SentenceTransformer based on CocoRoF/ModernBERT-SimCSE_v02
This is a sentence-transformers model finetuned from CocoRoF/ModernBERT-SimCSE_v02. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: CocoRoF/ModernBERT-SimCSE_v02
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("CocoRoF/ModernBERT-SimCSE-multitask_v03")
sentences = [
'버스가 바쁜 길을 따라 운전한다.',
'녹색 버스가 도로를 따라 내려간다.',
'그 여자는 데이트하러 가는 중이다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Semantic Similarity
| Metric |
Value |
| pearson_cosine |
0.8224 |
| spearman_cosine |
0.822 |
| pearson_euclidean |
0.7786 |
| spearman_euclidean |
0.7816 |
| pearson_manhattan |
0.7809 |
| spearman_manhattan |
0.7847 |
| pearson_dot |
0.7544 |
| spearman_dot |
0.7435 |
| pearson_max |
0.8224 |
| spearman_max |
0.822 |
Training Details
Training Dataset
Unnamed Dataset
Evaluation Dataset
Unnamed Dataset
Training Hyperparameters
Non-Default Hyperparameters
overwrite_output_dir: True
eval_strategy: steps
per_device_train_batch_size: 16
per_device_eval_batch_size: 16
gradient_accumulation_steps: 8
learning_rate: 1e-05
num_train_epochs: 10.0
warmup_ratio: 0.1
push_to_hub: True
hub_model_id: CocoRoF/ModernBERT-SimCSE-multitask_v03
hub_strategy: checkpoint
batch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: True
do_predict: False
eval_strategy: steps
prediction_loss_only: True
per_device_train_batch_size: 16
per_device_eval_batch_size: 16
per_gpu_train_batch_size: None
per_gpu_eval_batch_size: None
gradient_accumulation_steps: 8
eval_accumulation_steps: None
torch_empty_cache_steps: None
learning_rate: 1e-05
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.999
adam_epsilon: 1e-08
max_grad_norm: 1.0
num_train_epochs: 10.0
max_steps: -1
lr_scheduler_type: linear
lr_scheduler_kwargs: {}
warmup_ratio: 0.1
warmup_steps: 0
log_level: passive
log_level_replica: warning
log_on_each_node: True
logging_nan_inf_filter: True
save_safetensors: True
save_on_each_node: False
save_only_model: False
restore_callback_states_from_checkpoint: False
no_cuda: False
use_cpu: False
use_mps_device: False
seed: 42
data_seed: None
jit_mode_eval: False
use_ipex: False
bf16: False
fp16: False
fp16_opt_level: O1
half_precision_backend: auto
bf16_full_eval: False
fp16_full_eval: False
tf32: None
local_rank: 0
ddp_backend: None
tpu_num_cores: None
tpu_metrics_debug: False
debug: []
dataloader_drop_last: True
dataloader_num_workers: 0
dataloader_prefetch_factor: None
past_index: -1
disable_tqdm: False
remove_unused_columns: True
label_names: None
load_best_model_at_end: False
ignore_data_skip: False
fsdp: []
fsdp_min_num_params: 0
fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap: None
accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed: None
label_smoothing_factor: 0.0
optim: adamw_torch
optim_args: None
adafactor: False
group_by_length: False
length_column_name: length
ddp_find_unused_parameters: None
ddp_bucket_cap_mb: None
ddp_broadcast_buffers: False
dataloader_pin_memory: True
dataloader_persistent_workers: False
skip_memory_metrics: True
use_legacy_prediction_loop: False
push_to_hub: True
resume_from_checkpoint: None
hub_model_id: CocoRoF/ModernBERT-SimCSE-multitask_v03
hub_strategy: checkpoint
hub_private_repo: None
hub_always_push: False
gradient_checkpointing: False
gradient_checkpointing_kwargs: None
include_inputs_for_metrics: False
include_for_metrics: []
eval_do_concat_batches: True
fp16_backend: auto
push_to_hub_model_id: None
push_to_hub_organization: None
mp_parameters:
auto_find_batch_size: False
full_determinism: False
torchdynamo: None
ray_scope: last
ddp_timeout: 1800
torch_compile: False
torch_compile_backend: None
torch_compile_mode: None
dispatch_batches: None
split_batches: None
include_tokens_per_second: False
include_num_input_tokens_seen: False
neftune_noise_alpha: None
optim_target_modules: None
batch_eval_metrics: False
eval_on_start: False
use_liger_kernel: False
eval_use_gather_object: False
average_tokens_across_devices: False
prompts: None
batch_sampler: no_duplicates
multi_dataset_batch_sampler: proportional
Training Logs
| Epoch |
Step |
Training Loss |
Validation Loss |
sts_dev_spearman_max |
| 0.2228 |
10 |
0.0283 |
- |
- |
| 0.4457 |
20 |
0.0344 |
- |
- |
| 0.6685 |
30 |
0.0305 |
0.0310 |
0.7939 |
| 0.8914 |
40 |
0.0489 |
- |
- |
| 1.1337 |
50 |
0.0382 |
- |
- |
| 1.3565 |
60 |
0.0271 |
0.0293 |
0.7994 |
| 1.5794 |
70 |
0.0344 |
- |
- |
| 1.8022 |
80 |
0.0382 |
- |
- |
| 2.0446 |
90 |
0.0419 |
0.0280 |
0.8059 |
| 2.2674 |
100 |
0.0244 |
- |
- |
| 2.4903 |
110 |
0.0307 |
- |
- |
| 2.7131 |
120 |
0.0291 |
0.0269 |
0.8108 |
| 2.9359 |
130 |
0.038 |
- |
- |
| 3.1783 |
140 |
0.0269 |
- |
- |
| 3.4011 |
150 |
0.0268 |
0.0262 |
0.8155 |
| 3.6240 |
160 |
0.0246 |
- |
- |
| 3.8468 |
170 |
0.0313 |
- |
- |
| 4.0891 |
180 |
0.0303 |
0.0259 |
0.8185 |
| 4.3120 |
190 |
0.0198 |
- |
- |
| 4.5348 |
200 |
0.0257 |
- |
- |
| 4.7577 |
210 |
0.0242 |
0.0255 |
0.8202 |
| 4.9805 |
220 |
0.0293 |
- |
- |
| 5.2228 |
230 |
0.0193 |
- |
- |
| 5.4457 |
240 |
0.0222 |
0.0254 |
0.8222 |
| 5.6685 |
250 |
0.0184 |
- |
- |
| 5.8914 |
260 |
0.0243 |
- |
- |
| 6.1337 |
270 |
0.0204 |
0.0254 |
0.8235 |
| 6.3565 |
280 |
0.0147 |
- |
- |
| 6.5794 |
290 |
0.0196 |
- |
- |
| 6.8022 |
300 |
0.0176 |
0.0253 |
0.8227 |
| 7.0446 |
310 |
0.0202 |
- |
- |
| 7.2674 |
320 |
0.0123 |
- |
- |
| 7.4903 |
330 |
0.0151 |
0.0254 |
0.8236 |
| 7.7131 |
340 |
0.0132 |
- |
- |
| 7.9359 |
350 |
0.0158 |
- |
- |
| 8.1783 |
360 |
0.0118 |
0.0256 |
0.8240 |
| 8.4011 |
370 |
0.0115 |
- |
- |
| 8.6240 |
380 |
0.0105 |
- |
- |
| 8.8468 |
390 |
0.0111 |
0.0256 |
0.8215 |
| 9.0891 |
400 |
0.011 |
- |
- |
| 9.3120 |
410 |
0.0076 |
- |
- |
| 9.5348 |
420 |
0.0091 |
0.0256 |
0.8220 |
| 9.7577 |
430 |
0.0075 |
- |
- |
| 9.9805 |
440 |
0.0093 |
- |
- |
Framework Versions
- Python: 3.11.10
- Sentence Transformers: 3.3.1
- Transformers: 4.48.0.dev0
- PyTorch: 2.5.1+cu121
- Accelerate: 1.1.0
- Datasets: 3.1.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}