Update README.md
#2
by
MilkClouds
- opened
README.md
CHANGED
|
@@ -7,128 +7,164 @@ tags:
|
|
| 7 |
- imitation-learning
|
| 8 |
- pretraining
|
| 9 |
---
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
##
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
| Game Title | Files | Total Duration (hours / seconds) | Average Duration (seconds / minutes) |
|
| 47 |
-
|-------------|--------|----------------------------------|--------------------------------------|
|
| 48 |
-
| Apex_Legends | 36 | **25.58 h (92093.44 s)** | 2558.15 s (42.64 min) |
|
| 49 |
-
| Euro_Truck_Simulator_2 | 14 | **19.62 h (70641.61 s)** | 5045.83 s (84.10 min) |
|
| 50 |
-
| Eternal_Return | 31 | **17.13 h (61677.25 s)** | 1989.59 s (33.16 min) |
|
| 51 |
-
| Cyberpunk_2077 | 7 | **14.22 h (51183.25 s)** | 7311.89 s (121.86 min) |
|
| 52 |
-
| MapleStory_Worlds_Southperry | 8 | **14.09 h (50720.40 s)** | 6340.05 s (105.67 min) |
|
| 53 |
-
| Stardew_Valley | 10 | **14.55 h (52381.45 s)** | 5238.14 s (87.30 min) |
|
| 54 |
-
| Rainbow_Six | 11 | **13.74 h (49472.80 s)** | 4497.53 s (74.96 min) |
|
| 55 |
-
| Grand_Theft_Auto_V | 11 | **11.81 h (42518.18 s)** | 3865.29 s (64.42 min) |
|
| 56 |
-
| Slime_Rancher | 9 | **10.68 h (38463.32 s)** | 4273.70 s (71.23 min) |
|
| 57 |
-
| Dinkum | 9 | **10.44 h (37600.32 s)** | 4177.81 s (69.63 min) |
|
| 58 |
-
| Medieval_Dynasty | 3 | **10.32 h (37151.27 s)** | 12383.76 s (206.40 min) |
|
| 59 |
-
| Counter-Strike_2 | 10 | **9.89 h (35614.96 s)** | 3561.50 s (59.36 min) |
|
| 60 |
-
| Satisfactory | 4 | **9.79 h (35237.30 s)** | 8809.32 s (146.82 min) |
|
| 61 |
-
| Grounded | 4 | **9.70 h (34912.31 s)** | 8728.08 s (145.47 min) |
|
| 62 |
-
| Ready_Or_Not | 11 | **9.59 h (34521.40 s)** | 3138.31 s (52.31 min) |
|
| 63 |
-
| Barony | 10 | **9.28 h (33406.96 s)** | 3340.70 s (55.68 min) |
|
| 64 |
-
| Core_Keeper | 7 | **9.02 h (32460.05 s)** | 4637.15 s (77.29 min) |
|
| 65 |
-
| Minecraft_1.21.8 | 8 | **8.64 h (31093.47 s)** | 3886.68 s (64.78 min) |
|
| 66 |
-
| Monster_Hunter_Wilds | 5 | **8.32 h (29951.88 s)** | 5990.38 s (99.84 min) |
|
| 67 |
-
| Raft | 5 | **9.95 h (35833.27 s)** | 7166.65 s (119.44 min) |
|
| 68 |
-
| Brotato | 13 | **5.99 h (21574.78 s)** | 1659.60 s (27.66 min) |
|
| 69 |
-
| PUBG | 7 | **4.88 h (17584.92 s)** | 2512.13 s (41.87 min) |
|
| 70 |
-
| Vampire_Survivors | 2 | **2.81 h (10132.96 s)** | 5066.48 s (84.44 min) |
|
| 71 |
-
| Battlefield_6_Open_Beta | 7 | **2.21 h (7965.42 s)** | 1137.92 s (18.97 min) |
|
| 72 |
-
| Skul | 1 | **1.97 h (7078.00 s)** | 7078.00 s (117.97 min) |
|
| 73 |
-
| PEAK | 2 | **1.75 h (6288.88 s)** | 3144.44 s (52.41 min) |
|
| 74 |
-
| OguForest | 1 | **0.84 h (3040.94 s)** | 3040.94 s (50.68 min) |
|
| 75 |
-
| Super_Bunny_Man | 2 | **0.72 h (2604.00 s)** | 1302.00 s (21.70 min) |
|
| 76 |
-
| VALORANT | 1 | **0.25 h (911.94 s)** | 911.94 s (15.20 min) |
|
| 77 |
-
|
| 78 |
-
## Usage Example
|
| 79 |
|
| 80 |
```bash
|
| 81 |
-
|
| 82 |
```
|
| 83 |
|
|
|
|
|
|
|
| 84 |
```python
|
| 85 |
from huggingface_hub import hf_hub_download
|
| 86 |
from mcap_owa.highlevel import OWAMcapReader
|
| 87 |
|
| 88 |
-
# Download MCAP and video files
|
| 89 |
mcap_file = hf_hub_download(
|
| 90 |
repo_id="open-world-agents/D2E-480p",
|
| 91 |
filename="Apex_Legends/0805_01.mcap",
|
| 92 |
repo_type="dataset"
|
| 93 |
)
|
| 94 |
-
video_file = hf_hub_download(
|
| 95 |
-
repo_id="open-world-agents/D2E-480p",
|
| 96 |
-
filename="Apex_Legends/0805_01.mkv",
|
| 97 |
-
repo_type="dataset"
|
| 98 |
-
)
|
| 99 |
|
| 100 |
-
# Load and iterate through messages
|
| 101 |
with OWAMcapReader(mcap_file) as reader:
|
| 102 |
-
# Screen frames with video loading
|
| 103 |
for msg in reader.iter_messages(topics=["screen"]):
|
| 104 |
screen = msg.decoded
|
| 105 |
-
screen.resolve_relative_path(mcap_file) # Resolve video path
|
| 106 |
-
frame = screen.load_frame_array() #
|
| 107 |
-
print(f"Frame: {frame.shape}")
|
| 108 |
break
|
| 109 |
|
| 110 |
-
# Keyboard events
|
| 111 |
for msg in reader.iter_messages(topics=["keyboard"]):
|
| 112 |
-
|
| 113 |
-
print(f"Keyboard: {kbd.event_type} VK={kbd.vk}")
|
| 114 |
break
|
| 115 |
|
| 116 |
-
# Raw mouse events (we use this instead of "mouse", see why: https://open-world-agents.github.io/open-world-agents/env/plugins/desktop/#raw-mouse-input)
|
| 117 |
for msg in reader.iter_messages(topics=["mouse/raw"]):
|
| 118 |
-
|
| 119 |
-
print(f"Mouse: dx={mouse.last_x} dy={mouse.last_y}")
|
| 120 |
break
|
| 121 |
```
|
| 122 |
|
| 123 |
-
|
| 124 |
|
| 125 |
-
|
| 126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
@article{choi2025d2e,
|
| 129 |
title={D2E: Scaling Vision-Action Pretraining on Desktop Data for Transfer to Embodied AI},
|
| 130 |
author={Choi, Suwhan and Jung, Jaeyoon and Seong, Haebin and Kim, Minchan and Kim, Minyeong and Cho, Yongjun and Kim, Yoonshik and Park, Yubeen and Yu, Youngjae and Lee, Yunsung},
|
| 131 |
journal={arXiv preprint arXiv:2510.05684},
|
| 132 |
year={2025}
|
| 133 |
}
|
| 134 |
-
```
|
|
|
|
| 7 |
- imitation-learning
|
| 8 |
- pretraining
|
| 9 |
---
|
| 10 |
+
|
| 11 |
+
# D2E-480p
|
| 12 |
+
|
| 13 |
+
This is the dataset for [**D2E: Scaling Vision-Action Pretraining on Desktop Data for Transfer to Embodied AI**](https://worv-ai.github.io/d2e/).
|
| 14 |
+
|
| 15 |
+
267 hours of synchronized video, audio, and input events from 29 PC games, for training vision-action models and game agents.
|
| 16 |
+
|
| 17 |
+
**What's included:**
|
| 18 |
+
|
| 19 |
+
- **Video + Audio**: H.264 encoded at 480p 60fps with game audio. Fixed 0.5s keyframe intervals for efficient random seek without sequential decoding.
|
| 20 |
+
- **Input events**: Keyboard press/release, raw mouse deltas (bypasses pointer acceleration), mouse clicks, and active window info—all with nanosecond timestamps synchronized to video frames.
|
| 21 |
+
- **[OWAMcap](https://open-world-agents.github.io/open-world-agents/data/getting-started/why-owamcap/) format**: Built on [MCAP](https://mcap.dev/) (widely adopted in robotics). Indexed for fast random access, crash-safe writes, and standardized message schemas that work across different datasets without custom parsing.
|
| 22 |
+
|
| 23 |
+
**Recommended for:**
|
| 24 |
+
|
| 25 |
+
- Training game agents with vision-action trajectories
|
| 26 |
+
- Pretraining vision-action models for transfer to embodied AI (robotic manipulation, navigation)
|
| 27 |
+
- World model / video generation training (use [D2E-Original](https://huggingface.co/datasets/open-world-agents/D2E-Original) for HD/QHD)
|
| 28 |
+
|
| 29 |
+
> ⚠️ **December 1, 2025**: Dataset revised due to sync issues. Re-download if you obtained data before this date.
|
| 30 |
+
|
| 31 |
+
## Visualize
|
| 32 |
+
|
| 33 |
+
Explore recordings directly in your browser with synchronized keyboard/mouse overlay:
|
| 34 |
+
|
| 35 |
+
**👉 [Open in Dataset Visualizer](https://huggingface.co/spaces/open-world-agents/visualize_dataset?repo_id=open-world-agents/D2E-480p)**
|
| 36 |
+
|
| 37 |
+
## Load the data
|
| 38 |
+
|
| 39 |
+
Install dependencies:
|
| 40 |
+
|
| 41 |
+
| Package | Description |
|
| 42 |
+
| ------------------ | -------------------------------------------------------------- |
|
| 43 |
+
| `mcap-owa-support` | Reader for OWAMcap files |
|
| 44 |
+
| `owa-msgs` | Message type definitions (`KeyboardEvent`, `MouseEvent`, etc.) |
|
| 45 |
+
| `huggingface_hub` | Download files from this dataset |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
| 47 |
```bash
|
| 48 |
+
pip install mcap-owa-support owa-msgs huggingface_hub
|
| 49 |
```
|
| 50 |
|
| 51 |
+
Then load and iterate through the data:
|
| 52 |
+
|
| 53 |
```python
|
| 54 |
from huggingface_hub import hf_hub_download
|
| 55 |
from mcap_owa.highlevel import OWAMcapReader
|
| 56 |
|
|
|
|
| 57 |
mcap_file = hf_hub_download(
|
| 58 |
repo_id="open-world-agents/D2E-480p",
|
| 59 |
filename="Apex_Legends/0805_01.mcap",
|
| 60 |
repo_type="dataset"
|
| 61 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
|
|
|
| 63 |
with OWAMcapReader(mcap_file) as reader:
|
|
|
|
| 64 |
for msg in reader.iter_messages(topics=["screen"]):
|
| 65 |
screen = msg.decoded
|
| 66 |
+
screen.resolve_relative_path(mcap_file) # Resolve video path relative to mcap
|
| 67 |
+
frame = screen.load_frame_array() # numpy array (H, W, 3)
|
|
|
|
| 68 |
break
|
| 69 |
|
|
|
|
| 70 |
for msg in reader.iter_messages(topics=["keyboard"]):
|
| 71 |
+
print(msg.decoded) # KeyboardEvent(event_type='press', vk=87)
|
|
|
|
| 72 |
break
|
| 73 |
|
|
|
|
| 74 |
for msg in reader.iter_messages(topics=["mouse/raw"]):
|
| 75 |
+
print(msg.decoded) # RawMouseEvent(last_x=12, last_y=-3, button_flags=0)
|
|
|
|
| 76 |
break
|
| 77 |
```
|
| 78 |
|
| 79 |
+
**Ready to train?**
|
| 80 |
|
| 81 |
+
We provide [owa-data](https://github.com/open-world-agents/open-world-agents/tree/main/projects/owa-data), a data pipeline that converts this dataset into HuggingFace Datasets ready for PyTorch DataLoader. It handles tokenization and sequence packing out of the box—so you can start training immediately without writing custom data loading code.
|
| 82 |
+
|
| 83 |
+
**Learn more:**
|
| 84 |
+
|
| 85 |
+
- [OWAMcap format guide](https://open-world-agents.github.io/open-world-agents/data/technical-reference/format-guide/)
|
| 86 |
+
|
| 87 |
+
## Structure
|
| 88 |
+
|
| 89 |
+
Each game folder contains paired `.mcap` + `.mkv` files:
|
| 90 |
+
|
| 91 |
+
```
|
| 92 |
+
Apex_Legends/
|
| 93 |
+
├── 0805_01.mcap # Timestamped events + frame references
|
| 94 |
+
├── 0805_01.mkv # Video + audio (480p 60fps, H.264)
|
| 95 |
+
├── 0805_02.mcap
|
| 96 |
+
├── 0805_02.mkv
|
| 97 |
+
└── ...
|
| 98 |
```
|
| 99 |
+
|
| 100 |
+
The `.mcap` file stores lightweight [MediaRef](https://github.com/open-world-agents/MediaRef) pointers to video frames instead of raw pixels—frames are decoded on-demand from the `.mkv` when you call `load_frame_array()`.
|
| 101 |
+
|
| 102 |
+
MCAP files contain timestamped messages on these topics:
|
| 103 |
+
|
| 104 |
+
| Topic | Message Type | Description |
|
| 105 |
+
| ---------------- | ------------------------ | --------------------------------------------------------------------------------------------------------------------------- |
|
| 106 |
+
| `screen` | `desktop/ScreenCaptured` | Frame timestamp + MediaRef pointer to video |
|
| 107 |
+
| `keyboard` | `desktop/KeyboardEvent` | Key press/release with [virtual key code](https://learn.microsoft.com/en-us/windows/win32/inputdev/virtual-key-codes) |
|
| 108 |
+
| `keyboard/state` | `desktop/KeyboardState` | Currently pressed keys |
|
| 109 |
+
| `mouse` | `desktop/MouseEvent` | Mouse clicks and screen coordinates |
|
| 110 |
+
| `mouse/raw` | `desktop/RawMouseEvent` | Raw HID movement ([→ why raw?](https://open-world-agents.github.io/open-world-agents/env/plugins/desktop/#raw-mouse-input)) |
|
| 111 |
+
| `mouse/state` | `desktop/MouseState` | Current position and button state |
|
| 112 |
+
| `window` | `desktop/WindowInfo` | Active window title, rect, and handle |
|
| 113 |
+
|
| 114 |
+
## Games
|
| 115 |
+
|
| 116 |
+
Genres: FPS (Apex Legends, PUBG), open-world (Cyberpunk 2077, GTA V), simulation (Euro Truck Simulator 2), sandbox (Minecraft), roguelike (Brotato, Vampire Survivors), and more.
|
| 117 |
+
|
| 118 |
+
29 games released (~267h) from 31 games collected (~335h) after privacy filtering.
|
| 119 |
+
|
| 120 |
+
| Game | Hours | Sessions |
|
| 121 |
+
| ---------------------- | ----: | -------: |
|
| 122 |
+
| Apex Legends | 25.6 | 36 |
|
| 123 |
+
| Euro Truck Simulator 2 | 19.6 | 14 |
|
| 124 |
+
| Eternal Return | 17.1 | 31 |
|
| 125 |
+
| Stardew Valley | 14.6 | 10 |
|
| 126 |
+
| Cyberpunk 2077 | 14.2 | 7 |
|
| 127 |
+
| MapleStory Worlds | 14.1 | 8 |
|
| 128 |
+
| Rainbow Six | 13.7 | 11 |
|
| 129 |
+
| Grand Theft Auto V | 11.8 | 11 |
|
| 130 |
+
| Slime Rancher | 10.7 | 9 |
|
| 131 |
+
| Dinkum | 10.4 | 9 |
|
| 132 |
+
| Medieval Dynasty | 10.3 | 3 |
|
| 133 |
+
| Raft | 10.0 | 5 |
|
| 134 |
+
| Counter-Strike 2 | 9.9 | 10 |
|
| 135 |
+
| Satisfactory | 9.8 | 4 |
|
| 136 |
+
| Grounded | 9.7 | 4 |
|
| 137 |
+
| Ready Or Not | 9.6 | 11 |
|
| 138 |
+
| Barony | 9.3 | 10 |
|
| 139 |
+
| Core Keeper | 9.0 | 7 |
|
| 140 |
+
| Minecraft | 8.6 | 8 |
|
| 141 |
+
| Monster Hunter Wilds | 8.3 | 5 |
|
| 142 |
+
| Brotato | 6.0 | 13 |
|
| 143 |
+
| PUBG | 4.9 | 7 |
|
| 144 |
+
| Vampire Survivors | 2.8 | 2 |
|
| 145 |
+
| Battlefield 6 | 2.2 | 7 |
|
| 146 |
+
| Skul | 2.0 | 1 |
|
| 147 |
+
| PEAK | 1.8 | 2 |
|
| 148 |
+
| OguForest | 0.8 | 1 |
|
| 149 |
+
| Super Bunny Man | 0.7 | 2 |
|
| 150 |
+
| VALORANT | 0.3 | 1 |
|
| 151 |
+
|
| 152 |
+
For HD/QHD resolution, see [D2E-Original](https://huggingface.co/datasets/open-world-agents/D2E-Original).
|
| 153 |
+
|
| 154 |
+
## Links
|
| 155 |
+
|
| 156 |
+
- [Project Page](https://worv-ai.github.io/d2e/)
|
| 157 |
+
- [Paper (arXiv)](https://arxiv.org/abs/2510.05684)
|
| 158 |
+
- [GitHub](https://github.com/worv-ai/D2E)
|
| 159 |
+
- [OWA Toolkit Documentation](https://open-world-agents.github.io/open-world-agents/)
|
| 160 |
+
|
| 161 |
+
## Citation
|
| 162 |
+
|
| 163 |
+
```bibtex
|
| 164 |
@article{choi2025d2e,
|
| 165 |
title={D2E: Scaling Vision-Action Pretraining on Desktop Data for Transfer to Embodied AI},
|
| 166 |
author={Choi, Suwhan and Jung, Jaeyoon and Seong, Haebin and Kim, Minchan and Kim, Minyeong and Cho, Yongjun and Kim, Yoonshik and Park, Yubeen and Yu, Youngjae and Lee, Yunsung},
|
| 167 |
journal={arXiv preprint arXiv:2510.05684},
|
| 168 |
year={2025}
|
| 169 |
}
|
| 170 |
+
```
|