splade-cocondenser trained on GooAQ
This is a SPLADE Sparse Encoder model finetuned from Luyu/co-condenser-marco on the gooaq dataset using the sentence-transformers library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
Model Details
Model Description
- Model Type: SPLADE Sparse Encoder
- Base model: Luyu/co-condenser-marco
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 30522 dimensions
- Similarity Function: Dot Product
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SparseEncoder(
(0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM
(1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SparseEncoder
model = SparseEncoder("tomaarsen/splade-cocondenser-gooaq")
sentences = [
'what is the difference between 18 and 20 inch tires?',
'The only real difference is a 20" rim would be more likely to be damaged, as you pointed out. Beyond looks, there is zero benefit for the 20" rim. Also, just the availability of tires will likely be much more limited for the larger rim. ... Tire selection is better for 18" wheels than 20" wheels.',
'So extracurricular activities are just activities that you do outside of class. The Common App says that extracurricular activities "include arts, athletics, clubs, employment, personal commitments, and other pursuits."',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Sparse Information Retrieval
- Datasets:
NanoClimateFEVER, NanoDBPedia, NanoFEVER, NanoFiQA2018, NanoHotpotQA, NanoMSMARCO, NanoNFCorpus, NanoNQ, NanoQuoraRetrieval, NanoSCIDOCS, NanoArguAna, NanoSciFact and NanoTouche2020
- Evaluated with
SparseInformationRetrievalEvaluator
| Metric |
NanoClimateFEVER |
NanoDBPedia |
NanoFEVER |
NanoFiQA2018 |
NanoHotpotQA |
NanoMSMARCO |
NanoNFCorpus |
NanoNQ |
NanoQuoraRetrieval |
NanoSCIDOCS |
NanoArguAna |
NanoSciFact |
NanoTouche2020 |
| dot_accuracy@1 |
0.18 |
0.6 |
0.74 |
0.34 |
0.72 |
0.24 |
0.42 |
0.44 |
0.8 |
0.36 |
0.14 |
0.48 |
0.6327 |
| dot_accuracy@3 |
0.38 |
0.78 |
0.88 |
0.46 |
0.86 |
0.52 |
0.6 |
0.6 |
0.94 |
0.62 |
0.5 |
0.68 |
0.7959 |
| dot_accuracy@5 |
0.52 |
0.84 |
0.94 |
0.52 |
0.9 |
0.62 |
0.66 |
0.68 |
0.98 |
0.7 |
0.6 |
0.7 |
0.8367 |
| dot_accuracy@10 |
0.62 |
0.92 |
0.94 |
0.62 |
0.94 |
0.74 |
0.76 |
0.82 |
1.0 |
0.76 |
0.74 |
0.76 |
0.9592 |
| dot_precision@1 |
0.18 |
0.6 |
0.74 |
0.34 |
0.72 |
0.24 |
0.42 |
0.44 |
0.8 |
0.36 |
0.14 |
0.48 |
0.6327 |
| dot_precision@3 |
0.14 |
0.52 |
0.2933 |
0.2067 |
0.4267 |
0.1733 |
0.3467 |
0.2 |
0.38 |
0.2667 |
0.1667 |
0.2333 |
0.5374 |
| dot_precision@5 |
0.12 |
0.512 |
0.2 |
0.152 |
0.28 |
0.124 |
0.328 |
0.144 |
0.248 |
0.224 |
0.12 |
0.148 |
0.502 |
| dot_precision@10 |
0.08 |
0.452 |
0.102 |
0.096 |
0.15 |
0.074 |
0.282 |
0.09 |
0.134 |
0.166 |
0.074 |
0.086 |
0.4327 |
| dot_recall@1 |
0.115 |
0.0552 |
0.7167 |
0.1856 |
0.36 |
0.24 |
0.0467 |
0.42 |
0.6973 |
0.074 |
0.14 |
0.455 |
0.0437 |
| dot_recall@3 |
0.1983 |
0.1102 |
0.8267 |
0.3138 |
0.64 |
0.52 |
0.0979 |
0.56 |
0.8947 |
0.1667 |
0.5 |
0.65 |
0.1111 |
| dot_recall@5 |
0.2683 |
0.1586 |
0.9167 |
0.3521 |
0.7 |
0.62 |
0.12 |
0.65 |
0.946 |
0.2317 |
0.6 |
0.68 |
0.1725 |
| dot_recall@10 |
0.3323 |
0.2872 |
0.9233 |
0.4247 |
0.75 |
0.74 |
0.1616 |
0.79 |
0.99 |
0.3427 |
0.74 |
0.76 |
0.2839 |
| dot_ndcg@10 |
0.2594 |
0.5254 |
0.8284 |
0.3557 |
0.6951 |
0.4858 |
0.3519 |
0.5968 |
0.8923 |
0.3212 |
0.439 |
0.6144 |
0.4877 |
| dot_mrr@10 |
0.3062 |
0.6989 |
0.8097 |
0.4182 |
0.7948 |
0.4052 |
0.5292 |
0.545 |
0.8785 |
0.5074 |
0.3432 |
0.5732 |
0.7339 |
| dot_map@100 |
0.2072 |
0.394 |
0.7934 |
0.306 |
0.6244 |
0.4218 |
0.168 |
0.5361 |
0.8493 |
0.2368 |
0.3522 |
0.5697 |
0.359 |
Sparse Nano BEIR
- Dataset:
NanoBEIR_mean
- Evaluated with
SparseNanoBEIREvaluator with these parameters:{
"dataset_names": [
"climatefever",
"dbpedia",
"fever",
"fiqa2018",
"hotpotqa",
"msmarco",
"nfcorpus",
"nq",
"quoraretrieval",
"scidocs",
"arguana",
"scifact",
"touche2020"
]
}
| Metric |
Value |
| dot_accuracy@1 |
0.4687 |
| dot_accuracy@3 |
0.6628 |
| dot_accuracy@5 |
0.7305 |
| dot_accuracy@10 |
0.8138 |
| dot_precision@1 |
0.4687 |
| dot_precision@3 |
0.2993 |
| dot_precision@5 |
0.2386 |
| dot_precision@10 |
0.1707 |
| dot_recall@1 |
0.273 |
| dot_recall@3 |
0.4299 |
| dot_recall@5 |
0.4935 |
| dot_recall@10 |
0.5789 |
| dot_ndcg@10 |
0.5272 |
| dot_mrr@10 |
0.5803 |
| dot_map@100 |
0.4475 |
Training Details
Training Dataset
gooaq
- Dataset: gooaq at b089f72
- Size: 3,011,496 training samples
- Columns:
question and answer
- Approximate statistics based on the first 1000 samples:
|
question |
answer |
| type |
string |
string |
| details |
- min: 8 tokens
- mean: 11.87 tokens
- max: 23 tokens
|
- min: 14 tokens
- mean: 60.09 tokens
- max: 201 tokens
|
- Samples:
| question |
answer |
what is the difference between clay and mud mask? |
The main difference between the two is that mud is a skin-healing agent, while clay is a cosmetic, drying agent. Clay masks are most useful for someone who has oily skin and is prone to breakouts of acne and blemishes. |
myki how much on card? |
A full fare myki card costs $6 and a concession, seniors or child myki costs $3. For more information about how to use your myki, visit ptv.vic.gov.au or call 1800 800 007. |
how to find out if someone blocked your phone number on iphone? |
If you get a notification like "Message Not Delivered" or you get no notification at all, that's a sign of a potential block. Next, you could try calling the person. If the call goes right to voicemail or rings once (or a half ring) then goes to voicemail, that's further evidence you may have been blocked. |
- Loss:
SpladeLoss with these parameters:{'loss': SparseMultipleNegativesRankingLoss(
(model): SparseEncoder(
(0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM
(1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': None})
)
(cross_entropy_loss): CrossEntropyLoss()
), 'lambda_corpus': 3e-05, 'lambda_query': 5e-05, 'corpus_regularizer': FlopsLoss(
(model): SparseEncoder(
(0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM
(1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': None})
)
), 'query_regularizer': FlopsLoss(
(model): SparseEncoder(
(0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM
(1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': None})
)
)}
Evaluation Dataset
gooaq
- Dataset: gooaq at b089f72
- Size: 1,000 evaluation samples
- Columns:
question and answer
- Approximate statistics based on the first 1000 samples:
|
question |
answer |
| type |
string |
string |
| details |
- min: 8 tokens
- mean: 11.88 tokens
- max: 22 tokens
|
- min: 14 tokens
- mean: 61.03 tokens
- max: 127 tokens
|
- Samples:
| question |
answer |
how do i program my directv remote with my tv? |
['Press MENU on your remote.', 'Select Settings & Help > Settings > Remote Control > Program Remote.', 'Choose the device (TV, audio, DVD) you wish to program. ... ', 'Follow the on-screen prompts to complete programming.'] |
are rodrigues fruit bats nocturnal? |
Before its numbers were threatened by habitat destruction, storms, and hunting, some of those groups could number 500 or more members. Sunrise, sunset. Rodrigues fruit bats are most active at dawn, at dusk, and at night. |
why does your heart rate increase during exercise bbc bitesize? |
During exercise there is an increase in physical activity and muscle cells respire more than they do when the body is at rest. The heart rate increases during exercise. The rate and depth of breathing increases - this makes sure that more oxygen is absorbed into the blood, and more carbon dioxide is removed from it. |
- Loss:
SpladeLoss with these parameters:{'loss': SparseMultipleNegativesRankingLoss(
(model): SparseEncoder(
(0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM
(1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': None})
)
(cross_entropy_loss): CrossEntropyLoss()
), 'lambda_corpus': 3e-05, 'lambda_query': 5e-05, 'corpus_regularizer': FlopsLoss(
(model): SparseEncoder(
(0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM
(1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': None})
)
), 'query_regularizer': FlopsLoss(
(model): SparseEncoder(
(0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False}) with MLMTransformer model: BertForMaskedLM
(1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': None})
)
)}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: steps
per_device_train_batch_size: 16
per_device_eval_batch_size: 16
learning_rate: 2e-05
num_train_epochs: 1
bf16: True
load_best_model_at_end: True
batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: False
do_predict: False
eval_strategy: steps
prediction_loss_only: True
per_device_train_batch_size: 16
per_device_eval_batch_size: 16
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 1
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 2e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 1
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.0
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: True
fp16: False
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: False
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: True
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: False
resume_from_checkpoint: None
hub_model_id: None
hub_strategy: every_save
hub_private_repo: None
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
include_for_metrics: []
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
use_liger_kernel: False
eval_use_gather_object: False
average_tokens_across_devices: False
prompts: None
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
Training Logs
| Epoch |
Step |
Training Loss |
Validation Loss |
NanoClimateFEVER_dot_ndcg@10 |
NanoDBPedia_dot_ndcg@10 |
NanoFEVER_dot_ndcg@10 |
NanoFiQA2018_dot_ndcg@10 |
NanoHotpotQA_dot_ndcg@10 |
NanoMSMARCO_dot_ndcg@10 |
NanoNFCorpus_dot_ndcg@10 |
NanoNQ_dot_ndcg@10 |
NanoQuoraRetrieval_dot_ndcg@10 |
NanoSCIDOCS_dot_ndcg@10 |
NanoArguAna_dot_ndcg@10 |
NanoSciFact_dot_ndcg@10 |
NanoTouche2020_dot_ndcg@10 |
NanoBEIR_mean_dot_ndcg@10 |
| 0.0213 |
4000 |
0.3968 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.0425 |
8000 |
0.054 |
0.0224 |
0.2847 |
0.5628 |
0.8027 |
0.3260 |
0.6627 |
0.5252 |
0.3028 |
0.5467 |
0.7301 |
0.2563 |
0.3150 |
0.5072 |
0.4771 |
0.4846 |
| 0.0638 |
12000 |
0.0468 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.0850 |
16000 |
0.0394 |
0.0137 |
0.1908 |
0.5269 |
0.7778 |
0.3464 |
0.6510 |
0.5374 |
0.3086 |
0.5719 |
0.7901 |
0.2900 |
0.3661 |
0.5473 |
0.4839 |
0.4914 |
| 0.1063 |
20000 |
0.035 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.1275 |
24000 |
0.0402 |
0.0142 |
0.1971 |
0.5098 |
0.6363 |
0.3715 |
0.6979 |
0.5442 |
0.3555 |
0.5223 |
0.7881 |
0.3008 |
0.3401 |
0.5963 |
0.4795 |
0.4877 |
| 0.1488 |
28000 |
0.0286 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.1700 |
32000 |
0.0289 |
0.0209 |
0.2097 |
0.5169 |
0.7501 |
0.3622 |
0.6629 |
0.5151 |
0.3239 |
0.5322 |
0.8189 |
0.3121 |
0.3045 |
0.5318 |
0.4748 |
0.4858 |
| 0.1913 |
36000 |
0.0241 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.2125 |
40000 |
0.0243 |
0.0166 |
0.2150 |
0.4990 |
0.6614 |
0.3184 |
0.6564 |
0.5499 |
0.2924 |
0.5506 |
0.8177 |
0.2755 |
0.3214 |
0.5292 |
0.4605 |
0.4729 |
| 0.2338 |
44000 |
0.021 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.2550 |
48000 |
0.0205 |
0.0045 |
0.2210 |
0.5328 |
0.5836 |
0.3180 |
0.6990 |
0.5365 |
0.2860 |
0.5529 |
0.8704 |
0.2860 |
0.4025 |
0.6107 |
0.4314 |
0.4870 |
| 0.2763 |
52000 |
0.0181 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.2975 |
56000 |
0.018 |
0.0129 |
0.2131 |
0.5543 |
0.7181 |
0.3645 |
0.6852 |
0.5199 |
0.3232 |
0.5970 |
0.8914 |
0.2980 |
0.4618 |
0.5037 |
0.4592 |
0.5069 |
| 0.3188 |
60000 |
0.0176 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.3400 |
64000 |
0.018 |
0.0141 |
0.2607 |
0.4594 |
0.7357 |
0.3597 |
0.6538 |
0.5082 |
0.3070 |
0.4944 |
0.8569 |
0.3252 |
0.4125 |
0.5243 |
0.4489 |
0.4882 |
| 0.3613 |
68000 |
0.016 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.3825 |
72000 |
0.0143 |
0.0082 |
0.2737 |
0.5459 |
0.7570 |
0.3845 |
0.6806 |
0.5035 |
0.3408 |
0.5338 |
0.8608 |
0.2888 |
0.3096 |
0.6163 |
0.4709 |
0.5051 |
| 0.4038 |
76000 |
0.0148 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.4250 |
80000 |
0.0135 |
0.0211 |
0.2267 |
0.4964 |
0.7829 |
0.3579 |
0.6758 |
0.4954 |
0.3195 |
0.5164 |
0.8698 |
0.2745 |
0.3012 |
0.6260 |
0.4426 |
0.4912 |
| 0.4463 |
84000 |
0.0132 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.4675 |
88000 |
0.012 |
0.0270 |
0.2442 |
0.5741 |
0.8005 |
0.3372 |
0.7019 |
0.5064 |
0.3109 |
0.6238 |
0.8988 |
0.2805 |
0.3875 |
0.5590 |
0.4396 |
0.5126 |
| 0.4888 |
92000 |
0.0126 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.5100 |
96000 |
0.0127 |
0.0201 |
0.2948 |
0.5384 |
0.7822 |
0.3800 |
0.6947 |
0.5237 |
0.3674 |
0.5646 |
0.8843 |
0.2873 |
0.3825 |
0.5898 |
0.4812 |
0.5208 |
| 0.5313 |
100000 |
0.0113 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.5525 |
104000 |
0.0112 |
0.0057 |
0.2318 |
0.5091 |
0.8362 |
0.3649 |
0.6829 |
0.4695 |
0.3442 |
0.5403 |
0.8920 |
0.2696 |
0.3787 |
0.6109 |
0.4384 |
0.5053 |
| 0.5738 |
108000 |
0.0094 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.5951 |
112000 |
0.0095 |
0.0101 |
0.2325 |
0.5184 |
0.7349 |
0.3672 |
0.6673 |
0.4474 |
0.3196 |
0.5647 |
0.8866 |
0.2938 |
0.3345 |
0.5744 |
0.4609 |
0.4925 |
| 0.6163 |
116000 |
0.0096 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.6376 |
120000 |
0.01 |
0.0084 |
0.2362 |
0.4989 |
0.8299 |
0.3595 |
0.6820 |
0.5200 |
0.3286 |
0.6138 |
0.8959 |
0.3088 |
0.4139 |
0.5808 |
0.4833 |
0.5194 |
| 0.6588 |
124000 |
0.0103 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.6801 |
128000 |
0.0082 |
0.0115 |
0.2402 |
0.5127 |
0.7943 |
0.3828 |
0.6796 |
0.4925 |
0.3337 |
0.5848 |
0.8956 |
0.2880 |
0.3962 |
0.5981 |
0.4634 |
0.5124 |
| 0.7013 |
132000 |
0.0085 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.7226 |
136000 |
0.0087 |
0.0125 |
0.2444 |
0.5258 |
0.7659 |
0.3397 |
0.6939 |
0.4942 |
0.3330 |
0.5573 |
0.8866 |
0.2789 |
0.3829 |
0.5305 |
0.4699 |
0.5002 |
| 0.7438 |
140000 |
0.0092 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.7651 |
144000 |
0.0084 |
0.0071 |
0.2376 |
0.5247 |
0.8359 |
0.3551 |
0.6987 |
0.4440 |
0.3230 |
0.5973 |
0.8875 |
0.3052 |
0.4243 |
0.5601 |
0.4865 |
0.5138 |
| 0.7863 |
148000 |
0.0082 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.8076 |
152000 |
0.0073 |
0.0036 |
0.2379 |
0.5045 |
0.8240 |
0.3389 |
0.7027 |
0.4895 |
0.3373 |
0.5893 |
0.8878 |
0.2870 |
0.3998 |
0.5728 |
0.4735 |
0.5112 |
| 0.8288 |
156000 |
0.0069 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.8501 |
160000 |
0.0076 |
0.0024 |
0.2594 |
0.5254 |
0.8284 |
0.3557 |
0.6951 |
0.4858 |
0.3519 |
0.5968 |
0.8923 |
0.3212 |
0.439 |
0.6144 |
0.4877 |
0.5272 |
| 0.8713 |
164000 |
0.0062 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.8926 |
168000 |
0.0061 |
0.0084 |
0.2580 |
0.5068 |
0.8307 |
0.3629 |
0.7095 |
0.5132 |
0.3373 |
0.5577 |
0.8803 |
0.3041 |
0.4438 |
0.5802 |
0.4668 |
0.5193 |
| 0.9138 |
172000 |
0.0067 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.9351 |
176000 |
0.0072 |
0.0076 |
0.2627 |
0.4988 |
0.8192 |
0.3587 |
0.7072 |
0.4968 |
0.3488 |
0.5746 |
0.8794 |
0.3049 |
0.4671 |
0.5872 |
0.4739 |
0.5215 |
| 0.9563 |
180000 |
0.0049 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| 0.9776 |
184000 |
0.0056 |
0.0067 |
0.2672 |
0.4954 |
0.8207 |
0.3473 |
0.7148 |
0.4997 |
0.3479 |
0.5798 |
0.8778 |
0.3115 |
0.4557 |
0.5884 |
0.4753 |
0.5216 |
| 0.9988 |
188000 |
0.005 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
| -1 |
-1 |
- |
- |
0.2594 |
0.5254 |
0.8284 |
0.3557 |
0.6951 |
0.4858 |
0.3519 |
0.5968 |
0.8923 |
0.3212 |
0.4390 |
0.6144 |
0.4877 |
0.5272 |
- The bold row denotes the saved checkpoint.
Environmental Impact
Carbon emissions were measured using CodeCarbon.
- Energy Consumed: 2.656 kWh
- Carbon Emitted: 1.032 kg of CO2
- Hours Used: 9.368 hours
Training Hardware
- On Cloud: No
- GPU Model: 1 x NVIDIA GeForce RTX 3090
- CPU Model: 13th Gen Intel(R) Core(TM) i7-13700K
- RAM Size: 31.78 GB
Framework Versions
- Python: 3.11.6
- Sentence Transformers: 4.2.0.dev0
- Transformers: 4.49.0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.1
- Datasets: 2.21.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
SpladeLoss
@misc{formal2022distillationhardnegativesampling,
title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
year={2022},
eprint={2205.04733},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2205.04733},
}