to the dataset JSON file") | |
| parser.add_argument( | |
| "--log_dir", type=str, required=False, default="/results", help="Directory for logging and checkpoints" | |
| ) | |
| parser.add_argument( | |
| "--language_model_path", type=str, required=False, default=None, help="Path to the pretrained language model" | |
| ) | |
| parser.add_argument( | |
| "--vision_encoder_model_path", | |
| type=str, | |
| required=False, | |
| default="openai/clip-vit-large-patch14-336", | |
| help="Path to the pretrained vision encoder model", | |
| ) | |
| parser.add_argument( | |
| "--restore_path", type=str, required=False, default=None, help="Path to restore model from checkpoint" | |
| ) | |
| parser.add_argument("--devices", type=int, required=False, default=1) | |
| parser.add_argument("--num_nodes", type=int, required=False, default=1) | |
| parser.add_argument("--max_steps", type=int, required=False, default=5190) | |
| parser.add_argument("--tp_size", type=int, required=False, default=4) | |
| parser.add_argument("--pp_size", type=int, required=False, default=1) | |
| parser.add_argument("--cp_size", type=int, required=False, default=1) | |
| parser.add_argument("--encoder_pp_size", type=int, required=False, default=0) | |
| parser.add_argument("--projector_type", type=str, required=False, default="mlp2x_gelu") | |
| parser.add_argument("--name", type=str, required=False, default="llava_next_finetune") | |
| parser.add_argument("--peft", type=str, default='none', help="none | lora") | |
| parser.add_argument("--wandb_project", type=str, required=False, default=None) | |
| parser.add_argument("--gbs", type=int, required=False, default=64, help="Global batch size") | |
| parser.add_argument("--mbs", type=int, required=False, default=4, help="Micro batch size") | |
| parser.add_argument("--lr", type=float, required=False, default=2.0e-05, help="Learning rate") | |
| parser.add_argument("--use_packed_sequence", action="store_true") | |
| args = parser.parse_args() | |
| main(args) | |