Built with Axolotl

See axolotl config

axolotl version: 0.13.0.dev0

base_model: HuggingFaceTB/SmolLM3-3B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

datasets:
  - path: woodman231/monster-sanctuary-conversations
    type: chat_template
    chat_template: chatml

dataset_prepared_path: /workspace/data/axolotl_prepared_data
val_set_size: 0.1
output_dir: /workspace/data/outputs

special_tokens:
  bos_token: <|im_start|>
  eos_token: <|im_end|>
  pad_token: <|im_end|>

# FULL PRECISION FOR QUALITY
load_in_4bit: false             # No quantization on H100
adapter: lora                   # Regular LoRA
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true

# LARGE BATCH SETTINGS
gradient_accumulation_steps: 1  # No accumulation needed
micro_batch_size: 32            # Max batch size (can try 24-32)

# LEARNING RATE
learning_rate: 0.00004          # Slightly higher LR for full precision

# FULL TRAINING
num_epochs: 8                   # Full 8 epochs
# max_steps: not set            # Train to completion
eval_steps: 100                 # Evaluate every 100 steps

# H100 OPTIMIZATIONS
flash_attention: true           # H100 has flash attention support
bf16: true                      # BFloat16 for H100
gradient_checkpointing: true    # Trade compute for memory (optional)

# OUTPUT
hub_model_id: woodman231/SmolLM3-3B-monster-sanctuary-lora
save_steps: 100                 # Save every 100 steps
save_total_limit: 3             # Keep only 3 checkpoints

SmolLM3-3B-monster-sanctuary-lora

This model is a fine-tuned version of HuggingFaceTB/SmolLM3-3B on the woodman231/monster-sanctuary-conversations dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0002
  • Memory/max Active (gib): 26.77
  • Memory/max Allocated (gib): 26.77
  • Memory/device Reserved (gib): 37.58

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • training_steps: 13384

Training results

Training Loss Epoch Step Validation Loss Active (gib) Allocated (gib) Reserved (gib)
No log 0 0 2.9715 26.28 26.28 26.43
0.8052 0.0598 100 0.7336 26.77 26.77 37.52
0.4467 0.1195 200 0.3855 26.77 26.77 37.58
0.2207 0.1793 300 0.2723 26.77 26.77 37.58
0.233 0.2391 400 0.2125 26.77 26.77 37.58
0.157 0.2989 500 0.1825 26.77 26.77 37.58
0.1464 0.3586 600 0.1664 26.77 26.77 37.58
0.1278 0.4184 700 0.1466 26.77 26.77 37.58
0.1467 0.4782 800 0.1251 26.77 26.77 37.58
0.1148 0.5380 900 0.1141 26.77 26.77 37.58
0.1086 0.5977 1000 0.1078 26.77 26.77 37.58
0.1137 0.6575 1100 0.0998 26.77 26.77 37.58
0.0975 0.7173 1200 0.0896 26.77 26.77 37.67
0.092 0.7770 1300 0.0857 26.77 26.77 37.58
0.0677 0.8368 1400 0.0838 26.77 26.77 37.58
0.0704 0.8966 1500 0.0749 26.77 26.77 37.58
0.0914 0.9564 1600 0.0683 26.77 26.77 37.58
0.0641 1.0161 1700 0.0605 26.77 26.77 37.58
0.0556 1.0759 1800 0.0569 26.77 26.77 37.67
0.0495 1.1357 1900 0.0546 26.77 26.77 37.5
0.0402 1.1955 2000 0.0507 26.77 26.77 37.58
0.0442 1.2552 2100 0.0472 26.77 26.77 37.58
0.0355 1.3150 2200 0.0446 26.77 26.77 37.58
0.0352 1.3748 2300 0.0393 26.77 26.77 37.58
0.0288 1.4345 2400 0.0373 26.77 26.77 37.48
0.036 1.4943 2500 0.0341 26.77 26.77 37.58
0.0299 1.5541 2600 0.0299 26.77 26.77 37.58
0.0282 1.6139 2700 0.0279 26.77 26.77 37.58
0.0212 1.6736 2800 0.0248 26.77 26.77 37.58
0.0252 1.7334 2900 0.0231 26.77 26.77 37.58
0.0234 1.7932 3000 0.0201 26.77 26.77 37.5
0.0175 1.8530 3100 0.0188 26.77 26.77 37.5
0.0154 1.9127 3200 0.0154 26.77 26.77 37.58
0.0166 1.9725 3300 0.0141 26.77 26.77 37.58
0.0123 2.0323 3400 0.0135 26.77 26.77 37.5
0.0112 2.0921 3500 0.0130 26.77 26.77 37.58
0.0119 2.1518 3600 0.0119 26.77 26.77 37.58
0.0079 2.2116 3700 0.0118 26.77 26.77 37.58
0.0105 2.2714 3800 0.0113 26.77 26.77 37.58
0.0072 2.3311 3900 0.0087 26.77 26.77 37.67
0.0067 2.3909 4000 0.0080 26.77 26.77 37.58
0.0081 2.4507 4100 0.0090 26.77 26.77 37.58
0.0058 2.5105 4200 0.0088 26.77 26.77 37.58
0.008 2.5702 4300 0.0075 26.77 26.77 37.58
0.006 2.6300 4400 0.0068 26.77 26.77 37.65
0.0063 2.6898 4500 0.0076 26.77 26.77 37.58
0.0066 2.7496 4600 0.0074 26.77 26.77 37.5
0.0059 2.8093 4700 0.0066 26.77 26.77 37.58
0.0044 2.8691 4800 0.0050 26.77 26.77 37.5
0.0061 2.9289 4900 0.0070 26.77 26.77 37.58
0.0043 2.9886 5000 0.0057 26.77 26.77 37.58
0.0027 3.0484 5100 0.0050 26.77 26.77 37.5
0.003 3.1082 5200 0.0048 26.77 26.77 37.58
0.0056 3.1680 5300 0.0039 26.77 26.77 37.58
0.0026 3.2277 5400 0.0044 26.77 26.77 37.48
0.0022 3.2875 5500 0.0038 26.77 26.77 37.58
0.0064 3.3473 5600 0.0033 26.77 26.77 37.58
0.004 3.4071 5700 0.0036 26.77 26.77 37.58
0.0038 3.4668 5800 0.0029 26.77 26.77 37.58
0.0017 3.5266 5900 0.0038 26.77 26.77 37.58
0.0016 3.5864 6000 0.0028 26.77 26.77 37.58
0.0018 3.6461 6100 0.0027 26.77 26.77 37.58
0.0037 3.7059 6200 0.0041 26.77 26.77 37.58
0.0016 3.7657 6300 0.0029 26.77 26.77 37.58
0.0012 3.8255 6400 0.0022 26.77 26.77 37.58
0.0027 3.8852 6500 0.0023 26.77 26.77 37.58
0.0009 3.9450 6600 0.0021 26.77 26.77 37.48
0.001 4.0048 6700 0.0029 26.77 26.77 37.58
0.0012 4.0646 6800 0.0015 26.77 26.77 37.58
0.0019 4.1243 6900 0.0016 26.77 26.77 37.58
0.0009 4.1841 7000 0.0022 26.77 26.77 37.58
0.0008 4.2439 7100 0.0016 26.77 26.77 37.58
0.0026 4.3036 7200 0.0015 26.77 26.77 37.5
0.0018 4.3634 7300 0.0012 26.77 26.77 37.58
0.0009 4.4232 7400 0.0015 26.77 26.77 37.67
0.0004 4.4830 7500 0.0018 26.77 26.77 37.58
0.001 4.5427 7600 0.0012 26.77 26.77 37.58
0.0026 4.6025 7700 0.0011 26.77 26.77 37.58
0.0005 4.6623 7800 0.0014 26.77 26.77 37.58
0.0007 4.7221 7900 0.0010 26.77 26.77 37.58
0.0011 4.7818 8000 0.0011 26.77 26.77 37.67
0.0004 4.8416 8100 0.0007 26.77 26.77 37.58
0.0003 4.9014 8200 0.0007 26.77 26.77 37.58
0.0009 4.9611 8300 0.0009 26.77 26.77 37.58
0.0004 5.0209 8400 0.0010 26.77 26.77 37.58
0.0009 5.0807 8500 0.0009 26.77 26.77 37.58
0.0006 5.1405 8600 0.0006 26.77 26.77 37.58
0.0003 5.2002 8700 0.0005 26.77 26.77 37.58
0.0002 5.2600 8800 0.0005 26.77 26.77 37.58
0.0002 5.3198 8900 0.0004 26.77 26.77 37.58
0.0005 5.3796 9000 0.0006 26.77 26.77 37.67
0.0003 5.4393 9100 0.0005 26.77 26.77 37.58
0.0006 5.4991 9200 0.0015 26.77 26.77 37.58
0.0001 5.5589 9300 0.0005 26.77 26.77 37.48
0.0002 5.6186 9400 0.0004 26.77 26.77 37.58
0.0005 5.6784 9500 0.0004 26.77 26.77 37.58
0.0006 5.7382 9600 0.0003 26.77 26.77 37.58
0.0002 5.7980 9700 0.0003 26.77 26.77 37.58
0.0001 5.8577 9800 0.0003 26.77 26.77 37.58
0.0004 5.9175 9900 0.0003 26.77 26.77 37.58
0.0003 5.9773 10000 0.0003 26.77 26.77 37.58
0.0001 6.0371 10100 0.0003 26.77 26.77 37.58
0.0001 6.0968 10200 0.0003 26.77 26.77 37.58
0.0004 6.1566 10300 0.0003 26.77 26.77 37.58
0.0001 6.2164 10400 0.0002 26.77 26.77 37.58
0.0001 6.2762 10500 0.0002 26.77 26.77 37.58
0.0001 6.3359 10600 0.0002 26.77 26.77 37.58
0.0001 6.3957 10700 0.0002 26.77 26.77 37.58
0.0003 6.4555 10800 0.0002 26.77 26.77 37.58
0.0001 6.5152 10900 0.0002 26.77 26.77 37.58
0.0001 6.5750 11000 0.0002 26.77 26.77 37.5
0.0001 6.6348 11100 0.0002 26.77 26.77 37.58
0.0001 6.6946 11200 0.0002 26.77 26.77 37.58
0.0001 6.7543 11300 0.0002 26.77 26.77 37.58
0.0001 6.8141 11400 0.0002 26.77 26.77 37.58
0.0001 6.8739 11500 0.0002 26.77 26.77 37.58
0.0001 6.9337 11600 0.0002 26.77 26.77 37.58
0.0001 6.9934 11700 0.0002 26.77 26.77 37.58
0.0001 7.0532 11800 0.0002 26.77 26.77 37.58
0.0001 7.1130 11900 0.0002 26.77 26.77 37.48
0.0 7.1727 12000 0.0002 26.77 26.77 37.58
0.0001 7.2325 12100 0.0002 26.77 26.77 37.48
0.0001 7.2923 12200 0.0002 26.77 26.77 37.5
0.0001 7.3521 12300 0.0002 26.77 26.77 37.58
0.0001 7.4118 12400 0.0002 26.77 26.77 37.58
0.0001 7.4716 12500 0.0002 26.77 26.77 37.58
0.0001 7.5314 12600 0.0002 26.77 26.77 37.58
0.0001 7.5912 12700 0.0002 26.77 26.77 37.58
0.0001 7.6509 12800 0.0002 26.77 26.77 37.58
0.0 7.7107 12900 0.0002 26.77 26.77 37.5
0.0001 7.7705 13000 0.0002 26.77 26.77 37.58
0.0001 7.8302 13100 0.0002 26.77 26.77 37.58
0.0001 7.8900 13200 0.0002 26.77 26.77 37.58
0.0001 7.9498 13300 0.0002 26.77 26.77 37.58

Framework versions

  • PEFT 0.18.0
  • Transformers 4.57.1
  • Pytorch 2.8.0+cu128
  • Datasets 4.4.1
  • Tokenizers 0.22.1
Downloads last month
1
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for woodman231/SmolLM3-3B-monster-sanctuary-lora

Adapter
(23)
this model

Dataset used to train woodman231/SmolLM3-3B-monster-sanctuary-lora

Evaluation results