bart-large-aeslc-rouge-3-loss-differentiable-100-cnt-supervised
This model is a fine-tuned version of facebook/bart-large on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 5.9278
- Rouge1: 0.31
- Rouge2: 0.1577
- Rougel: 0.3039
- Rougelsum: 0.3036
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 20
Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|---|---|---|---|---|---|---|---|
| 4.6006 | 1.56 | 20 | 5.0770 | 0.2559 | 0.1268 | 0.253 | 0.2529 |
| 2.9074 | 3.08 | 40 | 5.1504 | 0.2786 | 0.1408 | 0.2753 | 0.2752 |
| 2.2547 | 4.64 | 60 | 5.2866 | 0.2945 | 0.1433 | 0.289 | 0.2893 |
| 3.2227 | 6.16 | 80 | 5.9278 | 0.31 | 0.1577 | 0.3039 | 0.3036 |
| 1.7171 | 7.72 | 100 | 5.9767 | 0.3046 | 0.1471 | 0.2977 | 0.2978 |
| 1.5884 | 9.24 | 120 | 6.1892 | 0.2943 | 0.1416 | 0.2893 | 0.289 |
| 1.3678 | 10.8 | 140 | 6.4147 | 0.2908 | 0.1432 | 0.2844 | 0.2845 |
| 1.181 | 12.32 | 160 | 6.4444 | 0.2971 | 0.1476 | 0.2894 | 0.2892 |
| 1.0218 | 13.88 | 180 | 6.7040 | 0.2911 | 0.1423 | 0.2842 | 0.2835 |
Framework versions
- Transformers 4.57.3
- Pytorch 2.9.1+cu128
- Datasets 3.6.0
- Tokenizers 0.22.1
- Downloads last month
- 9
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for taiypeo/bart-large-aeslc-rouge-3-loss-differentiable-100-cnt-supervised
Base model
facebook/bart-large