data_source
stringclasses
1 value
prompt
stringlengths
1.1k
13.9k
ability
stringclasses
1 value
reward_model
dict
extra_info
dict
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 35063, 1976 694, ASSAULT ON PRECINCT 13 5851, BURNT OFFERINGS 24454, CARRIE 24717, ELVIS 35756, GHOSTS OF MARS 23822, GOD TOLD ME TO 4830, HALLOWEEN 5870, HORROR 24988, JOHN CARPENTER 24081, NEXT STOP, GREENWICH VILLAGE 33115, SHELLEY WINTERS 16551, SQUIRM 12891, TENTACLES 8574, THE DEVIL'S PLAYGROUND 27423, THE FOG 17910, THE OMEN 27003, THE THOMPSONS 10423, THE WITCH WHO CAME FROM THE SEA 20875, TO THE DEVIL A DAUGHTER 36374, VILLAGE OF THE DAMNED 24046, WEREWOLF WOMAN src, edge_attr, dst 694, directed_by, 24988 694, has_tags, 24988 694, release_year, 35063 694, written_by, 24988 5851, has_genre, 5870 5851, release_year, 35063 24454, has_genre, 5870 24454, has_tags, 5870 24454, release_year, 35063 24717, directed_by, 24988 24717, has_tags, 24988 24717, starred_actors, 33115 35756, directed_by, 24988 35756, has_genre, 5870 35756, has_tags, 24988 35756, written_by, 24988 23822, has_genre, 5870 23822, release_year, 35063 4830, directed_by, 24988 4830, has_genre, 5870 4830, has_tags, 5870 4830, has_tags, 24988 4830, written_by, 24988 24081, release_year, 35063 24081, starred_actors, 33115 16551, has_genre, 5870 16551, release_year, 35063 12891, has_genre, 5870 12891, has_tags, 5870 12891, starred_actors, 33115 8574, release_year, 35063 27423, directed_by, 24988 27423, has_genre, 5870 27423, has_tags, 5870 27423, has_tags, 24988 27423, written_by, 24988 17910, has_genre, 5870 17910, has_tags, 5870 17910, release_year, 35063 27003, has_genre, 5870 10423, has_genre, 5870 10423, release_year, 35063 20875, has_genre, 5870 20875, release_year, 35063 36374, directed_by, 24988 36374, has_genre, 5870 36374, has_tags, 24988 24046, has_genre, 5870 24046, release_year, 35063 Question: For what reason are ELVIS, THE DEVIL'S PLAYGROUND, and THE THOMPSONS associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "ELVIS", "THE DEVIL'S PLAYGROUND", "THE THOMPSONS" ], "valid_edges": [ [ "ASSAULT ON PRECINCT 13", "directed_by", "JOHN CARPENTER" ], [ "ASSAULT ON PRECINCT 13", "has_tags", "JOHN CARPENTER" ], [ "ASSAULT ON PRECINCT 13", "release_year", "1976" ], [ "ASSAULT ON PRECINCT 13", "written_by", "JOHN CARPENTER" ], [ "BURNT OFFERINGS", "has_genre", "HORROR" ], [ "BURNT OFFERINGS", "release_year", "1976" ], [ "CARRIE", "has_genre", "HORROR" ], [ "CARRIE", "has_tags", "HORROR" ], [ "CARRIE", "release_year", "1976" ], [ "ELVIS", "directed_by", "JOHN CARPENTER" ], [ "ELVIS", "has_tags", "JOHN CARPENTER" ], [ "ELVIS", "starred_actors", "SHELLEY WINTERS" ], [ "GHOSTS OF MARS", "directed_by", "JOHN CARPENTER" ], [ "GHOSTS OF MARS", "has_genre", "HORROR" ], [ "GHOSTS OF MARS", "has_tags", "JOHN CARPENTER" ], [ "GHOSTS OF MARS", "written_by", "JOHN CARPENTER" ], [ "GOD TOLD ME TO", "has_genre", "HORROR" ], [ "GOD TOLD ME TO", "release_year", "1976" ], [ "HALLOWEEN", "directed_by", "JOHN CARPENTER" ], [ "HALLOWEEN", "has_genre", "HORROR" ], [ "HALLOWEEN", "has_tags", "HORROR" ], [ "HALLOWEEN", "has_tags", "JOHN CARPENTER" ], [ "HALLOWEEN", "written_by", "JOHN CARPENTER" ], [ "NEXT STOP, GREENWICH VILLAGE", "release_year", "1976" ], [ "NEXT STOP, GREENWICH VILLAGE", "starred_actors", "SHELLEY WINTERS" ], [ "SQUIRM", "has_genre", "HORROR" ], [ "SQUIRM", "release_year", "1976" ], [ "TENTACLES", "has_genre", "HORROR" ], [ "TENTACLES", "has_tags", "HORROR" ], [ "TENTACLES", "starred_actors", "SHELLEY WINTERS" ], [ "THE DEVIL'S PLAYGROUND", "release_year", "1976" ], [ "THE FOG", "directed_by", "JOHN CARPENTER" ], [ "THE FOG", "has_genre", "HORROR" ], [ "THE FOG", "has_tags", "HORROR" ], [ "THE FOG", "has_tags", "JOHN CARPENTER" ], [ "THE FOG", "written_by", "JOHN CARPENTER" ], [ "THE OMEN", "has_genre", "HORROR" ], [ "THE OMEN", "has_tags", "HORROR" ], [ "THE OMEN", "release_year", "1976" ], [ "THE THOMPSONS", "has_genre", "HORROR" ], [ "THE WITCH WHO CAME FROM THE SEA", "has_genre", "HORROR" ], [ "THE WITCH WHO CAME FROM THE SEA", "release_year", "1976" ], [ "TO THE DEVIL A DAUGHTER", "has_genre", "HORROR" ], [ "TO THE DEVIL A DAUGHTER", "release_year", "1976" ], [ "VILLAGE OF THE DAMNED", "directed_by", "JOHN CARPENTER" ], [ "VILLAGE OF THE DAMNED", "has_genre", "HORROR" ], [ "VILLAGE OF THE DAMNED", "has_tags", "JOHN CARPENTER" ], [ "WEREWOLF WOMAN", "has_genre", "HORROR" ], [ "WEREWOLF WOMAN", "release_year", "1976" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 26257, 1994 29424, 2011 8133, CHURCH 27327, HIGHER GROUND 14878, KABHI HAAN KABHI NAA 21187, KUNDAN SHAH 13383, PRIEST 6754, SOURCE CODE 39525, VERA FARMIGA src, edge_attr, dst 27327, directed_by, 39525 27327, has_tags, 39525 27327, release_year, 29424 27327, starred_actors, 39525 14878, directed_by, 21187 14878, release_year, 26257 14878, written_by, 21187 13383, has_tags, 8133 13383, has_tags, 13383 13383, release_year, 26257 13383, release_year, 29424 6754, has_tags, 39525 6754, release_year, 29424 6754, starred_actors, 39525 Question: For what reason are CHURCH, HIGHER GROUND, and KUNDAN SHAH associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "CHURCH", "HIGHER GROUND", "KUNDAN SHAH" ], "valid_edges": [ [ "HIGHER GROUND", "directed_by", "VERA FARMIGA" ], [ "HIGHER GROUND", "has_tags", "VERA FARMIGA" ], [ "HIGHER GROUND", "release_year", "2011" ], [ "HIGHER GROUND", "starred_actors", "VERA FARMIGA" ], [ "KABHI HAAN KABHI NAA", "directed_by", "KUNDAN SHAH" ], [ "KABHI HAAN KABHI NAA", "release_year", "1994" ], [ "KABHI HAAN KABHI NAA", "written_by", "KUNDAN SHAH" ], [ "PRIEST", "has_tags", "CHURCH" ], [ "PRIEST", "has_tags", "PRIEST" ], [ "PRIEST", "release_year", "1994" ], [ "PRIEST", "release_year", "2011" ], [ "SOURCE CODE", "has_tags", "VERA FARMIGA" ], [ "SOURCE CODE", "release_year", "2011" ], [ "SOURCE CODE", "starred_actors", "VERA FARMIGA" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 16055, 1983 15374, 2005 35497, ANTARCTICA 30907, BAREFOOT GEN 21261, CHARLIE AND THE CHOCOLATE FACTORY 16970, EUREKA 32179, FACTORY 22958, FAMOUS 34231, GENE HACKMAN 36874, JAPANESE 2131, MEL BROOKS 37497, NATIONAL FILM REGISTRY 17109, ROBOTS 34021, RUTGER HAUER 28350, THE BALLAD OF NARAYAMA 28115, THE FAMILY GAME 27465, THE OSTERMAN WEEKEND 3231, THE PRODUCERS 3640, TO BE OR NOT TO BE 19052, UNCOMMON VALOR 32843, UNDER FIRE 13644, YOUNG FRANKENSTEIN src, edge_attr, dst 35497, in_language, 36874 35497, release_year, 16055 30907, in_language, 36874 30907, release_year, 16055 21261, has_tags, 32179 21261, release_year, 15374 16970, has_tags, 34231 16970, in_language, 36874 16970, release_year, 16055 16970, starred_actors, 34231 16970, starred_actors, 34021 17109, has_tags, 2131 17109, has_tags, 17109 17109, release_year, 15374 28350, in_language, 36874 28350, release_year, 16055 28115, in_language, 36874 28115, release_year, 16055 27465, has_tags, 34021 27465, release_year, 16055 27465, starred_actors, 34021 3231, directed_by, 2131 3231, has_tags, 2131 3231, has_tags, 37497 3231, release_year, 15374 3231, written_by, 2131 3640, has_imdb_votes, 22958 3640, has_tags, 2131 3640, release_year, 16055 19052, has_tags, 34231 19052, release_year, 16055 19052, starred_actors, 34231 32843, has_tags, 34231 32843, release_year, 16055 32843, starred_actors, 34231 13644, directed_by, 2131 13644, has_imdb_votes, 22958 13644, has_tags, 2131 13644, has_tags, 37497 13644, written_by, 2131 Question: How are EUREKA, FACTORY, and MEL BROOKS related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "EUREKA", "FACTORY", "MEL BROOKS" ], "valid_edges": [ [ "ANTARCTICA", "in_language", "JAPANESE" ], [ "ANTARCTICA", "release_year", "1983" ], [ "BAREFOOT GEN", "in_language", "JAPANESE" ], [ "BAREFOOT GEN", "release_year", "1983" ], [ "CHARLIE AND THE CHOCOLATE FACTORY", "has_tags", "FACTORY" ], [ "CHARLIE AND THE CHOCOLATE FACTORY", "release_year", "2005" ], [ "EUREKA", "has_tags", "GENE HACKMAN" ], [ "EUREKA", "in_language", "JAPANESE" ], [ "EUREKA", "release_year", "1983" ], [ "EUREKA", "starred_actors", "GENE HACKMAN" ], [ "EUREKA", "starred_actors", "RUTGER HAUER" ], [ "ROBOTS", "has_tags", "MEL BROOKS" ], [ "ROBOTS", "has_tags", "ROBOTS" ], [ "ROBOTS", "release_year", "2005" ], [ "THE BALLAD OF NARAYAMA", "in_language", "JAPANESE" ], [ "THE BALLAD OF NARAYAMA", "release_year", "1983" ], [ "THE FAMILY GAME", "in_language", "JAPANESE" ], [ "THE FAMILY GAME", "release_year", "1983" ], [ "THE OSTERMAN WEEKEND", "has_tags", "RUTGER HAUER" ], [ "THE OSTERMAN WEEKEND", "release_year", "1983" ], [ "THE OSTERMAN WEEKEND", "starred_actors", "RUTGER HAUER" ], [ "THE PRODUCERS", "directed_by", "MEL BROOKS" ], [ "THE PRODUCERS", "has_tags", "MEL BROOKS" ], [ "THE PRODUCERS", "has_tags", "NATIONAL FILM REGISTRY" ], [ "THE PRODUCERS", "release_year", "2005" ], [ "THE PRODUCERS", "written_by", "MEL BROOKS" ], [ "TO BE OR NOT TO BE", "has_imdb_votes", "FAMOUS" ], [ "TO BE OR NOT TO BE", "has_tags", "MEL BROOKS" ], [ "TO BE OR NOT TO BE", "release_year", "1983" ], [ "UNCOMMON VALOR", "has_tags", "GENE HACKMAN" ], [ "UNCOMMON VALOR", "release_year", "1983" ], [ "UNCOMMON VALOR", "starred_actors", "GENE HACKMAN" ], [ "UNDER FIRE", "has_tags", "GENE HACKMAN" ], [ "UNDER FIRE", "release_year", "1983" ], [ "UNDER FIRE", "starred_actors", "GENE HACKMAN" ], [ "YOUNG FRANKENSTEIN", "directed_by", "MEL BROOKS" ], [ "YOUNG FRANKENSTEIN", "has_imdb_votes", "FAMOUS" ], [ "YOUNG FRANKENSTEIN", "has_tags", "MEL BROOKS" ], [ "YOUNG FRANKENSTEIN", "has_tags", "NATIONAL FILM REGISTRY" ], [ "YOUNG FRANKENSTEIN", "written_by", "MEL BROOKS" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 8636, 1930 26762, 2008 13573, ANNA CHRISTIE 15147, GOMORRAH 11565, GOOD 24238, L'AGE D'OR 35505, LUIS BUÑUEL 2414, MACHINE-GUN KELLY 29473, ROBERTO SAVIANO 5057, THE YOUNG ONE src, edge_attr, dst 13573, has_imdb_rating, 11565 13573, release_year, 8636 15147, release_year, 26762 15147, written_by, 29473 11565, has_imdb_rating, 11565 11565, release_year, 26762 24238, directed_by, 35505 24238, has_tags, 35505 24238, release_year, 8636 24238, written_by, 35505 2414, has_imdb_rating, 11565 5057, directed_by, 35505 5057, has_imdb_rating, 11565 5057, has_tags, 35505 5057, written_by, 35505 Question: For what reason are L'AGE D'OR, MACHINE-GUN KELLY, and ROBERTO SAVIANO associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "L'AGE D'OR", "MACHINE-GUN KELLY", "ROBERTO SAVIANO" ], "valid_edges": [ [ "ANNA CHRISTIE", "has_imdb_rating", "GOOD" ], [ "ANNA CHRISTIE", "release_year", "1930" ], [ "GOMORRAH", "release_year", "2008" ], [ "GOMORRAH", "written_by", "ROBERTO SAVIANO" ], [ "GOOD", "has_imdb_rating", "GOOD" ], [ "GOOD", "release_year", "2008" ], [ "L'AGE D'OR", "directed_by", "LUIS BUÑUEL" ], [ "L'AGE D'OR", "has_tags", "LUIS BUÑUEL" ], [ "L'AGE D'OR", "release_year", "1930" ], [ "L'AGE D'OR", "written_by", "LUIS BUÑUEL" ], [ "MACHINE-GUN KELLY", "has_imdb_rating", "GOOD" ], [ "THE YOUNG ONE", "directed_by", "LUIS BUÑUEL" ], [ "THE YOUNG ONE", "has_imdb_rating", "GOOD" ], [ "THE YOUNG ONE", "has_tags", "LUIS BUÑUEL" ], [ "THE YOUNG ONE", "written_by", "LUIS BUÑUEL" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 35798, 2010 656, CRUSH 9045, DAMION POITIER 36212, DRAMA 3079, FREEDOM WRITERS 30437, HUNTER PREY 9359, IMELDA STAUNTON 15038, INDEPENDENCE 35556, OUTSIDE THE LAW src, edge_attr, dst 656, has_genre, 36212 656, starred_actors, 9359 3079, has_genre, 36212 3079, starred_actors, 9359 3079, written_by, 3079 30437, release_year, 35798 30437, starred_actors, 9045 35556, has_genre, 36212 35556, has_tags, 36212 35556, has_tags, 15038 35556, release_year, 35798 Question: In what context are DAMION POITIER, IMELDA STAUNTON, and INDEPENDENCE connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "DAMION POITIER", "IMELDA STAUNTON", "INDEPENDENCE" ], "valid_edges": [ [ "CRUSH", "has_genre", "DRAMA" ], [ "CRUSH", "starred_actors", "IMELDA STAUNTON" ], [ "FREEDOM WRITERS", "has_genre", "DRAMA" ], [ "FREEDOM WRITERS", "starred_actors", "IMELDA STAUNTON" ], [ "FREEDOM WRITERS", "written_by", "FREEDOM WRITERS" ], [ "HUNTER PREY", "release_year", "2010" ], [ "HUNTER PREY", "starred_actors", "DAMION POITIER" ], [ "OUTSIDE THE LAW", "has_genre", "DRAMA" ], [ "OUTSIDE THE LAW", "has_tags", "DRAMA" ], [ "OUTSIDE THE LAW", "has_tags", "INDEPENDENCE" ], [ "OUTSIDE THE LAW", "release_year", "2010" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 25221, 1981 27261, 2009 39289, ACTION 38925, CLOUD ATLAS 32331, CONSTANCE COLLIER 36212, DRAMA 14257, ELEPHANT 3342, ERIC DEULEN 25842, ESCAPE FROM NEW YORK 8491, ESCAPE PLAN 27620, FUTURE 33790, MANHATTAN 36943, NEW YORK 4303, NEW YORK CITY 4302, PETER IBBETSON 30919, PRISON 35872, RICH AND FAMOUS 19351, THE COUNT OF MONTE CRISTO 22346, THE DEVIL WEARS PRADA 4552, WEST SIDE STORY src, edge_attr, dst 25221, has_genre, 36212 25221, release_year, 27261 38925, has_tags, 39289 38925, has_tags, 27620 14257, has_genre, 36212 14257, starred_actors, 3342 25842, has_genre, 39289 25842, has_tags, 39289 25842, has_tags, 27620 25842, has_tags, 36943 25842, has_tags, 4303 25842, has_tags, 30919 25842, release_year, 25221 8491, has_genre, 39289 8491, has_tags, 30919 33790, has_tags, 36943 33790, has_tags, 4303 36943, release_year, 27261 4302, has_genre, 36212 4302, written_by, 32331 30919, has_genre, 36212 30919, has_tags, 30919 35872, has_genre, 39289 35872, release_year, 25221 19351, has_genre, 39289 19351, has_tags, 30919 22346, has_tags, 36943 22346, has_tags, 4303 4552, has_tags, 36943 4552, has_tags, 4303 Question: How are CONSTANCE COLLIER, ERIC DEULEN, and ESCAPE FROM NEW YORK related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "CONSTANCE COLLIER", "ERIC DEULEN", "ESCAPE FROM NEW YORK" ], "valid_edges": [ [ "1981", "has_genre", "DRAMA" ], [ "1981", "release_year", "2009" ], [ "CLOUD ATLAS", "has_tags", "ACTION" ], [ "CLOUD ATLAS", "has_tags", "FUTURE" ], [ "ELEPHANT", "has_genre", "DRAMA" ], [ "ELEPHANT", "starred_actors", "ERIC DEULEN" ], [ "ESCAPE FROM NEW YORK", "has_genre", "ACTION" ], [ "ESCAPE FROM NEW YORK", "has_tags", "ACTION" ], [ "ESCAPE FROM NEW YORK", "has_tags", "FUTURE" ], [ "ESCAPE FROM NEW YORK", "has_tags", "NEW YORK" ], [ "ESCAPE FROM NEW YORK", "has_tags", "NEW YORK CITY" ], [ "ESCAPE FROM NEW YORK", "has_tags", "PRISON" ], [ "ESCAPE FROM NEW YORK", "release_year", "1981" ], [ "ESCAPE PLAN", "has_genre", "ACTION" ], [ "ESCAPE PLAN", "has_tags", "PRISON" ], [ "MANHATTAN", "has_tags", "NEW YORK" ], [ "MANHATTAN", "has_tags", "NEW YORK CITY" ], [ "NEW YORK", "release_year", "2009" ], [ "PETER IBBETSON", "has_genre", "DRAMA" ], [ "PETER IBBETSON", "written_by", "CONSTANCE COLLIER" ], [ "PRISON", "has_genre", "DRAMA" ], [ "PRISON", "has_tags", "PRISON" ], [ "RICH AND FAMOUS", "has_genre", "ACTION" ], [ "RICH AND FAMOUS", "release_year", "1981" ], [ "THE COUNT OF MONTE CRISTO", "has_genre", "ACTION" ], [ "THE COUNT OF MONTE CRISTO", "has_tags", "PRISON" ], [ "THE DEVIL WEARS PRADA", "has_tags", "NEW YORK" ], [ "THE DEVIL WEARS PRADA", "has_tags", "NEW YORK CITY" ], [ "WEST SIDE STORY", "has_tags", "NEW YORK" ], [ "WEST SIDE STORY", "has_tags", "NEW YORK CITY" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 13464, 10 THINGS I HATE ABOUT YOU 8486, 1999 5620, 200 CIGARETTES 30146, A CHRISTMAS CAROL 29036, A MIDSUMMER NIGHT'S DREAM 8198, A PRAIRIE HOME COMPANION 27672, A ROOM FOR ROMEO BRASS 35603, AGNES BROWNE 21398, AMERICAN PIE 23409, AN IDEAL HUSBAND 8780, ANALYZE THIS 15458, BABY GENIUSES 32415, BEAUTIFUL PEOPLE 26205, BEING JOHN MALKOVICH 24555, BETTER THAN CHOCOLATE 32602, BIG DADDY 18375, BLAST FROM THE PAST 16932, BLUE STREAK 21121, BOWFINGER 5826, BREAKFAST OF CHAMPIONS 27223, BUT FOREVER IN MY MIND 36824, BUT I'M A CHEERLEADER 3291, CATFISH IN BLACK BEAN SAUCE 13901, CHARLIE WILSON'S WAR 24116, COLLEGE 30463, COMEDY 640, COOKIE'S FORTUNE 39353, COTTON MARY 32140, CRAZY IN ALABAMA 16600, CYRUS 36492, DIAMONDS 637, DICK 17219, DO NOT DISTURB 21407, DOGMA 36212, DRAMA 18908, DROP DEAD GORGEOUS 8341, DUDLEY DO-RIGHT 7568, EAST IS EAST 26193, ELECTION 17072, FAREWELL, HOME SWEET HOME 25625, FIRST DAUGHTER 34555, FLAWLESS 17478, FOOLISH 34820, FORCES OF NATURE 5514, FUNNY PEOPLE 6623, GO 14426, GORGEOUS 11817, GUEST HOUSE PARADISO 12650, HAPPY, TEXAS 21485, HELD UP 29729, HIT AND RUNWAY 39622, IDLE HANDS 36573, IN CHINA THEY EAT DOGS 25733, INSPECTOR GADGET 4912, JAKOB THE LIAR 17556, JAWBREAKER 1592, K-911 22333, KING OF COMEDY 13898, LAKE PLACID 7104, LIFE 32468, LOVE STINKS 37138, MAN OF THE CENTURY 37867, MAN ON THE MOON 6649, MANSFIELD PARK 1454, MICKEY BLUE EYES 19598, MOLLY 16428, MUMFORD 16362, MUPPETS FROM SPACE 10000, MY NEIGHBORS THE YAMADAS 5020, MYSTERY MEN 33718, MYSTERY, ALASKA 33072, NEVER BEEN KISSED 16645, NEW WATERFORD GIRL 37812, NICE GUYS SLEEP ALONE 14898, NOTTING HILL 39920, OFFICE SPACE 14718, PAUL DANZIGER 35054, PLAY IT TO THE BONE 34333, PUNCTURE 16964, PUSHING TIN 16974, RUNAWAY BRIDE 19297, SAFE SEX 15252, SCREWED IN TALLINN 32422, SEVEN GIRLFRIENDS 38502, SHE'S ALL THAT 36310, SIAM SUNSET 801, SIMON SEZ 25788, SIMPLY IRRESISTIBLE 3929, SOFT TOILET SEATS 8978, SPLENDOR 27650, STRANGE PLANET 22847, STUART LITTLE 27511, SUPERSTAR 32984, SWEET AND LOWDOWN 905, TEACHING MRS. TINGLE 22407, THE ACTRESS 36394, THE ADVENTURES OF ELMO IN GROUCHLAND 3021, THE BACHELOR 4157, THE BEST MAN 27111, THE BIG KAHUNA 14175, THE BIG TEASE 8605, THE BREAKS 12439, THE INSIDER 844, THE LOVE LETTER 35958, THE MATCH 16694, THE MUSE 35433, THE OTHER SISTER 10260, THE OUT-OF-TOWNERS 2739, THE SAPPHIRES 37200, THE STORY OF US 11235, THE SUBURBANS 38179, THE UNDERGROUND COMEDY MOVIE 26468, THE WAITING GAME 26226, THE WOOD 12626, THREE KINGS 25141, THREE TO TANGO 4723, TIFOSI 14499, TOY STORY 2 24435, TRAILER PARK BOYS 21904, TRICK 23874, TRIPPIN' 16292, TRUE STORY 13101, TUMBLEWEEDS 3569, WHY NOT ME? 1790, WILD WILD WEST src, edge_attr, dst 13464, has_genre, 30463 13464, has_genre, 36212 13464, has_tags, 30463 13464, release_year, 8486 5620, has_genre, 30463 5620, has_genre, 36212 5620, release_year, 8486 30146, has_genre, 30463 30146, has_genre, 36212 30146, release_year, 8486 29036, has_genre, 30463 29036, release_year, 8486 8198, has_genre, 30463 8198, has_genre, 36212 27672, has_genre, 30463 27672, has_genre, 36212 27672, release_year, 8486 35603, has_genre, 30463 35603, has_genre, 36212 35603, release_year, 8486 21398, has_genre, 30463 21398, has_tags, 30463 21398, release_year, 8486 23409, has_genre, 30463 23409, has_tags, 30463 23409, release_year, 8486 8780, has_genre, 30463 8780, has_tags, 30463 8780, release_year, 8486 15458, has_genre, 30463 15458, release_year, 8486 32415, has_genre, 30463 32415, release_year, 8486 26205, has_genre, 30463 26205, has_genre, 36212 26205, has_tags, 30463 26205, has_tags, 36212 26205, release_year, 8486 24555, has_genre, 30463 24555, release_year, 8486 32602, has_genre, 30463 32602, release_year, 8486 18375, has_genre, 30463 18375, release_year, 8486 16932, has_genre, 30463 16932, release_year, 8486 21121, has_genre, 30463 21121, has_tags, 30463 21121, release_year, 8486 5826, has_genre, 30463 5826, has_tags, 30463 5826, release_year, 8486 27223, has_genre, 30463 27223, release_year, 8486 36824, has_genre, 30463 36824, release_year, 8486 3291, has_genre, 30463 3291, has_genre, 36212 3291, release_year, 8486 13901, has_genre, 30463 13901, has_genre, 36212 24116, has_genre, 30463 24116, has_genre, 36212 640, has_genre, 30463 640, release_year, 8486 39353, release_year, 8486 32140, has_genre, 30463 32140, has_genre, 36212 32140, release_year, 8486 16600, has_genre, 30463 16600, has_genre, 36212 36492, has_genre, 30463 36492, release_year, 8486 637, has_genre, 30463 637, release_year, 8486 17219, has_genre, 30463 17219, release_year, 8486 21407, has_genre, 30463 21407, has_tags, 30463 21407, release_year, 8486 18908, has_genre, 30463 18908, release_year, 8486 8341, has_genre, 30463 8341, release_year, 8486 7568, has_genre, 30463 7568, has_genre, 36212 7568, release_year, 8486 26193, has_genre, 30463 26193, release_year, 8486 17072, has_genre, 30463 17072, release_year, 8486 25625, has_genre, 30463 25625, release_year, 8486 34555, has_genre, 30463 34555, has_genre, 36212 34555, release_year, 8486 17478, has_genre, 30463 17478, has_genre, 36212 17478, release_year, 8486 34820, has_genre, 30463 34820, release_year, 8486 5514, has_genre, 30463 5514, has_genre, 36212 5514, has_tags, 30463 5514, has_tags, 36212 6623, has_genre, 30463 6623, has_tags, 30463 6623, release_year, 8486 14426, has_genre, 30463 14426, release_year, 8486 11817, has_genre, 30463 11817, release_year, 8486 12650, has_genre, 30463 12650, release_year, 8486 21485, has_genre, 30463 21485, release_year, 8486 29729, has_genre, 30463 29729, release_year, 8486 39622, has_genre, 30463 39622, release_year, 8486 36573, has_genre, 30463 36573, release_year, 8486 25733, has_genre, 30463 25733, release_year, 8486 4912, has_genre, 30463 4912, has_genre, 36212 4912, release_year, 8486 17556, has_genre, 30463 17556, release_year, 8486 1592, has_genre, 30463 1592, release_year, 8486 22333, has_genre, 30463 22333, has_genre, 36212 22333, release_year, 8486 13898, has_genre, 30463 13898, release_year, 8486 7104, has_genre, 30463 7104, has_genre, 36212 7104, has_tags, 30463 7104, release_year, 8486 32468, has_genre, 30463 32468, release_year, 8486 37138, has_genre, 30463 37138, release_year, 8486 37867, has_genre, 30463 37867, has_genre, 36212 37867, release_year, 8486 6649, has_genre, 30463 6649, has_genre, 36212 6649, release_year, 8486 1454, has_genre, 30463 1454, has_tags, 30463 1454, release_year, 8486 19598, has_genre, 30463 19598, has_genre, 36212 19598, release_year, 8486 16428, has_genre, 30463 16428, has_genre, 36212 16428, release_year, 8486 16362, has_genre, 30463 16362, release_year, 8486 10000, has_genre, 30463 10000, release_year, 8486 5020, has_genre, 30463 5020, has_tags, 30463 5020, release_year, 8486 33718, has_genre, 30463 33718, has_genre, 36212 33718, release_year, 8486 33072, has_genre, 30463 33072, release_year, 8486 16645, has_genre, 30463 16645, release_year, 8486 37812, has_genre, 30463 37812, release_year, 8486 14898, has_genre, 30463 14898, has_tags, 30463 14898, release_year, 8486 39920, has_genre, 30463 39920, has_tags, 30463 39920, release_year, 8486 35054, has_genre, 30463 35054, has_genre, 36212 35054, release_year, 8486 34333, has_tags, 16292 34333, written_by, 14718 16964, has_genre, 30463 16964, has_genre, 36212 16964, release_year, 8486 16974, has_genre, 30463 16974, release_year, 8486 19297, has_genre, 30463 19297, release_year, 8486 15252, has_genre, 30463 15252, has_genre, 36212 15252, release_year, 8486 32422, has_genre, 30463 32422, release_year, 8486 38502, has_genre, 30463 38502, has_tags, 30463 38502, release_year, 8486 36310, has_genre, 30463 36310, release_year, 8486 801, has_genre, 30463 801, has_tags, 30463 801, release_year, 8486 25788, has_genre, 30463 25788, release_year, 8486 3929, has_genre, 30463 3929, release_year, 8486 8978, has_genre, 30463 8978, release_year, 8486 27650, has_genre, 30463 27650, release_year, 8486 22847, has_genre, 30463 22847, has_tags, 30463 22847, release_year, 8486 27511, has_genre, 30463 27511, release_year, 8486 32984, has_genre, 30463 32984, has_genre, 36212 32984, release_year, 8486 905, has_genre, 30463 905, release_year, 8486 22407, has_genre, 30463 22407, has_genre, 36212 36394, has_genre, 30463 36394, release_year, 8486 3021, has_genre, 30463 3021, release_year, 8486 4157, has_genre, 30463 4157, has_genre, 36212 4157, release_year, 8486 27111, has_genre, 30463 27111, has_genre, 36212 27111, release_year, 8486 14175, has_genre, 30463 14175, release_year, 8486 8605, has_genre, 30463 8605, release_year, 8486 12439, has_genre, 36212 12439, has_tags, 36212 12439, release_year, 8486 844, has_genre, 30463 844, release_year, 8486 35958, has_genre, 30463 35958, release_year, 8486 16694, has_genre, 30463 16694, release_year, 8486 35433, has_genre, 30463 35433, release_year, 8486 10260, has_genre, 30463 10260, release_year, 8486 2739, has_genre, 30463 2739, has_genre, 36212 37200, has_genre, 30463 37200, has_genre, 36212 37200, has_tags, 36212 37200, release_year, 8486 11235, has_genre, 30463 11235, has_genre, 36212 11235, release_year, 8486 38179, has_genre, 30463 38179, release_year, 8486 26468, has_genre, 30463 26468, release_year, 8486 26226, has_genre, 30463 26226, release_year, 8486 12626, has_genre, 30463 12626, has_tags, 30463 12626, release_year, 8486 25141, has_genre, 30463 25141, release_year, 8486 4723, has_genre, 30463 4723, release_year, 8486 14499, has_genre, 30463 14499, release_year, 8486 24435, has_genre, 30463 24435, release_year, 8486 21904, has_genre, 30463 21904, release_year, 8486 23874, has_genre, 30463 23874, release_year, 8486 16292, has_genre, 36212 16292, has_tags, 36212 13101, has_genre, 30463 13101, has_genre, 36212 13101, release_year, 8486 3569, has_genre, 30463 3569, release_year, 8486 1790, has_genre, 30463 1790, has_tags, 30463 1790, release_year, 8486 Question: For what reason are COTTON MARY, PAUL DANZIGER, and THE ACTRESS associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "COTTON MARY", "PAUL DANZIGER", "THE ACTRESS" ], "valid_edges": [ [ "10 THINGS I HATE ABOUT YOU", "has_genre", "COMEDY" ], [ "10 THINGS I HATE ABOUT YOU", "has_genre", "DRAMA" ], [ "10 THINGS I HATE ABOUT YOU", "has_tags", "COMEDY" ], [ "10 THINGS I HATE ABOUT YOU", "release_year", "1999" ], [ "200 CIGARETTES", "has_genre", "COMEDY" ], [ "200 CIGARETTES", "has_genre", "DRAMA" ], [ "200 CIGARETTES", "release_year", "1999" ], [ "A CHRISTMAS CAROL", "has_genre", "COMEDY" ], [ "A CHRISTMAS CAROL", "has_genre", "DRAMA" ], [ "A CHRISTMAS CAROL", "release_year", "1999" ], [ "A MIDSUMMER NIGHT'S DREAM", "has_genre", "COMEDY" ], [ "A MIDSUMMER NIGHT'S DREAM", "release_year", "1999" ], [ "A PRAIRIE HOME COMPANION", "has_genre", "COMEDY" ], [ "A PRAIRIE HOME COMPANION", "has_genre", "DRAMA" ], [ "A ROOM FOR ROMEO BRASS", "has_genre", "COMEDY" ], [ "A ROOM FOR ROMEO BRASS", "has_genre", "DRAMA" ], [ "A ROOM FOR ROMEO BRASS", "release_year", "1999" ], [ "AGNES BROWNE", "has_genre", "COMEDY" ], [ "AGNES BROWNE", "has_genre", "DRAMA" ], [ "AGNES BROWNE", "release_year", "1999" ], [ "AMERICAN PIE", "has_genre", "COMEDY" ], [ "AMERICAN PIE", "has_tags", "COMEDY" ], [ "AMERICAN PIE", "release_year", "1999" ], [ "AN IDEAL HUSBAND", "has_genre", "COMEDY" ], [ "AN IDEAL HUSBAND", "has_tags", "COMEDY" ], [ "AN IDEAL HUSBAND", "release_year", "1999" ], [ "ANALYZE THIS", "has_genre", "COMEDY" ], [ "ANALYZE THIS", "has_tags", "COMEDY" ], [ "ANALYZE THIS", "release_year", "1999" ], [ "BABY GENIUSES", "has_genre", "COMEDY" ], [ "BABY GENIUSES", "release_year", "1999" ], [ "BEAUTIFUL PEOPLE", "has_genre", "COMEDY" ], [ "BEAUTIFUL PEOPLE", "release_year", "1999" ], [ "BEING JOHN MALKOVICH", "has_genre", "COMEDY" ], [ "BEING JOHN MALKOVICH", "has_genre", "DRAMA" ], [ "BEING JOHN MALKOVICH", "has_tags", "COMEDY" ], [ "BEING JOHN MALKOVICH", "has_tags", "DRAMA" ], [ "BEING JOHN MALKOVICH", "release_year", "1999" ], [ "BETTER THAN CHOCOLATE", "has_genre", "COMEDY" ], [ "BETTER THAN CHOCOLATE", "release_year", "1999" ], [ "BIG DADDY", "has_genre", "COMEDY" ], [ "BIG DADDY", "release_year", "1999" ], [ "BLAST FROM THE PAST", "has_genre", "COMEDY" ], [ "BLAST FROM THE PAST", "release_year", "1999" ], [ "BLUE STREAK", "has_genre", "COMEDY" ], [ "BLUE STREAK", "release_year", "1999" ], [ "BOWFINGER", "has_genre", "COMEDY" ], [ "BOWFINGER", "has_tags", "COMEDY" ], [ "BOWFINGER", "release_year", "1999" ], [ "BREAKFAST OF CHAMPIONS", "has_genre", "COMEDY" ], [ "BREAKFAST OF CHAMPIONS", "has_tags", "COMEDY" ], [ "BREAKFAST OF CHAMPIONS", "release_year", "1999" ], [ "BUT FOREVER IN MY MIND", "has_genre", "COMEDY" ], [ "BUT FOREVER IN MY MIND", "release_year", "1999" ], [ "BUT I'M A CHEERLEADER", "has_genre", "COMEDY" ], [ "BUT I'M A CHEERLEADER", "release_year", "1999" ], [ "CATFISH IN BLACK BEAN SAUCE", "has_genre", "COMEDY" ], [ "CATFISH IN BLACK BEAN SAUCE", "has_genre", "DRAMA" ], [ "CATFISH IN BLACK BEAN SAUCE", "release_year", "1999" ], [ "CHARLIE WILSON'S WAR", "has_genre", "COMEDY" ], [ "CHARLIE WILSON'S WAR", "has_genre", "DRAMA" ], [ "COLLEGE", "has_genre", "COMEDY" ], [ "COLLEGE", "has_genre", "DRAMA" ], [ "COOKIE'S FORTUNE", "has_genre", "COMEDY" ], [ "COOKIE'S FORTUNE", "release_year", "1999" ], [ "COTTON MARY", "release_year", "1999" ], [ "CRAZY IN ALABAMA", "has_genre", "COMEDY" ], [ "CRAZY IN ALABAMA", "has_genre", "DRAMA" ], [ "CRAZY IN ALABAMA", "release_year", "1999" ], [ "CYRUS", "has_genre", "COMEDY" ], [ "CYRUS", "has_genre", "DRAMA" ], [ "DIAMONDS", "has_genre", "COMEDY" ], [ "DIAMONDS", "release_year", "1999" ], [ "DICK", "has_genre", "COMEDY" ], [ "DICK", "release_year", "1999" ], [ "DO NOT DISTURB", "has_genre", "COMEDY" ], [ "DO NOT DISTURB", "release_year", "1999" ], [ "DOGMA", "has_genre", "COMEDY" ], [ "DOGMA", "has_tags", "COMEDY" ], [ "DOGMA", "release_year", "1999" ], [ "DROP DEAD GORGEOUS", "has_genre", "COMEDY" ], [ "DROP DEAD GORGEOUS", "release_year", "1999" ], [ "DUDLEY DO-RIGHT", "has_genre", "COMEDY" ], [ "DUDLEY DO-RIGHT", "release_year", "1999" ], [ "EAST IS EAST", "has_genre", "COMEDY" ], [ "EAST IS EAST", "has_genre", "DRAMA" ], [ "EAST IS EAST", "release_year", "1999" ], [ "ELECTION", "has_genre", "COMEDY" ], [ "ELECTION", "release_year", "1999" ], [ "FAREWELL, HOME SWEET HOME", "has_genre", "COMEDY" ], [ "FAREWELL, HOME SWEET HOME", "release_year", "1999" ], [ "FIRST DAUGHTER", "has_genre", "COMEDY" ], [ "FIRST DAUGHTER", "release_year", "1999" ], [ "FLAWLESS", "has_genre", "COMEDY" ], [ "FLAWLESS", "has_genre", "DRAMA" ], [ "FLAWLESS", "release_year", "1999" ], [ "FOOLISH", "has_genre", "COMEDY" ], [ "FOOLISH", "has_genre", "DRAMA" ], [ "FOOLISH", "release_year", "1999" ], [ "FORCES OF NATURE", "has_genre", "COMEDY" ], [ "FORCES OF NATURE", "release_year", "1999" ], [ "FUNNY PEOPLE", "has_genre", "COMEDY" ], [ "FUNNY PEOPLE", "has_genre", "DRAMA" ], [ "FUNNY PEOPLE", "has_tags", "COMEDY" ], [ "FUNNY PEOPLE", "has_tags", "DRAMA" ], [ "GO", "has_genre", "COMEDY" ], [ "GO", "has_tags", "COMEDY" ], [ "GO", "release_year", "1999" ], [ "GORGEOUS", "has_genre", "COMEDY" ], [ "GORGEOUS", "release_year", "1999" ], [ "GUEST HOUSE PARADISO", "has_genre", "COMEDY" ], [ "GUEST HOUSE PARADISO", "release_year", "1999" ], [ "HAPPY, TEXAS", "has_genre", "COMEDY" ], [ "HAPPY, TEXAS", "release_year", "1999" ], [ "HELD UP", "has_genre", "COMEDY" ], [ "HELD UP", "release_year", "1999" ], [ "HIT AND RUNWAY", "has_genre", "COMEDY" ], [ "HIT AND RUNWAY", "release_year", "1999" ], [ "IDLE HANDS", "has_genre", "COMEDY" ], [ "IDLE HANDS", "release_year", "1999" ], [ "IN CHINA THEY EAT DOGS", "has_genre", "COMEDY" ], [ "IN CHINA THEY EAT DOGS", "release_year", "1999" ], [ "INSPECTOR GADGET", "has_genre", "COMEDY" ], [ "INSPECTOR GADGET", "release_year", "1999" ], [ "JAKOB THE LIAR", "has_genre", "COMEDY" ], [ "JAKOB THE LIAR", "has_genre", "DRAMA" ], [ "JAKOB THE LIAR", "release_year", "1999" ], [ "JAWBREAKER", "has_genre", "COMEDY" ], [ "JAWBREAKER", "release_year", "1999" ], [ "K-911", "has_genre", "COMEDY" ], [ "K-911", "release_year", "1999" ], [ "KING OF COMEDY", "has_genre", "COMEDY" ], [ "KING OF COMEDY", "has_genre", "DRAMA" ], [ "KING OF COMEDY", "release_year", "1999" ], [ "LAKE PLACID", "has_genre", "COMEDY" ], [ "LAKE PLACID", "release_year", "1999" ], [ "LIFE", "has_genre", "COMEDY" ], [ "LIFE", "has_genre", "DRAMA" ], [ "LIFE", "has_tags", "COMEDY" ], [ "LIFE", "release_year", "1999" ], [ "LOVE STINKS", "has_genre", "COMEDY" ], [ "LOVE STINKS", "release_year", "1999" ], [ "MAN OF THE CENTURY", "has_genre", "COMEDY" ], [ "MAN OF THE CENTURY", "release_year", "1999" ], [ "MAN ON THE MOON", "has_genre", "COMEDY" ], [ "MAN ON THE MOON", "has_genre", "DRAMA" ], [ "MAN ON THE MOON", "release_year", "1999" ], [ "MANSFIELD PARK", "has_genre", "COMEDY" ], [ "MANSFIELD PARK", "has_genre", "DRAMA" ], [ "MANSFIELD PARK", "release_year", "1999" ], [ "MICKEY BLUE EYES", "has_genre", "COMEDY" ], [ "MICKEY BLUE EYES", "has_tags", "COMEDY" ], [ "MICKEY BLUE EYES", "release_year", "1999" ], [ "MOLLY", "has_genre", "COMEDY" ], [ "MOLLY", "has_genre", "DRAMA" ], [ "MOLLY", "release_year", "1999" ], [ "MUMFORD", "has_genre", "COMEDY" ], [ "MUMFORD", "has_genre", "DRAMA" ], [ "MUMFORD", "release_year", "1999" ], [ "MUPPETS FROM SPACE", "has_genre", "COMEDY" ], [ "MUPPETS FROM SPACE", "release_year", "1999" ], [ "MY NEIGHBORS THE YAMADAS", "has_genre", "COMEDY" ], [ "MY NEIGHBORS THE YAMADAS", "release_year", "1999" ], [ "MYSTERY MEN", "has_genre", "COMEDY" ], [ "MYSTERY MEN", "has_tags", "COMEDY" ], [ "MYSTERY MEN", "release_year", "1999" ], [ "MYSTERY, ALASKA", "has_genre", "COMEDY" ], [ "MYSTERY, ALASKA", "has_genre", "DRAMA" ], [ "MYSTERY, ALASKA", "release_year", "1999" ], [ "NEVER BEEN KISSED", "has_genre", "COMEDY" ], [ "NEVER BEEN KISSED", "release_year", "1999" ], [ "NEW WATERFORD GIRL", "has_genre", "COMEDY" ], [ "NEW WATERFORD GIRL", "release_year", "1999" ], [ "NICE GUYS SLEEP ALONE", "has_genre", "COMEDY" ], [ "NICE GUYS SLEEP ALONE", "release_year", "1999" ], [ "NOTTING HILL", "has_genre", "COMEDY" ], [ "NOTTING HILL", "has_tags", "COMEDY" ], [ "NOTTING HILL", "release_year", "1999" ], [ "OFFICE SPACE", "has_genre", "COMEDY" ], [ "OFFICE SPACE", "has_tags", "COMEDY" ], [ "OFFICE SPACE", "release_year", "1999" ], [ "PLAY IT TO THE BONE", "has_genre", "COMEDY" ], [ "PLAY IT TO THE BONE", "has_genre", "DRAMA" ], [ "PLAY IT TO THE BONE", "release_year", "1999" ], [ "PUNCTURE", "has_tags", "TRUE STORY" ], [ "PUNCTURE", "written_by", "PAUL DANZIGER" ], [ "PUSHING TIN", "has_genre", "COMEDY" ], [ "PUSHING TIN", "has_genre", "DRAMA" ], [ "PUSHING TIN", "release_year", "1999" ], [ "RUNAWAY BRIDE", "has_genre", "COMEDY" ], [ "RUNAWAY BRIDE", "release_year", "1999" ], [ "SAFE SEX", "has_genre", "COMEDY" ], [ "SAFE SEX", "release_year", "1999" ], [ "SCREWED IN TALLINN", "has_genre", "COMEDY" ], [ "SCREWED IN TALLINN", "has_genre", "DRAMA" ], [ "SCREWED IN TALLINN", "release_year", "1999" ], [ "SEVEN GIRLFRIENDS", "has_genre", "COMEDY" ], [ "SEVEN GIRLFRIENDS", "release_year", "1999" ], [ "SHE'S ALL THAT", "has_genre", "COMEDY" ], [ "SHE'S ALL THAT", "has_tags", "COMEDY" ], [ "SHE'S ALL THAT", "release_year", "1999" ], [ "SIAM SUNSET", "has_genre", "COMEDY" ], [ "SIAM SUNSET", "release_year", "1999" ], [ "SIMON SEZ", "has_genre", "COMEDY" ], [ "SIMON SEZ", "has_tags", "COMEDY" ], [ "SIMON SEZ", "release_year", "1999" ], [ "SIMPLY IRRESISTIBLE", "has_genre", "COMEDY" ], [ "SIMPLY IRRESISTIBLE", "release_year", "1999" ], [ "SOFT TOILET SEATS", "has_genre", "COMEDY" ], [ "SOFT TOILET SEATS", "release_year", "1999" ], [ "SPLENDOR", "has_genre", "COMEDY" ], [ "SPLENDOR", "release_year", "1999" ], [ "STRANGE PLANET", "has_genre", "COMEDY" ], [ "STRANGE PLANET", "release_year", "1999" ], [ "STUART LITTLE", "has_genre", "COMEDY" ], [ "STUART LITTLE", "has_tags", "COMEDY" ], [ "STUART LITTLE", "release_year", "1999" ], [ "SUPERSTAR", "has_genre", "COMEDY" ], [ "SUPERSTAR", "release_year", "1999" ], [ "SWEET AND LOWDOWN", "has_genre", "COMEDY" ], [ "SWEET AND LOWDOWN", "has_genre", "DRAMA" ], [ "SWEET AND LOWDOWN", "release_year", "1999" ], [ "TEACHING MRS. TINGLE", "has_genre", "COMEDY" ], [ "TEACHING MRS. TINGLE", "release_year", "1999" ], [ "THE ACTRESS", "has_genre", "COMEDY" ], [ "THE ACTRESS", "has_genre", "DRAMA" ], [ "THE ADVENTURES OF ELMO IN GROUCHLAND", "has_genre", "COMEDY" ], [ "THE ADVENTURES OF ELMO IN GROUCHLAND", "release_year", "1999" ], [ "THE BACHELOR", "has_genre", "COMEDY" ], [ "THE BACHELOR", "release_year", "1999" ], [ "THE BEST MAN", "has_genre", "COMEDY" ], [ "THE BEST MAN", "has_genre", "DRAMA" ], [ "THE BEST MAN", "release_year", "1999" ], [ "THE BIG KAHUNA", "has_genre", "COMEDY" ], [ "THE BIG KAHUNA", "has_genre", "DRAMA" ], [ "THE BIG KAHUNA", "release_year", "1999" ], [ "THE BIG TEASE", "has_genre", "COMEDY" ], [ "THE BIG TEASE", "release_year", "1999" ], [ "THE BREAKS", "has_genre", "COMEDY" ], [ "THE BREAKS", "release_year", "1999" ], [ "THE INSIDER", "has_genre", "DRAMA" ], [ "THE INSIDER", "has_tags", "DRAMA" ], [ "THE INSIDER", "release_year", "1999" ], [ "THE LOVE LETTER", "has_genre", "COMEDY" ], [ "THE LOVE LETTER", "release_year", "1999" ], [ "THE MATCH", "has_genre", "COMEDY" ], [ "THE MATCH", "release_year", "1999" ], [ "THE MUSE", "has_genre", "COMEDY" ], [ "THE MUSE", "release_year", "1999" ], [ "THE OTHER SISTER", "has_genre", "COMEDY" ], [ "THE OTHER SISTER", "release_year", "1999" ], [ "THE OUT-OF-TOWNERS", "has_genre", "COMEDY" ], [ "THE OUT-OF-TOWNERS", "release_year", "1999" ], [ "THE SAPPHIRES", "has_genre", "COMEDY" ], [ "THE SAPPHIRES", "has_genre", "DRAMA" ], [ "THE STORY OF US", "has_genre", "COMEDY" ], [ "THE STORY OF US", "has_genre", "DRAMA" ], [ "THE STORY OF US", "has_tags", "DRAMA" ], [ "THE STORY OF US", "release_year", "1999" ], [ "THE SUBURBANS", "has_genre", "COMEDY" ], [ "THE SUBURBANS", "has_genre", "DRAMA" ], [ "THE SUBURBANS", "release_year", "1999" ], [ "THE UNDERGROUND COMEDY MOVIE", "has_genre", "COMEDY" ], [ "THE UNDERGROUND COMEDY MOVIE", "release_year", "1999" ], [ "THE WAITING GAME", "has_genre", "COMEDY" ], [ "THE WAITING GAME", "release_year", "1999" ], [ "THE WOOD", "has_genre", "COMEDY" ], [ "THE WOOD", "release_year", "1999" ], [ "THREE KINGS", "has_genre", "COMEDY" ], [ "THREE KINGS", "has_tags", "COMEDY" ], [ "THREE KINGS", "release_year", "1999" ], [ "THREE TO TANGO", "has_genre", "COMEDY" ], [ "THREE TO TANGO", "release_year", "1999" ], [ "TIFOSI", "has_genre", "COMEDY" ], [ "TIFOSI", "release_year", "1999" ], [ "TOY STORY 2", "has_genre", "COMEDY" ], [ "TOY STORY 2", "release_year", "1999" ], [ "TRAILER PARK BOYS", "has_genre", "COMEDY" ], [ "TRAILER PARK BOYS", "release_year", "1999" ], [ "TRICK", "has_genre", "COMEDY" ], [ "TRICK", "release_year", "1999" ], [ "TRIPPIN'", "has_genre", "COMEDY" ], [ "TRIPPIN'", "release_year", "1999" ], [ "TRUE STORY", "has_genre", "DRAMA" ], [ "TRUE STORY", "has_tags", "DRAMA" ], [ "TUMBLEWEEDS", "has_genre", "COMEDY" ], [ "TUMBLEWEEDS", "has_genre", "DRAMA" ], [ "TUMBLEWEEDS", "release_year", "1999" ], [ "WHY NOT ME?", "has_genre", "COMEDY" ], [ "WHY NOT ME?", "release_year", "1999" ], [ "WILD WILD WEST", "has_genre", "COMEDY" ], [ "WILD WILD WEST", "has_tags", "COMEDY" ], [ "WILD WILD WEST", "release_year", "1999" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 8539, 1982 6294, ANIME 14492, DEAD MEN DON'T WEAR PLAID 19194, ENIGMA 29266, FITZCARRALDO 7498, FLIGHTPLAN 6480, GERMAN 9760, LIFE IS ALL YOU GET 18279, METROPOLIS 15145, MYSTERY 6979, PANDORUM 39284, POSSESSION 8988, PROFESSOR LAYTON AND THE ETERNAL DIVA 22384, ROOM 666 9875, THE DRAUGHTSMAN'S CONTRACT 4662, THE GOOD GERMAN 4091, THE LADY VANISHES src, edge_attr, dst 14492, has_genre, 15145 14492, has_tags, 15145 14492, release_year, 8539 19194, has_genre, 15145 19194, in_language, 6480 29266, in_language, 6480 29266, release_year, 8539 7498, has_genre, 15145 7498, has_tags, 15145 7498, in_language, 6480 9760, in_language, 6480 18279, has_tags, 6294 18279, in_language, 6480 6979, has_genre, 15145 6979, in_language, 6480 39284, has_genre, 15145 39284, in_language, 6480 8988, has_tags, 6294 22384, in_language, 6480 22384, release_year, 8539 9875, has_genre, 15145 9875, release_year, 8539 4662, has_genre, 15145 4662, in_language, 6480 4091, has_genre, 15145 4091, in_language, 6480 Question: How are LIFE IS ALL YOU GET, PROFESSOR LAYTON AND THE ETERNAL DIVA, and THE DRAUGHTSMAN'S CONTRACT related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "LIFE IS ALL YOU GET", "PROFESSOR LAYTON AND THE ETERNAL DIVA", "THE DRAUGHTSMAN'S CONTRACT" ], "valid_edges": [ [ "DEAD MEN DON'T WEAR PLAID", "has_genre", "MYSTERY" ], [ "DEAD MEN DON'T WEAR PLAID", "has_tags", "MYSTERY" ], [ "DEAD MEN DON'T WEAR PLAID", "release_year", "1982" ], [ "ENIGMA", "has_genre", "MYSTERY" ], [ "ENIGMA", "in_language", "GERMAN" ], [ "FITZCARRALDO", "in_language", "GERMAN" ], [ "FITZCARRALDO", "release_year", "1982" ], [ "FLIGHTPLAN", "has_genre", "MYSTERY" ], [ "FLIGHTPLAN", "has_tags", "MYSTERY" ], [ "FLIGHTPLAN", "in_language", "GERMAN" ], [ "LIFE IS ALL YOU GET", "in_language", "GERMAN" ], [ "METROPOLIS", "has_tags", "ANIME" ], [ "METROPOLIS", "in_language", "GERMAN" ], [ "PANDORUM", "has_genre", "MYSTERY" ], [ "PANDORUM", "in_language", "GERMAN" ], [ "POSSESSION", "has_genre", "MYSTERY" ], [ "POSSESSION", "in_language", "GERMAN" ], [ "PROFESSOR LAYTON AND THE ETERNAL DIVA", "has_tags", "ANIME" ], [ "ROOM 666", "in_language", "GERMAN" ], [ "ROOM 666", "release_year", "1982" ], [ "THE DRAUGHTSMAN'S CONTRACT", "has_genre", "MYSTERY" ], [ "THE DRAUGHTSMAN'S CONTRACT", "release_year", "1982" ], [ "THE GOOD GERMAN", "has_genre", "MYSTERY" ], [ "THE GOOD GERMAN", "in_language", "GERMAN" ], [ "THE LADY VANISHES", "has_genre", "MYSTERY" ], [ "THE LADY VANISHES", "in_language", "GERMAN" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 11, 1940 25662, DR. CYCLOPS 38055, GEORGE RAFT 5870, HORROR 26724, JEFF KOBER 30256, THE FIRST POWER 17566, THEY DRIVE BY NIGHT 24864, THOMAS COLEY src, edge_attr, dst 25662, has_genre, 5870 25662, release_year, 11 25662, starred_actors, 24864 30256, has_genre, 5870 30256, starred_actors, 26724 17566, release_year, 11 17566, starred_actors, 38055 Question: For what reason are GEORGE RAFT, JEFF KOBER, and THOMAS COLEY associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "GEORGE RAFT", "JEFF KOBER", "THOMAS COLEY" ], "valid_edges": [ [ "DR. CYCLOPS", "has_genre", "HORROR" ], [ "DR. CYCLOPS", "release_year", "1940" ], [ "DR. CYCLOPS", "starred_actors", "THOMAS COLEY" ], [ "THE FIRST POWER", "has_genre", "HORROR" ], [ "THE FIRST POWER", "starred_actors", "JEFF KOBER" ], [ "THEY DRIVE BY NIGHT", "release_year", "1940" ], [ "THEY DRIVE BY NIGHT", "starred_actors", "GEORGE RAFT" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 18131, BABE 18018, CAVALCADE 25760, DAVID HINES 36212, DRAMA 1178, WHORE src, edge_attr, dst 18131, has_genre, 36212 18018, has_genre, 36212 1178, has_genre, 36212 1178, written_by, 25760 Question: In what context are BABE, CAVALCADE, and DAVID HINES connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "BABE", "CAVALCADE", "DAVID HINES" ], "valid_edges": [ [ "BABE", "has_genre", "DRAMA" ], [ "CAVALCADE", "has_genre", "DRAMA" ], [ "WHORE", "has_genre", "DRAMA" ], [ "WHORE", "written_by", "DAVID HINES" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 22772, 1961 10702, 1991 22088, A BRIDGE TOO FAR 4763, ADVENTURE 20936, AGUIRRE, THE WRATH OF GOD 31349, ALISTAIR MACLEAN 8284, ANTHONY QUINN 18310, AROUND THE WORLD IN 80 DAYS 31449, BARABBAS 14981, BREAKHEART PASS 554, CABEZA DE VACA 16220, CAPTAIN HORATIO HORNBLOWER R.N. 19194, ENIGMA 30030, EUROPA 2449, EUROTRIP 36066, FANTASY 6853, FIREWALKER 7498, FLIGHTPLAN 6480, GERMAN 8287, GREGORY PECK 15744, HOOK 7458, HUCKLEBERRY FINN 19805, J. LEE THOMPSON 22600, JUDGMENT AT NUREMBERG 30936, KAFKA 14156, KING SOLOMON'S MINES 31533, L. FRANK BAUM 560, LIEBESTRAUM 30157, LOLA 30042, MORTAL THOUGHTS 35462, MYSTERIOUS ISLAND 15145, MYSTERY 38235, NEKROMANTIK 2 39185, NORTH WEST FRONTIER 27106, OZ 15521, OZ THE GREAT AND POWERFUL 6979, PANDORUM 25824, PARADISE 25498, PARIS BELONGS TO US 39284, POSSESSION 31392, RETURN TO OZ 31525, RETURN TO THE BLUE LAGOON 35586, SAHARA 3354, THE BROTHERS GRIMM 3280, THE BUCCANEER 23804, THE COMANCHEROS 17688, THE DEVIL AT 4 O'CLOCK 10001, THE EAGLE HAS LANDED 4662, THE GOOD GERMAN 9166, THE GUNS OF NAVARONE 32856, THE KING AND FOUR QUEENS 4091, THE LADY VANISHES 22393, THE MAGUS 39581, THE WIZ 28776, THE WIZARD OF OZ 37831, TOWN WITHOUT PITY 32079, ULYSSES 33802, UNTIL THE END OF THE WORLD 2175, VON RYAN'S EXPRESS 24117, VOYAGER 29631, WHITE FANG 24155, WORLD WAR II src, edge_attr, dst 22088, has_tags, 24155 22088, in_language, 6480 20936, has_genre, 4763 20936, has_tags, 4763 20936, has_tags, 6480 20936, in_language, 6480 18310, has_genre, 4763 18310, in_language, 6480 31449, release_year, 22772 31449, starred_actors, 8284 14981, has_tags, 4763 14981, written_by, 31349 554, has_genre, 4763 554, release_year, 10702 16220, has_genre, 4763 16220, has_tags, 8287 16220, starred_actors, 8287 19194, has_genre, 15145 19194, has_tags, 24155 19194, in_language, 6480 30030, has_tags, 24155 30030, in_language, 6480 30030, release_year, 10702 2449, has_genre, 4763 2449, in_language, 6480 6853, directed_by, 19805 6853, has_genre, 4763 7498, has_genre, 15145 7498, has_tags, 15145 7498, in_language, 6480 15744, has_genre, 4763 15744, release_year, 10702 7458, directed_by, 19805 7458, has_genre, 4763 22600, in_language, 6480 22600, release_year, 22772 30936, has_genre, 15145 30936, release_year, 10702 14156, directed_by, 19805 14156, has_genre, 4763 14156, has_tags, 4763 560, has_genre, 15145 560, release_year, 10702 30157, in_language, 6480 30157, release_year, 22772 30042, has_genre, 15145 30042, release_year, 10702 35462, has_genre, 4763 35462, has_tags, 4763 35462, release_year, 22772 38235, in_language, 6480 38235, release_year, 10702 39185, directed_by, 19805 39185, has_genre, 4763 39185, has_tags, 19805 15521, has_genre, 4763 15521, has_genre, 36066 15521, has_tags, 36066 15521, has_tags, 27106 15521, written_by, 31533 6979, has_genre, 15145 6979, in_language, 6480 25824, has_genre, 4763 25824, release_year, 10702 25498, has_genre, 15145 25498, release_year, 22772 39284, has_genre, 15145 39284, in_language, 6480 31392, has_genre, 4763 31392, has_genre, 36066 31392, has_tags, 4763 31392, has_tags, 36066 31392, has_tags, 27106 31392, written_by, 31533 31525, has_genre, 4763 31525, release_year, 10702 35586, has_genre, 4763 35586, has_tags, 24155 3354, has_genre, 4763 3354, has_tags, 4763 3354, in_language, 6480 3280, directed_by, 8284 3280, has_genre, 4763 23804, has_genre, 4763 23804, release_year, 22772 17688, has_genre, 4763 17688, release_year, 22772 10001, has_tags, 6480 10001, has_tags, 24155 10001, in_language, 6480 4662, has_genre, 15145 4662, in_language, 6480 9166, directed_by, 19805 9166, has_genre, 4763 9166, has_tags, 8284 9166, has_tags, 19805 9166, has_tags, 24155 9166, in_language, 6480 9166, release_year, 22772 9166, starred_actors, 8284 9166, starred_actors, 8287 9166, written_by, 31349 32856, has_genre, 4763 32856, has_genre, 15145 4091, has_genre, 15145 4091, in_language, 6480 22393, has_genre, 15145 22393, starred_actors, 8284 39581, has_genre, 4763 39581, has_genre, 36066 39581, has_tags, 27106 39581, written_by, 31533 28776, has_genre, 36066 28776, has_tags, 36066 28776, has_tags, 27106 28776, written_by, 31533 37831, in_language, 6480 37831, release_year, 22772 32079, has_genre, 4763 32079, starred_actors, 8284 33802, has_tags, 6480 33802, in_language, 6480 33802, release_year, 10702 2175, has_genre, 4763 2175, has_tags, 24155 2175, in_language, 6480 24117, in_language, 6480 24117, release_year, 10702 29631, has_genre, 4763 29631, release_year, 10702 Question: How are KAFKA, L. FRANK BAUM, and THE GUNS OF NAVARONE related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "KAFKA", "L. FRANK BAUM", "THE GUNS OF NAVARONE" ], "valid_edges": [ [ "A BRIDGE TOO FAR", "has_tags", "WORLD WAR II" ], [ "A BRIDGE TOO FAR", "in_language", "GERMAN" ], [ "AGUIRRE, THE WRATH OF GOD", "has_genre", "ADVENTURE" ], [ "AGUIRRE, THE WRATH OF GOD", "has_tags", "ADVENTURE" ], [ "AGUIRRE, THE WRATH OF GOD", "has_tags", "GERMAN" ], [ "AGUIRRE, THE WRATH OF GOD", "in_language", "GERMAN" ], [ "AROUND THE WORLD IN 80 DAYS", "has_genre", "ADVENTURE" ], [ "AROUND THE WORLD IN 80 DAYS", "in_language", "GERMAN" ], [ "BARABBAS", "release_year", "1961" ], [ "BARABBAS", "starred_actors", "ANTHONY QUINN" ], [ "BREAKHEART PASS", "has_tags", "ADVENTURE" ], [ "BREAKHEART PASS", "written_by", "ALISTAIR MACLEAN" ], [ "CABEZA DE VACA", "has_genre", "ADVENTURE" ], [ "CABEZA DE VACA", "release_year", "1991" ], [ "CAPTAIN HORATIO HORNBLOWER R.N.", "has_genre", "ADVENTURE" ], [ "CAPTAIN HORATIO HORNBLOWER R.N.", "has_tags", "GREGORY PECK" ], [ "CAPTAIN HORATIO HORNBLOWER R.N.", "starred_actors", "GREGORY PECK" ], [ "ENIGMA", "has_genre", "MYSTERY" ], [ "ENIGMA", "has_tags", "WORLD WAR II" ], [ "ENIGMA", "in_language", "GERMAN" ], [ "EUROPA", "has_tags", "WORLD WAR II" ], [ "EUROPA", "in_language", "GERMAN" ], [ "EUROPA", "release_year", "1991" ], [ "EUROTRIP", "has_genre", "ADVENTURE" ], [ "EUROTRIP", "in_language", "GERMAN" ], [ "FIREWALKER", "directed_by", "J. LEE THOMPSON" ], [ "FIREWALKER", "has_genre", "ADVENTURE" ], [ "FLIGHTPLAN", "has_genre", "MYSTERY" ], [ "FLIGHTPLAN", "has_tags", "MYSTERY" ], [ "FLIGHTPLAN", "in_language", "GERMAN" ], [ "HOOK", "has_genre", "ADVENTURE" ], [ "HOOK", "release_year", "1991" ], [ "HUCKLEBERRY FINN", "directed_by", "J. LEE THOMPSON" ], [ "HUCKLEBERRY FINN", "has_genre", "ADVENTURE" ], [ "JUDGMENT AT NUREMBERG", "in_language", "GERMAN" ], [ "JUDGMENT AT NUREMBERG", "release_year", "1961" ], [ "KAFKA", "has_genre", "MYSTERY" ], [ "KAFKA", "release_year", "1991" ], [ "KING SOLOMON'S MINES", "directed_by", "J. LEE THOMPSON" ], [ "KING SOLOMON'S MINES", "has_genre", "ADVENTURE" ], [ "KING SOLOMON'S MINES", "has_tags", "ADVENTURE" ], [ "LIEBESTRAUM", "has_genre", "MYSTERY" ], [ "LIEBESTRAUM", "release_year", "1991" ], [ "LOLA", "in_language", "GERMAN" ], [ "LOLA", "release_year", "1961" ], [ "MORTAL THOUGHTS", "has_genre", "MYSTERY" ], [ "MORTAL THOUGHTS", "release_year", "1991" ], [ "MYSTERIOUS ISLAND", "has_genre", "ADVENTURE" ], [ "MYSTERIOUS ISLAND", "has_tags", "ADVENTURE" ], [ "MYSTERIOUS ISLAND", "release_year", "1961" ], [ "NEKROMANTIK 2", "in_language", "GERMAN" ], [ "NEKROMANTIK 2", "release_year", "1991" ], [ "NORTH WEST FRONTIER", "directed_by", "J. LEE THOMPSON" ], [ "NORTH WEST FRONTIER", "has_genre", "ADVENTURE" ], [ "NORTH WEST FRONTIER", "has_tags", "J. LEE THOMPSON" ], [ "OZ THE GREAT AND POWERFUL", "has_genre", "ADVENTURE" ], [ "OZ THE GREAT AND POWERFUL", "has_genre", "FANTASY" ], [ "OZ THE GREAT AND POWERFUL", "has_tags", "FANTASY" ], [ "OZ THE GREAT AND POWERFUL", "has_tags", "OZ" ], [ "OZ THE GREAT AND POWERFUL", "written_by", "L. FRANK BAUM" ], [ "PANDORUM", "has_genre", "MYSTERY" ], [ "PANDORUM", "in_language", "GERMAN" ], [ "PARADISE", "has_genre", "ADVENTURE" ], [ "PARADISE", "release_year", "1991" ], [ "PARIS BELONGS TO US", "has_genre", "MYSTERY" ], [ "PARIS BELONGS TO US", "release_year", "1961" ], [ "POSSESSION", "has_genre", "MYSTERY" ], [ "POSSESSION", "in_language", "GERMAN" ], [ "RETURN TO OZ", "has_genre", "ADVENTURE" ], [ "RETURN TO OZ", "has_genre", "FANTASY" ], [ "RETURN TO OZ", "has_tags", "ADVENTURE" ], [ "RETURN TO OZ", "has_tags", "FANTASY" ], [ "RETURN TO OZ", "has_tags", "OZ" ], [ "RETURN TO OZ", "written_by", "L. FRANK BAUM" ], [ "RETURN TO THE BLUE LAGOON", "has_genre", "ADVENTURE" ], [ "RETURN TO THE BLUE LAGOON", "release_year", "1991" ], [ "SAHARA", "has_genre", "ADVENTURE" ], [ "SAHARA", "has_tags", "WORLD WAR II" ], [ "THE BROTHERS GRIMM", "has_genre", "ADVENTURE" ], [ "THE BROTHERS GRIMM", "has_tags", "ADVENTURE" ], [ "THE BROTHERS GRIMM", "in_language", "GERMAN" ], [ "THE BUCCANEER", "directed_by", "ANTHONY QUINN" ], [ "THE BUCCANEER", "has_genre", "ADVENTURE" ], [ "THE COMANCHEROS", "has_genre", "ADVENTURE" ], [ "THE COMANCHEROS", "release_year", "1961" ], [ "THE DEVIL AT 4 O'CLOCK", "has_genre", "ADVENTURE" ], [ "THE DEVIL AT 4 O'CLOCK", "release_year", "1961" ], [ "THE EAGLE HAS LANDED", "has_tags", "GERMAN" ], [ "THE EAGLE HAS LANDED", "has_tags", "WORLD WAR II" ], [ "THE EAGLE HAS LANDED", "in_language", "GERMAN" ], [ "THE GOOD GERMAN", "has_genre", "MYSTERY" ], [ "THE GOOD GERMAN", "in_language", "GERMAN" ], [ "THE GUNS OF NAVARONE", "directed_by", "J. LEE THOMPSON" ], [ "THE GUNS OF NAVARONE", "has_genre", "ADVENTURE" ], [ "THE GUNS OF NAVARONE", "has_tags", "ANTHONY QUINN" ], [ "THE GUNS OF NAVARONE", "has_tags", "J. LEE THOMPSON" ], [ "THE GUNS OF NAVARONE", "has_tags", "WORLD WAR II" ], [ "THE GUNS OF NAVARONE", "in_language", "GERMAN" ], [ "THE GUNS OF NAVARONE", "release_year", "1961" ], [ "THE GUNS OF NAVARONE", "starred_actors", "ANTHONY QUINN" ], [ "THE GUNS OF NAVARONE", "starred_actors", "GREGORY PECK" ], [ "THE GUNS OF NAVARONE", "written_by", "ALISTAIR MACLEAN" ], [ "THE KING AND FOUR QUEENS", "has_genre", "ADVENTURE" ], [ "THE KING AND FOUR QUEENS", "has_genre", "MYSTERY" ], [ "THE LADY VANISHES", "has_genre", "MYSTERY" ], [ "THE LADY VANISHES", "in_language", "GERMAN" ], [ "THE MAGUS", "has_genre", "MYSTERY" ], [ "THE MAGUS", "starred_actors", "ANTHONY QUINN" ], [ "THE WIZ", "has_genre", "ADVENTURE" ], [ "THE WIZ", "has_genre", "FANTASY" ], [ "THE WIZ", "has_tags", "OZ" ], [ "THE WIZ", "written_by", "L. FRANK BAUM" ], [ "THE WIZARD OF OZ", "has_genre", "FANTASY" ], [ "THE WIZARD OF OZ", "has_tags", "FANTASY" ], [ "THE WIZARD OF OZ", "has_tags", "OZ" ], [ "THE WIZARD OF OZ", "written_by", "L. FRANK BAUM" ], [ "TOWN WITHOUT PITY", "in_language", "GERMAN" ], [ "TOWN WITHOUT PITY", "release_year", "1961" ], [ "ULYSSES", "has_genre", "ADVENTURE" ], [ "ULYSSES", "starred_actors", "ANTHONY QUINN" ], [ "UNTIL THE END OF THE WORLD", "has_tags", "GERMAN" ], [ "UNTIL THE END OF THE WORLD", "in_language", "GERMAN" ], [ "UNTIL THE END OF THE WORLD", "release_year", "1991" ], [ "VON RYAN'S EXPRESS", "has_genre", "ADVENTURE" ], [ "VON RYAN'S EXPRESS", "has_tags", "WORLD WAR II" ], [ "VON RYAN'S EXPRESS", "in_language", "GERMAN" ], [ "VOYAGER", "in_language", "GERMAN" ], [ "VOYAGER", "release_year", "1991" ], [ "WHITE FANG", "has_genre", "ADVENTURE" ], [ "WHITE FANG", "release_year", "1991" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 8486, 1999 36212, DRAMA 27629, GRASS 26966, GREG SESTERO 33520, GREGORY RATOFF 30299, I WAS AN ADVENTURESS 116, MARIJUANA 8639, RETRO PUPPET MASTER 30906, THE ROOM src, edge_attr, dst 27629, has_tags, 116 27629, release_year, 8486 30299, directed_by, 33520 30299, has_genre, 36212 8639, release_year, 8486 8639, starred_actors, 26966 30906, has_genre, 36212 30906, has_tags, 26966 30906, starred_actors, 26966 Question: In what context are GREG SESTERO, GREGORY RATOFF, and MARIJUANA connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "GREG SESTERO", "GREGORY RATOFF", "MARIJUANA" ], "valid_edges": [ [ "GRASS", "has_tags", "MARIJUANA" ], [ "GRASS", "release_year", "1999" ], [ "I WAS AN ADVENTURESS", "directed_by", "GREGORY RATOFF" ], [ "I WAS AN ADVENTURESS", "has_genre", "DRAMA" ], [ "RETRO PUPPET MASTER", "release_year", "1999" ], [ "RETRO PUPPET MASTER", "starred_actors", "GREG SESTERO" ], [ "THE ROOM", "has_genre", "DRAMA" ], [ "THE ROOM", "has_tags", "GREG SESTERO" ], [ "THE ROOM", "starred_actors", "GREG SESTERO" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 3536, ASS BACKWARDS 13203, CHRIS NELSON 30463, COMEDY 13841, DATE AND SWITCH 5163, MAMMA MIA! 761, PHYLLIDA LLOYD 7786, STAND-IN 15432, TAY GARNETT src, edge_attr, dst 3536, directed_by, 13203 3536, has_genre, 30463 13841, directed_by, 13203 13841, has_genre, 30463 5163, directed_by, 761 5163, has_genre, 30463 7786, directed_by, 15432 7786, has_genre, 30463 Question: In what context are CHRIS NELSON, PHYLLIDA LLOYD, and TAY GARNETT connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "CHRIS NELSON", "PHYLLIDA LLOYD", "TAY GARNETT" ], "valid_edges": [ [ "ASS BACKWARDS", "directed_by", "CHRIS NELSON" ], [ "ASS BACKWARDS", "has_genre", "COMEDY" ], [ "DATE AND SWITCH", "directed_by", "CHRIS NELSON" ], [ "DATE AND SWITCH", "has_genre", "COMEDY" ], [ "MAMMA MIA!", "directed_by", "PHYLLIDA LLOYD" ], [ "MAMMA MIA!", "has_genre", "COMEDY" ], [ "STAND-IN", "directed_by", "TAY GARNETT" ], [ "STAND-IN", "has_genre", "COMEDY" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 35187, 1948 2763, BLOOD ON THE MOON 1637, BOYZ N THE HOOD 12628, EASTERN PROMISES 11565, GOOD 20941, HAMLET 18773, JOHN SINGLETON 16206, RUSSIAN 26916, VIGGO MORTENSEN src, edge_attr, dst 2763, release_year, 35187 1637, directed_by, 18773 1637, has_imdb_rating, 11565 1637, has_tags, 18773 1637, written_by, 18773 12628, has_tags, 16206 12628, has_tags, 26916 12628, in_language, 16206 11565, starred_actors, 26916 20941, in_language, 16206 20941, release_year, 35187 Question: How are BLOOD ON THE MOON, EASTERN PROMISES, and JOHN SINGLETON related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "BLOOD ON THE MOON", "EASTERN PROMISES", "JOHN SINGLETON" ], "valid_edges": [ [ "BLOOD ON THE MOON", "release_year", "1948" ], [ "BOYZ N THE HOOD", "directed_by", "JOHN SINGLETON" ], [ "BOYZ N THE HOOD", "has_imdb_rating", "GOOD" ], [ "BOYZ N THE HOOD", "has_tags", "JOHN SINGLETON" ], [ "BOYZ N THE HOOD", "written_by", "JOHN SINGLETON" ], [ "EASTERN PROMISES", "has_tags", "RUSSIAN" ], [ "EASTERN PROMISES", "has_tags", "VIGGO MORTENSEN" ], [ "EASTERN PROMISES", "in_language", "RUSSIAN" ], [ "GOOD", "starred_actors", "VIGGO MORTENSEN" ], [ "HAMLET", "in_language", "RUSSIAN" ], [ "HAMLET", "release_year", "1948" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 20233, ANTONIONI 36212, DRAMA 20170, DUTCHMAN 16200, ITALIAN 4832, L'AVVENTURA 38326, L'ECLISSE 32844, LA NOTTE 10551, MICHELANGELO ANTONIONI 6964, MONICA VITTI 23686, RED DESERT 14415, THE WILD LIFE src, edge_attr, dst 20170, has_genre, 36212 4832, directed_by, 10551 4832, has_tags, 20233 4832, has_tags, 16200 4832, has_tags, 10551 4832, in_language, 16200 4832, starred_actors, 6964 4832, written_by, 10551 38326, directed_by, 10551 38326, has_genre, 36212 38326, has_tags, 20233 38326, has_tags, 10551 38326, in_language, 16200 38326, starred_actors, 6964 38326, written_by, 10551 32844, directed_by, 10551 32844, has_genre, 36212 32844, has_tags, 20233 32844, has_tags, 10551 32844, in_language, 16200 32844, starred_actors, 6964 32844, written_by, 10551 23686, directed_by, 10551 23686, has_tags, 10551 23686, in_language, 16200 23686, starred_actors, 6964 23686, written_by, 10551 14415, has_genre, 36212 Question: For what reason are DUTCHMAN, MONICA VITTI, and THE WILD LIFE associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "DUTCHMAN", "MONICA VITTI", "THE WILD LIFE" ], "valid_edges": [ [ "DUTCHMAN", "has_genre", "DRAMA" ], [ "L'AVVENTURA", "directed_by", "MICHELANGELO ANTONIONI" ], [ "L'AVVENTURA", "has_tags", "ANTONIONI" ], [ "L'AVVENTURA", "has_tags", "ITALIAN" ], [ "L'AVVENTURA", "has_tags", "MICHELANGELO ANTONIONI" ], [ "L'AVVENTURA", "in_language", "ITALIAN" ], [ "L'AVVENTURA", "starred_actors", "MONICA VITTI" ], [ "L'AVVENTURA", "written_by", "MICHELANGELO ANTONIONI" ], [ "L'ECLISSE", "directed_by", "MICHELANGELO ANTONIONI" ], [ "L'ECLISSE", "has_genre", "DRAMA" ], [ "L'ECLISSE", "has_tags", "ANTONIONI" ], [ "L'ECLISSE", "has_tags", "MICHELANGELO ANTONIONI" ], [ "L'ECLISSE", "in_language", "ITALIAN" ], [ "L'ECLISSE", "starred_actors", "MONICA VITTI" ], [ "L'ECLISSE", "written_by", "MICHELANGELO ANTONIONI" ], [ "LA NOTTE", "directed_by", "MICHELANGELO ANTONIONI" ], [ "LA NOTTE", "has_genre", "DRAMA" ], [ "LA NOTTE", "has_tags", "ANTONIONI" ], [ "LA NOTTE", "has_tags", "MICHELANGELO ANTONIONI" ], [ "LA NOTTE", "in_language", "ITALIAN" ], [ "LA NOTTE", "starred_actors", "MONICA VITTI" ], [ "LA NOTTE", "written_by", "MICHELANGELO ANTONIONI" ], [ "RED DESERT", "directed_by", "MICHELANGELO ANTONIONI" ], [ "RED DESERT", "has_tags", "MICHELANGELO ANTONIONI" ], [ "RED DESERT", "in_language", "ITALIAN" ], [ "RED DESERT", "starred_actors", "MONICA VITTI" ], [ "RED DESERT", "written_by", "MICHELANGELO ANTONIONI" ], [ "THE WILD LIFE", "has_genre", "DRAMA" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 37608, AUSTRALIA 33360, CANDY 18942, DÉSIRÉE 14887, ED HARRIS 38940, HENRY KOSTER 21474, MARLON BRANDO 9336, NICOLE KIDMAN 11713, THE HOURS 38682, THE INSPECTOR GENERAL src, edge_attr, dst 37608, has_tags, 37608 37608, has_tags, 9336 33360, has_tags, 37608 33360, starred_actors, 21474 18942, directed_by, 38940 18942, starred_actors, 21474 11713, has_tags, 14887 11713, has_tags, 9336 11713, starred_actors, 14887 11713, starred_actors, 9336 38682, directed_by, 38940 38682, has_tags, 38940 Question: In what context are CANDY, ED HARRIS, and THE INSPECTOR GENERAL connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "CANDY", "ED HARRIS", "THE INSPECTOR GENERAL" ], "valid_edges": [ [ "AUSTRALIA", "has_tags", "AUSTRALIA" ], [ "AUSTRALIA", "has_tags", "NICOLE KIDMAN" ], [ "CANDY", "has_tags", "AUSTRALIA" ], [ "CANDY", "starred_actors", "MARLON BRANDO" ], [ "DÉSIRÉE", "directed_by", "HENRY KOSTER" ], [ "DÉSIRÉE", "starred_actors", "MARLON BRANDO" ], [ "THE HOURS", "has_tags", "ED HARRIS" ], [ "THE HOURS", "has_tags", "NICOLE KIDMAN" ], [ "THE HOURS", "starred_actors", "ED HARRIS" ], [ "THE HOURS", "starred_actors", "NICOLE KIDMAN" ], [ "THE INSPECTOR GENERAL", "directed_by", "HENRY KOSTER" ], [ "THE INSPECTOR GENERAL", "has_tags", "HENRY KOSTER" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 26257, 1994 17505, A LOW DOWN DIRTY SHAME 431, A MAN OF NO IMPORTANCE 36629, A MILLION TO JUAN 29838, A SIMPLE TWIST OF FATE 8837, AIRHEADS 34608, ALAN BENNETT 27410, ANGELS IN THE OUTFIELD 24704, ANGIE 35639, BABY'S DAY OUT 34587, BAD TASTE 1868, BARCELONA 10890, BEVERLY HILLS COP III 31778, BLACK SHEEP 29301, BLANK CHECK 24639, BLANKMAN 34318, CABIN BOY 22539, CAR 54, WHERE ARE YOU? 26883, CEMETERY MAN 16350, CHASERS 35468, CLEAN SLATE 35351, CLERKS 9387, CLIFFORD 30463, COMEDY 21391, CRACKERJACK 25978, DEADLY ADVICE 13424, DON'T DRINK THE WATER 3893, ED WOOD 26709, ERNEST GOES TO SCHOOL 20441, EXIT TO EDEN 24028, FLOUNDERING 22371, FORREST GUMP 6215, FOUR WEDDINGS AND A FUNERAL 36927, FROM BEIJING WITH LOVE 34775, GETTING EVEN WITH DAD 9142, GETTING IN 5585, GREEDY 34489, GUARDING TESS 25670, HAIL CAESAR 20214, HEAVENLY CREATURES 20990, HOLY MATRIMONY 24023, HOUSEBOUND 34412, I LIKE IT LIKE THAT 13163, I LOVE TROUBLE 18096, I.Q. 24832, IN THE ARMY NOW 14341, IT COULD HAPPEN TO YOU 39987, IT RUNS IN THE FAMILY 37202, IT'S PAT 29404, JUNIOR 14878, KABHI HAAN KABHI NAA 18648, LEPRECHAUN 2 19862, LIGHTNING JACK 16780, LITTLE GIANTS 25283, MAVERICK 12620, MILK MONEY 12371, MIXED NUTS 9817, MONKEY TROUBLE 25796, MURIEL'S WEDDING 28963, MY GIRL 2 25168, NEW ZEALAND 760, NICHOLAS HYTNER 4398, NOBODY'S FOOL 32358, NORTH 29694, ONCE WERE WARRIORS 36883, ONLY YOU 24732, PCU 11042, PRINCESS CARABOO 26174, PULP FICTION 22395, RADIOLAND MURDERS 26180, REALITY BITES 25577, RENAISSANCE MAN 24642, SERIAL MOM 1374, SLEEP WITH ME 6144, SPANKING THE MONKEY 7010, SPEECHLESS 35026, STAGGERED 20877, SWIMMING WITH SHARKS 2567, TAMMY AND THE T-REX 25270, THE ADVENTURES OF PRISCILLA, QUEEN OF THE DESERT 30090, THE AIR UP THERE 3084, THE CAT'S-PAW 13685, THE CHASE 22164, THE COWBOY WAY 9215, THE FAVOR 17956, THE FLINTSTONES 15420, THE HISTORY BOYS 10878, THE HUDSUCKER PROXY 38210, THE INKWELL 38550, THE LITTLE RASCALS 9915, THE MADNESS OF KING GEORGE 23802, THE MASK 29233, THE MONSTER 33982, THE PAPER 26061, THE REF 13917, THE ROAD TO WELLVILLE 17314, THE SANTA CLAUSE 36289, THE SCOUT 33905, THE SEARCH FOR ONE-EYE JIMMY 4767, THE SUM OF US 16762, THREESOME 18195, TRAPPED IN PARADISE 12860, TRUE LIES 33767, TWIN SITTERS 26509, VIOLENCE 15419, WHAT WE DO IN THE SHADOWS 39623, WITH HONORS src, edge_attr, dst 17505, has_genre, 30463 17505, release_year, 26257 431, has_genre, 30463 431, release_year, 26257 36629, has_genre, 30463 36629, release_year, 26257 29838, has_genre, 30463 29838, release_year, 26257 8837, has_genre, 30463 8837, has_tags, 30463 8837, release_year, 26257 27410, has_genre, 30463 27410, release_year, 26257 24704, has_genre, 30463 24704, release_year, 26257 35639, has_genre, 30463 35639, release_year, 26257 34587, has_genre, 30463 34587, has_tags, 25168 1868, has_genre, 30463 1868, release_year, 26257 10890, has_genre, 30463 10890, has_tags, 30463 10890, release_year, 26257 31778, has_genre, 30463 31778, has_tags, 30463 31778, has_tags, 25168 29301, has_genre, 30463 29301, release_year, 26257 24639, has_genre, 30463 24639, release_year, 26257 34318, has_genre, 30463 34318, release_year, 26257 22539, has_genre, 30463 22539, release_year, 26257 26883, has_genre, 30463 26883, release_year, 26257 16350, has_genre, 30463 16350, release_year, 26257 35468, has_genre, 30463 35468, release_year, 26257 35351, has_genre, 30463 35351, has_tags, 30463 35351, release_year, 26257 9387, has_genre, 30463 9387, release_year, 26257 21391, has_genre, 30463 21391, release_year, 26257 25978, has_genre, 30463 25978, release_year, 26257 13424, has_genre, 30463 13424, release_year, 26257 3893, has_genre, 30463 3893, release_year, 26257 26709, has_genre, 30463 26709, release_year, 26257 20441, has_genre, 30463 20441, release_year, 26257 24028, has_genre, 30463 24028, release_year, 26257 22371, has_tags, 30463 22371, release_year, 26257 6215, has_genre, 30463 6215, has_tags, 30463 6215, release_year, 26257 36927, has_genre, 30463 36927, release_year, 26257 34775, has_genre, 30463 34775, release_year, 26257 9142, has_genre, 30463 9142, release_year, 26257 5585, has_genre, 30463 5585, release_year, 26257 34489, has_genre, 30463 34489, release_year, 26257 25670, has_genre, 30463 25670, release_year, 26257 20214, has_tags, 25168 20214, release_year, 26257 20990, has_genre, 30463 20990, release_year, 26257 24023, has_genre, 30463 24023, has_tags, 25168 34412, has_genre, 30463 34412, release_year, 26257 13163, has_genre, 30463 13163, release_year, 26257 18096, has_genre, 30463 18096, release_year, 26257 24832, has_genre, 30463 24832, release_year, 26257 14341, has_genre, 30463 14341, has_tags, 30463 14341, release_year, 26257 39987, has_genre, 30463 39987, release_year, 26257 37202, has_genre, 30463 37202, release_year, 26257 29404, has_genre, 30463 29404, release_year, 26257 14878, has_genre, 30463 14878, release_year, 26257 18648, has_genre, 30463 18648, release_year, 26257 19862, has_genre, 30463 19862, release_year, 26257 16780, has_genre, 30463 16780, release_year, 26257 25283, has_genre, 30463 25283, has_tags, 30463 25283, release_year, 26257 12620, has_genre, 30463 12620, release_year, 26257 12371, has_genre, 30463 12371, release_year, 26257 9817, has_genre, 30463 9817, release_year, 26257 25796, has_genre, 30463 25796, has_tags, 30463 25796, release_year, 26257 28963, has_genre, 30463 28963, release_year, 26257 4398, has_genre, 30463 4398, release_year, 26257 32358, has_genre, 30463 32358, release_year, 26257 29694, has_tags, 25168 29694, has_tags, 26509 29694, release_year, 26257 36883, has_genre, 30463 36883, release_year, 26257 24732, has_genre, 30463 24732, release_year, 26257 11042, has_genre, 30463 11042, release_year, 26257 26174, has_tags, 30463 26174, has_tags, 26509 26174, release_year, 26257 22395, has_genre, 30463 22395, release_year, 26257 26180, has_genre, 30463 26180, release_year, 26257 25577, has_genre, 30463 25577, release_year, 26257 24642, has_genre, 30463 24642, has_tags, 30463 24642, release_year, 26257 1374, has_genre, 30463 1374, release_year, 26257 6144, has_genre, 30463 6144, release_year, 26257 7010, has_genre, 30463 7010, release_year, 26257 35026, has_genre, 30463 35026, release_year, 26257 20877, has_genre, 30463 20877, release_year, 26257 2567, has_genre, 30463 2567, release_year, 26257 25270, has_genre, 30463 25270, release_year, 26257 30090, has_genre, 30463 30090, has_tags, 30463 30090, release_year, 26257 3084, has_genre, 30463 13685, has_genre, 30463 13685, release_year, 26257 22164, has_genre, 30463 22164, release_year, 26257 9215, has_genre, 30463 9215, release_year, 26257 17956, has_genre, 30463 17956, has_tags, 30463 17956, release_year, 26257 15420, directed_by, 760 15420, has_genre, 30463 15420, has_tags, 760 15420, written_by, 34608 10878, has_genre, 30463 10878, has_tags, 30463 10878, release_year, 26257 38210, has_genre, 30463 38210, release_year, 26257 38550, has_genre, 30463 38550, release_year, 26257 9915, directed_by, 760 9915, has_tags, 760 9915, release_year, 26257 9915, written_by, 34608 23802, has_genre, 30463 23802, has_tags, 30463 23802, release_year, 26257 29233, has_genre, 30463 29233, has_tags, 30463 29233, release_year, 26257 33982, has_genre, 30463 33982, release_year, 26257 26061, has_genre, 30463 26061, has_tags, 30463 26061, release_year, 26257 13917, has_genre, 30463 13917, release_year, 26257 17314, has_genre, 30463 17314, release_year, 26257 36289, has_genre, 30463 36289, release_year, 26257 33905, has_genre, 30463 33905, release_year, 26257 4767, has_genre, 30463 4767, release_year, 26257 16762, has_genre, 30463 16762, has_tags, 30463 16762, release_year, 26257 18195, has_genre, 30463 18195, release_year, 26257 12860, has_genre, 30463 12860, has_tags, 30463 12860, release_year, 26257 33767, has_genre, 30463 33767, release_year, 26257 15419, has_genre, 30463 15419, has_tags, 30463 15419, has_tags, 25168 39623, has_genre, 30463 39623, release_year, 26257 Question: In what context are ALAN BENNETT, ONCE WERE WARRIORS, and THE CAT'S-PAW connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "ALAN BENNETT", "ONCE WERE WARRIORS", "THE CAT'S-PAW" ], "valid_edges": [ [ "A LOW DOWN DIRTY SHAME", "has_genre", "COMEDY" ], [ "A LOW DOWN DIRTY SHAME", "release_year", "1994" ], [ "A MAN OF NO IMPORTANCE", "has_genre", "COMEDY" ], [ "A MAN OF NO IMPORTANCE", "release_year", "1994" ], [ "A MILLION TO JUAN", "has_genre", "COMEDY" ], [ "A MILLION TO JUAN", "release_year", "1994" ], [ "A SIMPLE TWIST OF FATE", "has_genre", "COMEDY" ], [ "A SIMPLE TWIST OF FATE", "release_year", "1994" ], [ "AIRHEADS", "has_genre", "COMEDY" ], [ "AIRHEADS", "has_tags", "COMEDY" ], [ "AIRHEADS", "release_year", "1994" ], [ "ANGELS IN THE OUTFIELD", "has_genre", "COMEDY" ], [ "ANGELS IN THE OUTFIELD", "release_year", "1994" ], [ "ANGIE", "has_genre", "COMEDY" ], [ "ANGIE", "release_year", "1994" ], [ "BABY'S DAY OUT", "has_genre", "COMEDY" ], [ "BABY'S DAY OUT", "release_year", "1994" ], [ "BAD TASTE", "has_genre", "COMEDY" ], [ "BAD TASTE", "has_tags", "NEW ZEALAND" ], [ "BARCELONA", "has_genre", "COMEDY" ], [ "BARCELONA", "release_year", "1994" ], [ "BEVERLY HILLS COP III", "has_genre", "COMEDY" ], [ "BEVERLY HILLS COP III", "has_tags", "COMEDY" ], [ "BEVERLY HILLS COP III", "release_year", "1994" ], [ "BLACK SHEEP", "has_genre", "COMEDY" ], [ "BLACK SHEEP", "has_tags", "COMEDY" ], [ "BLACK SHEEP", "has_tags", "NEW ZEALAND" ], [ "BLANK CHECK", "has_genre", "COMEDY" ], [ "BLANK CHECK", "release_year", "1994" ], [ "BLANKMAN", "has_genre", "COMEDY" ], [ "BLANKMAN", "release_year", "1994" ], [ "CABIN BOY", "has_genre", "COMEDY" ], [ "CABIN BOY", "release_year", "1994" ], [ "CAR 54, WHERE ARE YOU?", "has_genre", "COMEDY" ], [ "CAR 54, WHERE ARE YOU?", "release_year", "1994" ], [ "CEMETERY MAN", "has_genre", "COMEDY" ], [ "CEMETERY MAN", "release_year", "1994" ], [ "CHASERS", "has_genre", "COMEDY" ], [ "CHASERS", "release_year", "1994" ], [ "CLEAN SLATE", "has_genre", "COMEDY" ], [ "CLEAN SLATE", "release_year", "1994" ], [ "CLERKS", "has_genre", "COMEDY" ], [ "CLERKS", "has_tags", "COMEDY" ], [ "CLERKS", "release_year", "1994" ], [ "CLIFFORD", "has_genre", "COMEDY" ], [ "CLIFFORD", "release_year", "1994" ], [ "CRACKERJACK", "has_genre", "COMEDY" ], [ "CRACKERJACK", "release_year", "1994" ], [ "DEADLY ADVICE", "has_genre", "COMEDY" ], [ "DEADLY ADVICE", "release_year", "1994" ], [ "DON'T DRINK THE WATER", "has_genre", "COMEDY" ], [ "DON'T DRINK THE WATER", "release_year", "1994" ], [ "ED WOOD", "has_genre", "COMEDY" ], [ "ED WOOD", "release_year", "1994" ], [ "ERNEST GOES TO SCHOOL", "has_genre", "COMEDY" ], [ "ERNEST GOES TO SCHOOL", "release_year", "1994" ], [ "EXIT TO EDEN", "has_genre", "COMEDY" ], [ "EXIT TO EDEN", "release_year", "1994" ], [ "FLOUNDERING", "has_genre", "COMEDY" ], [ "FLOUNDERING", "release_year", "1994" ], [ "FORREST GUMP", "has_tags", "COMEDY" ], [ "FORREST GUMP", "release_year", "1994" ], [ "FOUR WEDDINGS AND A FUNERAL", "has_genre", "COMEDY" ], [ "FOUR WEDDINGS AND A FUNERAL", "has_tags", "COMEDY" ], [ "FOUR WEDDINGS AND A FUNERAL", "release_year", "1994" ], [ "FROM BEIJING WITH LOVE", "has_genre", "COMEDY" ], [ "FROM BEIJING WITH LOVE", "release_year", "1994" ], [ "GETTING EVEN WITH DAD", "has_genre", "COMEDY" ], [ "GETTING EVEN WITH DAD", "release_year", "1994" ], [ "GETTING IN", "has_genre", "COMEDY" ], [ "GETTING IN", "release_year", "1994" ], [ "GREEDY", "has_genre", "COMEDY" ], [ "GREEDY", "release_year", "1994" ], [ "GUARDING TESS", "has_genre", "COMEDY" ], [ "GUARDING TESS", "release_year", "1994" ], [ "HAIL CAESAR", "has_genre", "COMEDY" ], [ "HAIL CAESAR", "release_year", "1994" ], [ "HEAVENLY CREATURES", "has_tags", "NEW ZEALAND" ], [ "HEAVENLY CREATURES", "release_year", "1994" ], [ "HOLY MATRIMONY", "has_genre", "COMEDY" ], [ "HOLY MATRIMONY", "release_year", "1994" ], [ "HOUSEBOUND", "has_genre", "COMEDY" ], [ "HOUSEBOUND", "has_tags", "NEW ZEALAND" ], [ "I LIKE IT LIKE THAT", "has_genre", "COMEDY" ], [ "I LIKE IT LIKE THAT", "release_year", "1994" ], [ "I LOVE TROUBLE", "has_genre", "COMEDY" ], [ "I LOVE TROUBLE", "release_year", "1994" ], [ "I.Q.", "has_genre", "COMEDY" ], [ "I.Q.", "release_year", "1994" ], [ "IN THE ARMY NOW", "has_genre", "COMEDY" ], [ "IN THE ARMY NOW", "release_year", "1994" ], [ "IT COULD HAPPEN TO YOU", "has_genre", "COMEDY" ], [ "IT COULD HAPPEN TO YOU", "has_tags", "COMEDY" ], [ "IT COULD HAPPEN TO YOU", "release_year", "1994" ], [ "IT RUNS IN THE FAMILY", "has_genre", "COMEDY" ], [ "IT RUNS IN THE FAMILY", "release_year", "1994" ], [ "IT'S PAT", "has_genre", "COMEDY" ], [ "IT'S PAT", "release_year", "1994" ], [ "JUNIOR", "has_genre", "COMEDY" ], [ "JUNIOR", "release_year", "1994" ], [ "KABHI HAAN KABHI NAA", "has_genre", "COMEDY" ], [ "KABHI HAAN KABHI NAA", "release_year", "1994" ], [ "LEPRECHAUN 2", "has_genre", "COMEDY" ], [ "LEPRECHAUN 2", "release_year", "1994" ], [ "LIGHTNING JACK", "has_genre", "COMEDY" ], [ "LIGHTNING JACK", "release_year", "1994" ], [ "LITTLE GIANTS", "has_genre", "COMEDY" ], [ "LITTLE GIANTS", "release_year", "1994" ], [ "MAVERICK", "has_genre", "COMEDY" ], [ "MAVERICK", "has_tags", "COMEDY" ], [ "MAVERICK", "release_year", "1994" ], [ "MILK MONEY", "has_genre", "COMEDY" ], [ "MILK MONEY", "release_year", "1994" ], [ "MIXED NUTS", "has_genre", "COMEDY" ], [ "MIXED NUTS", "release_year", "1994" ], [ "MONKEY TROUBLE", "has_genre", "COMEDY" ], [ "MONKEY TROUBLE", "release_year", "1994" ], [ "MURIEL'S WEDDING", "has_genre", "COMEDY" ], [ "MURIEL'S WEDDING", "has_tags", "COMEDY" ], [ "MURIEL'S WEDDING", "release_year", "1994" ], [ "MY GIRL 2", "has_genre", "COMEDY" ], [ "MY GIRL 2", "release_year", "1994" ], [ "NOBODY'S FOOL", "has_genre", "COMEDY" ], [ "NOBODY'S FOOL", "release_year", "1994" ], [ "NORTH", "has_genre", "COMEDY" ], [ "NORTH", "release_year", "1994" ], [ "ONCE WERE WARRIORS", "has_tags", "NEW ZEALAND" ], [ "ONCE WERE WARRIORS", "has_tags", "VIOLENCE" ], [ "ONCE WERE WARRIORS", "release_year", "1994" ], [ "ONLY YOU", "has_genre", "COMEDY" ], [ "ONLY YOU", "release_year", "1994" ], [ "PCU", "has_genre", "COMEDY" ], [ "PCU", "release_year", "1994" ], [ "PRINCESS CARABOO", "has_genre", "COMEDY" ], [ "PRINCESS CARABOO", "release_year", "1994" ], [ "PULP FICTION", "has_tags", "COMEDY" ], [ "PULP FICTION", "has_tags", "VIOLENCE" ], [ "PULP FICTION", "release_year", "1994" ], [ "RADIOLAND MURDERS", "has_genre", "COMEDY" ], [ "RADIOLAND MURDERS", "release_year", "1994" ], [ "REALITY BITES", "has_genre", "COMEDY" ], [ "REALITY BITES", "release_year", "1994" ], [ "RENAISSANCE MAN", "has_genre", "COMEDY" ], [ "RENAISSANCE MAN", "release_year", "1994" ], [ "SERIAL MOM", "has_genre", "COMEDY" ], [ "SERIAL MOM", "has_tags", "COMEDY" ], [ "SERIAL MOM", "release_year", "1994" ], [ "SLEEP WITH ME", "has_genre", "COMEDY" ], [ "SLEEP WITH ME", "release_year", "1994" ], [ "SPANKING THE MONKEY", "has_genre", "COMEDY" ], [ "SPANKING THE MONKEY", "release_year", "1994" ], [ "SPEECHLESS", "has_genre", "COMEDY" ], [ "SPEECHLESS", "release_year", "1994" ], [ "STAGGERED", "has_genre", "COMEDY" ], [ "STAGGERED", "release_year", "1994" ], [ "SWIMMING WITH SHARKS", "has_genre", "COMEDY" ], [ "SWIMMING WITH SHARKS", "release_year", "1994" ], [ "TAMMY AND THE T-REX", "has_genre", "COMEDY" ], [ "TAMMY AND THE T-REX", "release_year", "1994" ], [ "THE ADVENTURES OF PRISCILLA, QUEEN OF THE DESERT", "has_genre", "COMEDY" ], [ "THE ADVENTURES OF PRISCILLA, QUEEN OF THE DESERT", "release_year", "1994" ], [ "THE AIR UP THERE", "has_genre", "COMEDY" ], [ "THE AIR UP THERE", "has_tags", "COMEDY" ], [ "THE AIR UP THERE", "release_year", "1994" ], [ "THE CAT'S-PAW", "has_genre", "COMEDY" ], [ "THE CHASE", "has_genre", "COMEDY" ], [ "THE CHASE", "release_year", "1994" ], [ "THE COWBOY WAY", "has_genre", "COMEDY" ], [ "THE COWBOY WAY", "release_year", "1994" ], [ "THE FAVOR", "has_genre", "COMEDY" ], [ "THE FAVOR", "release_year", "1994" ], [ "THE FLINTSTONES", "has_genre", "COMEDY" ], [ "THE FLINTSTONES", "has_tags", "COMEDY" ], [ "THE FLINTSTONES", "release_year", "1994" ], [ "THE HISTORY BOYS", "directed_by", "NICHOLAS HYTNER" ], [ "THE HISTORY BOYS", "has_genre", "COMEDY" ], [ "THE HISTORY BOYS", "has_tags", "NICHOLAS HYTNER" ], [ "THE HISTORY BOYS", "written_by", "ALAN BENNETT" ], [ "THE HUDSUCKER PROXY", "has_genre", "COMEDY" ], [ "THE HUDSUCKER PROXY", "has_tags", "COMEDY" ], [ "THE HUDSUCKER PROXY", "release_year", "1994" ], [ "THE INKWELL", "has_genre", "COMEDY" ], [ "THE INKWELL", "release_year", "1994" ], [ "THE LITTLE RASCALS", "has_genre", "COMEDY" ], [ "THE LITTLE RASCALS", "release_year", "1994" ], [ "THE MADNESS OF KING GEORGE", "directed_by", "NICHOLAS HYTNER" ], [ "THE MADNESS OF KING GEORGE", "has_tags", "NICHOLAS HYTNER" ], [ "THE MADNESS OF KING GEORGE", "release_year", "1994" ], [ "THE MADNESS OF KING GEORGE", "written_by", "ALAN BENNETT" ], [ "THE MASK", "has_genre", "COMEDY" ], [ "THE MASK", "has_tags", "COMEDY" ], [ "THE MASK", "release_year", "1994" ], [ "THE MONSTER", "has_genre", "COMEDY" ], [ "THE MONSTER", "has_tags", "COMEDY" ], [ "THE MONSTER", "release_year", "1994" ], [ "THE PAPER", "has_genre", "COMEDY" ], [ "THE PAPER", "release_year", "1994" ], [ "THE REF", "has_genre", "COMEDY" ], [ "THE REF", "has_tags", "COMEDY" ], [ "THE REF", "release_year", "1994" ], [ "THE ROAD TO WELLVILLE", "has_genre", "COMEDY" ], [ "THE ROAD TO WELLVILLE", "release_year", "1994" ], [ "THE SANTA CLAUSE", "has_genre", "COMEDY" ], [ "THE SANTA CLAUSE", "release_year", "1994" ], [ "THE SCOUT", "has_genre", "COMEDY" ], [ "THE SCOUT", "release_year", "1994" ], [ "THE SEARCH FOR ONE-EYE JIMMY", "has_genre", "COMEDY" ], [ "THE SEARCH FOR ONE-EYE JIMMY", "release_year", "1994" ], [ "THE SUM OF US", "has_genre", "COMEDY" ], [ "THE SUM OF US", "release_year", "1994" ], [ "THREESOME", "has_genre", "COMEDY" ], [ "THREESOME", "has_tags", "COMEDY" ], [ "THREESOME", "release_year", "1994" ], [ "TRAPPED IN PARADISE", "has_genre", "COMEDY" ], [ "TRAPPED IN PARADISE", "release_year", "1994" ], [ "TRUE LIES", "has_genre", "COMEDY" ], [ "TRUE LIES", "has_tags", "COMEDY" ], [ "TRUE LIES", "release_year", "1994" ], [ "TWIN SITTERS", "has_genre", "COMEDY" ], [ "TWIN SITTERS", "release_year", "1994" ], [ "WHAT WE DO IN THE SHADOWS", "has_genre", "COMEDY" ], [ "WHAT WE DO IN THE SHADOWS", "has_tags", "COMEDY" ], [ "WHAT WE DO IN THE SHADOWS", "has_tags", "NEW ZEALAND" ], [ "WITH HONORS", "has_genre", "COMEDY" ], [ "WITH HONORS", "release_year", "1994" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 7841, 1987 37224, 1990 8221, A MAN ESCAPED 16566, A MONKEY IN WINTER 19905, A TALE OF SPRINGTIME 30750, A VERY LONG ENGAGEMENT 4133, ACES HIGH 36359, AFTERWARDS 30332, AMOUR 23257, AN UNFORGETTABLE SUMMER 24409, ARARAT 15271, ARIA 24216, ASTERIX AND THE VIKINGS 25570, BEAUTY AND THE BEAST 5122, BEST PICTURE 26908, BLACK MOON 15416, BOYFRIENDS AND GIRLFRIENDS 5978, CAMP DE THIAROYE 5840, CERTIFIED COPY 8520, CHICKEN WITH PLUMS 16536, CYRANO DE BERGERAC 30624, DANCES WITH WOLVES 38827, DANY BOON 33876, DAY FOR NIGHT 3567, DAYS OF GLORY 9709, DE L'AUTRE CÔTÉ DU LIT 17035, DEBTOCRACY 24410, DEMONLOVER 11249, DIARY OF A COUNTRY PRIEST 18025, DÉDÉE D'ANVERS 31783, ENGLISH 32892, ENGLISH VINGLISH 36073, FAT GIRL 34422, FEMALE AGENTS 36601, FLANDERS 1273, FLYBOYS 6966, FORBIDDEN GAMES 26394, FOUR ADVENTURES OF REINETTE AND MIRABELLE 6012, FRENCH 11314, GEORGES BERNANOS 5527, GIGI 26909, GREEN CARD 12085, HAPPY NEW YEAR 23434, HISTORICAL 27285, I WAS A MALE WAR BRIDE 16560, INGLOURIOUS BASTERDS 2944, IS PARIS BURNING? 479, J'ACCUSE! 21922, JANE EYRE 14209, KING OF HEARTS 18630, LA GRANDE ILLUSION 1315, LA PISCINE 24812, LACOMBE, LUCIEN 14601, LES MISÉRABLES 5214, LOOKING FOR ERIC 5422, LOULOU 33041, LUCIE AUBRAC 28455, MARIE ANTOINETTE 26787, MAURICE PIALAT 29660, MAY FOOLS 16925, MAYERLING 12100, MOUCHETTE 37218, MY BEST FRIEND 7974, MY FATHER THE HERO 8817, MY FATHER'S GLORY 26256, MY MOTHER'S CASTLE 6463, NAKED CHILDHOOD 37497, NATIONAL FILM REGISTRY 12152, NOTHING TO DECLARE 21677, ON THE ROAD 32901, ON TOUR 35556, OUTSIDE THE LAW 37499, PARAGRAPH 175 7967, PASSAGE TO MARSEILLE 16348, PERSEPOLIS 29620, POLICE 18480, RENAISSANCE 4689, SABRINA 11723, SHOAH 38271, SNOWPIERCER 17447, SON OF RAMBOW 8436, SPIRITS OF THE DEAD 8764, STELLA 6323, STRAYED 16165, SUPERCONDRIAQUE 13334, SWIMMING POOL 30003, TAKEN 10522, TAKING SIDES 1451, TATIE DANIELLE 9091, THE ADVENTURES OF PICASSO 24625, THE APARTMENT 28971, THE BIG BLUE 31161, THE CHAMBERMAID ON THE TITANIC 7044, THE DAY OF THE JACKAL 21345, THE DREAMERS 38918, THE FAMILY 27040, THE FRENCH CONNECTION 27723, THE HAIRDRESSER'S HUSBAND 15198, THE HUNCHBACK OF NOTRE DAME 16643, THE LAST METRO 22582, THE LAST OF THE MOHICANS 27237, THE LONGEST DAY 21696, THE MAN FROM LONDON 28079, THE MAN WHO PLANTED TREES 19375, THE PASSION OF JOAN OF ARC 8477, THE SCARLET PIMPERNEL 429, THE SEARCH 11663, THE TALL BLOND MAN WITH ONE BLACK SHOE 24261, THE TRUTH ABOUT CHARLIE 36109, THE UNDEFEATED 17568, THE VANISHING 31589, THE WAR IS OVER 19779, UNDER THE BOMBS 11470, UNDER THE SUN OF SATAN 31732, URANUS 10735, VENGEANCE 11659, VIVA MARIA! 22214, WAR 28712, WE WON'T GROW OLD TOGETHER 36026, WESTERN 35593, WOODEN CROSSES src, edge_attr, dst 8221, has_genre, 22214 8221, has_tags, 6012 8221, in_language, 6012 16566, has_tags, 22214 16566, in_language, 6012 19905, in_language, 6012 19905, release_year, 37224 30750, has_tags, 6012 30750, has_tags, 22214 30750, in_language, 6012 4133, has_genre, 22214 4133, in_language, 6012 36359, in_language, 31783 36359, in_language, 6012 30332, has_tags, 6012 30332, in_language, 31783 30332, in_language, 6012 23257, has_genre, 22214 23257, in_language, 6012 24409, has_tags, 23434 24409, in_language, 6012 15271, in_language, 6012 15271, release_year, 7841 24216, in_language, 31783 24216, in_language, 6012 25570, has_tags, 37497 25570, in_language, 6012 26908, in_language, 31783 26908, in_language, 6012 15416, in_language, 6012 15416, release_year, 7841 5978, has_genre, 22214 5978, in_language, 6012 5840, in_language, 31783 5840, in_language, 6012 8520, in_language, 31783 8520, in_language, 6012 16536, has_tags, 6012 16536, in_language, 31783 16536, in_language, 6012 16536, release_year, 37224 30624, has_genre, 36026 30624, has_tags, 5122 30624, has_tags, 23434 30624, has_tags, 37497 30624, has_tags, 22214 30624, has_tags, 36026 30624, in_language, 31783 30624, release_year, 37224 33876, in_language, 31783 33876, in_language, 6012 3567, has_genre, 22214 3567, has_tags, 22214 3567, in_language, 6012 9709, in_language, 6012 9709, starred_actors, 38827 17035, in_language, 31783 17035, in_language, 6012 24410, in_language, 31783 24410, in_language, 6012 11249, in_language, 6012 11249, written_by, 11314 18025, in_language, 31783 18025, in_language, 6012 32892, in_language, 31783 32892, in_language, 6012 36073, in_language, 31783 36073, in_language, 6012 34422, has_genre, 22214 34422, in_language, 6012 36601, has_genre, 22214 36601, in_language, 6012 1273, has_tags, 22214 1273, in_language, 6012 6966, has_genre, 22214 6966, in_language, 6012 26394, in_language, 6012 26394, release_year, 7841 5527, has_tags, 37497 5527, in_language, 31783 5527, in_language, 6012 26909, in_language, 6012 26909, release_year, 37224 12085, in_language, 6012 12085, release_year, 7841 27285, has_genre, 22214 27285, in_language, 6012 16560, has_genre, 22214 16560, has_tags, 6012 16560, has_tags, 22214 16560, in_language, 6012 2944, has_genre, 22214 2944, in_language, 6012 479, has_genre, 22214 479, in_language, 6012 21922, in_language, 31783 21922, in_language, 6012 14209, has_genre, 22214 14209, in_language, 6012 18630, has_genre, 22214 18630, has_tags, 22214 18630, in_language, 6012 1315, in_language, 31783 1315, in_language, 6012 24812, has_genre, 22214 24812, in_language, 31783 24812, in_language, 6012 14601, has_tags, 23434 14601, in_language, 31783 14601, in_language, 6012 5214, in_language, 31783 5214, in_language, 6012 5422, directed_by, 26787 5422, has_tags, 26787 5422, in_language, 6012 5422, written_by, 26787 33041, has_genre, 22214 33041, in_language, 6012 28455, has_tags, 23434 28455, in_language, 6012 29660, in_language, 6012 29660, release_year, 37224 16925, in_language, 31783 16925, in_language, 6012 12100, in_language, 6012 12100, written_by, 11314 37218, in_language, 6012 37218, starred_actors, 38827 7974, in_language, 31783 7974, in_language, 6012 8817, has_tags, 6012 8817, in_language, 6012 8817, release_year, 37224 26256, has_tags, 6012 26256, in_language, 6012 26256, release_year, 37224 6463, directed_by, 26787 6463, has_tags, 26787 6463, in_language, 6012 6463, written_by, 26787 12152, directed_by, 38827 12152, has_tags, 38827 12152, in_language, 6012 12152, starred_actors, 38827 12152, written_by, 38827 21677, in_language, 31783 21677, in_language, 6012 32901, in_language, 31783 32901, in_language, 6012 35556, has_genre, 22214 35556, has_tags, 6012 35556, has_tags, 22214 35556, in_language, 6012 37499, has_genre, 22214 37499, in_language, 6012 7967, has_genre, 22214 7967, in_language, 6012 16348, has_tags, 6012 16348, has_tags, 22214 16348, in_language, 6012 29620, directed_by, 26787 29620, in_language, 6012 29620, written_by, 26787 18480, in_language, 31783 18480, in_language, 6012 4689, has_tags, 37497 4689, in_language, 6012 11723, has_genre, 22214 11723, in_language, 6012 38271, in_language, 31783 38271, in_language, 6012 17447, in_language, 31783 17447, in_language, 6012 8436, in_language, 31783 8436, in_language, 6012 8764, in_language, 6012 8764, release_year, 37224 6323, has_genre, 22214 6323, in_language, 6012 16165, directed_by, 38827 16165, has_tags, 38827 16165, in_language, 6012 16165, starred_actors, 38827 16165, written_by, 38827 13334, has_tags, 6012 13334, in_language, 31783 13334, in_language, 6012 30003, in_language, 31783 30003, in_language, 6012 10522, has_genre, 22214 10522, in_language, 31783 10522, in_language, 6012 1451, has_tags, 6012 1451, in_language, 6012 1451, release_year, 37224 9091, in_language, 31783 9091, in_language, 6012 24625, has_tags, 5122 24625, in_language, 6012 28971, in_language, 31783 28971, in_language, 6012 31161, in_language, 31783 31161, in_language, 6012 7044, in_language, 31783 7044, in_language, 6012 21345, has_tags, 6012 21345, in_language, 31783 21345, in_language, 6012 38918, in_language, 31783 38918, in_language, 6012 38918, release_year, 7841 27040, has_tags, 5122 27040, has_tags, 37497 27040, in_language, 6012 27723, in_language, 6012 27723, release_year, 37224 15198, in_language, 31783 15198, in_language, 6012 16643, has_genre, 22214 16643, in_language, 6012 22582, has_tags, 23434 22582, in_language, 31783 22582, in_language, 6012 27237, has_tags, 22214 27237, in_language, 6012 21696, in_language, 31783 21696, in_language, 6012 28079, in_language, 6012 28079, release_year, 7841 19375, has_tags, 6012 19375, has_tags, 23434 19375, in_language, 6012 8477, in_language, 31783 8477, in_language, 6012 429, has_genre, 22214 429, in_language, 6012 11663, in_language, 31783 11663, in_language, 6012 24261, in_language, 31783 24261, in_language, 6012 36109, has_genre, 36026 36109, in_language, 6012 17568, in_language, 31783 17568, in_language, 6012 31589, has_genre, 22214 31589, in_language, 6012 19779, has_genre, 22214 19779, in_language, 6012 11470, directed_by, 26787 11470, in_language, 6012 11470, release_year, 7841 11470, starred_actors, 26787 11470, written_by, 11314 11470, written_by, 26787 31732, in_language, 6012 31732, release_year, 37224 10735, in_language, 31783 10735, in_language, 6012 11659, has_tags, 6012 11659, in_language, 31783 11659, in_language, 6012 28712, directed_by, 26787 28712, in_language, 6012 28712, written_by, 26787 36026, in_language, 6012 35593, has_genre, 22214 35593, in_language, 6012 Question: How are DANCES WITH WOLVES, DANY BOON, and UNDER THE SUN OF SATAN related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "DANCES WITH WOLVES", "DANY BOON", "UNDER THE SUN OF SATAN" ], "valid_edges": [ [ "A MAN ESCAPED", "has_genre", "WAR" ], [ "A MAN ESCAPED", "has_tags", "FRENCH" ], [ "A MAN ESCAPED", "in_language", "FRENCH" ], [ "A MONKEY IN WINTER", "has_tags", "WAR" ], [ "A MONKEY IN WINTER", "in_language", "FRENCH" ], [ "A TALE OF SPRINGTIME", "in_language", "FRENCH" ], [ "A TALE OF SPRINGTIME", "release_year", "1990" ], [ "A VERY LONG ENGAGEMENT", "has_tags", "FRENCH" ], [ "A VERY LONG ENGAGEMENT", "has_tags", "WAR" ], [ "A VERY LONG ENGAGEMENT", "in_language", "FRENCH" ], [ "ACES HIGH", "has_genre", "WAR" ], [ "ACES HIGH", "in_language", "FRENCH" ], [ "AFTERWARDS", "in_language", "ENGLISH" ], [ "AFTERWARDS", "in_language", "FRENCH" ], [ "AMOUR", "has_tags", "FRENCH" ], [ "AMOUR", "in_language", "ENGLISH" ], [ "AMOUR", "in_language", "FRENCH" ], [ "AN UNFORGETTABLE SUMMER", "has_genre", "WAR" ], [ "AN UNFORGETTABLE SUMMER", "in_language", "FRENCH" ], [ "ARARAT", "has_tags", "HISTORICAL" ], [ "ARARAT", "in_language", "FRENCH" ], [ "ARIA", "in_language", "FRENCH" ], [ "ARIA", "release_year", "1987" ], [ "ASTERIX AND THE VIKINGS", "in_language", "ENGLISH" ], [ "ASTERIX AND THE VIKINGS", "in_language", "FRENCH" ], [ "BEAUTY AND THE BEAST", "has_tags", "NATIONAL FILM REGISTRY" ], [ "BEAUTY AND THE BEAST", "in_language", "FRENCH" ], [ "BLACK MOON", "in_language", "ENGLISH" ], [ "BLACK MOON", "in_language", "FRENCH" ], [ "BOYFRIENDS AND GIRLFRIENDS", "in_language", "FRENCH" ], [ "BOYFRIENDS AND GIRLFRIENDS", "release_year", "1987" ], [ "CAMP DE THIAROYE", "has_genre", "WAR" ], [ "CAMP DE THIAROYE", "in_language", "FRENCH" ], [ "CERTIFIED COPY", "in_language", "ENGLISH" ], [ "CERTIFIED COPY", "in_language", "FRENCH" ], [ "CHICKEN WITH PLUMS", "in_language", "ENGLISH" ], [ "CHICKEN WITH PLUMS", "in_language", "FRENCH" ], [ "CYRANO DE BERGERAC", "has_tags", "FRENCH" ], [ "CYRANO DE BERGERAC", "in_language", "ENGLISH" ], [ "CYRANO DE BERGERAC", "in_language", "FRENCH" ], [ "CYRANO DE BERGERAC", "release_year", "1990" ], [ "DANCES WITH WOLVES", "has_genre", "WESTERN" ], [ "DANCES WITH WOLVES", "has_tags", "BEST PICTURE" ], [ "DANCES WITH WOLVES", "has_tags", "HISTORICAL" ], [ "DANCES WITH WOLVES", "has_tags", "NATIONAL FILM REGISTRY" ], [ "DANCES WITH WOLVES", "has_tags", "WAR" ], [ "DANCES WITH WOLVES", "has_tags", "WESTERN" ], [ "DANCES WITH WOLVES", "in_language", "ENGLISH" ], [ "DANCES WITH WOLVES", "release_year", "1990" ], [ "DAY FOR NIGHT", "in_language", "ENGLISH" ], [ "DAY FOR NIGHT", "in_language", "FRENCH" ], [ "DAYS OF GLORY", "has_genre", "WAR" ], [ "DAYS OF GLORY", "has_tags", "WAR" ], [ "DAYS OF GLORY", "in_language", "FRENCH" ], [ "DE L'AUTRE CÔTÉ DU LIT", "in_language", "FRENCH" ], [ "DE L'AUTRE CÔTÉ DU LIT", "starred_actors", "DANY BOON" ], [ "DEBTOCRACY", "in_language", "ENGLISH" ], [ "DEBTOCRACY", "in_language", "FRENCH" ], [ "DEMONLOVER", "in_language", "ENGLISH" ], [ "DEMONLOVER", "in_language", "FRENCH" ], [ "DIARY OF A COUNTRY PRIEST", "in_language", "FRENCH" ], [ "DIARY OF A COUNTRY PRIEST", "written_by", "GEORGES BERNANOS" ], [ "DÉDÉE D'ANVERS", "in_language", "ENGLISH" ], [ "DÉDÉE D'ANVERS", "in_language", "FRENCH" ], [ "ENGLISH VINGLISH", "in_language", "ENGLISH" ], [ "ENGLISH VINGLISH", "in_language", "FRENCH" ], [ "FAT GIRL", "in_language", "ENGLISH" ], [ "FAT GIRL", "in_language", "FRENCH" ], [ "FEMALE AGENTS", "has_genre", "WAR" ], [ "FEMALE AGENTS", "in_language", "FRENCH" ], [ "FLANDERS", "has_genre", "WAR" ], [ "FLANDERS", "in_language", "FRENCH" ], [ "FLYBOYS", "has_tags", "WAR" ], [ "FLYBOYS", "in_language", "FRENCH" ], [ "FORBIDDEN GAMES", "has_genre", "WAR" ], [ "FORBIDDEN GAMES", "in_language", "FRENCH" ], [ "FOUR ADVENTURES OF REINETTE AND MIRABELLE", "in_language", "FRENCH" ], [ "FOUR ADVENTURES OF REINETTE AND MIRABELLE", "release_year", "1987" ], [ "GIGI", "has_tags", "NATIONAL FILM REGISTRY" ], [ "GIGI", "in_language", "ENGLISH" ], [ "GIGI", "in_language", "FRENCH" ], [ "GREEN CARD", "in_language", "FRENCH" ], [ "GREEN CARD", "release_year", "1990" ], [ "HAPPY NEW YEAR", "in_language", "FRENCH" ], [ "HAPPY NEW YEAR", "release_year", "1987" ], [ "I WAS A MALE WAR BRIDE", "has_genre", "WAR" ], [ "I WAS A MALE WAR BRIDE", "in_language", "FRENCH" ], [ "INGLOURIOUS BASTERDS", "has_genre", "WAR" ], [ "INGLOURIOUS BASTERDS", "has_tags", "FRENCH" ], [ "INGLOURIOUS BASTERDS", "has_tags", "WAR" ], [ "INGLOURIOUS BASTERDS", "in_language", "FRENCH" ], [ "IS PARIS BURNING?", "has_genre", "WAR" ], [ "IS PARIS BURNING?", "in_language", "FRENCH" ], [ "J'ACCUSE!", "has_genre", "WAR" ], [ "J'ACCUSE!", "in_language", "FRENCH" ], [ "JANE EYRE", "in_language", "ENGLISH" ], [ "JANE EYRE", "in_language", "FRENCH" ], [ "KING OF HEARTS", "has_genre", "WAR" ], [ "KING OF HEARTS", "in_language", "FRENCH" ], [ "LA GRANDE ILLUSION", "has_genre", "WAR" ], [ "LA GRANDE ILLUSION", "has_tags", "WAR" ], [ "LA GRANDE ILLUSION", "in_language", "FRENCH" ], [ "LA PISCINE", "in_language", "ENGLISH" ], [ "LA PISCINE", "in_language", "FRENCH" ], [ "LACOMBE, LUCIEN", "has_genre", "WAR" ], [ "LACOMBE, LUCIEN", "in_language", "ENGLISH" ], [ "LACOMBE, LUCIEN", "in_language", "FRENCH" ], [ "LES MISÉRABLES", "has_tags", "HISTORICAL" ], [ "LES MISÉRABLES", "in_language", "ENGLISH" ], [ "LES MISÉRABLES", "in_language", "FRENCH" ], [ "LOOKING FOR ERIC", "in_language", "ENGLISH" ], [ "LOOKING FOR ERIC", "in_language", "FRENCH" ], [ "LOULOU", "directed_by", "MAURICE PIALAT" ], [ "LOULOU", "has_tags", "MAURICE PIALAT" ], [ "LOULOU", "in_language", "FRENCH" ], [ "LOULOU", "written_by", "MAURICE PIALAT" ], [ "LUCIE AUBRAC", "has_genre", "WAR" ], [ "LUCIE AUBRAC", "in_language", "FRENCH" ], [ "MARIE ANTOINETTE", "has_tags", "HISTORICAL" ], [ "MARIE ANTOINETTE", "in_language", "FRENCH" ], [ "MAY FOOLS", "in_language", "FRENCH" ], [ "MAY FOOLS", "release_year", "1990" ], [ "MAYERLING", "in_language", "ENGLISH" ], [ "MAYERLING", "in_language", "FRENCH" ], [ "MOUCHETTE", "in_language", "FRENCH" ], [ "MOUCHETTE", "written_by", "GEORGES BERNANOS" ], [ "MY BEST FRIEND", "in_language", "FRENCH" ], [ "MY BEST FRIEND", "starred_actors", "DANY BOON" ], [ "MY FATHER THE HERO", "in_language", "ENGLISH" ], [ "MY FATHER THE HERO", "in_language", "FRENCH" ], [ "MY FATHER'S GLORY", "has_tags", "FRENCH" ], [ "MY FATHER'S GLORY", "in_language", "FRENCH" ], [ "MY FATHER'S GLORY", "release_year", "1990" ], [ "MY MOTHER'S CASTLE", "has_tags", "FRENCH" ], [ "MY MOTHER'S CASTLE", "in_language", "FRENCH" ], [ "MY MOTHER'S CASTLE", "release_year", "1990" ], [ "NAKED CHILDHOOD", "directed_by", "MAURICE PIALAT" ], [ "NAKED CHILDHOOD", "has_tags", "MAURICE PIALAT" ], [ "NAKED CHILDHOOD", "in_language", "FRENCH" ], [ "NAKED CHILDHOOD", "written_by", "MAURICE PIALAT" ], [ "NOTHING TO DECLARE", "directed_by", "DANY BOON" ], [ "NOTHING TO DECLARE", "has_tags", "DANY BOON" ], [ "NOTHING TO DECLARE", "in_language", "FRENCH" ], [ "NOTHING TO DECLARE", "starred_actors", "DANY BOON" ], [ "NOTHING TO DECLARE", "written_by", "DANY BOON" ], [ "ON THE ROAD", "in_language", "ENGLISH" ], [ "ON THE ROAD", "in_language", "FRENCH" ], [ "ON TOUR", "in_language", "ENGLISH" ], [ "ON TOUR", "in_language", "FRENCH" ], [ "OUTSIDE THE LAW", "has_genre", "WAR" ], [ "OUTSIDE THE LAW", "has_tags", "FRENCH" ], [ "OUTSIDE THE LAW", "has_tags", "WAR" ], [ "OUTSIDE THE LAW", "in_language", "FRENCH" ], [ "PARAGRAPH 175", "has_genre", "WAR" ], [ "PARAGRAPH 175", "in_language", "FRENCH" ], [ "PASSAGE TO MARSEILLE", "has_genre", "WAR" ], [ "PASSAGE TO MARSEILLE", "in_language", "FRENCH" ], [ "PERSEPOLIS", "has_tags", "FRENCH" ], [ "PERSEPOLIS", "has_tags", "WAR" ], [ "PERSEPOLIS", "in_language", "FRENCH" ], [ "POLICE", "directed_by", "MAURICE PIALAT" ], [ "POLICE", "in_language", "FRENCH" ], [ "POLICE", "written_by", "MAURICE PIALAT" ], [ "RENAISSANCE", "in_language", "ENGLISH" ], [ "RENAISSANCE", "in_language", "FRENCH" ], [ "SABRINA", "has_tags", "NATIONAL FILM REGISTRY" ], [ "SABRINA", "in_language", "FRENCH" ], [ "SHOAH", "has_genre", "WAR" ], [ "SHOAH", "in_language", "FRENCH" ], [ "SNOWPIERCER", "in_language", "ENGLISH" ], [ "SNOWPIERCER", "in_language", "FRENCH" ], [ "SON OF RAMBOW", "in_language", "ENGLISH" ], [ "SON OF RAMBOW", "in_language", "FRENCH" ], [ "SPIRITS OF THE DEAD", "in_language", "ENGLISH" ], [ "SPIRITS OF THE DEAD", "in_language", "FRENCH" ], [ "STELLA", "in_language", "FRENCH" ], [ "STELLA", "release_year", "1990" ], [ "STRAYED", "has_genre", "WAR" ], [ "STRAYED", "in_language", "FRENCH" ], [ "SUPERCONDRIAQUE", "directed_by", "DANY BOON" ], [ "SUPERCONDRIAQUE", "has_tags", "DANY BOON" ], [ "SUPERCONDRIAQUE", "in_language", "FRENCH" ], [ "SUPERCONDRIAQUE", "starred_actors", "DANY BOON" ], [ "SUPERCONDRIAQUE", "written_by", "DANY BOON" ], [ "SWIMMING POOL", "has_tags", "FRENCH" ], [ "SWIMMING POOL", "in_language", "ENGLISH" ], [ "SWIMMING POOL", "in_language", "FRENCH" ], [ "TAKEN", "in_language", "ENGLISH" ], [ "TAKEN", "in_language", "FRENCH" ], [ "TAKING SIDES", "has_genre", "WAR" ], [ "TAKING SIDES", "in_language", "ENGLISH" ], [ "TAKING SIDES", "in_language", "FRENCH" ], [ "TATIE DANIELLE", "has_tags", "FRENCH" ], [ "TATIE DANIELLE", "in_language", "FRENCH" ], [ "TATIE DANIELLE", "release_year", "1990" ], [ "THE ADVENTURES OF PICASSO", "in_language", "ENGLISH" ], [ "THE ADVENTURES OF PICASSO", "in_language", "FRENCH" ], [ "THE APARTMENT", "has_tags", "BEST PICTURE" ], [ "THE APARTMENT", "in_language", "FRENCH" ], [ "THE BIG BLUE", "in_language", "ENGLISH" ], [ "THE BIG BLUE", "in_language", "FRENCH" ], [ "THE CHAMBERMAID ON THE TITANIC", "in_language", "ENGLISH" ], [ "THE CHAMBERMAID ON THE TITANIC", "in_language", "FRENCH" ], [ "THE DAY OF THE JACKAL", "in_language", "ENGLISH" ], [ "THE DAY OF THE JACKAL", "in_language", "FRENCH" ], [ "THE DREAMERS", "has_tags", "FRENCH" ], [ "THE DREAMERS", "in_language", "ENGLISH" ], [ "THE DREAMERS", "in_language", "FRENCH" ], [ "THE FAMILY", "in_language", "ENGLISH" ], [ "THE FAMILY", "in_language", "FRENCH" ], [ "THE FAMILY", "release_year", "1987" ], [ "THE FRENCH CONNECTION", "has_tags", "BEST PICTURE" ], [ "THE FRENCH CONNECTION", "has_tags", "NATIONAL FILM REGISTRY" ], [ "THE FRENCH CONNECTION", "in_language", "FRENCH" ], [ "THE HAIRDRESSER'S HUSBAND", "in_language", "FRENCH" ], [ "THE HAIRDRESSER'S HUSBAND", "release_year", "1990" ], [ "THE HUNCHBACK OF NOTRE DAME", "in_language", "ENGLISH" ], [ "THE HUNCHBACK OF NOTRE DAME", "in_language", "FRENCH" ], [ "THE LAST METRO", "has_genre", "WAR" ], [ "THE LAST METRO", "in_language", "FRENCH" ], [ "THE LAST OF THE MOHICANS", "has_tags", "HISTORICAL" ], [ "THE LAST OF THE MOHICANS", "in_language", "ENGLISH" ], [ "THE LAST OF THE MOHICANS", "in_language", "FRENCH" ], [ "THE LONGEST DAY", "has_tags", "WAR" ], [ "THE LONGEST DAY", "in_language", "FRENCH" ], [ "THE MAN FROM LONDON", "in_language", "ENGLISH" ], [ "THE MAN FROM LONDON", "in_language", "FRENCH" ], [ "THE MAN WHO PLANTED TREES", "in_language", "FRENCH" ], [ "THE MAN WHO PLANTED TREES", "release_year", "1987" ], [ "THE PASSION OF JOAN OF ARC", "has_tags", "FRENCH" ], [ "THE PASSION OF JOAN OF ARC", "has_tags", "HISTORICAL" ], [ "THE PASSION OF JOAN OF ARC", "in_language", "FRENCH" ], [ "THE SCARLET PIMPERNEL", "in_language", "ENGLISH" ], [ "THE SCARLET PIMPERNEL", "in_language", "FRENCH" ], [ "THE SEARCH", "has_genre", "WAR" ], [ "THE SEARCH", "in_language", "FRENCH" ], [ "THE TALL BLOND MAN WITH ONE BLACK SHOE", "in_language", "ENGLISH" ], [ "THE TALL BLOND MAN WITH ONE BLACK SHOE", "in_language", "FRENCH" ], [ "THE TRUTH ABOUT CHARLIE", "in_language", "ENGLISH" ], [ "THE TRUTH ABOUT CHARLIE", "in_language", "FRENCH" ], [ "THE UNDEFEATED", "has_genre", "WESTERN" ], [ "THE UNDEFEATED", "in_language", "FRENCH" ], [ "THE VANISHING", "in_language", "ENGLISH" ], [ "THE VANISHING", "in_language", "FRENCH" ], [ "THE WAR IS OVER", "has_genre", "WAR" ], [ "THE WAR IS OVER", "in_language", "FRENCH" ], [ "UNDER THE BOMBS", "has_genre", "WAR" ], [ "UNDER THE BOMBS", "in_language", "FRENCH" ], [ "UNDER THE SUN OF SATAN", "directed_by", "MAURICE PIALAT" ], [ "UNDER THE SUN OF SATAN", "in_language", "FRENCH" ], [ "UNDER THE SUN OF SATAN", "release_year", "1987" ], [ "UNDER THE SUN OF SATAN", "starred_actors", "MAURICE PIALAT" ], [ "UNDER THE SUN OF SATAN", "written_by", "GEORGES BERNANOS" ], [ "UNDER THE SUN OF SATAN", "written_by", "MAURICE PIALAT" ], [ "URANUS", "in_language", "FRENCH" ], [ "URANUS", "release_year", "1990" ], [ "VENGEANCE", "in_language", "ENGLISH" ], [ "VENGEANCE", "in_language", "FRENCH" ], [ "VIVA MARIA!", "has_tags", "FRENCH" ], [ "VIVA MARIA!", "in_language", "ENGLISH" ], [ "VIVA MARIA!", "in_language", "FRENCH" ], [ "WE WON'T GROW OLD TOGETHER", "directed_by", "MAURICE PIALAT" ], [ "WE WON'T GROW OLD TOGETHER", "in_language", "FRENCH" ], [ "WE WON'T GROW OLD TOGETHER", "written_by", "MAURICE PIALAT" ], [ "WESTERN", "in_language", "FRENCH" ], [ "WOODEN CROSSES", "has_genre", "WAR" ], [ "WOODEN CROSSES", "in_language", "FRENCH" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 16055, 1983 17315, 2007 2925, ATONEMENT 30907, BAREFOOT GEN 20266, BEAUFORT 15391, BODY OF WAR 26302, BORN IN FLAMES 1424, CALIFORNIA DREAMIN' 25805, DOCTOR ZHIVAGO 6065, DONALD SUTHERLAND 6943, FALLEN 1033, FRACTURE 33015, GREGORY HOBLIT 33545, HART'S WAR 6036, HEAVY METAL IN BAGHDAD 24224, LIONS FOR LAMBS 28476, MURDER 16348, PERSEPOLIS 31741, PRIMAL FEAR 13081, R 30938, REDACTED 10832, REVOLUTION 35586, SAHARA 30840, SHAKE HANDS WITH THE DEVIL 36258, TALI-IHANTALA 1944 9851, TAXI TO THE DARK SIDE 28461, THE ALAMO 19649, THE COUNTERFEITERS 5893, THE KEY 12691, THE PATRIOT 33742, THE WARLORDS 3640, TO BE OR NOT TO BE 32843, UNDER FIRE 19779, UNDER THE BOMBS 18451, UNTRACEABLE 22214, WAR src, edge_attr, dst 2925, has_tags, 22214 2925, release_year, 17315 30907, has_tags, 22214 30907, release_year, 16055 20266, has_genre, 22214 20266, release_year, 17315 15391, has_genre, 22214 15391, release_year, 17315 26302, release_year, 16055 1424, has_genre, 22214 1424, release_year, 17315 25805, has_genre, 22214 25805, has_tags, 10832 25805, has_tags, 22214 6943, directed_by, 33015 6943, has_tags, 33015 6943, starred_actors, 6065 1033, directed_by, 33015 1033, has_tags, 33015 1033, has_tags, 28476 1033, has_tags, 13081 1033, release_year, 17315 33545, directed_by, 33015 33545, has_genre, 22214 33545, has_tags, 33015 33545, has_tags, 13081 6036, has_genre, 22214 6036, release_year, 17315 24224, has_genre, 22214 24224, release_year, 17315 16348, has_tags, 10832 16348, has_tags, 22214 16348, release_year, 17315 31741, directed_by, 33015 31741, has_tags, 33015 31741, has_tags, 28476 30938, has_genre, 22214 30938, release_year, 17315 10832, starred_actors, 6065 35586, has_genre, 22214 35586, release_year, 16055 30840, has_genre, 22214 30840, release_year, 17315 36258, has_genre, 22214 36258, release_year, 17315 9851, has_genre, 22214 9851, release_year, 17315 28461, has_genre, 22214 28461, has_tags, 10832 28461, has_tags, 22214 19649, has_genre, 22214 19649, release_year, 17315 5893, has_genre, 22214 5893, release_year, 16055 12691, has_tags, 10832 12691, has_tags, 22214 33742, has_tags, 22214 33742, release_year, 17315 3640, has_genre, 22214 3640, release_year, 16055 32843, has_genre, 22214 32843, release_year, 16055 19779, has_genre, 22214 19779, release_year, 17315 18451, directed_by, 33015 18451, has_tags, 33015 18451, has_tags, 13081 22214, has_tags, 28476 22214, release_year, 17315 Question: In what context are BORN IN FLAMES, GREGORY HOBLIT, and PERSEPOLIS connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "BORN IN FLAMES", "GREGORY HOBLIT", "PERSEPOLIS" ], "valid_edges": [ [ "ATONEMENT", "has_tags", "WAR" ], [ "ATONEMENT", "release_year", "2007" ], [ "BAREFOOT GEN", "has_tags", "WAR" ], [ "BAREFOOT GEN", "release_year", "1983" ], [ "BEAUFORT", "has_genre", "WAR" ], [ "BEAUFORT", "release_year", "2007" ], [ "BODY OF WAR", "has_genre", "WAR" ], [ "BODY OF WAR", "release_year", "2007" ], [ "BORN IN FLAMES", "release_year", "1983" ], [ "CALIFORNIA DREAMIN'", "has_genre", "WAR" ], [ "CALIFORNIA DREAMIN'", "release_year", "2007" ], [ "DOCTOR ZHIVAGO", "has_genre", "WAR" ], [ "DOCTOR ZHIVAGO", "has_tags", "REVOLUTION" ], [ "DOCTOR ZHIVAGO", "has_tags", "WAR" ], [ "FALLEN", "directed_by", "GREGORY HOBLIT" ], [ "FALLEN", "has_tags", "GREGORY HOBLIT" ], [ "FALLEN", "starred_actors", "DONALD SUTHERLAND" ], [ "FRACTURE", "directed_by", "GREGORY HOBLIT" ], [ "FRACTURE", "has_tags", "GREGORY HOBLIT" ], [ "FRACTURE", "has_tags", "MURDER" ], [ "FRACTURE", "has_tags", "R" ], [ "FRACTURE", "release_year", "2007" ], [ "HART'S WAR", "directed_by", "GREGORY HOBLIT" ], [ "HART'S WAR", "has_genre", "WAR" ], [ "HART'S WAR", "has_tags", "GREGORY HOBLIT" ], [ "HART'S WAR", "has_tags", "R" ], [ "HEAVY METAL IN BAGHDAD", "has_genre", "WAR" ], [ "HEAVY METAL IN BAGHDAD", "release_year", "2007" ], [ "LIONS FOR LAMBS", "has_genre", "WAR" ], [ "LIONS FOR LAMBS", "release_year", "2007" ], [ "PERSEPOLIS", "has_tags", "REVOLUTION" ], [ "PERSEPOLIS", "has_tags", "WAR" ], [ "PERSEPOLIS", "release_year", "2007" ], [ "PRIMAL FEAR", "directed_by", "GREGORY HOBLIT" ], [ "PRIMAL FEAR", "has_tags", "GREGORY HOBLIT" ], [ "PRIMAL FEAR", "has_tags", "MURDER" ], [ "REDACTED", "has_genre", "WAR" ], [ "REDACTED", "release_year", "2007" ], [ "REVOLUTION", "starred_actors", "DONALD SUTHERLAND" ], [ "SAHARA", "has_genre", "WAR" ], [ "SAHARA", "release_year", "1983" ], [ "SHAKE HANDS WITH THE DEVIL", "has_genre", "WAR" ], [ "SHAKE HANDS WITH THE DEVIL", "release_year", "2007" ], [ "TALI-IHANTALA 1944", "has_genre", "WAR" ], [ "TALI-IHANTALA 1944", "release_year", "2007" ], [ "TAXI TO THE DARK SIDE", "has_genre", "WAR" ], [ "TAXI TO THE DARK SIDE", "release_year", "2007" ], [ "THE ALAMO", "has_genre", "WAR" ], [ "THE ALAMO", "has_tags", "REVOLUTION" ], [ "THE ALAMO", "has_tags", "WAR" ], [ "THE COUNTERFEITERS", "has_genre", "WAR" ], [ "THE COUNTERFEITERS", "release_year", "2007" ], [ "THE KEY", "has_genre", "WAR" ], [ "THE KEY", "release_year", "1983" ], [ "THE PATRIOT", "has_tags", "REVOLUTION" ], [ "THE PATRIOT", "has_tags", "WAR" ], [ "THE WARLORDS", "has_tags", "WAR" ], [ "THE WARLORDS", "release_year", "2007" ], [ "TO BE OR NOT TO BE", "has_genre", "WAR" ], [ "TO BE OR NOT TO BE", "release_year", "1983" ], [ "UNDER FIRE", "has_genre", "WAR" ], [ "UNDER FIRE", "release_year", "1983" ], [ "UNDER THE BOMBS", "has_genre", "WAR" ], [ "UNDER THE BOMBS", "release_year", "2007" ], [ "UNTRACEABLE", "directed_by", "GREGORY HOBLIT" ], [ "UNTRACEABLE", "has_tags", "GREGORY HOBLIT" ], [ "UNTRACEABLE", "has_tags", "R" ], [ "WAR", "has_tags", "MURDER" ], [ "WAR", "release_year", "2007" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 2133, 1998 10045, BD-R 38681, BING CROSBY 4884, BOB HOPE 30463, COMEDY 8426, DANNY KAYE 17144, GRUMPIER OLD MEN 10918, GRUMPY OLD MEN 30818, JACK LEMMON 6956, KNOCK ON WOOD 39629, MARK STEVEN JOHNSON 37141, MEET THE DEEDLES 27102, MELVIN FRANK 7186, MR. BLANDINGS BUILDS HIS DREAM HOUSE 3615, MY FAVORITE BLONDE 12324, NORMAN PANAMA 3548, NOT WITH MY WIFE, YOU DON'T! 39039, ROAD TO UTOPIA 217, SIMON BIRCH 65, STEVE BOYUM 30311, THE COURT JESTER 34071, THE FACTS OF LIFE 12302, THE ROAD TO HONG KONG 10744, WALTER MATTHAU 39802, WHEN IN ROME src, edge_attr, dst 17144, has_genre, 30463 17144, has_tags, 30463 17144, has_tags, 30818 17144, has_tags, 10744 17144, starred_actors, 30818 17144, starred_actors, 10744 17144, written_by, 39629 10918, has_genre, 30463 10918, has_tags, 30463 10918, has_tags, 30818 10918, has_tags, 10744 10918, starred_actors, 30818 10918, starred_actors, 10744 10918, written_by, 39629 6956, directed_by, 27102 6956, directed_by, 12324 6956, has_genre, 30463 6956, has_tags, 8426 6956, has_tags, 27102 6956, has_tags, 12324 6956, starred_actors, 8426 6956, written_by, 27102 6956, written_by, 12324 37141, directed_by, 65 37141, has_genre, 30463 37141, release_year, 2133 7186, has_genre, 30463 7186, has_tags, 10045 7186, written_by, 27102 7186, written_by, 12324 3615, has_genre, 30463 3615, has_tags, 10045 3615, has_tags, 4884 3615, starred_actors, 4884 3615, written_by, 27102 3615, written_by, 12324 3548, directed_by, 12324 3548, has_genre, 30463 3548, written_by, 27102 3548, written_by, 12324 39039, has_genre, 30463 39039, has_tags, 4884 39039, starred_actors, 38681 39039, starred_actors, 4884 39039, written_by, 27102 39039, written_by, 12324 217, directed_by, 39629 217, has_genre, 30463 217, has_tags, 39629 217, release_year, 2133 217, written_by, 39629 30311, directed_by, 27102 30311, directed_by, 12324 30311, has_genre, 30463 30311, has_tags, 10045 30311, has_tags, 8426 30311, has_tags, 27102 30311, has_tags, 12324 30311, starred_actors, 8426 30311, written_by, 27102 30311, written_by, 12324 34071, directed_by, 27102 34071, has_genre, 30463 34071, starred_actors, 4884 34071, written_by, 27102 34071, written_by, 12324 12302, directed_by, 12324 12302, has_genre, 30463 12302, has_tags, 10045 12302, starred_actors, 38681 12302, starred_actors, 4884 12302, written_by, 12324 39802, directed_by, 39629 39802, has_genre, 30463 Question: In what context are MARK STEVEN JOHNSON, NORMAN PANAMA, and STEVE BOYUM connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "MARK STEVEN JOHNSON", "NORMAN PANAMA", "STEVE BOYUM" ], "valid_edges": [ [ "GRUMPIER OLD MEN", "has_genre", "COMEDY" ], [ "GRUMPIER OLD MEN", "has_tags", "COMEDY" ], [ "GRUMPIER OLD MEN", "has_tags", "JACK LEMMON" ], [ "GRUMPIER OLD MEN", "has_tags", "WALTER MATTHAU" ], [ "GRUMPIER OLD MEN", "starred_actors", "JACK LEMMON" ], [ "GRUMPIER OLD MEN", "starred_actors", "WALTER MATTHAU" ], [ "GRUMPIER OLD MEN", "written_by", "MARK STEVEN JOHNSON" ], [ "GRUMPY OLD MEN", "has_genre", "COMEDY" ], [ "GRUMPY OLD MEN", "has_tags", "COMEDY" ], [ "GRUMPY OLD MEN", "has_tags", "JACK LEMMON" ], [ "GRUMPY OLD MEN", "has_tags", "WALTER MATTHAU" ], [ "GRUMPY OLD MEN", "starred_actors", "JACK LEMMON" ], [ "GRUMPY OLD MEN", "starred_actors", "WALTER MATTHAU" ], [ "GRUMPY OLD MEN", "written_by", "MARK STEVEN JOHNSON" ], [ "KNOCK ON WOOD", "directed_by", "MELVIN FRANK" ], [ "KNOCK ON WOOD", "directed_by", "NORMAN PANAMA" ], [ "KNOCK ON WOOD", "has_genre", "COMEDY" ], [ "KNOCK ON WOOD", "has_tags", "DANNY KAYE" ], [ "KNOCK ON WOOD", "has_tags", "MELVIN FRANK" ], [ "KNOCK ON WOOD", "has_tags", "NORMAN PANAMA" ], [ "KNOCK ON WOOD", "starred_actors", "DANNY KAYE" ], [ "KNOCK ON WOOD", "written_by", "MELVIN FRANK" ], [ "KNOCK ON WOOD", "written_by", "NORMAN PANAMA" ], [ "MEET THE DEEDLES", "directed_by", "STEVE BOYUM" ], [ "MEET THE DEEDLES", "has_genre", "COMEDY" ], [ "MEET THE DEEDLES", "release_year", "1998" ], [ "MR. BLANDINGS BUILDS HIS DREAM HOUSE", "has_genre", "COMEDY" ], [ "MR. BLANDINGS BUILDS HIS DREAM HOUSE", "has_tags", "BD-R" ], [ "MR. BLANDINGS BUILDS HIS DREAM HOUSE", "written_by", "MELVIN FRANK" ], [ "MR. BLANDINGS BUILDS HIS DREAM HOUSE", "written_by", "NORMAN PANAMA" ], [ "MY FAVORITE BLONDE", "has_genre", "COMEDY" ], [ "MY FAVORITE BLONDE", "has_tags", "BD-R" ], [ "MY FAVORITE BLONDE", "has_tags", "BOB HOPE" ], [ "MY FAVORITE BLONDE", "starred_actors", "BOB HOPE" ], [ "MY FAVORITE BLONDE", "written_by", "MELVIN FRANK" ], [ "MY FAVORITE BLONDE", "written_by", "NORMAN PANAMA" ], [ "NOT WITH MY WIFE, YOU DON'T!", "directed_by", "NORMAN PANAMA" ], [ "NOT WITH MY WIFE, YOU DON'T!", "has_genre", "COMEDY" ], [ "NOT WITH MY WIFE, YOU DON'T!", "written_by", "MELVIN FRANK" ], [ "NOT WITH MY WIFE, YOU DON'T!", "written_by", "NORMAN PANAMA" ], [ "ROAD TO UTOPIA", "has_genre", "COMEDY" ], [ "ROAD TO UTOPIA", "has_tags", "BOB HOPE" ], [ "ROAD TO UTOPIA", "starred_actors", "BING CROSBY" ], [ "ROAD TO UTOPIA", "starred_actors", "BOB HOPE" ], [ "ROAD TO UTOPIA", "written_by", "MELVIN FRANK" ], [ "ROAD TO UTOPIA", "written_by", "NORMAN PANAMA" ], [ "SIMON BIRCH", "directed_by", "MARK STEVEN JOHNSON" ], [ "SIMON BIRCH", "has_genre", "COMEDY" ], [ "SIMON BIRCH", "has_tags", "MARK STEVEN JOHNSON" ], [ "SIMON BIRCH", "release_year", "1998" ], [ "SIMON BIRCH", "written_by", "MARK STEVEN JOHNSON" ], [ "THE COURT JESTER", "directed_by", "MELVIN FRANK" ], [ "THE COURT JESTER", "directed_by", "NORMAN PANAMA" ], [ "THE COURT JESTER", "has_genre", "COMEDY" ], [ "THE COURT JESTER", "has_tags", "BD-R" ], [ "THE COURT JESTER", "has_tags", "DANNY KAYE" ], [ "THE COURT JESTER", "has_tags", "MELVIN FRANK" ], [ "THE COURT JESTER", "has_tags", "NORMAN PANAMA" ], [ "THE COURT JESTER", "starred_actors", "DANNY KAYE" ], [ "THE COURT JESTER", "written_by", "MELVIN FRANK" ], [ "THE COURT JESTER", "written_by", "NORMAN PANAMA" ], [ "THE FACTS OF LIFE", "directed_by", "MELVIN FRANK" ], [ "THE FACTS OF LIFE", "has_genre", "COMEDY" ], [ "THE FACTS OF LIFE", "starred_actors", "BOB HOPE" ], [ "THE FACTS OF LIFE", "written_by", "MELVIN FRANK" ], [ "THE FACTS OF LIFE", "written_by", "NORMAN PANAMA" ], [ "THE ROAD TO HONG KONG", "directed_by", "NORMAN PANAMA" ], [ "THE ROAD TO HONG KONG", "has_genre", "COMEDY" ], [ "THE ROAD TO HONG KONG", "has_tags", "BD-R" ], [ "THE ROAD TO HONG KONG", "starred_actors", "BING CROSBY" ], [ "THE ROAD TO HONG KONG", "starred_actors", "BOB HOPE" ], [ "THE ROAD TO HONG KONG", "written_by", "NORMAN PANAMA" ], [ "WHEN IN ROME", "directed_by", "MARK STEVEN JOHNSON" ], [ "WHEN IN ROME", "has_genre", "COMEDY" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 14004, 1955 38097, 1985 21282, A GUY AND A GAL 31859, LASSE HALLSTRÖM 7649, MAN WITH THE GUN 14392, MORE ABOUT THE CHILDREN OF NOISY VILLAGE 31562, MY LIFE AS A DOG 3856, SMOOTH TALK 32687, SWEDISH 11486, THE CHILDREN OF NOISY VILLAGE 26071, THE HYPNOTIST 19659, THE UNKNOWN SOLDIER src, edge_attr, dst 21282, directed_by, 31859 21282, in_language, 32687 21282, written_by, 31859 7649, release_year, 14004 14392, directed_by, 31859 14392, in_language, 32687 31562, directed_by, 31859 31562, has_tags, 31859 31562, has_tags, 32687 31562, in_language, 32687 31562, release_year, 38097 31562, written_by, 31859 3856, release_year, 38097 11486, directed_by, 31859 11486, in_language, 32687 26071, directed_by, 31859 26071, in_language, 32687 26071, written_by, 31859 19659, release_year, 14004 19659, release_year, 38097 Question: For what reason are A GUY AND A GAL, MAN WITH THE GUN, and SMOOTH TALK associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "A GUY AND A GAL", "MAN WITH THE GUN", "SMOOTH TALK" ], "valid_edges": [ [ "A GUY AND A GAL", "directed_by", "LASSE HALLSTRÖM" ], [ "A GUY AND A GAL", "in_language", "SWEDISH" ], [ "A GUY AND A GAL", "written_by", "LASSE HALLSTRÖM" ], [ "MAN WITH THE GUN", "release_year", "1955" ], [ "MORE ABOUT THE CHILDREN OF NOISY VILLAGE", "directed_by", "LASSE HALLSTRÖM" ], [ "MORE ABOUT THE CHILDREN OF NOISY VILLAGE", "in_language", "SWEDISH" ], [ "MY LIFE AS A DOG", "directed_by", "LASSE HALLSTRÖM" ], [ "MY LIFE AS A DOG", "has_tags", "LASSE HALLSTRÖM" ], [ "MY LIFE AS A DOG", "has_tags", "SWEDISH" ], [ "MY LIFE AS A DOG", "in_language", "SWEDISH" ], [ "MY LIFE AS A DOG", "release_year", "1985" ], [ "MY LIFE AS A DOG", "written_by", "LASSE HALLSTRÖM" ], [ "SMOOTH TALK", "release_year", "1985" ], [ "THE CHILDREN OF NOISY VILLAGE", "directed_by", "LASSE HALLSTRÖM" ], [ "THE CHILDREN OF NOISY VILLAGE", "in_language", "SWEDISH" ], [ "THE HYPNOTIST", "directed_by", "LASSE HALLSTRÖM" ], [ "THE HYPNOTIST", "in_language", "SWEDISH" ], [ "THE HYPNOTIST", "written_by", "LASSE HALLSTRÖM" ], [ "THE UNKNOWN SOLDIER", "release_year", "1955" ], [ "THE UNKNOWN SOLDIER", "release_year", "1985" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 6253, 1936 37707, DRACULA'S DAUGHTER 5870, HORROR 10608, MAGIC 26644, OK 38265, THE DEVIL-DOLL 23802, THE MASK 36578, THE PEOPLE UNDER THE STAIRS 13780, THE WALKING DEAD 14809, WIFE VS. SECRETARY src, edge_attr, dst 37707, has_genre, 5870 37707, release_year, 6253 10608, has_genre, 5870 38265, has_genre, 5870 38265, release_year, 6253 23802, has_tags, 10608 23802, has_tags, 26644 36578, has_genre, 5870 13780, has_genre, 5870 13780, release_year, 6253 14809, release_year, 6253 Question: In what context are OK, THE PEOPLE UNDER THE STAIRS, and WIFE VS. SECRETARY connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "OK", "THE PEOPLE UNDER THE STAIRS", "WIFE VS. SECRETARY" ], "valid_edges": [ [ "DRACULA'S DAUGHTER", "has_genre", "HORROR" ], [ "DRACULA'S DAUGHTER", "release_year", "1936" ], [ "MAGIC", "has_genre", "HORROR" ], [ "THE DEVIL-DOLL", "has_genre", "HORROR" ], [ "THE DEVIL-DOLL", "release_year", "1936" ], [ "THE MASK", "has_tags", "MAGIC" ], [ "THE MASK", "has_tags", "OK" ], [ "THE PEOPLE UNDER THE STAIRS", "has_genre", "HORROR" ], [ "THE WALKING DEAD", "has_genre", "HORROR" ], [ "THE WALKING DEAD", "release_year", "1936" ], [ "WIFE VS. SECRETARY", "release_year", "1936" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 2133, 1998 29424, 2011 34781, A DANGEROUS METHOD 35101, ABDUCTION 22365, KEIRA KNIGHTLEY 38783, LAST NIGHT 22833, ROBERT COSTANZO 37634, TAYLOR LAUTNER 1905, WITH FRIENDS LIKE THESE... src, edge_attr, dst 34781, has_tags, 22365 34781, release_year, 29424 34781, starred_actors, 22365 35101, has_tags, 37634 35101, release_year, 29424 38783, has_tags, 22365 38783, release_year, 2133 38783, starred_actors, 22365 1905, release_year, 2133 1905, starred_actors, 22833 Question: How are KEIRA KNIGHTLEY, ROBERT COSTANZO, and TAYLOR LAUTNER related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "KEIRA KNIGHTLEY", "ROBERT COSTANZO", "TAYLOR LAUTNER" ], "valid_edges": [ [ "A DANGEROUS METHOD", "has_tags", "KEIRA KNIGHTLEY" ], [ "A DANGEROUS METHOD", "release_year", "2011" ], [ "A DANGEROUS METHOD", "starred_actors", "KEIRA KNIGHTLEY" ], [ "ABDUCTION", "has_tags", "TAYLOR LAUTNER" ], [ "ABDUCTION", "release_year", "2011" ], [ "LAST NIGHT", "has_tags", "KEIRA KNIGHTLEY" ], [ "LAST NIGHT", "release_year", "1998" ], [ "LAST NIGHT", "starred_actors", "KEIRA KNIGHTLEY" ], [ "WITH FRIENDS LIKE THESE...", "release_year", "1998" ], [ "WITH FRIENDS LIKE THESE...", "starred_actors", "ROBERT COSTANZO" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 3458, 1951 27261, 2009 12088, ACCIDENT 26158, ANOTHER MAN'S POISON 23227, ARMORED 9367, BETTE DAVIS 4197, BLUEBEARD 37883, BROKEN EMBRACES 29300, DEAD RINGER 8381, DETOUR 6932, M 29624, MADAME SIN 33763, MOONSTRUCK 36943, NEW YORK 410, NORMAN JEWISON 12428, RAGE 40046, STRANGERS ON A TRAIN 4337, THE CRY OF THE OWL 21338, THE GIRL WHO PLAYED WITH FIRE 33948, THE LETTER 10959, THE PROWLER 37148, THE SECRET IN THEIR EYES 35993, THE STEPFATHER 24811, THRILLER 28071, WHAT EVER HAPPENED TO BABY JANE? src, edge_attr, dst 12088, has_genre, 24811 12088, release_year, 27261 26158, release_year, 3458 26158, starred_actors, 9367 23227, has_genre, 24811 23227, release_year, 27261 4197, has_genre, 24811 4197, release_year, 27261 37883, has_genre, 24811 37883, release_year, 27261 29300, has_genre, 24811 29300, starred_actors, 9367 8381, has_genre, 24811 8381, release_year, 27261 6932, has_genre, 24811 6932, release_year, 3458 29624, has_genre, 24811 29624, starred_actors, 9367 33763, directed_by, 410 33763, has_tags, 36943 33763, has_tags, 410 36943, release_year, 27261 12428, has_genre, 24811 12428, release_year, 27261 40046, has_genre, 24811 40046, release_year, 3458 4337, has_genre, 24811 4337, release_year, 27261 21338, has_tags, 24811 21338, release_year, 27261 33948, has_genre, 24811 33948, has_tags, 9367 33948, starred_actors, 9367 10959, has_genre, 24811 10959, release_year, 3458 37148, has_genre, 24811 37148, release_year, 27261 35993, has_genre, 24811 35993, release_year, 27261 28071, has_genre, 24811 28071, has_tags, 9367 28071, starred_actors, 9367 Question: For what reason are ANOTHER MAN'S POISON, BROKEN EMBRACES, and NORMAN JEWISON associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "ANOTHER MAN'S POISON", "BROKEN EMBRACES", "NORMAN JEWISON" ], "valid_edges": [ [ "ACCIDENT", "has_genre", "THRILLER" ], [ "ACCIDENT", "release_year", "2009" ], [ "ANOTHER MAN'S POISON", "release_year", "1951" ], [ "ANOTHER MAN'S POISON", "starred_actors", "BETTE DAVIS" ], [ "ARMORED", "has_genre", "THRILLER" ], [ "ARMORED", "release_year", "2009" ], [ "BLUEBEARD", "has_genre", "THRILLER" ], [ "BLUEBEARD", "release_year", "2009" ], [ "BROKEN EMBRACES", "has_genre", "THRILLER" ], [ "BROKEN EMBRACES", "release_year", "2009" ], [ "DEAD RINGER", "has_genre", "THRILLER" ], [ "DEAD RINGER", "starred_actors", "BETTE DAVIS" ], [ "DETOUR", "has_genre", "THRILLER" ], [ "DETOUR", "release_year", "2009" ], [ "M", "has_genre", "THRILLER" ], [ "M", "release_year", "1951" ], [ "MADAME SIN", "has_genre", "THRILLER" ], [ "MADAME SIN", "starred_actors", "BETTE DAVIS" ], [ "MOONSTRUCK", "directed_by", "NORMAN JEWISON" ], [ "MOONSTRUCK", "has_tags", "NEW YORK" ], [ "MOONSTRUCK", "has_tags", "NORMAN JEWISON" ], [ "NEW YORK", "release_year", "2009" ], [ "RAGE", "has_genre", "THRILLER" ], [ "RAGE", "release_year", "2009" ], [ "STRANGERS ON A TRAIN", "has_genre", "THRILLER" ], [ "STRANGERS ON A TRAIN", "release_year", "1951" ], [ "THE CRY OF THE OWL", "has_genre", "THRILLER" ], [ "THE CRY OF THE OWL", "release_year", "2009" ], [ "THE GIRL WHO PLAYED WITH FIRE", "has_tags", "THRILLER" ], [ "THE GIRL WHO PLAYED WITH FIRE", "release_year", "2009" ], [ "THE LETTER", "has_genre", "THRILLER" ], [ "THE LETTER", "has_tags", "BETTE DAVIS" ], [ "THE LETTER", "starred_actors", "BETTE DAVIS" ], [ "THE PROWLER", "has_genre", "THRILLER" ], [ "THE PROWLER", "release_year", "1951" ], [ "THE SECRET IN THEIR EYES", "has_genre", "THRILLER" ], [ "THE SECRET IN THEIR EYES", "release_year", "2009" ], [ "THE STEPFATHER", "has_genre", "THRILLER" ], [ "THE STEPFATHER", "release_year", "2009" ], [ "WHAT EVER HAPPENED TO BABY JANE?", "has_genre", "THRILLER" ], [ "WHAT EVER HAPPENED TO BABY JANE?", "has_tags", "BETTE DAVIS" ], [ "WHAT EVER HAPPENED TO BABY JANE?", "starred_actors", "BETTE DAVIS" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 22772, 1961 34742, ATLANTIS, THE LOST CONTINENT 6589, CALLE 54 17035, DEBTOCRACY 12841, DOCUMENTARY 26751, EARTH 690, FLAMENCO 23106, LAND WITHOUT BREAD 39673, LOS OLVIDADOS 35505, LUIS BUÑUEL 38195, ROBINSON CRUSOE 28557, SAL PONTI 7556, SPANISH 27171, TEENAGE PAPARAZZO 13882, THAT OBSCURE OBJECT OF DESIRE 26605, THE CRIMINAL LIFE OF ARCHIBALDO DE LA CRUZ 15347, THE DISCREET CHARM OF THE BOURGEOISIE 27570, THE EXTERMINATING ANGEL 14832, TRISTANA 15034, VIRIDIANA src, edge_attr, dst 34742, release_year, 22772 34742, starred_actors, 28557 6589, has_genre, 12841 6589, in_language, 7556 17035, has_genre, 12841 17035, in_language, 7556 26751, has_genre, 12841 26751, in_language, 7556 690, has_genre, 12841 690, in_language, 7556 23106, directed_by, 35505 23106, has_genre, 12841 23106, has_tags, 35505 23106, written_by, 35505 39673, directed_by, 35505 39673, has_tags, 35505 39673, in_language, 7556 39673, written_by, 35505 38195, directed_by, 35505 38195, has_tags, 35505 38195, in_language, 7556 38195, written_by, 35505 27171, has_genre, 12841 13882, directed_by, 35505 13882, has_tags, 35505 13882, in_language, 7556 13882, written_by, 35505 26605, directed_by, 35505 26605, has_tags, 35505 26605, in_language, 7556 26605, written_by, 35505 15347, directed_by, 35505 15347, has_tags, 35505 15347, in_language, 7556 15347, written_by, 35505 27570, directed_by, 35505 27570, has_tags, 35505 27570, in_language, 7556 27570, written_by, 35505 14832, directed_by, 35505 14832, has_tags, 35505 14832, in_language, 7556 14832, written_by, 35505 15034, directed_by, 35505 15034, has_tags, 35505 15034, in_language, 7556 15034, release_year, 22772 15034, written_by, 35505 Question: How are SAL PONTI, TEENAGE PAPARAZZO, and VIRIDIANA related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "SAL PONTI", "TEENAGE PAPARAZZO", "VIRIDIANA" ], "valid_edges": [ [ "ATLANTIS, THE LOST CONTINENT", "release_year", "1961" ], [ "ATLANTIS, THE LOST CONTINENT", "starred_actors", "SAL PONTI" ], [ "CALLE 54", "has_genre", "DOCUMENTARY" ], [ "CALLE 54", "in_language", "SPANISH" ], [ "DEBTOCRACY", "has_genre", "DOCUMENTARY" ], [ "DEBTOCRACY", "in_language", "SPANISH" ], [ "EARTH", "has_genre", "DOCUMENTARY" ], [ "EARTH", "in_language", "SPANISH" ], [ "FLAMENCO", "has_genre", "DOCUMENTARY" ], [ "FLAMENCO", "in_language", "SPANISH" ], [ "LAND WITHOUT BREAD", "directed_by", "LUIS BUÑUEL" ], [ "LAND WITHOUT BREAD", "has_genre", "DOCUMENTARY" ], [ "LAND WITHOUT BREAD", "has_tags", "LUIS BUÑUEL" ], [ "LAND WITHOUT BREAD", "written_by", "LUIS BUÑUEL" ], [ "LOS OLVIDADOS", "directed_by", "LUIS BUÑUEL" ], [ "LOS OLVIDADOS", "has_tags", "LUIS BUÑUEL" ], [ "LOS OLVIDADOS", "in_language", "SPANISH" ], [ "LOS OLVIDADOS", "written_by", "LUIS BUÑUEL" ], [ "ROBINSON CRUSOE", "directed_by", "LUIS BUÑUEL" ], [ "ROBINSON CRUSOE", "has_tags", "LUIS BUÑUEL" ], [ "ROBINSON CRUSOE", "in_language", "SPANISH" ], [ "ROBINSON CRUSOE", "written_by", "LUIS BUÑUEL" ], [ "TEENAGE PAPARAZZO", "has_genre", "DOCUMENTARY" ], [ "THAT OBSCURE OBJECT OF DESIRE", "directed_by", "LUIS BUÑUEL" ], [ "THAT OBSCURE OBJECT OF DESIRE", "has_tags", "LUIS BUÑUEL" ], [ "THAT OBSCURE OBJECT OF DESIRE", "in_language", "SPANISH" ], [ "THAT OBSCURE OBJECT OF DESIRE", "written_by", "LUIS BUÑUEL" ], [ "THE CRIMINAL LIFE OF ARCHIBALDO DE LA CRUZ", "directed_by", "LUIS BUÑUEL" ], [ "THE CRIMINAL LIFE OF ARCHIBALDO DE LA CRUZ", "has_tags", "LUIS BUÑUEL" ], [ "THE CRIMINAL LIFE OF ARCHIBALDO DE LA CRUZ", "in_language", "SPANISH" ], [ "THE CRIMINAL LIFE OF ARCHIBALDO DE LA CRUZ", "written_by", "LUIS BUÑUEL" ], [ "THE DISCREET CHARM OF THE BOURGEOISIE", "directed_by", "LUIS BUÑUEL" ], [ "THE DISCREET CHARM OF THE BOURGEOISIE", "has_tags", "LUIS BUÑUEL" ], [ "THE DISCREET CHARM OF THE BOURGEOISIE", "in_language", "SPANISH" ], [ "THE DISCREET CHARM OF THE BOURGEOISIE", "written_by", "LUIS BUÑUEL" ], [ "THE EXTERMINATING ANGEL", "directed_by", "LUIS BUÑUEL" ], [ "THE EXTERMINATING ANGEL", "has_tags", "LUIS BUÑUEL" ], [ "THE EXTERMINATING ANGEL", "in_language", "SPANISH" ], [ "THE EXTERMINATING ANGEL", "written_by", "LUIS BUÑUEL" ], [ "TRISTANA", "directed_by", "LUIS BUÑUEL" ], [ "TRISTANA", "has_tags", "LUIS BUÑUEL" ], [ "TRISTANA", "in_language", "SPANISH" ], [ "TRISTANA", "written_by", "LUIS BUÑUEL" ], [ "VIRIDIANA", "directed_by", "LUIS BUÑUEL" ], [ "VIRIDIANA", "has_tags", "LUIS BUÑUEL" ], [ "VIRIDIANA", "in_language", "SPANISH" ], [ "VIRIDIANA", "release_year", "1961" ], [ "VIRIDIANA", "written_by", "LUIS BUÑUEL" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 10293, CONSPIRACY 36212, DRAMA 16970, EUREKA 26708, GOOD WILL HUNTING 22139, JFK 20643, MATT DAMON 18997, THE DEPARTED 16072, THE RAINMAKER 15424, ZACHARY SKLAR src, edge_attr, dst 10293, has_genre, 36212 16970, has_genre, 36212 26708, has_genre, 36212 26708, has_tags, 20643 26708, starred_actors, 20643 26708, written_by, 20643 22139, has_tags, 10293 22139, written_by, 15424 18997, has_genre, 36212 18997, has_tags, 20643 18997, starred_actors, 20643 16072, has_genre, 36212 16072, has_tags, 20643 16072, starred_actors, 20643 Question: In what context are EUREKA, THE RAINMAKER, and ZACHARY SKLAR connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "EUREKA", "THE RAINMAKER", "ZACHARY SKLAR" ], "valid_edges": [ [ "CONSPIRACY", "has_genre", "DRAMA" ], [ "EUREKA", "has_genre", "DRAMA" ], [ "GOOD WILL HUNTING", "has_genre", "DRAMA" ], [ "GOOD WILL HUNTING", "has_tags", "MATT DAMON" ], [ "GOOD WILL HUNTING", "starred_actors", "MATT DAMON" ], [ "GOOD WILL HUNTING", "written_by", "MATT DAMON" ], [ "JFK", "has_tags", "CONSPIRACY" ], [ "JFK", "written_by", "ZACHARY SKLAR" ], [ "THE DEPARTED", "has_genre", "DRAMA" ], [ "THE DEPARTED", "has_tags", "MATT DAMON" ], [ "THE DEPARTED", "starred_actors", "MATT DAMON" ], [ "THE RAINMAKER", "has_genre", "DRAMA" ], [ "THE RAINMAKER", "has_tags", "MATT DAMON" ], [ "THE RAINMAKER", "starred_actors", "MATT DAMON" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 1097, 2003 29815, A SHORT FILM ABOUT JOHN BOLTON 3216, APPLE JACK 32628, BOUNDIN' 31783, ENGLISH 13108, FRANKENSTEIN 23419, HANGOVER SQUARE 34055, HARVIE KRUMPET 35319, HOPE SPRINGS 28169, IN THE CUT 6425, IT'S ALL ABOUT LOVE 37963, JOHNNY ENGLISH 25787, KOPPS 18336, LAST LIFE IN THE UNIVERSE 17704, NED KELLY 2971, PETER O'BRIEN 3491, PUMZI 3416, SARABAND 36899, SHORT 31200, SVIDD NEGER 13334, SWIMMING POOL 21345, THE DREAMERS 5956, THE LONG AND SHORT OF IT 28919, THE RETURN 12883, THE SLEEPING DICTIONARY 27063, TOUCHING THE VOID 10238, UNDERWORLD src, edge_attr, dst 29815, has_genre, 36899 29815, release_year, 1097 3216, has_genre, 36899 3216, release_year, 1097 32628, has_genre, 36899 32628, has_tags, 36899 32628, release_year, 1097 13108, has_genre, 36899 13108, has_tags, 36899 13108, in_language, 31783 23419, in_language, 31783 34055, has_genre, 36899 34055, has_tags, 36899 34055, release_year, 1097 35319, in_language, 31783 35319, release_year, 1097 28169, in_language, 31783 28169, release_year, 1097 6425, in_language, 31783 6425, release_year, 1097 37963, in_language, 31783 37963, release_year, 1097 25787, in_language, 31783 25787, release_year, 1097 18336, in_language, 31783 18336, release_year, 1097 17704, in_language, 31783 17704, release_year, 1097 3491, has_genre, 36899 3491, in_language, 31783 3416, in_language, 31783 3416, release_year, 1097 31200, in_language, 31783 31200, release_year, 1097 13334, in_language, 31783 13334, release_year, 1097 21345, in_language, 31783 21345, release_year, 1097 5956, has_genre, 36899 5956, release_year, 1097 28919, release_year, 1097 28919, starred_actors, 2971 12883, in_language, 31783 12883, release_year, 1097 27063, in_language, 31783 27063, release_year, 1097 10238, in_language, 31783 10238, release_year, 1097 Question: For what reason are A SHORT FILM ABOUT JOHN BOLTON, HANGOVER SQUARE, and PETER O'BRIEN associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "A SHORT FILM ABOUT JOHN BOLTON", "HANGOVER SQUARE", "PETER O'BRIEN" ], "valid_edges": [ [ "A SHORT FILM ABOUT JOHN BOLTON", "has_genre", "SHORT" ], [ "A SHORT FILM ABOUT JOHN BOLTON", "release_year", "2003" ], [ "APPLE JACK", "has_genre", "SHORT" ], [ "APPLE JACK", "release_year", "2003" ], [ "BOUNDIN'", "has_genre", "SHORT" ], [ "BOUNDIN'", "has_tags", "SHORT" ], [ "BOUNDIN'", "release_year", "2003" ], [ "FRANKENSTEIN", "has_genre", "SHORT" ], [ "FRANKENSTEIN", "has_tags", "SHORT" ], [ "FRANKENSTEIN", "in_language", "ENGLISH" ], [ "HANGOVER SQUARE", "in_language", "ENGLISH" ], [ "HARVIE KRUMPET", "has_genre", "SHORT" ], [ "HARVIE KRUMPET", "has_tags", "SHORT" ], [ "HARVIE KRUMPET", "release_year", "2003" ], [ "HOPE SPRINGS", "in_language", "ENGLISH" ], [ "HOPE SPRINGS", "release_year", "2003" ], [ "IN THE CUT", "in_language", "ENGLISH" ], [ "IN THE CUT", "release_year", "2003" ], [ "IT'S ALL ABOUT LOVE", "in_language", "ENGLISH" ], [ "IT'S ALL ABOUT LOVE", "release_year", "2003" ], [ "JOHNNY ENGLISH", "in_language", "ENGLISH" ], [ "JOHNNY ENGLISH", "release_year", "2003" ], [ "KOPPS", "in_language", "ENGLISH" ], [ "KOPPS", "release_year", "2003" ], [ "LAST LIFE IN THE UNIVERSE", "in_language", "ENGLISH" ], [ "LAST LIFE IN THE UNIVERSE", "release_year", "2003" ], [ "NED KELLY", "in_language", "ENGLISH" ], [ "NED KELLY", "release_year", "2003" ], [ "PUMZI", "has_genre", "SHORT" ], [ "PUMZI", "in_language", "ENGLISH" ], [ "SARABAND", "in_language", "ENGLISH" ], [ "SARABAND", "release_year", "2003" ], [ "SVIDD NEGER", "in_language", "ENGLISH" ], [ "SVIDD NEGER", "release_year", "2003" ], [ "SWIMMING POOL", "in_language", "ENGLISH" ], [ "SWIMMING POOL", "release_year", "2003" ], [ "THE DREAMERS", "in_language", "ENGLISH" ], [ "THE DREAMERS", "release_year", "2003" ], [ "THE LONG AND SHORT OF IT", "has_genre", "SHORT" ], [ "THE LONG AND SHORT OF IT", "release_year", "2003" ], [ "THE RETURN", "release_year", "2003" ], [ "THE RETURN", "starred_actors", "PETER O'BRIEN" ], [ "THE SLEEPING DICTIONARY", "in_language", "ENGLISH" ], [ "THE SLEEPING DICTIONARY", "release_year", "2003" ], [ "TOUCHING THE VOID", "in_language", "ENGLISH" ], [ "TOUCHING THE VOID", "release_year", "2003" ], [ "UNDERWORLD", "in_language", "ENGLISH" ], [ "UNDERWORLD", "release_year", "2003" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 39813, 1971 6094, A CLOCKWORK ORANGE 11774, BEDKNOBS AND BROOMSTICKS 23417, DAUGHTERS OF DARKNESS 31783, ENGLISH 19921, FLORA FAUNA 19686, GEORGE B. SEITZ 15765, HAMSUN 17619, LIV ULLMANN 24601, LOST HORIZON 20992, MACBETH 21095, MAX VON SYDOW 35163, SHATTER DEAD 9448, SILENCE 25888, THE BURGLARS 22582, THE LAST OF THE MOHICANS 15196, THE NIGHT VISITOR 10133, UNKNOWN src, edge_attr, dst 6094, in_language, 31783 6094, release_year, 39813 11774, in_language, 31783 11774, release_year, 39813 23417, in_language, 31783 23417, release_year, 39813 15765, has_tags, 21095 15765, in_language, 31783 15765, starred_actors, 21095 24601, in_language, 31783 24601, starred_actors, 17619 20992, in_language, 31783 20992, release_year, 39813 35163, has_imdb_votes, 10133 35163, starred_actors, 19921 9448, in_language, 31783 9448, release_year, 39813 25888, in_language, 31783 25888, release_year, 39813 22582, directed_by, 19686 22582, in_language, 31783 15196, in_language, 31783 15196, release_year, 39813 15196, starred_actors, 17619 15196, starred_actors, 21095 10133, in_language, 31783 Question: In what context are FLORA FAUNA, GEORGE B. SEITZ, and THE NIGHT VISITOR connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "FLORA FAUNA", "GEORGE B. SEITZ", "THE NIGHT VISITOR" ], "valid_edges": [ [ "A CLOCKWORK ORANGE", "in_language", "ENGLISH" ], [ "A CLOCKWORK ORANGE", "release_year", "1971" ], [ "BEDKNOBS AND BROOMSTICKS", "in_language", "ENGLISH" ], [ "BEDKNOBS AND BROOMSTICKS", "release_year", "1971" ], [ "DAUGHTERS OF DARKNESS", "in_language", "ENGLISH" ], [ "DAUGHTERS OF DARKNESS", "release_year", "1971" ], [ "HAMSUN", "has_tags", "MAX VON SYDOW" ], [ "HAMSUN", "in_language", "ENGLISH" ], [ "HAMSUN", "starred_actors", "MAX VON SYDOW" ], [ "LOST HORIZON", "in_language", "ENGLISH" ], [ "LOST HORIZON", "starred_actors", "LIV ULLMANN" ], [ "MACBETH", "in_language", "ENGLISH" ], [ "MACBETH", "release_year", "1971" ], [ "SHATTER DEAD", "has_imdb_votes", "UNKNOWN" ], [ "SHATTER DEAD", "starred_actors", "FLORA FAUNA" ], [ "SILENCE", "in_language", "ENGLISH" ], [ "SILENCE", "release_year", "1971" ], [ "THE BURGLARS", "in_language", "ENGLISH" ], [ "THE BURGLARS", "release_year", "1971" ], [ "THE LAST OF THE MOHICANS", "directed_by", "GEORGE B. SEITZ" ], [ "THE LAST OF THE MOHICANS", "in_language", "ENGLISH" ], [ "THE NIGHT VISITOR", "in_language", "ENGLISH" ], [ "THE NIGHT VISITOR", "release_year", "1971" ], [ "THE NIGHT VISITOR", "starred_actors", "LIV ULLMANN" ], [ "THE NIGHT VISITOR", "starred_actors", "MAX VON SYDOW" ], [ "UNKNOWN", "in_language", "ENGLISH" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 37224, 1990 20279, A SHOCK TO THE SYSTEM 35673, ANOTHER 48 HRS. 446, ANTHONY HOPKINS 32747, BULLET 12802, CHICAGO JOE AND THE SHOWGIRL 33387, CITY OF GOD 14724, CRIME 19418, DAVID LEVIEN 36982, DESPERATE HOURS 26944, DICK TRACY 19225, FOREIGN 1033, FRACTURE 22449, GOODFELLAS 17938, HANNIBAL 8464, INTERNAL AFFAIRS 32375, JOHNNY HANDSOME 37094, KING OF NEW YORK 22247, MEN OF RESPECT 27773, MIAMI BLUES 9692, MICHAEL CIMINO 6842, MICKEY ROURKE 24586, MIMI ROGERS 4523, RED DRAGON 18757, REVENGE 22512, RUNNER RUNNER 30672, SHORT TIME 20595, SOMEONE TO WATCH OVER ME 35843, SPUN 25488, STATE OF GRACE 31555, THE FRESHMAN 28177, THE KRAYS 34862, THE POPE OF GREENWICH VILLAGE 13761, THE ROOKIE 27836, THE SILENCE OF THE LAMBS 17362, THUNDERBOLT AND LIGHTFOOT 34824, WHITE SANDS 18038, WILD AT HEART 5888, YEAR OF THE DRAGON src, edge_attr, dst 20279, has_genre, 14724 20279, release_year, 37224 35673, has_genre, 14724 35673, has_tags, 14724 35673, release_year, 37224 32747, has_genre, 14724 32747, starred_actors, 6842 32747, written_by, 6842 12802, has_genre, 14724 12802, release_year, 37224 33387, has_genre, 14724 33387, has_tags, 14724 33387, has_tags, 19225 36982, directed_by, 9692 36982, has_genre, 14724 36982, has_tags, 24586 36982, release_year, 37224 36982, starred_actors, 446 36982, starred_actors, 6842 36982, starred_actors, 24586 26944, has_genre, 14724 26944, release_year, 37224 1033, has_genre, 14724 1033, has_tags, 446 1033, starred_actors, 446 22449, has_genre, 14724 22449, has_tags, 14724 22449, release_year, 37224 17938, has_genre, 14724 17938, has_tags, 446 17938, starred_actors, 446 8464, has_genre, 14724 8464, release_year, 37224 32375, has_genre, 14724 32375, starred_actors, 6842 37094, has_tags, 14724 37094, release_year, 37224 22247, has_genre, 14724 22247, release_year, 37224 27773, has_genre, 14724 27773, release_year, 37224 4523, has_genre, 14724 4523, has_tags, 446 4523, starred_actors, 446 18757, has_genre, 14724 18757, release_year, 37224 22512, has_genre, 14724 22512, written_by, 19418 30672, has_genre, 14724 30672, release_year, 37224 20595, has_genre, 14724 20595, starred_actors, 24586 35843, has_genre, 14724 35843, has_tags, 6842 35843, starred_actors, 6842 25488, has_genre, 14724 25488, release_year, 37224 31555, has_genre, 14724 31555, release_year, 37224 28177, has_genre, 14724 28177, release_year, 37224 34862, has_genre, 14724 34862, starred_actors, 6842 13761, has_genre, 14724 13761, release_year, 37224 27836, has_tags, 446 27836, has_tags, 14724 17362, directed_by, 9692 17362, has_genre, 14724 17362, written_by, 9692 34824, has_genre, 14724 34824, starred_actors, 6842 18038, has_genre, 14724 18038, release_year, 37224 5888, directed_by, 9692 5888, has_genre, 14724 5888, starred_actors, 6842 5888, written_by, 9692 Question: How are DAVID LEVIEN, DESPERATE HOURS, and FOREIGN related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "DAVID LEVIEN", "DESPERATE HOURS", "FOREIGN" ], "valid_edges": [ [ "A SHOCK TO THE SYSTEM", "has_genre", "CRIME" ], [ "A SHOCK TO THE SYSTEM", "release_year", "1990" ], [ "ANOTHER 48 HRS.", "has_genre", "CRIME" ], [ "ANOTHER 48 HRS.", "has_tags", "CRIME" ], [ "ANOTHER 48 HRS.", "release_year", "1990" ], [ "BULLET", "has_genre", "CRIME" ], [ "BULLET", "starred_actors", "MICKEY ROURKE" ], [ "BULLET", "written_by", "MICKEY ROURKE" ], [ "CHICAGO JOE AND THE SHOWGIRL", "has_genre", "CRIME" ], [ "CHICAGO JOE AND THE SHOWGIRL", "release_year", "1990" ], [ "CITY OF GOD", "has_genre", "CRIME" ], [ "CITY OF GOD", "has_tags", "CRIME" ], [ "CITY OF GOD", "has_tags", "FOREIGN" ], [ "DESPERATE HOURS", "directed_by", "MICHAEL CIMINO" ], [ "DESPERATE HOURS", "has_genre", "CRIME" ], [ "DESPERATE HOURS", "has_tags", "MIMI ROGERS" ], [ "DESPERATE HOURS", "release_year", "1990" ], [ "DESPERATE HOURS", "starred_actors", "ANTHONY HOPKINS" ], [ "DESPERATE HOURS", "starred_actors", "MICKEY ROURKE" ], [ "DESPERATE HOURS", "starred_actors", "MIMI ROGERS" ], [ "DICK TRACY", "has_genre", "CRIME" ], [ "DICK TRACY", "release_year", "1990" ], [ "FRACTURE", "has_genre", "CRIME" ], [ "FRACTURE", "has_tags", "ANTHONY HOPKINS" ], [ "FRACTURE", "starred_actors", "ANTHONY HOPKINS" ], [ "GOODFELLAS", "has_genre", "CRIME" ], [ "GOODFELLAS", "has_tags", "CRIME" ], [ "GOODFELLAS", "release_year", "1990" ], [ "HANNIBAL", "has_genre", "CRIME" ], [ "HANNIBAL", "has_tags", "ANTHONY HOPKINS" ], [ "HANNIBAL", "starred_actors", "ANTHONY HOPKINS" ], [ "INTERNAL AFFAIRS", "has_genre", "CRIME" ], [ "INTERNAL AFFAIRS", "release_year", "1990" ], [ "JOHNNY HANDSOME", "has_genre", "CRIME" ], [ "JOHNNY HANDSOME", "starred_actors", "MICKEY ROURKE" ], [ "KING OF NEW YORK", "has_tags", "CRIME" ], [ "KING OF NEW YORK", "release_year", "1990" ], [ "MEN OF RESPECT", "has_genre", "CRIME" ], [ "MEN OF RESPECT", "release_year", "1990" ], [ "MIAMI BLUES", "has_genre", "CRIME" ], [ "MIAMI BLUES", "release_year", "1990" ], [ "RED DRAGON", "has_genre", "CRIME" ], [ "RED DRAGON", "has_tags", "ANTHONY HOPKINS" ], [ "RED DRAGON", "starred_actors", "ANTHONY HOPKINS" ], [ "REVENGE", "has_genre", "CRIME" ], [ "REVENGE", "release_year", "1990" ], [ "RUNNER RUNNER", "has_genre", "CRIME" ], [ "RUNNER RUNNER", "written_by", "DAVID LEVIEN" ], [ "SHORT TIME", "has_genre", "CRIME" ], [ "SHORT TIME", "release_year", "1990" ], [ "SOMEONE TO WATCH OVER ME", "has_genre", "CRIME" ], [ "SOMEONE TO WATCH OVER ME", "starred_actors", "MIMI ROGERS" ], [ "SPUN", "has_genre", "CRIME" ], [ "SPUN", "has_tags", "MICKEY ROURKE" ], [ "SPUN", "starred_actors", "MICKEY ROURKE" ], [ "STATE OF GRACE", "has_genre", "CRIME" ], [ "STATE OF GRACE", "release_year", "1990" ], [ "THE FRESHMAN", "has_genre", "CRIME" ], [ "THE FRESHMAN", "release_year", "1990" ], [ "THE KRAYS", "has_genre", "CRIME" ], [ "THE KRAYS", "release_year", "1990" ], [ "THE POPE OF GREENWICH VILLAGE", "has_genre", "CRIME" ], [ "THE POPE OF GREENWICH VILLAGE", "starred_actors", "MICKEY ROURKE" ], [ "THE ROOKIE", "has_genre", "CRIME" ], [ "THE ROOKIE", "release_year", "1990" ], [ "THE SILENCE OF THE LAMBS", "has_tags", "ANTHONY HOPKINS" ], [ "THE SILENCE OF THE LAMBS", "has_tags", "CRIME" ], [ "THUNDERBOLT AND LIGHTFOOT", "directed_by", "MICHAEL CIMINO" ], [ "THUNDERBOLT AND LIGHTFOOT", "has_genre", "CRIME" ], [ "THUNDERBOLT AND LIGHTFOOT", "written_by", "MICHAEL CIMINO" ], [ "WHITE SANDS", "has_genre", "CRIME" ], [ "WHITE SANDS", "starred_actors", "MICKEY ROURKE" ], [ "WILD AT HEART", "has_genre", "CRIME" ], [ "WILD AT HEART", "release_year", "1990" ], [ "YEAR OF THE DRAGON", "directed_by", "MICHAEL CIMINO" ], [ "YEAR OF THE DRAGON", "has_genre", "CRIME" ], [ "YEAR OF THE DRAGON", "starred_actors", "MICKEY ROURKE" ], [ "YEAR OF THE DRAGON", "written_by", "MICHAEL CIMINO" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 8486, 1999 29424, 2011 9189, 50 CENT 1520, A CHRISTMAS KISS 20586, ALEXANDER PUSHKIN 16739, NEW YEAR'S EVE 18987, ONEGIN 8379, ROMANCE 24874, SETUP 5529, THIN ICE 6338, W.E. 27708, WUTHERING HEIGHTS 19794, YOU ARE THE APPLE OF MY EYE src, edge_attr, dst 1520, has_genre, 8379 1520, release_year, 29424 16739, has_genre, 8379 16739, release_year, 29424 18987, release_year, 8486 18987, written_by, 20586 8379, release_year, 8486 24874, release_year, 29424 24874, starred_actors, 9189 5529, has_genre, 8379 5529, release_year, 29424 6338, has_genre, 8379 6338, release_year, 29424 27708, has_genre, 8379 27708, release_year, 29424 19794, has_genre, 8379 19794, release_year, 29424 Question: For what reason are 50 CENT, ALEXANDER PUSHKIN, and YOU ARE THE APPLE OF MY EYE associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "50 CENT", "ALEXANDER PUSHKIN", "YOU ARE THE APPLE OF MY EYE" ], "valid_edges": [ [ "A CHRISTMAS KISS", "has_genre", "ROMANCE" ], [ "A CHRISTMAS KISS", "release_year", "2011" ], [ "NEW YEAR'S EVE", "has_genre", "ROMANCE" ], [ "NEW YEAR'S EVE", "release_year", "2011" ], [ "ONEGIN", "release_year", "1999" ], [ "ONEGIN", "written_by", "ALEXANDER PUSHKIN" ], [ "ROMANCE", "release_year", "1999" ], [ "SETUP", "release_year", "2011" ], [ "SETUP", "starred_actors", "50 CENT" ], [ "THIN ICE", "has_genre", "ROMANCE" ], [ "THIN ICE", "release_year", "2011" ], [ "W.E.", "has_genre", "ROMANCE" ], [ "W.E.", "release_year", "2011" ], [ "WUTHERING HEIGHTS", "has_genre", "ROMANCE" ], [ "WUTHERING HEIGHTS", "release_year", "2011" ], [ "YOU ARE THE APPLE OF MY EYE", "has_genre", "ROMANCE" ], [ "YOU ARE THE APPLE OF MY EYE", "release_year", "2011" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 35845, 2006 6181, ALL THE KING'S MEN 1193, ALWAYS 36593, BLACK CHRISTMAS 15961, DON 7492, ETHEL LINA WHITE 14023, GLORY ROAD 27616, JOSH LUCAS 11333, KURT RUSSELL 11340, NIGHT OF THE LIVING DEAD 3D 31674, PHILIPPE LEFEBVRE 18559, POSEIDON 28729, REMAKE 2373, RICHARD DREYFUSS 21609, SCHOOL FOR SCOUNDRELS 37807, TELL NO ONE 18997, THE DEPARTED 15462, THE HILLS HAVE EYES 4091, THE LADY VANISHES 36917, THE LAKE HOUSE 17910, THE OMEN 22751, THE WICKER MAN 23568, VANILLA SKY src, edge_attr, dst 6181, has_tags, 28729 6181, release_year, 35845 1193, has_tags, 28729 1193, starred_actors, 2373 36593, has_tags, 28729 36593, release_year, 35845 15961, has_tags, 28729 15961, release_year, 35845 14023, release_year, 35845 14023, starred_actors, 27616 11340, has_tags, 28729 11340, release_year, 35845 18559, has_tags, 28729 18559, release_year, 35845 18559, starred_actors, 27616 18559, starred_actors, 11333 18559, starred_actors, 2373 21609, has_tags, 28729 21609, release_year, 35845 37807, release_year, 35845 37807, written_by, 31674 18997, has_tags, 28729 18997, release_year, 35845 15462, has_tags, 28729 15462, release_year, 35845 4091, has_tags, 28729 4091, written_by, 7492 36917, has_tags, 28729 36917, release_year, 35845 17910, has_tags, 28729 17910, release_year, 35845 22751, has_tags, 28729 22751, release_year, 35845 23568, has_tags, 28729 23568, starred_actors, 11333 Question: For what reason are ETHEL LINA WHITE, PHILIPPE LEFEBVRE, and POSEIDON associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "ETHEL LINA WHITE", "PHILIPPE LEFEBVRE", "POSEIDON" ], "valid_edges": [ [ "ALL THE KING'S MEN", "has_tags", "REMAKE" ], [ "ALL THE KING'S MEN", "release_year", "2006" ], [ "ALWAYS", "has_tags", "REMAKE" ], [ "ALWAYS", "starred_actors", "RICHARD DREYFUSS" ], [ "BLACK CHRISTMAS", "has_tags", "REMAKE" ], [ "BLACK CHRISTMAS", "release_year", "2006" ], [ "DON", "has_tags", "REMAKE" ], [ "DON", "release_year", "2006" ], [ "GLORY ROAD", "release_year", "2006" ], [ "GLORY ROAD", "starred_actors", "JOSH LUCAS" ], [ "NIGHT OF THE LIVING DEAD 3D", "has_tags", "REMAKE" ], [ "NIGHT OF THE LIVING DEAD 3D", "release_year", "2006" ], [ "POSEIDON", "has_tags", "REMAKE" ], [ "POSEIDON", "release_year", "2006" ], [ "POSEIDON", "starred_actors", "JOSH LUCAS" ], [ "POSEIDON", "starred_actors", "KURT RUSSELL" ], [ "POSEIDON", "starred_actors", "RICHARD DREYFUSS" ], [ "SCHOOL FOR SCOUNDRELS", "has_tags", "REMAKE" ], [ "SCHOOL FOR SCOUNDRELS", "release_year", "2006" ], [ "TELL NO ONE", "release_year", "2006" ], [ "TELL NO ONE", "written_by", "PHILIPPE LEFEBVRE" ], [ "THE DEPARTED", "has_tags", "REMAKE" ], [ "THE DEPARTED", "release_year", "2006" ], [ "THE HILLS HAVE EYES", "has_tags", "REMAKE" ], [ "THE HILLS HAVE EYES", "release_year", "2006" ], [ "THE LADY VANISHES", "has_tags", "REMAKE" ], [ "THE LADY VANISHES", "written_by", "ETHEL LINA WHITE" ], [ "THE LAKE HOUSE", "has_tags", "REMAKE" ], [ "THE LAKE HOUSE", "release_year", "2006" ], [ "THE OMEN", "has_tags", "REMAKE" ], [ "THE OMEN", "release_year", "2006" ], [ "THE WICKER MAN", "has_tags", "REMAKE" ], [ "THE WICKER MAN", "release_year", "2006" ], [ "VANILLA SKY", "has_tags", "REMAKE" ], [ "VANILLA SKY", "starred_actors", "KURT RUSSELL" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 2452, 13 ASSASSINS 21931, 1941 7841, 1987 30907, BAREFOOT GEN 25943, BAT*21 34734, BATTLE OF THE BULGE 3626, CHRISTIAN BALE 25285, COME AND SEE 10293, CONSPIRACY 2710, DEPARTURES 36212, DRAMA 22028, EMPIRE OF THE SUN 13834, FLYING TIGERS 39145, FURY 14853, GO FOR BROKE! 22091, GRAVE OF THE FIREFLIES 15765, HAMSUN 12994, HARAKIRI 24940, HOPE AND GLORY 15343, IN DARKNESS 8248, JAPAN 36874, JAPANESE 28149, JOHN MALKOVICH 21224, KIKUJIRO 35247, KURT COBAIN 4794, LAST DAYS 19809, LATE SPRING 21197, LIGHT IT UP 38294, MRS. MINIVER 8747, MUNICH 27289, NA 25709, NOBODY KNOWS 34288, ONLY YESTERDAY 234, PEARL HARBOR 18584, PRINCESS MONONOKE 30919, PRISON 11570, RASHOMON 35586, SAHARA 34329, SCHINDLER'S LIST 20932, SEVEN SAMURAI 11124, STALINGRAD 26730, STEVEN SPIELBERG 33839, SWING KIDS 27210, THE BEST YEARS OF OUR LIVES 36692, THE CAINE MUTINY 23189, THE FIGHTER 34462, THE FLOWERS OF WAR 6424, THE GREAT ESCAPE 35027, THE KILLING FIELDS 12614, THE PIANIST 21548, THE SUN 9390, THE UNTOUCHABLES 18076, THE WIND RISES 13374, THRONE OF BLOOD 16940, TORA! TORA! TORA! 4527, UGETSU 8984, USHER RAYMOND 22214, WAR 16601, WAR HORSE 24623, WHISPER OF THE HEART 24155, WORLD WAR II 15904, YANKS 54, YOJIMBO src, edge_attr, dst 2452, has_tags, 8248 2452, in_language, 36874 21931, directed_by, 26730 21931, in_language, 36874 30907, has_tags, 22214 30907, in_language, 36874 25943, has_genre, 22214 25943, has_tags, 27289 34734, has_genre, 22214 34734, has_tags, 24155 25285, has_genre, 22214 25285, has_tags, 24155 10293, has_genre, 22214 10293, has_tags, 24155 2710, has_tags, 8248 2710, in_language, 36874 22028, directed_by, 26730 22028, has_genre, 22214 22028, has_tags, 3626 22028, has_tags, 8248 22028, has_tags, 28149 22028, has_tags, 27289 22028, has_tags, 30919 22028, has_tags, 26730 22028, has_tags, 22214 22028, has_tags, 24155 22028, in_language, 36874 22028, release_year, 7841 22028, starred_actors, 3626 22028, starred_actors, 28149 13834, has_genre, 22214 13834, has_tags, 24155 39145, has_genre, 22214 39145, has_tags, 22214 39145, has_tags, 24155 14853, has_genre, 22214 14853, in_language, 36874 22091, has_genre, 22214 22091, has_tags, 8248 22091, has_tags, 22214 22091, in_language, 36874 15765, has_genre, 22214 15765, has_tags, 24155 12994, has_tags, 8248 12994, has_tags, 36874 12994, in_language, 36874 24940, has_tags, 24155 24940, release_year, 7841 15343, has_genre, 22214 15343, has_tags, 22214 15343, has_tags, 24155 21224, has_tags, 8248 21224, in_language, 36874 4794, has_genre, 36212 4794, has_tags, 35247 19809, has_tags, 8248 19809, in_language, 36874 21197, has_genre, 36212 21197, starred_actors, 8984 38294, has_genre, 22214 38294, has_tags, 24155 8747, directed_by, 26730 8747, has_tags, 26730 8747, has_tags, 22214 25709, has_tags, 8248 25709, in_language, 36874 34288, has_tags, 8248 34288, in_language, 36874 234, has_tags, 8248 234, has_tags, 22214 234, in_language, 36874 18584, has_tags, 8248 18584, has_tags, 36874 18584, in_language, 36874 30919, has_genre, 36212 30919, has_tags, 30919 11570, has_tags, 8248 11570, in_language, 36874 35586, has_genre, 22214 35586, has_tags, 24155 34329, directed_by, 26730 34329, has_tags, 26730 34329, has_tags, 22214 20932, has_tags, 8248 20932, in_language, 36874 11124, has_genre, 22214 11124, has_tags, 24155 33839, has_tags, 24155 33839, starred_actors, 3626 27210, has_genre, 22214 27210, has_tags, 24155 36692, has_genre, 22214 36692, has_tags, 24155 23189, has_tags, 3626 23189, has_tags, 22214 23189, starred_actors, 3626 34462, has_genre, 22214 34462, has_tags, 3626 34462, in_language, 36874 34462, starred_actors, 3626 6424, has_tags, 30919 6424, has_tags, 22214 6424, has_tags, 24155 35027, has_genre, 22214 35027, has_tags, 28149 35027, has_tags, 22214 35027, starred_actors, 28149 12614, has_genre, 22214 12614, has_tags, 22214 12614, has_tags, 24155 21548, has_tags, 8248 21548, has_tags, 22214 21548, has_tags, 24155 21548, in_language, 36874 9390, has_tags, 27289 9390, release_year, 7841 18076, has_tags, 8248 18076, has_tags, 24155 18076, in_language, 36874 13374, has_tags, 8248 13374, has_tags, 36874 13374, in_language, 36874 16940, has_tags, 36874 16940, has_tags, 22214 16940, in_language, 36874 4527, has_tags, 8248 4527, in_language, 36874 16601, directed_by, 26730 16601, has_genre, 22214 16601, has_tags, 26730 16601, has_tags, 22214 24623, has_tags, 8248 24623, in_language, 36874 15904, has_genre, 22214 15904, has_tags, 24155 54, has_tags, 8248 54, in_language, 36874 Question: In what context are EMPIRE OF THE SUN, KURT COBAIN, and USHER RAYMOND connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "EMPIRE OF THE SUN", "KURT COBAIN", "USHER RAYMOND" ], "valid_edges": [ [ "13 ASSASSINS", "has_tags", "JAPAN" ], [ "13 ASSASSINS", "in_language", "JAPANESE" ], [ "1941", "directed_by", "STEVEN SPIELBERG" ], [ "1941", "in_language", "JAPANESE" ], [ "BAREFOOT GEN", "has_tags", "WAR" ], [ "BAREFOOT GEN", "in_language", "JAPANESE" ], [ "BAT*21", "has_genre", "WAR" ], [ "BAT*21", "has_tags", "NA" ], [ "BATTLE OF THE BULGE", "has_genre", "WAR" ], [ "BATTLE OF THE BULGE", "has_tags", "WORLD WAR II" ], [ "COME AND SEE", "has_genre", "WAR" ], [ "COME AND SEE", "has_tags", "WORLD WAR II" ], [ "CONSPIRACY", "has_genre", "WAR" ], [ "CONSPIRACY", "has_tags", "WORLD WAR II" ], [ "DEPARTURES", "has_tags", "JAPAN" ], [ "DEPARTURES", "in_language", "JAPANESE" ], [ "EMPIRE OF THE SUN", "directed_by", "STEVEN SPIELBERG" ], [ "EMPIRE OF THE SUN", "has_genre", "WAR" ], [ "EMPIRE OF THE SUN", "has_tags", "CHRISTIAN BALE" ], [ "EMPIRE OF THE SUN", "has_tags", "JAPAN" ], [ "EMPIRE OF THE SUN", "has_tags", "JOHN MALKOVICH" ], [ "EMPIRE OF THE SUN", "has_tags", "NA" ], [ "EMPIRE OF THE SUN", "has_tags", "PRISON" ], [ "EMPIRE OF THE SUN", "has_tags", "STEVEN SPIELBERG" ], [ "EMPIRE OF THE SUN", "has_tags", "WAR" ], [ "EMPIRE OF THE SUN", "has_tags", "WORLD WAR II" ], [ "EMPIRE OF THE SUN", "in_language", "JAPANESE" ], [ "EMPIRE OF THE SUN", "release_year", "1987" ], [ "EMPIRE OF THE SUN", "starred_actors", "CHRISTIAN BALE" ], [ "EMPIRE OF THE SUN", "starred_actors", "JOHN MALKOVICH" ], [ "FLYING TIGERS", "has_genre", "WAR" ], [ "FLYING TIGERS", "has_tags", "WORLD WAR II" ], [ "FURY", "has_genre", "WAR" ], [ "FURY", "has_tags", "WAR" ], [ "FURY", "has_tags", "WORLD WAR II" ], [ "GO FOR BROKE!", "has_genre", "WAR" ], [ "GO FOR BROKE!", "in_language", "JAPANESE" ], [ "GRAVE OF THE FIREFLIES", "has_genre", "WAR" ], [ "GRAVE OF THE FIREFLIES", "has_tags", "JAPAN" ], [ "GRAVE OF THE FIREFLIES", "has_tags", "WAR" ], [ "GRAVE OF THE FIREFLIES", "in_language", "JAPANESE" ], [ "HAMSUN", "has_genre", "WAR" ], [ "HAMSUN", "has_tags", "WORLD WAR II" ], [ "HARAKIRI", "has_tags", "JAPAN" ], [ "HARAKIRI", "has_tags", "JAPANESE" ], [ "HARAKIRI", "in_language", "JAPANESE" ], [ "HOPE AND GLORY", "has_tags", "WORLD WAR II" ], [ "HOPE AND GLORY", "release_year", "1987" ], [ "IN DARKNESS", "has_genre", "WAR" ], [ "IN DARKNESS", "has_tags", "WAR" ], [ "IN DARKNESS", "has_tags", "WORLD WAR II" ], [ "KIKUJIRO", "has_tags", "JAPAN" ], [ "KIKUJIRO", "in_language", "JAPANESE" ], [ "LAST DAYS", "has_genre", "DRAMA" ], [ "LAST DAYS", "has_tags", "KURT COBAIN" ], [ "LATE SPRING", "has_tags", "JAPAN" ], [ "LATE SPRING", "in_language", "JAPANESE" ], [ "LIGHT IT UP", "has_genre", "DRAMA" ], [ "LIGHT IT UP", "starred_actors", "USHER RAYMOND" ], [ "MRS. MINIVER", "has_genre", "WAR" ], [ "MRS. MINIVER", "has_tags", "WORLD WAR II" ], [ "MUNICH", "directed_by", "STEVEN SPIELBERG" ], [ "MUNICH", "has_tags", "STEVEN SPIELBERG" ], [ "MUNICH", "has_tags", "WAR" ], [ "NOBODY KNOWS", "has_tags", "JAPAN" ], [ "NOBODY KNOWS", "in_language", "JAPANESE" ], [ "ONLY YESTERDAY", "has_tags", "JAPAN" ], [ "ONLY YESTERDAY", "in_language", "JAPANESE" ], [ "PEARL HARBOR", "has_tags", "JAPAN" ], [ "PEARL HARBOR", "has_tags", "WAR" ], [ "PEARL HARBOR", "in_language", "JAPANESE" ], [ "PRINCESS MONONOKE", "has_tags", "JAPAN" ], [ "PRINCESS MONONOKE", "has_tags", "JAPANESE" ], [ "PRINCESS MONONOKE", "in_language", "JAPANESE" ], [ "PRISON", "has_genre", "DRAMA" ], [ "PRISON", "has_tags", "PRISON" ], [ "RASHOMON", "has_tags", "JAPAN" ], [ "RASHOMON", "in_language", "JAPANESE" ], [ "SAHARA", "has_genre", "WAR" ], [ "SAHARA", "has_tags", "WORLD WAR II" ], [ "SCHINDLER'S LIST", "directed_by", "STEVEN SPIELBERG" ], [ "SCHINDLER'S LIST", "has_tags", "STEVEN SPIELBERG" ], [ "SCHINDLER'S LIST", "has_tags", "WAR" ], [ "SEVEN SAMURAI", "has_tags", "JAPAN" ], [ "SEVEN SAMURAI", "in_language", "JAPANESE" ], [ "STALINGRAD", "has_genre", "WAR" ], [ "STALINGRAD", "has_tags", "WORLD WAR II" ], [ "SWING KIDS", "has_tags", "WORLD WAR II" ], [ "SWING KIDS", "starred_actors", "CHRISTIAN BALE" ], [ "THE BEST YEARS OF OUR LIVES", "has_genre", "WAR" ], [ "THE BEST YEARS OF OUR LIVES", "has_tags", "WORLD WAR II" ], [ "THE CAINE MUTINY", "has_genre", "WAR" ], [ "THE CAINE MUTINY", "has_tags", "WORLD WAR II" ], [ "THE FIGHTER", "has_tags", "CHRISTIAN BALE" ], [ "THE FIGHTER", "has_tags", "WAR" ], [ "THE FIGHTER", "starred_actors", "CHRISTIAN BALE" ], [ "THE FLOWERS OF WAR", "has_genre", "WAR" ], [ "THE FLOWERS OF WAR", "has_tags", "CHRISTIAN BALE" ], [ "THE FLOWERS OF WAR", "in_language", "JAPANESE" ], [ "THE FLOWERS OF WAR", "starred_actors", "CHRISTIAN BALE" ], [ "THE GREAT ESCAPE", "has_tags", "PRISON" ], [ "THE GREAT ESCAPE", "has_tags", "WAR" ], [ "THE GREAT ESCAPE", "has_tags", "WORLD WAR II" ], [ "THE KILLING FIELDS", "has_genre", "WAR" ], [ "THE KILLING FIELDS", "has_tags", "JOHN MALKOVICH" ], [ "THE KILLING FIELDS", "has_tags", "WAR" ], [ "THE KILLING FIELDS", "starred_actors", "JOHN MALKOVICH" ], [ "THE PIANIST", "has_genre", "WAR" ], [ "THE PIANIST", "has_tags", "WAR" ], [ "THE PIANIST", "has_tags", "WORLD WAR II" ], [ "THE SUN", "has_tags", "JAPAN" ], [ "THE SUN", "has_tags", "WAR" ], [ "THE SUN", "has_tags", "WORLD WAR II" ], [ "THE SUN", "in_language", "JAPANESE" ], [ "THE UNTOUCHABLES", "has_tags", "NA" ], [ "THE UNTOUCHABLES", "release_year", "1987" ], [ "THE WIND RISES", "has_tags", "JAPAN" ], [ "THE WIND RISES", "has_tags", "WORLD WAR II" ], [ "THE WIND RISES", "in_language", "JAPANESE" ], [ "THRONE OF BLOOD", "has_tags", "JAPAN" ], [ "THRONE OF BLOOD", "has_tags", "JAPANESE" ], [ "THRONE OF BLOOD", "in_language", "JAPANESE" ], [ "TORA! TORA! TORA!", "has_tags", "JAPANESE" ], [ "TORA! TORA! TORA!", "has_tags", "WAR" ], [ "TORA! TORA! TORA!", "in_language", "JAPANESE" ], [ "UGETSU", "has_tags", "JAPAN" ], [ "UGETSU", "in_language", "JAPANESE" ], [ "WAR HORSE", "directed_by", "STEVEN SPIELBERG" ], [ "WAR HORSE", "has_genre", "WAR" ], [ "WAR HORSE", "has_tags", "STEVEN SPIELBERG" ], [ "WAR HORSE", "has_tags", "WAR" ], [ "WHISPER OF THE HEART", "has_tags", "JAPAN" ], [ "WHISPER OF THE HEART", "in_language", "JAPANESE" ], [ "YANKS", "has_genre", "WAR" ], [ "YANKS", "has_tags", "WORLD WAR II" ], [ "YOJIMBO", "has_tags", "JAPAN" ], [ "YOJIMBO", "in_language", "JAPANESE" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 17893, A PROMISE 12800, ANNA CHLUMSKY 26512, BEWARE OF PITY 10492, BURNING SECRET 546, CLÉMENTINE POIDATZ 30463, COMEDY 6519, DAN AYKROYD 36212, DRAMA 6012, FRENCH 14669, FRONTIER OF THE DAWN 4472, JAMIE LEE CURTIS 28455, MARIE ANTOINETTE 33507, MY GIRL 28963, MY GIRL 2 35478, STEFAN ZWEIG 35565, THE GRAND BUDAPEST HOTEL src, edge_attr, dst 17893, has_genre, 36212 17893, written_by, 35478 26512, has_genre, 36212 26512, written_by, 35478 10492, has_genre, 36212 10492, written_by, 35478 14669, in_language, 6012 14669, starred_actors, 546 28455, has_genre, 36212 28455, in_language, 6012 28455, written_by, 35478 33507, has_genre, 36212 33507, has_tags, 12800 33507, has_tags, 6519 33507, has_tags, 36212 33507, has_tags, 4472 33507, starred_actors, 12800 33507, starred_actors, 6519 33507, starred_actors, 4472 28963, has_genre, 30463 28963, has_genre, 36212 28963, has_tags, 12800 28963, has_tags, 6519 28963, has_tags, 4472 28963, starred_actors, 12800 28963, starred_actors, 6519 28963, starred_actors, 4472 35565, has_genre, 30463 35565, written_by, 35478 Question: In what context are ANNA CHLUMSKY, CLÉMENTINE POIDATZ, and STEFAN ZWEIG connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "ANNA CHLUMSKY", "CLÉMENTINE POIDATZ", "STEFAN ZWEIG" ], "valid_edges": [ [ "A PROMISE", "has_genre", "DRAMA" ], [ "A PROMISE", "written_by", "STEFAN ZWEIG" ], [ "BEWARE OF PITY", "has_genre", "DRAMA" ], [ "BEWARE OF PITY", "written_by", "STEFAN ZWEIG" ], [ "BURNING SECRET", "has_genre", "DRAMA" ], [ "BURNING SECRET", "written_by", "STEFAN ZWEIG" ], [ "FRONTIER OF THE DAWN", "in_language", "FRENCH" ], [ "FRONTIER OF THE DAWN", "starred_actors", "CLÉMENTINE POIDATZ" ], [ "MARIE ANTOINETTE", "has_genre", "DRAMA" ], [ "MARIE ANTOINETTE", "in_language", "FRENCH" ], [ "MARIE ANTOINETTE", "written_by", "STEFAN ZWEIG" ], [ "MY GIRL", "has_genre", "DRAMA" ], [ "MY GIRL", "has_tags", "ANNA CHLUMSKY" ], [ "MY GIRL", "has_tags", "DAN AYKROYD" ], [ "MY GIRL", "has_tags", "DRAMA" ], [ "MY GIRL", "has_tags", "JAMIE LEE CURTIS" ], [ "MY GIRL", "starred_actors", "ANNA CHLUMSKY" ], [ "MY GIRL", "starred_actors", "DAN AYKROYD" ], [ "MY GIRL", "starred_actors", "JAMIE LEE CURTIS" ], [ "MY GIRL 2", "has_genre", "COMEDY" ], [ "MY GIRL 2", "has_genre", "DRAMA" ], [ "MY GIRL 2", "has_tags", "ANNA CHLUMSKY" ], [ "MY GIRL 2", "has_tags", "DAN AYKROYD" ], [ "MY GIRL 2", "has_tags", "JAMIE LEE CURTIS" ], [ "MY GIRL 2", "starred_actors", "ANNA CHLUMSKY" ], [ "MY GIRL 2", "starred_actors", "DAN AYKROYD" ], [ "MY GIRL 2", "starred_actors", "JAMIE LEE CURTIS" ], [ "THE GRAND BUDAPEST HOTEL", "has_genre", "COMEDY" ], [ "THE GRAND BUDAPEST HOTEL", "written_by", "STEFAN ZWEIG" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 28367, ALICE WU 13205, CAITLIN STASEY 30463, COMEDY 36212, DRAMA 31648, FRIGHT NIGHT 460, LORD LOVE A DUCK 253, OVERBOARD 18518, RODDY MCDOWALL 2135, SAVING FACE 35353, TOMORROW, WHEN THE WAR BEGAN src, edge_attr, dst 31648, has_genre, 30463 31648, has_tags, 18518 31648, starred_actors, 18518 460, has_genre, 30463 460, starred_actors, 18518 253, has_genre, 30463 253, has_tags, 18518 2135, directed_by, 28367 2135, has_genre, 30463 2135, has_genre, 36212 2135, written_by, 28367 35353, has_genre, 36212 35353, starred_actors, 13205 Question: For what reason are ALICE WU, CAITLIN STASEY, and RODDY MCDOWALL associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "ALICE WU", "CAITLIN STASEY", "RODDY MCDOWALL" ], "valid_edges": [ [ "FRIGHT NIGHT", "has_genre", "COMEDY" ], [ "FRIGHT NIGHT", "has_tags", "RODDY MCDOWALL" ], [ "FRIGHT NIGHT", "starred_actors", "RODDY MCDOWALL" ], [ "LORD LOVE A DUCK", "has_genre", "COMEDY" ], [ "LORD LOVE A DUCK", "starred_actors", "RODDY MCDOWALL" ], [ "OVERBOARD", "has_genre", "COMEDY" ], [ "OVERBOARD", "has_tags", "RODDY MCDOWALL" ], [ "SAVING FACE", "directed_by", "ALICE WU" ], [ "SAVING FACE", "has_genre", "COMEDY" ], [ "SAVING FACE", "has_genre", "DRAMA" ], [ "SAVING FACE", "written_by", "ALICE WU" ], [ "TOMORROW, WHEN THE WAR BEGAN", "has_genre", "DRAMA" ], [ "TOMORROW, WHEN THE WAR BEGAN", "starred_actors", "CAITLIN STASEY" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 35798, 2010 22713, A VIEW TO A KILL 23960, ATROCIOUS 27477, BIUTIFUL 20749, BLACK BREAD 29151, BOND 16659, CASINO ROYALE 23921, CUBA 27374, DIAMONDS ARE FOREVER 14754, DIE ANOTHER DAY 14763, DR. NO 30877, EVEN THE RAIN 29461, FOR YOUR EYES ONLY 10187, FROM RUSSIA WITH LOVE 3650, GOLDENEYE 35589, GOLDFINGER 1719, JAMES BOND 19452, JULIA'S EYES 21430, KITES 7984, LICENCE TO KILL 24001, LIVE AND LET DIE 23892, MOONRAKER 15932, MR. NICE 19289, NEVER SAY NEVER AGAIN 37940, OCTOPUSSY 9679, ON HER MAJESTY'S SECRET SERVICE 14616, OUTLAND 9720, QUANTUM OF SOLACE 34806, ROOM IN ROME 36591, SEAN CONNERY 28395, SPACE 7556, SPANISH 31985, STRAWBERRY AND CHOCOLATE 35188, THE BEST AND THE BRIGHTEST 35393, THE LAST CIRCUS 26870, THE LIVING DAYLIGHTS 38373, THE MAN WITH THE GOLDEN GUN 17126, THE MOSQUITO NET 16147, THE SILENT HOUSE 5226, THE SPY WHO LOVED ME 492, THE WORLD IS NOT ENOUGH 28460, THUNDERBALL 29775, TOMORROW NEVER DIES 31658, YOU ONLY LIVE TWICE src, edge_attr, dst 22713, has_tags, 29151 22713, has_tags, 1719 23960, in_language, 7556 23960, release_year, 35798 27477, in_language, 7556 27477, release_year, 35798 20749, in_language, 7556 20749, release_year, 35798 16659, has_tags, 29151 16659, has_tags, 1719 23921, in_language, 7556 23921, starred_actors, 36591 27374, has_tags, 29151 27374, has_tags, 1719 27374, has_tags, 36591 27374, starred_actors, 36591 14754, has_tags, 29151 14754, has_tags, 1719 14763, has_tags, 29151 14763, has_tags, 1719 14763, has_tags, 36591 14763, starred_actors, 36591 30877, has_tags, 7556 30877, in_language, 7556 30877, release_year, 35798 29461, has_tags, 29151 29461, has_tags, 1719 10187, has_tags, 29151 10187, has_tags, 1719 10187, has_tags, 36591 10187, starred_actors, 36591 3650, has_tags, 29151 3650, has_tags, 1719 3650, in_language, 7556 35589, has_tags, 29151 35589, has_tags, 1719 35589, has_tags, 36591 35589, starred_actors, 36591 19452, in_language, 7556 19452, release_year, 35798 21430, in_language, 7556 21430, release_year, 35798 7984, has_tags, 29151 7984, has_tags, 1719 24001, has_tags, 29151 24001, has_tags, 1719 24001, has_tags, 36591 23892, has_tags, 29151 23892, has_tags, 1719 23892, has_tags, 28395 15932, in_language, 7556 15932, release_year, 35798 19289, has_tags, 29151 19289, has_tags, 1719 19289, has_tags, 36591 19289, starred_actors, 36591 37940, has_tags, 29151 37940, has_tags, 1719 9679, has_tags, 29151 9679, has_tags, 1719 14616, has_tags, 36591 14616, has_tags, 28395 14616, starred_actors, 36591 9720, has_tags, 29151 9720, has_tags, 1719 34806, in_language, 7556 34806, release_year, 35798 31985, has_tags, 23921 31985, in_language, 7556 35188, release_year, 35798 35393, in_language, 7556 35393, release_year, 35798 26870, has_tags, 29151 26870, has_tags, 1719 38373, has_tags, 29151 38373, has_tags, 1719 17126, in_language, 7556 17126, release_year, 35798 16147, in_language, 7556 16147, release_year, 35798 5226, has_tags, 29151 5226, has_tags, 1719 492, has_tags, 29151 492, has_tags, 1719 28460, has_tags, 29151 28460, has_tags, 1719 28460, has_tags, 36591 28460, starred_actors, 36591 29775, has_tags, 29151 29775, has_tags, 1719 31658, has_tags, 29151 31658, has_tags, 1719 31658, has_tags, 36591 31658, has_tags, 28395 31658, starred_actors, 36591 Question: For what reason are STRAWBERRY AND CHOCOLATE, THE BEST AND THE BRIGHTEST, and YOU ONLY LIVE TWICE associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "STRAWBERRY AND CHOCOLATE", "THE BEST AND THE BRIGHTEST", "YOU ONLY LIVE TWICE" ], "valid_edges": [ [ "A VIEW TO A KILL", "has_tags", "BOND" ], [ "A VIEW TO A KILL", "has_tags", "JAMES BOND" ], [ "ATROCIOUS", "in_language", "SPANISH" ], [ "ATROCIOUS", "release_year", "2010" ], [ "BIUTIFUL", "in_language", "SPANISH" ], [ "BIUTIFUL", "release_year", "2010" ], [ "BLACK BREAD", "in_language", "SPANISH" ], [ "BLACK BREAD", "release_year", "2010" ], [ "CASINO ROYALE", "has_tags", "BOND" ], [ "CASINO ROYALE", "has_tags", "JAMES BOND" ], [ "CUBA", "in_language", "SPANISH" ], [ "CUBA", "starred_actors", "SEAN CONNERY" ], [ "DIAMONDS ARE FOREVER", "has_tags", "BOND" ], [ "DIAMONDS ARE FOREVER", "has_tags", "JAMES BOND" ], [ "DIAMONDS ARE FOREVER", "has_tags", "SEAN CONNERY" ], [ "DIAMONDS ARE FOREVER", "starred_actors", "SEAN CONNERY" ], [ "DIE ANOTHER DAY", "has_tags", "BOND" ], [ "DIE ANOTHER DAY", "has_tags", "JAMES BOND" ], [ "DR. NO", "has_tags", "BOND" ], [ "DR. NO", "has_tags", "JAMES BOND" ], [ "DR. NO", "has_tags", "SEAN CONNERY" ], [ "DR. NO", "starred_actors", "SEAN CONNERY" ], [ "EVEN THE RAIN", "has_tags", "SPANISH" ], [ "EVEN THE RAIN", "in_language", "SPANISH" ], [ "EVEN THE RAIN", "release_year", "2010" ], [ "FOR YOUR EYES ONLY", "has_tags", "BOND" ], [ "FOR YOUR EYES ONLY", "has_tags", "JAMES BOND" ], [ "FROM RUSSIA WITH LOVE", "has_tags", "BOND" ], [ "FROM RUSSIA WITH LOVE", "has_tags", "JAMES BOND" ], [ "FROM RUSSIA WITH LOVE", "has_tags", "SEAN CONNERY" ], [ "FROM RUSSIA WITH LOVE", "starred_actors", "SEAN CONNERY" ], [ "GOLDENEYE", "has_tags", "BOND" ], [ "GOLDENEYE", "has_tags", "JAMES BOND" ], [ "GOLDENEYE", "in_language", "SPANISH" ], [ "GOLDFINGER", "has_tags", "BOND" ], [ "GOLDFINGER", "has_tags", "JAMES BOND" ], [ "GOLDFINGER", "has_tags", "SEAN CONNERY" ], [ "GOLDFINGER", "starred_actors", "SEAN CONNERY" ], [ "JULIA'S EYES", "in_language", "SPANISH" ], [ "JULIA'S EYES", "release_year", "2010" ], [ "KITES", "in_language", "SPANISH" ], [ "KITES", "release_year", "2010" ], [ "LICENCE TO KILL", "has_tags", "BOND" ], [ "LICENCE TO KILL", "has_tags", "JAMES BOND" ], [ "LIVE AND LET DIE", "has_tags", "BOND" ], [ "LIVE AND LET DIE", "has_tags", "JAMES BOND" ], [ "LIVE AND LET DIE", "has_tags", "SEAN CONNERY" ], [ "MOONRAKER", "has_tags", "BOND" ], [ "MOONRAKER", "has_tags", "JAMES BOND" ], [ "MOONRAKER", "has_tags", "SPACE" ], [ "MR. NICE", "in_language", "SPANISH" ], [ "MR. NICE", "release_year", "2010" ], [ "NEVER SAY NEVER AGAIN", "has_tags", "BOND" ], [ "NEVER SAY NEVER AGAIN", "has_tags", "JAMES BOND" ], [ "NEVER SAY NEVER AGAIN", "has_tags", "SEAN CONNERY" ], [ "NEVER SAY NEVER AGAIN", "starred_actors", "SEAN CONNERY" ], [ "OCTOPUSSY", "has_tags", "BOND" ], [ "OCTOPUSSY", "has_tags", "JAMES BOND" ], [ "ON HER MAJESTY'S SECRET SERVICE", "has_tags", "BOND" ], [ "ON HER MAJESTY'S SECRET SERVICE", "has_tags", "JAMES BOND" ], [ "OUTLAND", "has_tags", "SEAN CONNERY" ], [ "OUTLAND", "has_tags", "SPACE" ], [ "OUTLAND", "starred_actors", "SEAN CONNERY" ], [ "QUANTUM OF SOLACE", "has_tags", "BOND" ], [ "QUANTUM OF SOLACE", "has_tags", "JAMES BOND" ], [ "ROOM IN ROME", "in_language", "SPANISH" ], [ "ROOM IN ROME", "release_year", "2010" ], [ "STRAWBERRY AND CHOCOLATE", "has_tags", "CUBA" ], [ "STRAWBERRY AND CHOCOLATE", "in_language", "SPANISH" ], [ "THE BEST AND THE BRIGHTEST", "release_year", "2010" ], [ "THE LAST CIRCUS", "in_language", "SPANISH" ], [ "THE LAST CIRCUS", "release_year", "2010" ], [ "THE LIVING DAYLIGHTS", "has_tags", "BOND" ], [ "THE LIVING DAYLIGHTS", "has_tags", "JAMES BOND" ], [ "THE MAN WITH THE GOLDEN GUN", "has_tags", "BOND" ], [ "THE MAN WITH THE GOLDEN GUN", "has_tags", "JAMES BOND" ], [ "THE MOSQUITO NET", "in_language", "SPANISH" ], [ "THE MOSQUITO NET", "release_year", "2010" ], [ "THE SILENT HOUSE", "in_language", "SPANISH" ], [ "THE SILENT HOUSE", "release_year", "2010" ], [ "THE SPY WHO LOVED ME", "has_tags", "BOND" ], [ "THE SPY WHO LOVED ME", "has_tags", "JAMES BOND" ], [ "THE WORLD IS NOT ENOUGH", "has_tags", "BOND" ], [ "THE WORLD IS NOT ENOUGH", "has_tags", "JAMES BOND" ], [ "THUNDERBALL", "has_tags", "BOND" ], [ "THUNDERBALL", "has_tags", "JAMES BOND" ], [ "THUNDERBALL", "has_tags", "SEAN CONNERY" ], [ "THUNDERBALL", "starred_actors", "SEAN CONNERY" ], [ "TOMORROW NEVER DIES", "has_tags", "BOND" ], [ "TOMORROW NEVER DIES", "has_tags", "JAMES BOND" ], [ "YOU ONLY LIVE TWICE", "has_tags", "BOND" ], [ "YOU ONLY LIVE TWICE", "has_tags", "JAMES BOND" ], [ "YOU ONLY LIVE TWICE", "has_tags", "SEAN CONNERY" ], [ "YOU ONLY LIVE TWICE", "has_tags", "SPACE" ], [ "YOU ONLY LIVE TWICE", "starred_actors", "SEAN CONNERY" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 14259, 1997 17307, DANA RANGA 12841, DOCUMENTARY 9257, EAST SIDE STORY 35055, GRAHAM DORRINGTON 21489, SPAWN 4773, THE WHITE DIAMOND 37617, THERESA RANDLE src, edge_attr, dst 9257, directed_by, 17307 9257, has_genre, 12841 9257, release_year, 14259 9257, written_by, 17307 21489, release_year, 14259 21489, starred_actors, 37617 4773, has_genre, 12841 4773, has_tags, 12841 4773, starred_actors, 35055 Question: In what context are DANA RANGA, GRAHAM DORRINGTON, and THERESA RANDLE connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "DANA RANGA", "GRAHAM DORRINGTON", "THERESA RANDLE" ], "valid_edges": [ [ "EAST SIDE STORY", "directed_by", "DANA RANGA" ], [ "EAST SIDE STORY", "has_genre", "DOCUMENTARY" ], [ "EAST SIDE STORY", "release_year", "1997" ], [ "EAST SIDE STORY", "written_by", "DANA RANGA" ], [ "SPAWN", "release_year", "1997" ], [ "SPAWN", "starred_actors", "THERESA RANDLE" ], [ "THE WHITE DIAMOND", "has_genre", "DOCUMENTARY" ], [ "THE WHITE DIAMOND", "has_tags", "DOCUMENTARY" ], [ "THE WHITE DIAMOND", "starred_actors", "GRAHAM DORRINGTON" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 3863, 1962 724, 1979 6718, A FAREWELL TO ARMS 28235, A KIND OF LOVING 12649, A LITTLE ROMANCE 8221, A MAN ESCAPED 16566, A MONKEY IN WINTER 37987, A ROOM WITH A VIEW 38344, A STREETCAR NAMED DESIRE 10341, ADVENTURES OF DON JUAN 7463, ALL QUIET ON THE WESTERN FRONT 15918, ALL THAT HEAVEN ALLOWS 8714, AN AMERICAN IN PARIS 36963, ANNA KARENINA 10045, BD-R 4592, BEAU TRAVAIL 34744, BEING THERE 17905, BILLY BUDD 16400, BILLY ROSE'S JUMBO 11547, BROKEBACK MOUNTAIN 21584, BUNNY LAKE IS MISSING 35953, BUTCH CASSIDY AND THE SUNDANCE KID 13302, CHAPTER TWO 25344, CONFIDENTIALLY YOURS 16536, CYRANO DE BERGERAC 23229, DAVID AND LISA 20538, DIANE LANE 11249, DIARY OF A COUNTRY PRIEST 36196, DR. EHRLICH'S MAGIC BULLET 24540, EYES WITHOUT A FACE 6012, FRENCH 8001, GAY PURR-EE 18042, GEORGE ROY HILL 5527, GIGI 20693, GONE WITH THE WIND 19871, GYPSY 20263, HAIR 20941, HAMLET 26383, I CONFESS 27285, I WAS A MALE WAR BRIDE 7539, IVANHOE 847, JACK THE GIANT KILLER 21922, JANE EYRE 10530, JULES AND JIM 14209, KING OF HEARTS 38326, L'ECLISSE 33519, LA HAINE 14525, LA JETÉE 2687, LAURENCE OLIVIER 30029, LAWRENCE OF ARABIA 35149, LE BEAU SERGE 39572, LES COUSINS 30157, LOLA 16925, MAYERLING 25334, MERRILL'S MARAUDERS 36083, MIRANDA 31657, MON ONCLE 5237, MURPHY'S ROMANCE 31907, MUTINY ON THE BOUNTY 17576, MY BRILLIANT CAREER 12358, MY FAVORITE SEASON 5338, NINOTCHKA 34012, NORMAN BURNSTINE 18184, OKLAHOMA! 10329, ONLY TWO CAN PLAY 31134, PARIS 9622, PERIOD OF ADJUSTMENT 29693, PICKPOCKET 33032, PORT OF SHADOWS 24745, PURPLE NOON 1405, QUADROPHENIA 7960, QUALITY STREET 6773, REAL LIFE 6297, REBECCA 21858, REQUIEM FOR A HEAVYWEIGHT 4848, RIDE THE HIGH COUNTRY 15938, RIFIFI 10299, ROLLER BOOGIE 8379, ROMANCE 2738, ROMEO AND JULIET 6603, SEX IS COMEDY 6119, SLEUTH 31624, SPELLBOUND 8436, SPIRITS OF THE DEAD 15194, STORY OF WOMEN 23429, SUMMERTIME 36865, SUNDAYS AND CYBELE 2766, TARAS BULBA 18902, TESS 8220, THAT HAMILTON WOMAN 24625, THE APARTMENT 15003, THE BATTLE OF ALGIERS 17361, THE BRAIN THAT WOULDN'T DIE 34737, THE BRIDE WORE BLACK 3354, THE BROTHERS GRIMM 3028, THE CHAPMAN REPORT 12339, THE CHINA SYNDROME 10812, THE CONSTANT NYMPH 24771, THE FIFTH MUSKETEER 38257, THE HAPPY TIME 11168, THE HUMAN FACTOR 15198, THE HUNCHBACK OF NOTRE DAME 25529, THE ILLUSIONIST 6836, THE IMMORTAL STORY 19104, THE IN-LAWS 1443, THE ITALIAN JOB 888, THE JAZZ SINGER 1236, THE L-SHAPED ROOM 4091, THE LADY VANISHES 12121, THE LONELINESS OF THE LONG DISTANCE RUNNER 27237, THE LONGEST DAY 31569, THE LOVE PARADE 4182, THE MAN IN THE IRON MASK 33513, THE MAN WHO LOVED WOMEN 36235, THE MAN WHO SHOT LIBERTY VALANCE 29773, THE MANCHURIAN CANDIDATE 32297, THE MERRY WIDOW 2672, THE MIRACLE WORKER 28118, THE MUSIC MAN 9580, THE PIRATES OF BLOOD RIVER 25144, THE PRINCE AND THE SHOWGIRL 31851, THE PRISONER OF ZENDA 12302, THE ROAD TO HONG KONG 8477, THE SCARLET PIMPERNEL 39278, THE STING 36903, THE SUITOR 30491, THE TRIAL 13722, THE TRIAL OF JOAN OF ARC 29678, THE UMBRELLAS OF CHERBOURG 17568, THE VANISHING 36283, THE WONDERFUL WORLD OF THE BROTHERS GRIMM 24789, TO HAVE AND HAVE NOT 12764, TO KILL A MOCKINGBIRD 3029, TRIPLE CROSS 22356, VENICE 11659, VIVA MARIA! 28071, WHAT EVER HAPPENED TO BABY JANE? 36233, WHERE THE BOYS ARE 15674, WHITE SHADOWS IN THE SOUTH SEAS 5673, WILD GUITAR 22774, WISE BLOOD 27708, WUTHERING HEIGHTS 38760, Z 23675, ZERO FOR CONDUCT 27175, ZULU DAWN src, edge_attr, dst 6718, has_genre, 8379 6718, has_tags, 10045 28235, has_tags, 10045 28235, release_year, 3863 12649, directed_by, 18042 12649, has_genre, 8379 12649, has_tags, 10045 12649, has_tags, 20538 12649, has_tags, 18042 12649, has_tags, 2687 12649, has_tags, 31134 12649, has_tags, 22356 12649, in_language, 6012 12649, release_year, 724 12649, starred_actors, 20538 12649, starred_actors, 2687 8221, has_tags, 10045 8221, has_tags, 6012 8221, in_language, 6012 16566, in_language, 6012 16566, release_year, 3863 37987, has_genre, 8379 37987, has_tags, 10045 38344, has_tags, 10045 38344, starred_actors, 20538 10341, has_genre, 8379 10341, has_tags, 10045 7463, has_tags, 10045 7463, release_year, 724 15918, has_genre, 8379 15918, has_tags, 10045 8714, has_tags, 10045 8714, has_tags, 31134 36963, has_tags, 10045 36963, has_tags, 22356 4592, has_tags, 10045 4592, in_language, 6012 34744, has_tags, 10045 34744, release_year, 724 17905, has_tags, 10045 17905, release_year, 3863 16400, has_genre, 8379 16400, has_tags, 10045 16400, release_year, 3863 11547, has_genre, 8379 11547, has_tags, 10045 11547, has_tags, 8379 21584, has_tags, 10045 21584, starred_actors, 2687 35953, directed_by, 18042 35953, has_tags, 10045 35953, has_tags, 18042 13302, has_tags, 10045 13302, release_year, 724 25344, has_tags, 10045 25344, in_language, 6012 16536, has_tags, 10045 16536, has_tags, 6012 16536, in_language, 6012 23229, has_tags, 10045 23229, release_year, 3863 11249, has_tags, 10045 11249, in_language, 6012 36196, has_tags, 10045 36196, written_by, 34012 24540, has_tags, 10045 24540, in_language, 6012 8001, has_tags, 10045 8001, release_year, 3863 5527, has_tags, 10045 5527, in_language, 6012 20693, has_genre, 8379 20693, has_tags, 10045 20693, has_tags, 8379 19871, has_tags, 10045 19871, release_year, 3863 20263, has_tags, 10045 20263, release_year, 724 20941, directed_by, 2687 20941, has_tags, 10045 20941, has_tags, 2687 26383, has_tags, 10045 26383, in_language, 6012 27285, has_tags, 10045 27285, in_language, 6012 7539, has_genre, 8379 7539, has_tags, 10045 847, has_tags, 10045 847, release_year, 3863 21922, has_tags, 10045 21922, in_language, 6012 10530, has_tags, 6012 10530, in_language, 6012 10530, release_year, 3863 14209, has_tags, 10045 14209, in_language, 6012 38326, has_tags, 10045 38326, release_year, 3863 33519, has_tags, 10045 33519, has_tags, 6012 33519, has_tags, 31134 33519, in_language, 6012 14525, in_language, 6012 14525, release_year, 3863 30029, has_tags, 10045 30029, release_year, 3863 35149, has_tags, 10045 35149, in_language, 6012 39572, has_tags, 10045 39572, in_language, 6012 30157, has_tags, 10045 30157, in_language, 6012 16925, has_tags, 10045 16925, in_language, 6012 25334, has_tags, 10045 25334, release_year, 3863 36083, has_genre, 8379 36083, has_tags, 10045 31657, has_tags, 10045 31657, in_language, 6012 5237, has_genre, 8379 5237, has_tags, 10045 31907, has_tags, 10045 31907, release_year, 3863 17576, has_genre, 8379 17576, has_tags, 10045 17576, release_year, 724 12358, has_tags, 10045 12358, in_language, 6012 5338, has_genre, 8379 5338, has_tags, 10045 5338, has_tags, 31134 18184, has_genre, 8379 18184, has_tags, 10045 10329, has_tags, 10045 10329, release_year, 3863 31134, in_language, 6012 9622, directed_by, 18042 9622, has_tags, 10045 9622, release_year, 3863 29693, has_tags, 10045 29693, in_language, 6012 33032, has_tags, 10045 33032, in_language, 6012 24745, has_tags, 10045 24745, in_language, 6012 1405, has_tags, 10045 1405, release_year, 724 7960, has_genre, 8379 7960, has_tags, 10045 6773, has_tags, 10045 6773, release_year, 724 6297, has_tags, 10045 6297, has_tags, 2687 6297, starred_actors, 2687 21858, has_tags, 10045 21858, release_year, 3863 4848, has_tags, 10045 4848, release_year, 3863 15938, has_tags, 10045 15938, in_language, 6012 10299, has_tags, 10045 10299, release_year, 724 8379, in_language, 6012 2738, has_genre, 8379 2738, has_tags, 10045 2738, has_tags, 8379 6603, has_tags, 10045 6603, in_language, 6012 6119, has_tags, 10045 6119, has_tags, 2687 6119, starred_actors, 2687 31624, has_genre, 8379 31624, has_tags, 10045 8436, has_tags, 10045 8436, in_language, 6012 15194, has_tags, 10045 15194, in_language, 6012 23429, has_genre, 8379 23429, has_tags, 10045 23429, has_tags, 8379 36865, in_language, 6012 36865, release_year, 3863 2766, has_tags, 10045 2766, release_year, 3863 18902, has_genre, 8379 18902, has_tags, 10045 18902, release_year, 724 8220, has_tags, 10045 8220, starred_actors, 2687 24625, has_tags, 10045 24625, in_language, 6012 15003, has_tags, 10045 15003, has_tags, 6012 15003, in_language, 6012 17361, has_tags, 10045 17361, release_year, 3863 34737, has_tags, 10045 34737, in_language, 6012 3354, has_tags, 10045 3354, in_language, 6012 3028, has_tags, 10045 3028, release_year, 3863 12339, has_tags, 10045 12339, release_year, 724 10812, has_genre, 8379 10812, has_tags, 10045 24771, has_tags, 10045 24771, release_year, 724 38257, has_tags, 10045 38257, in_language, 6012 11168, has_tags, 10045 11168, release_year, 724 15198, has_tags, 10045 15198, has_tags, 31134 15198, in_language, 6012 25529, has_tags, 10045 25529, in_language, 6012 6836, has_tags, 10045 6836, in_language, 6012 19104, has_tags, 10045 19104, release_year, 724 1443, has_tags, 10045 1443, has_tags, 22356 888, has_tags, 10045 888, starred_actors, 2687 1236, has_tags, 10045 1236, release_year, 3863 4091, has_tags, 10045 4091, release_year, 724 12121, has_tags, 10045 12121, release_year, 3863 27237, in_language, 6012 27237, release_year, 3863 31569, has_tags, 10045 31569, in_language, 6012 4182, has_genre, 8379 4182, has_tags, 10045 33513, has_tags, 10045 33513, in_language, 6012 36235, has_tags, 10045 36235, release_year, 3863 29773, has_tags, 10045 29773, release_year, 3863 32297, has_tags, 10045 32297, in_language, 6012 2672, has_tags, 10045 2672, release_year, 3863 28118, has_tags, 10045 28118, release_year, 3863 9580, has_tags, 10045 9580, release_year, 3863 25144, directed_by, 2687 25144, has_tags, 10045 31851, has_tags, 10045 31851, release_year, 724 12302, has_tags, 10045 12302, release_year, 3863 8477, has_tags, 10045 8477, in_language, 6012 39278, directed_by, 18042 39278, has_tags, 10045 39278, has_tags, 18042 36903, in_language, 6012 36903, release_year, 3863 30491, has_tags, 10045 30491, release_year, 3863 13722, has_tags, 10045 13722, in_language, 6012 13722, release_year, 3863 29678, has_tags, 10045 29678, has_tags, 6012 29678, in_language, 6012 17568, has_tags, 10045 17568, in_language, 6012 36283, has_tags, 10045 36283, release_year, 3863 24789, has_genre, 8379 24789, has_tags, 10045 12764, has_tags, 10045 12764, release_year, 3863 3029, has_tags, 10045 3029, in_language, 6012 11659, has_tags, 10045 11659, has_tags, 6012 11659, in_language, 6012 28071, has_tags, 10045 28071, release_year, 3863 36233, has_genre, 8379 36233, has_tags, 10045 15674, has_genre, 8379 15674, has_tags, 10045 5673, release_year, 3863 22774, has_tags, 10045 22774, release_year, 724 27708, has_genre, 8379 27708, has_tags, 10045 38760, has_tags, 10045 38760, in_language, 6012 23675, has_tags, 10045 23675, has_tags, 6012 23675, in_language, 6012 27175, has_tags, 10045 27175, release_year, 724 Question: How are A LITTLE ROMANCE, NORMAN BURNSTINE, and WILD GUITAR related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "A LITTLE ROMANCE", "NORMAN BURNSTINE", "WILD GUITAR" ], "valid_edges": [ [ "A FAREWELL TO ARMS", "has_genre", "ROMANCE" ], [ "A FAREWELL TO ARMS", "has_tags", "BD-R" ], [ "A KIND OF LOVING", "has_tags", "BD-R" ], [ "A KIND OF LOVING", "release_year", "1962" ], [ "A LITTLE ROMANCE", "directed_by", "GEORGE ROY HILL" ], [ "A LITTLE ROMANCE", "has_genre", "ROMANCE" ], [ "A LITTLE ROMANCE", "has_tags", "BD-R" ], [ "A LITTLE ROMANCE", "has_tags", "DIANE LANE" ], [ "A LITTLE ROMANCE", "has_tags", "GEORGE ROY HILL" ], [ "A LITTLE ROMANCE", "has_tags", "LAURENCE OLIVIER" ], [ "A LITTLE ROMANCE", "has_tags", "PARIS" ], [ "A LITTLE ROMANCE", "has_tags", "VENICE" ], [ "A LITTLE ROMANCE", "in_language", "FRENCH" ], [ "A LITTLE ROMANCE", "release_year", "1979" ], [ "A LITTLE ROMANCE", "starred_actors", "DIANE LANE" ], [ "A LITTLE ROMANCE", "starred_actors", "LAURENCE OLIVIER" ], [ "A MAN ESCAPED", "has_tags", "BD-R" ], [ "A MAN ESCAPED", "has_tags", "FRENCH" ], [ "A MAN ESCAPED", "in_language", "FRENCH" ], [ "A MONKEY IN WINTER", "in_language", "FRENCH" ], [ "A MONKEY IN WINTER", "release_year", "1962" ], [ "A ROOM WITH A VIEW", "has_genre", "ROMANCE" ], [ "A ROOM WITH A VIEW", "has_tags", "BD-R" ], [ "A STREETCAR NAMED DESIRE", "has_tags", "BD-R" ], [ "A STREETCAR NAMED DESIRE", "starred_actors", "DIANE LANE" ], [ "ADVENTURES OF DON JUAN", "has_genre", "ROMANCE" ], [ "ADVENTURES OF DON JUAN", "has_tags", "BD-R" ], [ "ALL QUIET ON THE WESTERN FRONT", "has_tags", "BD-R" ], [ "ALL QUIET ON THE WESTERN FRONT", "release_year", "1979" ], [ "ALL THAT HEAVEN ALLOWS", "has_genre", "ROMANCE" ], [ "ALL THAT HEAVEN ALLOWS", "has_tags", "BD-R" ], [ "AN AMERICAN IN PARIS", "has_tags", "BD-R" ], [ "AN AMERICAN IN PARIS", "has_tags", "PARIS" ], [ "ANNA KARENINA", "has_tags", "BD-R" ], [ "ANNA KARENINA", "has_tags", "VENICE" ], [ "BEAU TRAVAIL", "has_tags", "BD-R" ], [ "BEAU TRAVAIL", "in_language", "FRENCH" ], [ "BEING THERE", "has_tags", "BD-R" ], [ "BEING THERE", "release_year", "1979" ], [ "BILLY BUDD", "has_tags", "BD-R" ], [ "BILLY BUDD", "release_year", "1962" ], [ "BILLY ROSE'S JUMBO", "has_genre", "ROMANCE" ], [ "BILLY ROSE'S JUMBO", "has_tags", "BD-R" ], [ "BILLY ROSE'S JUMBO", "release_year", "1962" ], [ "BROKEBACK MOUNTAIN", "has_genre", "ROMANCE" ], [ "BROKEBACK MOUNTAIN", "has_tags", "BD-R" ], [ "BROKEBACK MOUNTAIN", "has_tags", "ROMANCE" ], [ "BUNNY LAKE IS MISSING", "has_tags", "BD-R" ], [ "BUNNY LAKE IS MISSING", "starred_actors", "LAURENCE OLIVIER" ], [ "BUTCH CASSIDY AND THE SUNDANCE KID", "directed_by", "GEORGE ROY HILL" ], [ "BUTCH CASSIDY AND THE SUNDANCE KID", "has_tags", "BD-R" ], [ "BUTCH CASSIDY AND THE SUNDANCE KID", "has_tags", "GEORGE ROY HILL" ], [ "CHAPTER TWO", "has_tags", "BD-R" ], [ "CHAPTER TWO", "release_year", "1979" ], [ "CONFIDENTIALLY YOURS", "has_tags", "BD-R" ], [ "CONFIDENTIALLY YOURS", "in_language", "FRENCH" ], [ "CYRANO DE BERGERAC", "has_tags", "BD-R" ], [ "CYRANO DE BERGERAC", "has_tags", "FRENCH" ], [ "CYRANO DE BERGERAC", "in_language", "FRENCH" ], [ "DAVID AND LISA", "has_tags", "BD-R" ], [ "DAVID AND LISA", "release_year", "1962" ], [ "DIARY OF A COUNTRY PRIEST", "has_tags", "BD-R" ], [ "DIARY OF A COUNTRY PRIEST", "in_language", "FRENCH" ], [ "DR. EHRLICH'S MAGIC BULLET", "has_tags", "BD-R" ], [ "DR. EHRLICH'S MAGIC BULLET", "written_by", "NORMAN BURNSTINE" ], [ "EYES WITHOUT A FACE", "has_tags", "BD-R" ], [ "EYES WITHOUT A FACE", "in_language", "FRENCH" ], [ "GAY PURR-EE", "has_tags", "BD-R" ], [ "GAY PURR-EE", "release_year", "1962" ], [ "GIGI", "has_tags", "BD-R" ], [ "GIGI", "in_language", "FRENCH" ], [ "GONE WITH THE WIND", "has_genre", "ROMANCE" ], [ "GONE WITH THE WIND", "has_tags", "BD-R" ], [ "GONE WITH THE WIND", "has_tags", "ROMANCE" ], [ "GYPSY", "has_tags", "BD-R" ], [ "GYPSY", "release_year", "1962" ], [ "HAIR", "has_tags", "BD-R" ], [ "HAIR", "release_year", "1979" ], [ "HAMLET", "directed_by", "LAURENCE OLIVIER" ], [ "HAMLET", "has_tags", "BD-R" ], [ "HAMLET", "has_tags", "LAURENCE OLIVIER" ], [ "I CONFESS", "has_tags", "BD-R" ], [ "I CONFESS", "in_language", "FRENCH" ], [ "I WAS A MALE WAR BRIDE", "has_tags", "BD-R" ], [ "I WAS A MALE WAR BRIDE", "in_language", "FRENCH" ], [ "IVANHOE", "has_genre", "ROMANCE" ], [ "IVANHOE", "has_tags", "BD-R" ], [ "JACK THE GIANT KILLER", "has_tags", "BD-R" ], [ "JACK THE GIANT KILLER", "release_year", "1962" ], [ "JANE EYRE", "has_tags", "BD-R" ], [ "JANE EYRE", "in_language", "FRENCH" ], [ "JULES AND JIM", "has_tags", "FRENCH" ], [ "JULES AND JIM", "in_language", "FRENCH" ], [ "JULES AND JIM", "release_year", "1962" ], [ "KING OF HEARTS", "has_tags", "BD-R" ], [ "KING OF HEARTS", "in_language", "FRENCH" ], [ "L'ECLISSE", "has_tags", "BD-R" ], [ "L'ECLISSE", "release_year", "1962" ], [ "LA HAINE", "has_tags", "BD-R" ], [ "LA HAINE", "has_tags", "FRENCH" ], [ "LA HAINE", "has_tags", "PARIS" ], [ "LA HAINE", "in_language", "FRENCH" ], [ "LA JETÉE", "in_language", "FRENCH" ], [ "LA JETÉE", "release_year", "1962" ], [ "LAWRENCE OF ARABIA", "has_tags", "BD-R" ], [ "LAWRENCE OF ARABIA", "release_year", "1962" ], [ "LE BEAU SERGE", "has_tags", "BD-R" ], [ "LE BEAU SERGE", "in_language", "FRENCH" ], [ "LES COUSINS", "has_tags", "BD-R" ], [ "LES COUSINS", "in_language", "FRENCH" ], [ "LOLA", "has_tags", "BD-R" ], [ "LOLA", "in_language", "FRENCH" ], [ "MAYERLING", "has_tags", "BD-R" ], [ "MAYERLING", "in_language", "FRENCH" ], [ "MERRILL'S MARAUDERS", "has_tags", "BD-R" ], [ "MERRILL'S MARAUDERS", "release_year", "1962" ], [ "MIRANDA", "has_genre", "ROMANCE" ], [ "MIRANDA", "has_tags", "BD-R" ], [ "MON ONCLE", "has_tags", "BD-R" ], [ "MON ONCLE", "in_language", "FRENCH" ], [ "MURPHY'S ROMANCE", "has_genre", "ROMANCE" ], [ "MURPHY'S ROMANCE", "has_tags", "BD-R" ], [ "MUTINY ON THE BOUNTY", "has_tags", "BD-R" ], [ "MUTINY ON THE BOUNTY", "release_year", "1962" ], [ "MY BRILLIANT CAREER", "has_genre", "ROMANCE" ], [ "MY BRILLIANT CAREER", "has_tags", "BD-R" ], [ "MY BRILLIANT CAREER", "release_year", "1979" ], [ "MY FAVORITE SEASON", "has_tags", "BD-R" ], [ "MY FAVORITE SEASON", "in_language", "FRENCH" ], [ "NINOTCHKA", "has_genre", "ROMANCE" ], [ "NINOTCHKA", "has_tags", "BD-R" ], [ "NINOTCHKA", "has_tags", "PARIS" ], [ "OKLAHOMA!", "has_genre", "ROMANCE" ], [ "OKLAHOMA!", "has_tags", "BD-R" ], [ "ONLY TWO CAN PLAY", "has_tags", "BD-R" ], [ "ONLY TWO CAN PLAY", "release_year", "1962" ], [ "PARIS", "in_language", "FRENCH" ], [ "PERIOD OF ADJUSTMENT", "directed_by", "GEORGE ROY HILL" ], [ "PERIOD OF ADJUSTMENT", "has_tags", "BD-R" ], [ "PERIOD OF ADJUSTMENT", "release_year", "1962" ], [ "PICKPOCKET", "has_tags", "BD-R" ], [ "PICKPOCKET", "in_language", "FRENCH" ], [ "PORT OF SHADOWS", "has_tags", "BD-R" ], [ "PORT OF SHADOWS", "in_language", "FRENCH" ], [ "PURPLE NOON", "has_tags", "BD-R" ], [ "PURPLE NOON", "in_language", "FRENCH" ], [ "QUADROPHENIA", "has_tags", "BD-R" ], [ "QUADROPHENIA", "release_year", "1979" ], [ "QUALITY STREET", "has_genre", "ROMANCE" ], [ "QUALITY STREET", "has_tags", "BD-R" ], [ "REAL LIFE", "has_tags", "BD-R" ], [ "REAL LIFE", "release_year", "1979" ], [ "REBECCA", "has_tags", "BD-R" ], [ "REBECCA", "has_tags", "LAURENCE OLIVIER" ], [ "REBECCA", "starred_actors", "LAURENCE OLIVIER" ], [ "REQUIEM FOR A HEAVYWEIGHT", "has_tags", "BD-R" ], [ "REQUIEM FOR A HEAVYWEIGHT", "release_year", "1962" ], [ "RIDE THE HIGH COUNTRY", "has_tags", "BD-R" ], [ "RIDE THE HIGH COUNTRY", "release_year", "1962" ], [ "RIFIFI", "has_tags", "BD-R" ], [ "RIFIFI", "in_language", "FRENCH" ], [ "ROLLER BOOGIE", "has_tags", "BD-R" ], [ "ROLLER BOOGIE", "release_year", "1979" ], [ "ROMANCE", "in_language", "FRENCH" ], [ "ROMEO AND JULIET", "has_genre", "ROMANCE" ], [ "ROMEO AND JULIET", "has_tags", "BD-R" ], [ "ROMEO AND JULIET", "has_tags", "ROMANCE" ], [ "SEX IS COMEDY", "has_tags", "BD-R" ], [ "SEX IS COMEDY", "in_language", "FRENCH" ], [ "SLEUTH", "has_tags", "BD-R" ], [ "SLEUTH", "has_tags", "LAURENCE OLIVIER" ], [ "SLEUTH", "starred_actors", "LAURENCE OLIVIER" ], [ "SPELLBOUND", "has_genre", "ROMANCE" ], [ "SPELLBOUND", "has_tags", "BD-R" ], [ "SPIRITS OF THE DEAD", "has_tags", "BD-R" ], [ "SPIRITS OF THE DEAD", "in_language", "FRENCH" ], [ "STORY OF WOMEN", "has_tags", "BD-R" ], [ "STORY OF WOMEN", "in_language", "FRENCH" ], [ "SUMMERTIME", "has_genre", "ROMANCE" ], [ "SUMMERTIME", "has_tags", "BD-R" ], [ "SUMMERTIME", "has_tags", "ROMANCE" ], [ "SUNDAYS AND CYBELE", "in_language", "FRENCH" ], [ "SUNDAYS AND CYBELE", "release_year", "1962" ], [ "TARAS BULBA", "has_tags", "BD-R" ], [ "TARAS BULBA", "release_year", "1962" ], [ "TESS", "has_genre", "ROMANCE" ], [ "TESS", "has_tags", "BD-R" ], [ "TESS", "release_year", "1979" ], [ "THAT HAMILTON WOMAN", "has_tags", "BD-R" ], [ "THAT HAMILTON WOMAN", "starred_actors", "LAURENCE OLIVIER" ], [ "THE APARTMENT", "has_tags", "BD-R" ], [ "THE APARTMENT", "in_language", "FRENCH" ], [ "THE BATTLE OF ALGIERS", "has_tags", "BD-R" ], [ "THE BATTLE OF ALGIERS", "has_tags", "FRENCH" ], [ "THE BATTLE OF ALGIERS", "in_language", "FRENCH" ], [ "THE BRAIN THAT WOULDN'T DIE", "has_tags", "BD-R" ], [ "THE BRAIN THAT WOULDN'T DIE", "release_year", "1962" ], [ "THE BRIDE WORE BLACK", "has_tags", "BD-R" ], [ "THE BRIDE WORE BLACK", "in_language", "FRENCH" ], [ "THE BROTHERS GRIMM", "has_tags", "BD-R" ], [ "THE BROTHERS GRIMM", "in_language", "FRENCH" ], [ "THE CHAPMAN REPORT", "has_tags", "BD-R" ], [ "THE CHAPMAN REPORT", "release_year", "1962" ], [ "THE CHINA SYNDROME", "has_tags", "BD-R" ], [ "THE CHINA SYNDROME", "release_year", "1979" ], [ "THE CONSTANT NYMPH", "has_genre", "ROMANCE" ], [ "THE CONSTANT NYMPH", "has_tags", "BD-R" ], [ "THE FIFTH MUSKETEER", "has_tags", "BD-R" ], [ "THE FIFTH MUSKETEER", "release_year", "1979" ], [ "THE HAPPY TIME", "has_tags", "BD-R" ], [ "THE HAPPY TIME", "in_language", "FRENCH" ], [ "THE HUMAN FACTOR", "has_tags", "BD-R" ], [ "THE HUMAN FACTOR", "release_year", "1979" ], [ "THE HUNCHBACK OF NOTRE DAME", "has_tags", "BD-R" ], [ "THE HUNCHBACK OF NOTRE DAME", "has_tags", "PARIS" ], [ "THE HUNCHBACK OF NOTRE DAME", "in_language", "FRENCH" ], [ "THE ILLUSIONIST", "has_tags", "BD-R" ], [ "THE ILLUSIONIST", "in_language", "FRENCH" ], [ "THE IMMORTAL STORY", "has_tags", "BD-R" ], [ "THE IMMORTAL STORY", "in_language", "FRENCH" ], [ "THE IN-LAWS", "has_tags", "BD-R" ], [ "THE IN-LAWS", "release_year", "1979" ], [ "THE ITALIAN JOB", "has_tags", "BD-R" ], [ "THE ITALIAN JOB", "has_tags", "VENICE" ], [ "THE JAZZ SINGER", "has_tags", "BD-R" ], [ "THE JAZZ SINGER", "starred_actors", "LAURENCE OLIVIER" ], [ "THE L-SHAPED ROOM", "has_tags", "BD-R" ], [ "THE L-SHAPED ROOM", "release_year", "1962" ], [ "THE LADY VANISHES", "has_tags", "BD-R" ], [ "THE LADY VANISHES", "release_year", "1979" ], [ "THE LONELINESS OF THE LONG DISTANCE RUNNER", "has_tags", "BD-R" ], [ "THE LONELINESS OF THE LONG DISTANCE RUNNER", "release_year", "1962" ], [ "THE LONGEST DAY", "in_language", "FRENCH" ], [ "THE LONGEST DAY", "release_year", "1962" ], [ "THE LOVE PARADE", "has_tags", "BD-R" ], [ "THE LOVE PARADE", "in_language", "FRENCH" ], [ "THE MAN IN THE IRON MASK", "has_genre", "ROMANCE" ], [ "THE MAN IN THE IRON MASK", "has_tags", "BD-R" ], [ "THE MAN WHO LOVED WOMEN", "has_tags", "BD-R" ], [ "THE MAN WHO LOVED WOMEN", "in_language", "FRENCH" ], [ "THE MAN WHO SHOT LIBERTY VALANCE", "has_tags", "BD-R" ], [ "THE MAN WHO SHOT LIBERTY VALANCE", "release_year", "1962" ], [ "THE MANCHURIAN CANDIDATE", "has_tags", "BD-R" ], [ "THE MANCHURIAN CANDIDATE", "release_year", "1962" ], [ "THE MERRY WIDOW", "has_tags", "BD-R" ], [ "THE MERRY WIDOW", "in_language", "FRENCH" ], [ "THE MIRACLE WORKER", "has_tags", "BD-R" ], [ "THE MIRACLE WORKER", "release_year", "1962" ], [ "THE MUSIC MAN", "has_tags", "BD-R" ], [ "THE MUSIC MAN", "release_year", "1962" ], [ "THE PIRATES OF BLOOD RIVER", "has_tags", "BD-R" ], [ "THE PIRATES OF BLOOD RIVER", "release_year", "1962" ], [ "THE PRINCE AND THE SHOWGIRL", "directed_by", "LAURENCE OLIVIER" ], [ "THE PRINCE AND THE SHOWGIRL", "has_tags", "BD-R" ], [ "THE PRISONER OF ZENDA", "has_tags", "BD-R" ], [ "THE PRISONER OF ZENDA", "release_year", "1979" ], [ "THE ROAD TO HONG KONG", "has_tags", "BD-R" ], [ "THE ROAD TO HONG KONG", "release_year", "1962" ], [ "THE SCARLET PIMPERNEL", "has_tags", "BD-R" ], [ "THE SCARLET PIMPERNEL", "in_language", "FRENCH" ], [ "THE STING", "directed_by", "GEORGE ROY HILL" ], [ "THE STING", "has_tags", "BD-R" ], [ "THE STING", "has_tags", "GEORGE ROY HILL" ], [ "THE SUITOR", "in_language", "FRENCH" ], [ "THE SUITOR", "release_year", "1962" ], [ "THE TRIAL", "has_tags", "BD-R" ], [ "THE TRIAL", "release_year", "1962" ], [ "THE TRIAL OF JOAN OF ARC", "has_tags", "BD-R" ], [ "THE TRIAL OF JOAN OF ARC", "in_language", "FRENCH" ], [ "THE TRIAL OF JOAN OF ARC", "release_year", "1962" ], [ "THE UMBRELLAS OF CHERBOURG", "has_tags", "BD-R" ], [ "THE UMBRELLAS OF CHERBOURG", "has_tags", "FRENCH" ], [ "THE UMBRELLAS OF CHERBOURG", "in_language", "FRENCH" ], [ "THE VANISHING", "has_tags", "BD-R" ], [ "THE VANISHING", "in_language", "FRENCH" ], [ "THE WONDERFUL WORLD OF THE BROTHERS GRIMM", "has_tags", "BD-R" ], [ "THE WONDERFUL WORLD OF THE BROTHERS GRIMM", "release_year", "1962" ], [ "TO HAVE AND HAVE NOT", "has_genre", "ROMANCE" ], [ "TO HAVE AND HAVE NOT", "has_tags", "BD-R" ], [ "TO KILL A MOCKINGBIRD", "has_tags", "BD-R" ], [ "TO KILL A MOCKINGBIRD", "release_year", "1962" ], [ "TRIPLE CROSS", "has_tags", "BD-R" ], [ "TRIPLE CROSS", "in_language", "FRENCH" ], [ "VIVA MARIA!", "has_tags", "BD-R" ], [ "VIVA MARIA!", "has_tags", "FRENCH" ], [ "VIVA MARIA!", "in_language", "FRENCH" ], [ "WHAT EVER HAPPENED TO BABY JANE?", "has_tags", "BD-R" ], [ "WHAT EVER HAPPENED TO BABY JANE?", "release_year", "1962" ], [ "WHERE THE BOYS ARE", "has_genre", "ROMANCE" ], [ "WHERE THE BOYS ARE", "has_tags", "BD-R" ], [ "WHITE SHADOWS IN THE SOUTH SEAS", "has_genre", "ROMANCE" ], [ "WHITE SHADOWS IN THE SOUTH SEAS", "has_tags", "BD-R" ], [ "WILD GUITAR", "release_year", "1962" ], [ "WISE BLOOD", "has_tags", "BD-R" ], [ "WISE BLOOD", "release_year", "1979" ], [ "WUTHERING HEIGHTS", "has_genre", "ROMANCE" ], [ "WUTHERING HEIGHTS", "has_tags", "BD-R" ], [ "Z", "has_tags", "BD-R" ], [ "Z", "in_language", "FRENCH" ], [ "ZERO FOR CONDUCT", "has_tags", "BD-R" ], [ "ZERO FOR CONDUCT", "has_tags", "FRENCH" ], [ "ZERO FOR CONDUCT", "in_language", "FRENCH" ], [ "ZULU DAWN", "has_tags", "BD-R" ], [ "ZULU DAWN", "release_year", "1979" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 21931, 1941 24525, 1984 30146, A CHRISTMAS CAROL 33088, CARMEN 7631, KATHLEEN TURNER 31225, ROAD TO ZANZIBAR 32090, ROBERT ZEMECKIS 28221, ROMANCING THE STONE 7556, SPANISH 13491, THE DEVIL'S BACKBONE 959, THE HIT 31772, WHAT HAVE I DONE TO DESERVE THIS? 3912, WHO FRAMED ROGER RABBIT src, edge_attr, dst 21931, written_by, 32090 30146, directed_by, 32090 30146, release_year, 24525 30146, written_by, 32090 33088, in_language, 7556 33088, release_year, 24525 31225, release_year, 21931 28221, directed_by, 32090 28221, has_tags, 7631 28221, has_tags, 32090 28221, release_year, 24525 28221, starred_actors, 7631 13491, has_tags, 7556 13491, in_language, 7556 959, in_language, 7556 959, release_year, 24525 31772, in_language, 7556 31772, release_year, 24525 3912, directed_by, 32090 3912, has_tags, 7631 3912, has_tags, 32090 Question: In what context are ROAD TO ZANZIBAR, ROMANCING THE STONE, and THE DEVIL'S BACKBONE connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "ROAD TO ZANZIBAR", "ROMANCING THE STONE", "THE DEVIL'S BACKBONE" ], "valid_edges": [ [ "1941", "written_by", "ROBERT ZEMECKIS" ], [ "A CHRISTMAS CAROL", "directed_by", "ROBERT ZEMECKIS" ], [ "A CHRISTMAS CAROL", "release_year", "1984" ], [ "A CHRISTMAS CAROL", "written_by", "ROBERT ZEMECKIS" ], [ "CARMEN", "in_language", "SPANISH" ], [ "CARMEN", "release_year", "1984" ], [ "ROAD TO ZANZIBAR", "release_year", "1941" ], [ "ROMANCING THE STONE", "directed_by", "ROBERT ZEMECKIS" ], [ "ROMANCING THE STONE", "has_tags", "KATHLEEN TURNER" ], [ "ROMANCING THE STONE", "has_tags", "ROBERT ZEMECKIS" ], [ "ROMANCING THE STONE", "release_year", "1984" ], [ "ROMANCING THE STONE", "starred_actors", "KATHLEEN TURNER" ], [ "THE DEVIL'S BACKBONE", "has_tags", "SPANISH" ], [ "THE DEVIL'S BACKBONE", "in_language", "SPANISH" ], [ "THE HIT", "in_language", "SPANISH" ], [ "THE HIT", "release_year", "1984" ], [ "WHAT HAVE I DONE TO DESERVE THIS?", "in_language", "SPANISH" ], [ "WHAT HAVE I DONE TO DESERVE THIS?", "release_year", "1984" ], [ "WHO FRAMED ROGER RABBIT", "directed_by", "ROBERT ZEMECKIS" ], [ "WHO FRAMED ROGER RABBIT", "has_tags", "KATHLEEN TURNER" ], [ "WHO FRAMED ROGER RABBIT", "has_tags", "ROBERT ZEMECKIS" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 31196, 1974 29410, AND NOW MY LOVE 204, CELINE AND JULIE GO BOATING 32474, EMMANUELLE 6012, FRENCH 37514, GOING PLACES 11864, I AM A SEX ADDICT 24812, LACOMBE, LUCIEN 9603, PIERROT LE FOU 27784, SEX 30692, THE APPRENTICESHIP OF DUDDY KRAVITZ 18900, THE MAN WHO SLEEPS src, edge_attr, dst 29410, in_language, 6012 29410, release_year, 31196 204, in_language, 6012 204, release_year, 31196 32474, has_tags, 27784 32474, in_language, 6012 32474, release_year, 31196 37514, in_language, 6012 37514, release_year, 31196 11864, has_tags, 27784 24812, in_language, 6012 24812, release_year, 31196 9603, in_language, 6012 30692, release_year, 31196 18900, in_language, 6012 18900, release_year, 31196 Question: In what context are I AM A SEX ADDICT, PIERROT LE FOU, and THE APPRENTICESHIP OF DUDDY KRAVITZ connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "I AM A SEX ADDICT", "PIERROT LE FOU", "THE APPRENTICESHIP OF DUDDY KRAVITZ" ], "valid_edges": [ [ "AND NOW MY LOVE", "in_language", "FRENCH" ], [ "AND NOW MY LOVE", "release_year", "1974" ], [ "CELINE AND JULIE GO BOATING", "in_language", "FRENCH" ], [ "CELINE AND JULIE GO BOATING", "release_year", "1974" ], [ "EMMANUELLE", "has_tags", "SEX" ], [ "EMMANUELLE", "in_language", "FRENCH" ], [ "EMMANUELLE", "release_year", "1974" ], [ "GOING PLACES", "in_language", "FRENCH" ], [ "GOING PLACES", "release_year", "1974" ], [ "I AM A SEX ADDICT", "has_tags", "SEX" ], [ "LACOMBE, LUCIEN", "in_language", "FRENCH" ], [ "LACOMBE, LUCIEN", "release_year", "1974" ], [ "PIERROT LE FOU", "in_language", "FRENCH" ], [ "THE APPRENTICESHIP OF DUDDY KRAVITZ", "release_year", "1974" ], [ "THE MAN WHO SLEEPS", "in_language", "FRENCH" ], [ "THE MAN WHO SLEEPS", "release_year", "1974" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 17480, 1988 26633, 1989 21385, AMANECE, QUE NO ES POCO 25251, COP 24044, IMMEDIATE FAMILY 4233, JAMES WOODS 7659, JUSTINE BATEMAN 30331, LESLEY ANN WARREN 21059, SATISFACTION 7556, SPANISH 34750, THE BOOST 34188, TRUE BELIEVER 29650, WOMEN ON THE VERGE OF A NERVOUS BREAKDOWN 10596, WORTH WINNING src, edge_attr, dst 21385, has_tags, 7556 21385, in_language, 7556 21385, release_year, 26633 25251, release_year, 17480 25251, starred_actors, 4233 25251, starred_actors, 30331 24044, release_year, 26633 24044, starred_actors, 4233 21059, release_year, 17480 21059, starred_actors, 7659 34750, release_year, 17480 34750, starred_actors, 4233 34188, has_tags, 4233 34188, release_year, 26633 34188, starred_actors, 4233 29650, has_tags, 7556 29650, in_language, 7556 29650, release_year, 17480 10596, release_year, 26633 10596, starred_actors, 30331 Question: In what context are AMANECE, QUE NO ES POCO, COP, and JUSTINE BATEMAN connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "AMANECE, QUE NO ES POCO", "COP", "JUSTINE BATEMAN" ], "valid_edges": [ [ "AMANECE, QUE NO ES POCO", "has_tags", "SPANISH" ], [ "AMANECE, QUE NO ES POCO", "in_language", "SPANISH" ], [ "AMANECE, QUE NO ES POCO", "release_year", "1989" ], [ "COP", "release_year", "1988" ], [ "COP", "starred_actors", "JAMES WOODS" ], [ "COP", "starred_actors", "LESLEY ANN WARREN" ], [ "IMMEDIATE FAMILY", "release_year", "1989" ], [ "IMMEDIATE FAMILY", "starred_actors", "JAMES WOODS" ], [ "SATISFACTION", "release_year", "1988" ], [ "SATISFACTION", "starred_actors", "JUSTINE BATEMAN" ], [ "THE BOOST", "release_year", "1988" ], [ "THE BOOST", "starred_actors", "JAMES WOODS" ], [ "TRUE BELIEVER", "has_tags", "JAMES WOODS" ], [ "TRUE BELIEVER", "release_year", "1989" ], [ "TRUE BELIEVER", "starred_actors", "JAMES WOODS" ], [ "WOMEN ON THE VERGE OF A NERVOUS BREAKDOWN", "has_tags", "SPANISH" ], [ "WOMEN ON THE VERGE OF A NERVOUS BREAKDOWN", "in_language", "SPANISH" ], [ "WOMEN ON THE VERGE OF A NERVOUS BREAKDOWN", "release_year", "1988" ], [ "WORTH WINNING", "release_year", "1989" ], [ "WORTH WINNING", "starred_actors", "LESLEY ANN WARREN" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 26257, 1994 28306, 71 FRAGMENTS OF A CHRONOLOGY OF CHANCE 14242, A FRIEND OF MINE 1668, ASTERIX CONQUERS AMERICA 12242, BACKBEAT 30715, FELIDAE 24028, FLOUNDERING 6480, GERMAN 35431, GRACE IS GONE 23462, JOHN CUSACK 15750, S.F.W. 18758, STEPHEN DORFF 13917, THE ROAD TO WELLVILLE src, edge_attr, dst 28306, in_language, 6480 28306, release_year, 26257 14242, in_language, 6480 1668, in_language, 6480 1668, release_year, 26257 12242, in_language, 6480 12242, release_year, 26257 12242, starred_actors, 18758 30715, in_language, 6480 30715, release_year, 26257 24028, release_year, 26257 24028, starred_actors, 23462 24028, written_by, 23462 35431, has_tags, 23462 35431, starred_actors, 23462 15750, release_year, 26257 15750, starred_actors, 18758 13917, release_year, 26257 13917, starred_actors, 23462 Question: In what context are A FRIEND OF MINE, GRACE IS GONE, and S.F.W. connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "A FRIEND OF MINE", "GRACE IS GONE", "S.F.W." ], "valid_edges": [ [ "71 FRAGMENTS OF A CHRONOLOGY OF CHANCE", "in_language", "GERMAN" ], [ "71 FRAGMENTS OF A CHRONOLOGY OF CHANCE", "release_year", "1994" ], [ "A FRIEND OF MINE", "in_language", "GERMAN" ], [ "ASTERIX CONQUERS AMERICA", "in_language", "GERMAN" ], [ "ASTERIX CONQUERS AMERICA", "release_year", "1994" ], [ "BACKBEAT", "in_language", "GERMAN" ], [ "BACKBEAT", "release_year", "1994" ], [ "BACKBEAT", "starred_actors", "STEPHEN DORFF" ], [ "FELIDAE", "in_language", "GERMAN" ], [ "FELIDAE", "release_year", "1994" ], [ "FLOUNDERING", "release_year", "1994" ], [ "FLOUNDERING", "starred_actors", "JOHN CUSACK" ], [ "FLOUNDERING", "written_by", "JOHN CUSACK" ], [ "GRACE IS GONE", "has_tags", "JOHN CUSACK" ], [ "GRACE IS GONE", "starred_actors", "JOHN CUSACK" ], [ "S.F.W.", "release_year", "1994" ], [ "S.F.W.", "starred_actors", "STEPHEN DORFF" ], [ "THE ROAD TO WELLVILLE", "release_year", "1994" ], [ "THE ROAD TO WELLVILLE", "starred_actors", "JOHN CUSACK" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 14004, 1955 6718, A FAREWELL TO ARMS 12649, A LITTLE ROMANCE 24319, A PASSAGE TO INDIA 37987, A ROOM WITH A VIEW 10341, ADVENTURES OF DON JUAN 36358, ALEC GUINNESS 3700, ALEXANDER MACKENDRICK 15918, ALL THAT HEAVEN ALLOWS 25314, ARTHUR LAURENTS 17570, BAD DAY AT BLACK ROCK 10045, BD-R 15771, BENGAZI 16400, BILLY ROSE'S JUMBO 7812, BONJOUR TRISTESSE 11547, BROKEBACK MOUNTAIN 7004, CECIL PARKER 30463, COMEDY 25607, CREATURE WITH THE ATOM BRAIN 39336, DAVID LEAN 25805, DOCTOR ZHIVAGO 36212, DRAMA 15533, EALING STUDIOS 24883, EAST OF EDEN 20693, GONE WITH THE WIND 4709, GREAT EXPECTATIONS 12244, GUYS AND DOLLS 19871, GYPSY 20400, HOBSON'S CHOICE 33504, IT CAME FROM BENEATH THE SEA 7539, IVANHOE 1064, LAND OF THE PHARAOHS 30029, LAWRENCE OF ARABIA 13376, LOVE IS A MANY-SPLENDORED THING 2686, MARTY 36083, MIRANDA 5237, MURPHY'S ROMANCE 17576, MY BRILLIANT CAREER 5338, NINOTCHKA 18184, OKLAHOMA! 15644, OLIVER TWIST 439, PICNIC 7960, QUALITY STREET 19383, REBEL WITHOUT A CAUSE 15938, RIFIFI 8379, ROMANCE 2738, ROMEO AND JULIET 17096, RUDY WURLITZER 30447, RYAN'S DAUGHTER 36843, SMILES OF A SUMMER NIGHT 31624, SPELLBOUND 23429, SUMMERTIME 18902, TESS 36857, THE BRIDGE ON THE RIVER KWAI 23978, THE COBWEB 10812, THE CONSTANT NYMPH 30311, THE COURT JESTER 30690, THE LADYKILLERS 4182, THE MAN IN THE IRON MASK 19329, THE MAN IN THE WHITE SUIT 404, THE MAN WITH THE GOLDEN ARM 27599, THE NIGHT OF THE HUNTER 35764, THE PASSIONATE FRIENDS 18274, THE ROSE TATTOO 25574, THE SEVEN YEAR ITCH 32709, THE WAY WE WERE 14471, THIS HAPPY BREED 24789, TO HAVE AND HAVE NOT 24117, VOYAGER 36233, WHERE THE BOYS ARE 15674, WHITE SHADOWS IN THE SOUTH SEAS 27708, WUTHERING HEIGHTS src, edge_attr, dst 6718, has_genre, 8379 6718, has_tags, 10045 12649, has_genre, 8379 12649, has_tags, 10045 24319, directed_by, 39336 24319, has_tags, 10045 24319, has_tags, 39336 24319, written_by, 39336 37987, has_genre, 8379 37987, has_tags, 10045 10341, has_genre, 8379 10341, has_tags, 10045 15918, has_genre, 8379 15918, has_tags, 10045 15918, release_year, 14004 17570, has_tags, 10045 17570, release_year, 14004 15771, has_tags, 10045 15771, release_year, 14004 16400, has_genre, 8379 16400, has_tags, 10045 7812, has_tags, 10045 7812, written_by, 25314 11547, has_genre, 8379 11547, has_tags, 10045 11547, has_tags, 8379 25607, has_tags, 10045 25607, release_year, 14004 25805, directed_by, 39336 25805, has_genre, 8379 25805, has_tags, 39336 24883, has_tags, 10045 24883, release_year, 14004 20693, has_genre, 8379 20693, has_tags, 10045 20693, has_tags, 8379 4709, directed_by, 39336 4709, has_tags, 10045 4709, has_tags, 39336 4709, written_by, 39336 12244, has_tags, 10045 12244, release_year, 14004 19871, has_tags, 10045 19871, written_by, 25314 20400, directed_by, 39336 20400, has_tags, 10045 20400, has_tags, 39336 20400, written_by, 39336 33504, has_tags, 10045 33504, release_year, 14004 7539, has_genre, 8379 7539, has_tags, 10045 1064, has_tags, 10045 1064, release_year, 14004 30029, directed_by, 39336 30029, has_tags, 10045 30029, has_tags, 39336 13376, has_genre, 8379 13376, release_year, 14004 2686, has_tags, 10045 2686, release_year, 14004 36083, has_genre, 8379 36083, has_tags, 10045 5237, has_genre, 8379 5237, has_tags, 10045 17576, has_genre, 8379 17576, has_tags, 10045 5338, has_genre, 8379 5338, has_tags, 10045 18184, has_genre, 8379 18184, has_tags, 10045 18184, release_year, 14004 15644, directed_by, 39336 15644, has_tags, 10045 15644, has_tags, 39336 15644, written_by, 39336 439, has_tags, 10045 439, release_year, 14004 7960, has_genre, 8379 7960, has_tags, 10045 19383, has_tags, 10045 19383, release_year, 14004 15938, has_tags, 10045 15938, release_year, 14004 8379, has_genre, 36212 2738, has_genre, 8379 2738, has_tags, 10045 2738, has_tags, 8379 30447, directed_by, 39336 30447, has_tags, 10045 30447, has_tags, 39336 36843, has_tags, 10045 36843, release_year, 14004 31624, has_genre, 8379 31624, has_tags, 10045 23429, directed_by, 39336 23429, has_genre, 8379 23429, has_tags, 10045 23429, has_tags, 39336 23429, has_tags, 8379 23429, release_year, 14004 23429, written_by, 25314 23429, written_by, 39336 18902, has_genre, 8379 18902, has_tags, 10045 36857, directed_by, 39336 36857, has_tags, 10045 36857, has_tags, 39336 23978, has_tags, 10045 23978, release_year, 14004 10812, has_genre, 8379 10812, has_tags, 10045 30311, has_tags, 10045 30311, release_year, 14004 30690, directed_by, 3700 30690, has_genre, 30463 30690, has_tags, 36358 30690, has_tags, 3700 30690, has_tags, 10045 30690, has_tags, 30463 30690, has_tags, 15533 30690, release_year, 14004 30690, starred_actors, 36358 30690, starred_actors, 7004 4182, has_genre, 8379 4182, has_tags, 10045 19329, directed_by, 3700 19329, has_genre, 30463 19329, has_tags, 36358 19329, has_tags, 3700 19329, has_tags, 15533 19329, starred_actors, 36358 19329, starred_actors, 7004 19329, written_by, 3700 404, has_tags, 10045 404, release_year, 14004 27599, has_tags, 10045 27599, release_year, 14004 35764, directed_by, 39336 35764, has_tags, 10045 35764, has_tags, 39336 35764, written_by, 39336 18274, has_tags, 10045 18274, release_year, 14004 25574, has_tags, 10045 25574, release_year, 14004 32709, has_tags, 10045 32709, written_by, 25314 14471, directed_by, 39336 14471, has_tags, 10045 14471, has_tags, 39336 14471, written_by, 39336 24789, has_genre, 8379 24789, has_tags, 10045 24117, has_genre, 36212 24117, written_by, 17096 36233, has_genre, 8379 36233, has_tags, 10045 15674, has_genre, 8379 15674, has_tags, 10045 27708, has_genre, 8379 27708, has_tags, 10045 Question: In what context are CECIL PARKER, RUDY WURLITZER, and SUMMERTIME connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "CECIL PARKER", "RUDY WURLITZER", "SUMMERTIME" ], "valid_edges": [ [ "A FAREWELL TO ARMS", "has_genre", "ROMANCE" ], [ "A FAREWELL TO ARMS", "has_tags", "BD-R" ], [ "A LITTLE ROMANCE", "has_genre", "ROMANCE" ], [ "A LITTLE ROMANCE", "has_tags", "BD-R" ], [ "A PASSAGE TO INDIA", "directed_by", "DAVID LEAN" ], [ "A PASSAGE TO INDIA", "has_tags", "BD-R" ], [ "A PASSAGE TO INDIA", "has_tags", "DAVID LEAN" ], [ "A PASSAGE TO INDIA", "written_by", "DAVID LEAN" ], [ "A ROOM WITH A VIEW", "has_genre", "ROMANCE" ], [ "A ROOM WITH A VIEW", "has_tags", "BD-R" ], [ "ADVENTURES OF DON JUAN", "has_genre", "ROMANCE" ], [ "ADVENTURES OF DON JUAN", "has_tags", "BD-R" ], [ "ALL THAT HEAVEN ALLOWS", "has_genre", "ROMANCE" ], [ "ALL THAT HEAVEN ALLOWS", "has_tags", "BD-R" ], [ "ALL THAT HEAVEN ALLOWS", "release_year", "1955" ], [ "BAD DAY AT BLACK ROCK", "has_tags", "BD-R" ], [ "BAD DAY AT BLACK ROCK", "release_year", "1955" ], [ "BENGAZI", "has_tags", "BD-R" ], [ "BENGAZI", "release_year", "1955" ], [ "BILLY ROSE'S JUMBO", "has_genre", "ROMANCE" ], [ "BILLY ROSE'S JUMBO", "has_tags", "BD-R" ], [ "BONJOUR TRISTESSE", "has_tags", "BD-R" ], [ "BONJOUR TRISTESSE", "written_by", "ARTHUR LAURENTS" ], [ "BROKEBACK MOUNTAIN", "has_genre", "ROMANCE" ], [ "BROKEBACK MOUNTAIN", "has_tags", "BD-R" ], [ "BROKEBACK MOUNTAIN", "has_tags", "ROMANCE" ], [ "CREATURE WITH THE ATOM BRAIN", "has_tags", "BD-R" ], [ "CREATURE WITH THE ATOM BRAIN", "release_year", "1955" ], [ "DOCTOR ZHIVAGO", "directed_by", "DAVID LEAN" ], [ "DOCTOR ZHIVAGO", "has_genre", "ROMANCE" ], [ "DOCTOR ZHIVAGO", "has_tags", "DAVID LEAN" ], [ "EAST OF EDEN", "has_tags", "BD-R" ], [ "EAST OF EDEN", "release_year", "1955" ], [ "GONE WITH THE WIND", "has_genre", "ROMANCE" ], [ "GONE WITH THE WIND", "has_tags", "BD-R" ], [ "GONE WITH THE WIND", "has_tags", "ROMANCE" ], [ "GREAT EXPECTATIONS", "directed_by", "DAVID LEAN" ], [ "GREAT EXPECTATIONS", "has_tags", "BD-R" ], [ "GREAT EXPECTATIONS", "has_tags", "DAVID LEAN" ], [ "GREAT EXPECTATIONS", "written_by", "DAVID LEAN" ], [ "GUYS AND DOLLS", "has_tags", "BD-R" ], [ "GUYS AND DOLLS", "release_year", "1955" ], [ "GYPSY", "has_tags", "BD-R" ], [ "GYPSY", "written_by", "ARTHUR LAURENTS" ], [ "HOBSON'S CHOICE", "directed_by", "DAVID LEAN" ], [ "HOBSON'S CHOICE", "has_tags", "BD-R" ], [ "HOBSON'S CHOICE", "has_tags", "DAVID LEAN" ], [ "HOBSON'S CHOICE", "written_by", "DAVID LEAN" ], [ "IT CAME FROM BENEATH THE SEA", "has_tags", "BD-R" ], [ "IT CAME FROM BENEATH THE SEA", "release_year", "1955" ], [ "IVANHOE", "has_genre", "ROMANCE" ], [ "IVANHOE", "has_tags", "BD-R" ], [ "LAND OF THE PHARAOHS", "has_tags", "BD-R" ], [ "LAND OF THE PHARAOHS", "release_year", "1955" ], [ "LAWRENCE OF ARABIA", "directed_by", "DAVID LEAN" ], [ "LAWRENCE OF ARABIA", "has_tags", "BD-R" ], [ "LAWRENCE OF ARABIA", "has_tags", "DAVID LEAN" ], [ "LOVE IS A MANY-SPLENDORED THING", "has_genre", "ROMANCE" ], [ "LOVE IS A MANY-SPLENDORED THING", "release_year", "1955" ], [ "MARTY", "has_tags", "BD-R" ], [ "MARTY", "release_year", "1955" ], [ "MIRANDA", "has_genre", "ROMANCE" ], [ "MIRANDA", "has_tags", "BD-R" ], [ "MURPHY'S ROMANCE", "has_genre", "ROMANCE" ], [ "MURPHY'S ROMANCE", "has_tags", "BD-R" ], [ "MY BRILLIANT CAREER", "has_genre", "ROMANCE" ], [ "MY BRILLIANT CAREER", "has_tags", "BD-R" ], [ "NINOTCHKA", "has_genre", "ROMANCE" ], [ "NINOTCHKA", "has_tags", "BD-R" ], [ "OKLAHOMA!", "has_genre", "ROMANCE" ], [ "OKLAHOMA!", "has_tags", "BD-R" ], [ "OKLAHOMA!", "release_year", "1955" ], [ "OLIVER TWIST", "directed_by", "DAVID LEAN" ], [ "OLIVER TWIST", "has_tags", "BD-R" ], [ "OLIVER TWIST", "has_tags", "DAVID LEAN" ], [ "OLIVER TWIST", "written_by", "DAVID LEAN" ], [ "PICNIC", "has_tags", "BD-R" ], [ "PICNIC", "release_year", "1955" ], [ "QUALITY STREET", "has_genre", "ROMANCE" ], [ "QUALITY STREET", "has_tags", "BD-R" ], [ "REBEL WITHOUT A CAUSE", "has_tags", "BD-R" ], [ "REBEL WITHOUT A CAUSE", "release_year", "1955" ], [ "RIFIFI", "has_tags", "BD-R" ], [ "RIFIFI", "release_year", "1955" ], [ "ROMANCE", "has_genre", "DRAMA" ], [ "ROMEO AND JULIET", "has_genre", "ROMANCE" ], [ "ROMEO AND JULIET", "has_tags", "BD-R" ], [ "ROMEO AND JULIET", "has_tags", "ROMANCE" ], [ "RYAN'S DAUGHTER", "directed_by", "DAVID LEAN" ], [ "RYAN'S DAUGHTER", "has_tags", "BD-R" ], [ "RYAN'S DAUGHTER", "has_tags", "DAVID LEAN" ], [ "SMILES OF A SUMMER NIGHT", "has_tags", "BD-R" ], [ "SMILES OF A SUMMER NIGHT", "release_year", "1955" ], [ "SPELLBOUND", "has_genre", "ROMANCE" ], [ "SPELLBOUND", "has_tags", "BD-R" ], [ "SUMMERTIME", "directed_by", "DAVID LEAN" ], [ "SUMMERTIME", "has_genre", "ROMANCE" ], [ "SUMMERTIME", "has_tags", "BD-R" ], [ "SUMMERTIME", "has_tags", "DAVID LEAN" ], [ "SUMMERTIME", "has_tags", "ROMANCE" ], [ "SUMMERTIME", "release_year", "1955" ], [ "SUMMERTIME", "written_by", "ARTHUR LAURENTS" ], [ "SUMMERTIME", "written_by", "DAVID LEAN" ], [ "TESS", "has_genre", "ROMANCE" ], [ "TESS", "has_tags", "BD-R" ], [ "THE BRIDGE ON THE RIVER KWAI", "directed_by", "DAVID LEAN" ], [ "THE BRIDGE ON THE RIVER KWAI", "has_tags", "BD-R" ], [ "THE BRIDGE ON THE RIVER KWAI", "has_tags", "DAVID LEAN" ], [ "THE COBWEB", "has_tags", "BD-R" ], [ "THE COBWEB", "release_year", "1955" ], [ "THE CONSTANT NYMPH", "has_genre", "ROMANCE" ], [ "THE CONSTANT NYMPH", "has_tags", "BD-R" ], [ "THE COURT JESTER", "has_tags", "BD-R" ], [ "THE COURT JESTER", "release_year", "1955" ], [ "THE LADYKILLERS", "directed_by", "ALEXANDER MACKENDRICK" ], [ "THE LADYKILLERS", "has_genre", "COMEDY" ], [ "THE LADYKILLERS", "has_tags", "ALEC GUINNESS" ], [ "THE LADYKILLERS", "has_tags", "ALEXANDER MACKENDRICK" ], [ "THE LADYKILLERS", "has_tags", "BD-R" ], [ "THE LADYKILLERS", "has_tags", "COMEDY" ], [ "THE LADYKILLERS", "has_tags", "EALING STUDIOS" ], [ "THE LADYKILLERS", "release_year", "1955" ], [ "THE LADYKILLERS", "starred_actors", "ALEC GUINNESS" ], [ "THE LADYKILLERS", "starred_actors", "CECIL PARKER" ], [ "THE MAN IN THE IRON MASK", "has_genre", "ROMANCE" ], [ "THE MAN IN THE IRON MASK", "has_tags", "BD-R" ], [ "THE MAN IN THE WHITE SUIT", "directed_by", "ALEXANDER MACKENDRICK" ], [ "THE MAN IN THE WHITE SUIT", "has_genre", "COMEDY" ], [ "THE MAN IN THE WHITE SUIT", "has_tags", "ALEC GUINNESS" ], [ "THE MAN IN THE WHITE SUIT", "has_tags", "ALEXANDER MACKENDRICK" ], [ "THE MAN IN THE WHITE SUIT", "has_tags", "EALING STUDIOS" ], [ "THE MAN IN THE WHITE SUIT", "starred_actors", "ALEC GUINNESS" ], [ "THE MAN IN THE WHITE SUIT", "starred_actors", "CECIL PARKER" ], [ "THE MAN IN THE WHITE SUIT", "written_by", "ALEXANDER MACKENDRICK" ], [ "THE MAN WITH THE GOLDEN ARM", "has_tags", "BD-R" ], [ "THE MAN WITH THE GOLDEN ARM", "release_year", "1955" ], [ "THE NIGHT OF THE HUNTER", "has_tags", "BD-R" ], [ "THE NIGHT OF THE HUNTER", "release_year", "1955" ], [ "THE PASSIONATE FRIENDS", "directed_by", "DAVID LEAN" ], [ "THE PASSIONATE FRIENDS", "has_tags", "BD-R" ], [ "THE PASSIONATE FRIENDS", "has_tags", "DAVID LEAN" ], [ "THE PASSIONATE FRIENDS", "written_by", "DAVID LEAN" ], [ "THE ROSE TATTOO", "has_tags", "BD-R" ], [ "THE ROSE TATTOO", "release_year", "1955" ], [ "THE SEVEN YEAR ITCH", "has_tags", "BD-R" ], [ "THE SEVEN YEAR ITCH", "release_year", "1955" ], [ "THE WAY WE WERE", "has_tags", "BD-R" ], [ "THE WAY WE WERE", "written_by", "ARTHUR LAURENTS" ], [ "THIS HAPPY BREED", "directed_by", "DAVID LEAN" ], [ "THIS HAPPY BREED", "has_tags", "BD-R" ], [ "THIS HAPPY BREED", "has_tags", "DAVID LEAN" ], [ "THIS HAPPY BREED", "written_by", "DAVID LEAN" ], [ "TO HAVE AND HAVE NOT", "has_genre", "ROMANCE" ], [ "TO HAVE AND HAVE NOT", "has_tags", "BD-R" ], [ "VOYAGER", "has_genre", "DRAMA" ], [ "VOYAGER", "written_by", "RUDY WURLITZER" ], [ "WHERE THE BOYS ARE", "has_genre", "ROMANCE" ], [ "WHERE THE BOYS ARE", "has_tags", "BD-R" ], [ "WHITE SHADOWS IN THE SOUTH SEAS", "has_genre", "ROMANCE" ], [ "WHITE SHADOWS IN THE SOUTH SEAS", "has_tags", "BD-R" ], [ "WUTHERING HEIGHTS", "has_genre", "ROMANCE" ], [ "WUTHERING HEIGHTS", "has_tags", "BD-R" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 12998, 1 34136, 12 O'CLOCK BOYS 14259, 1997 26762, 2008 1421, 2013 20458, AFTER TILLER 38351, AFTERGLOW 38638, AN APOLOGY TO ELEPHANTS 39137, AS GOOD AS IT GETS 23223, BELLE 29432, BLACKFISH 36248, BURDEN OF DREAMS 28990, CITIZEN KOCH 13734, CITY OF EMBER 9203, CUTIE AND THE BOXER 37423, DIRTY WARS 12841, DOCUMENTARY 8427, DOWNLOADED 9257, EAST SIDE STORY 15436, EPIC 16328, EVE'S BAYOU 3229, FACING ALI 19376, FINDING VIVIAN MAIER 17215, FIRE IN THE BLOOD 35533, GENERATION IRON 11565, GOOD 26282, GOOD HAIR 23477, HAWKING 12545, HOW TO LIVE FOREVER 2722, INSIDE LLEWYN DAVIS 14877, IS THE MAN WHO IS TALL HAPPY? 11781, JEANNE DUPRAU 13157, LEVEL FIVE 16179, LIFE OF A KING 8292, LINSANITY 36735, LITTLE DIETER NEEDS TO FLY 995, MIDNIGHT IN THE GARDEN OF GOOD AND EVIL 1224, MIRAGE MEN 27936, MONSTERS UNIVERSITY 29944, MY PRAIRIE HOME 19162, PANDORA'S PROMISE 827, RACING DREAMS 4123, RED OBSESSION 27935, ROSEANNA'S GRAVE 24676, SEDUCED AND ABANDONED 33332, SHED NO TEARS 39567, SOUND CITY 30357, STOKER 28141, TALES FROM THE ORGAN TRADE 10948, THE ARMSTRONG LIE 33667, THE CONGRESS 31055, THE CRASH REEL 33043, THE LONG WAY HOME 15128, THE MISSING PICTURE 23919, THE RETURN TO HOMS 15570, THE UNBELIEVERS 38742, THE UNKNOWN KNOWN 18382, TIM'S VERMEER 28819, UNDER THE SKIN 7558, WE ARE THE BEST! 19824, WHEN JEWS WERE FUNNY 38727, WHO THE HELL IS JULIETTE? 20105, WORLD WAR Z src, edge_attr, dst 12998, has_genre, 12841 12998, release_year, 1421 34136, has_genre, 12841 34136, release_year, 1421 20458, has_genre, 12841 20458, release_year, 1421 38351, has_imdb_rating, 11565 38351, release_year, 14259 38638, has_genre, 12841 38638, release_year, 1421 39137, has_imdb_rating, 11565 39137, release_year, 14259 23223, has_imdb_rating, 11565 23223, release_year, 1421 29432, has_genre, 12841 29432, release_year, 1421 36248, has_genre, 12841 36248, has_imdb_rating, 11565 28990, has_genre, 12841 28990, release_year, 1421 13734, release_year, 26762 13734, written_by, 11781 9203, has_genre, 12841 9203, release_year, 1421 37423, has_genre, 12841 37423, release_year, 1421 8427, has_genre, 12841 8427, release_year, 1421 9257, has_genre, 12841 9257, release_year, 14259 15436, has_imdb_rating, 11565 15436, release_year, 1421 16328, has_imdb_rating, 11565 16328, release_year, 14259 3229, has_genre, 12841 3229, has_imdb_rating, 11565 19376, has_genre, 12841 19376, release_year, 1421 17215, has_genre, 12841 17215, release_year, 1421 35533, has_genre, 12841 35533, release_year, 1421 11565, has_imdb_rating, 11565 11565, release_year, 26762 26282, has_genre, 12841 26282, has_imdb_rating, 11565 26282, has_tags, 12841 23477, has_genre, 12841 23477, release_year, 1421 12545, has_genre, 12841 12545, has_imdb_rating, 11565 2722, has_imdb_rating, 11565 2722, release_year, 1421 14877, has_genre, 12841 14877, has_tags, 12841 14877, release_year, 1421 13157, has_genre, 12841 13157, release_year, 14259 16179, has_imdb_rating, 11565 16179, release_year, 1421 8292, has_genre, 12841 8292, release_year, 1421 36735, has_genre, 12841 36735, release_year, 14259 995, has_imdb_rating, 11565 995, release_year, 14259 1224, has_genre, 12841 1224, release_year, 1421 27936, has_imdb_rating, 11565 27936, release_year, 1421 29944, has_genre, 12841 29944, release_year, 1421 19162, has_genre, 12841 19162, release_year, 1421 827, has_genre, 12841 827, has_imdb_rating, 11565 4123, has_genre, 12841 4123, release_year, 1421 27935, has_imdb_rating, 11565 27935, release_year, 14259 24676, has_genre, 12841 24676, release_year, 1421 33332, has_imdb_rating, 11565 33332, release_year, 1421 39567, has_genre, 12841 39567, release_year, 1421 30357, has_imdb_rating, 11565 30357, release_year, 1421 28141, has_genre, 12841 28141, release_year, 1421 10948, has_genre, 12841 10948, release_year, 1421 33667, has_genre, 12841 33667, release_year, 1421 31055, has_genre, 12841 31055, release_year, 1421 33043, has_genre, 12841 33043, release_year, 14259 15128, has_genre, 12841 15128, release_year, 1421 23919, has_genre, 12841 23919, release_year, 1421 15570, has_genre, 12841 15570, release_year, 1421 38742, has_genre, 12841 38742, release_year, 1421 18382, has_genre, 12841 18382, has_tags, 12841 18382, release_year, 1421 28819, release_year, 14259 28819, release_year, 1421 7558, has_imdb_rating, 11565 7558, release_year, 1421 19824, has_genre, 12841 19824, release_year, 1421 38727, has_genre, 12841 38727, release_year, 14259 20105, has_imdb_rating, 11565 20105, release_year, 1421 Question: In what context are EVE'S BAYOU, JEANNE DUPRAU, and PANDORA'S PROMISE connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "EVE'S BAYOU", "JEANNE DUPRAU", "PANDORA'S PROMISE" ], "valid_edges": [ [ "1", "has_genre", "DOCUMENTARY" ], [ "1", "release_year", "2013" ], [ "12 O'CLOCK BOYS", "has_genre", "DOCUMENTARY" ], [ "12 O'CLOCK BOYS", "release_year", "2013" ], [ "AFTER TILLER", "has_genre", "DOCUMENTARY" ], [ "AFTER TILLER", "release_year", "2013" ], [ "AFTERGLOW", "has_imdb_rating", "GOOD" ], [ "AFTERGLOW", "release_year", "1997" ], [ "AN APOLOGY TO ELEPHANTS", "has_genre", "DOCUMENTARY" ], [ "AN APOLOGY TO ELEPHANTS", "release_year", "2013" ], [ "AS GOOD AS IT GETS", "has_imdb_rating", "GOOD" ], [ "AS GOOD AS IT GETS", "release_year", "1997" ], [ "BELLE", "has_imdb_rating", "GOOD" ], [ "BELLE", "release_year", "2013" ], [ "BLACKFISH", "has_genre", "DOCUMENTARY" ], [ "BLACKFISH", "release_year", "2013" ], [ "BURDEN OF DREAMS", "has_genre", "DOCUMENTARY" ], [ "BURDEN OF DREAMS", "has_imdb_rating", "GOOD" ], [ "CITIZEN KOCH", "has_genre", "DOCUMENTARY" ], [ "CITIZEN KOCH", "release_year", "2013" ], [ "CITY OF EMBER", "release_year", "2008" ], [ "CITY OF EMBER", "written_by", "JEANNE DUPRAU" ], [ "CUTIE AND THE BOXER", "has_genre", "DOCUMENTARY" ], [ "CUTIE AND THE BOXER", "release_year", "2013" ], [ "DIRTY WARS", "has_genre", "DOCUMENTARY" ], [ "DIRTY WARS", "release_year", "2013" ], [ "DOWNLOADED", "has_genre", "DOCUMENTARY" ], [ "DOWNLOADED", "release_year", "2013" ], [ "EAST SIDE STORY", "has_genre", "DOCUMENTARY" ], [ "EAST SIDE STORY", "release_year", "1997" ], [ "EPIC", "has_imdb_rating", "GOOD" ], [ "EPIC", "release_year", "2013" ], [ "EVE'S BAYOU", "has_imdb_rating", "GOOD" ], [ "EVE'S BAYOU", "release_year", "1997" ], [ "FACING ALI", "has_genre", "DOCUMENTARY" ], [ "FACING ALI", "has_imdb_rating", "GOOD" ], [ "FINDING VIVIAN MAIER", "has_genre", "DOCUMENTARY" ], [ "FINDING VIVIAN MAIER", "release_year", "2013" ], [ "FIRE IN THE BLOOD", "has_genre", "DOCUMENTARY" ], [ "FIRE IN THE BLOOD", "release_year", "2013" ], [ "GENERATION IRON", "has_genre", "DOCUMENTARY" ], [ "GENERATION IRON", "release_year", "2013" ], [ "GOOD", "has_imdb_rating", "GOOD" ], [ "GOOD", "release_year", "2008" ], [ "GOOD HAIR", "has_genre", "DOCUMENTARY" ], [ "GOOD HAIR", "has_imdb_rating", "GOOD" ], [ "GOOD HAIR", "has_tags", "DOCUMENTARY" ], [ "HAWKING", "has_genre", "DOCUMENTARY" ], [ "HAWKING", "release_year", "2013" ], [ "HOW TO LIVE FOREVER", "has_genre", "DOCUMENTARY" ], [ "HOW TO LIVE FOREVER", "has_imdb_rating", "GOOD" ], [ "INSIDE LLEWYN DAVIS", "has_imdb_rating", "GOOD" ], [ "INSIDE LLEWYN DAVIS", "release_year", "2013" ], [ "IS THE MAN WHO IS TALL HAPPY?", "has_genre", "DOCUMENTARY" ], [ "IS THE MAN WHO IS TALL HAPPY?", "has_tags", "DOCUMENTARY" ], [ "IS THE MAN WHO IS TALL HAPPY?", "release_year", "2013" ], [ "LEVEL FIVE", "has_genre", "DOCUMENTARY" ], [ "LEVEL FIVE", "release_year", "1997" ], [ "LIFE OF A KING", "has_imdb_rating", "GOOD" ], [ "LIFE OF A KING", "release_year", "2013" ], [ "LINSANITY", "has_genre", "DOCUMENTARY" ], [ "LINSANITY", "release_year", "2013" ], [ "LITTLE DIETER NEEDS TO FLY", "has_genre", "DOCUMENTARY" ], [ "LITTLE DIETER NEEDS TO FLY", "release_year", "1997" ], [ "MIDNIGHT IN THE GARDEN OF GOOD AND EVIL", "has_imdb_rating", "GOOD" ], [ "MIDNIGHT IN THE GARDEN OF GOOD AND EVIL", "release_year", "1997" ], [ "MIRAGE MEN", "has_genre", "DOCUMENTARY" ], [ "MIRAGE MEN", "release_year", "2013" ], [ "MONSTERS UNIVERSITY", "has_imdb_rating", "GOOD" ], [ "MONSTERS UNIVERSITY", "release_year", "2013" ], [ "MY PRAIRIE HOME", "has_genre", "DOCUMENTARY" ], [ "MY PRAIRIE HOME", "release_year", "2013" ], [ "PANDORA'S PROMISE", "has_genre", "DOCUMENTARY" ], [ "PANDORA'S PROMISE", "release_year", "2013" ], [ "RACING DREAMS", "has_genre", "DOCUMENTARY" ], [ "RACING DREAMS", "has_imdb_rating", "GOOD" ], [ "RED OBSESSION", "has_genre", "DOCUMENTARY" ], [ "RED OBSESSION", "release_year", "2013" ], [ "ROSEANNA'S GRAVE", "has_imdb_rating", "GOOD" ], [ "ROSEANNA'S GRAVE", "release_year", "1997" ], [ "SEDUCED AND ABANDONED", "has_genre", "DOCUMENTARY" ], [ "SEDUCED AND ABANDONED", "release_year", "2013" ], [ "SHED NO TEARS", "has_imdb_rating", "GOOD" ], [ "SHED NO TEARS", "release_year", "2013" ], [ "SOUND CITY", "has_genre", "DOCUMENTARY" ], [ "SOUND CITY", "release_year", "2013" ], [ "STOKER", "has_imdb_rating", "GOOD" ], [ "STOKER", "release_year", "2013" ], [ "TALES FROM THE ORGAN TRADE", "has_genre", "DOCUMENTARY" ], [ "TALES FROM THE ORGAN TRADE", "release_year", "2013" ], [ "THE ARMSTRONG LIE", "has_genre", "DOCUMENTARY" ], [ "THE ARMSTRONG LIE", "release_year", "2013" ], [ "THE CONGRESS", "has_genre", "DOCUMENTARY" ], [ "THE CONGRESS", "release_year", "2013" ], [ "THE CRASH REEL", "has_genre", "DOCUMENTARY" ], [ "THE CRASH REEL", "release_year", "2013" ], [ "THE LONG WAY HOME", "has_genre", "DOCUMENTARY" ], [ "THE LONG WAY HOME", "release_year", "1997" ], [ "THE MISSING PICTURE", "has_genre", "DOCUMENTARY" ], [ "THE MISSING PICTURE", "release_year", "2013" ], [ "THE RETURN TO HOMS", "has_genre", "DOCUMENTARY" ], [ "THE RETURN TO HOMS", "release_year", "2013" ], [ "THE UNBELIEVERS", "has_genre", "DOCUMENTARY" ], [ "THE UNBELIEVERS", "release_year", "2013" ], [ "THE UNKNOWN KNOWN", "has_genre", "DOCUMENTARY" ], [ "THE UNKNOWN KNOWN", "release_year", "2013" ], [ "TIM'S VERMEER", "has_genre", "DOCUMENTARY" ], [ "TIM'S VERMEER", "has_tags", "DOCUMENTARY" ], [ "TIM'S VERMEER", "release_year", "2013" ], [ "UNDER THE SKIN", "release_year", "1997" ], [ "UNDER THE SKIN", "release_year", "2013" ], [ "WE ARE THE BEST!", "has_imdb_rating", "GOOD" ], [ "WE ARE THE BEST!", "release_year", "2013" ], [ "WHEN JEWS WERE FUNNY", "has_genre", "DOCUMENTARY" ], [ "WHEN JEWS WERE FUNNY", "release_year", "2013" ], [ "WHO THE HELL IS JULIETTE?", "has_genre", "DOCUMENTARY" ], [ "WHO THE HELL IS JULIETTE?", "release_year", "1997" ], [ "WORLD WAR Z", "has_imdb_rating", "GOOD" ], [ "WORLD WAR Z", "release_year", "2013" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 13464, 10 THINGS I HATE ABOUT YOU 8486, 1999 5620, 200 CIGARETTES 6776, 2000 30146, A CHRISTMAS CAROL 29036, A MIDSUMMER NIGHT'S DREAM 27672, A ROOM FOR ROMEO BRASS 35603, AGNES BROWNE 21398, AMERICAN PIE 23409, AN IDEAL HUSBAND 8780, ANALYZE THIS 15458, BABY GENIUSES 32415, BEAUTIFUL PEOPLE 26205, BEING JOHN MALKOVICH 24555, BETTER THAN CHOCOLATE 32602, BIG DADDY 18375, BLAST FROM THE PAST 16932, BLUE STREAK 21121, BOWFINGER 5826, BREAKFAST OF CHAMPIONS 27223, BUT FOREVER IN MY MIND 36824, BUT I'M A CHEERLEADER 3291, CATFISH IN BLACK BEAN SAUCE 30463, COMEDY 640, COOKIE'S FORTUNE 32140, CRAZY IN ALABAMA 36492, DIAMONDS 637, DICK 17219, DO NOT DISTURB 21407, DOGMA 18908, DROP DEAD GORGEOUS 8341, DUDLEY DO-RIGHT 7568, EAST IS EAST 26193, ELECTION 17072, FAREWELL, HOME SWEET HOME 25625, FIRST DAUGHTER 34555, FLAWLESS 17478, FOOLISH 34820, FORCES OF NATURE 6623, GO 14426, GORGEOUS 11817, GUEST HOUSE PARADISO 12650, HAPPY, TEXAS 21485, HELD UP 11900, HIGH SCHOOL HIGH 29729, HIT AND RUNWAY 5870, HORROR 6546, HOT SHOTS! 39622, IDLE HANDS 36573, IN CHINA THEY EAT DOGS 25733, INSPECTOR GADGET 4912, JAKOB THE LIAR 17556, JAWBREAKER 1592, K-911 22333, KING OF COMEDY 13898, LAKE PLACID 7104, LIFE 32468, LOVE STINKS 27174, MAIN HOON NA 37138, MAN OF THE CENTURY 37867, MAN ON THE MOON 6649, MANSFIELD PARK 1454, MICKEY BLUE EYES 19598, MOLLY 16428, MUMFORD 16362, MUPPETS FROM SPACE 10000, MY NEIGHBORS THE YAMADAS 5020, MYSTERY MEN 33718, MYSTERY, ALASKA 33072, NEVER BEEN KISSED 16645, NEW WATERFORD GIRL 37812, NICE GUYS SLEEP ALONE 14898, NOTTING HILL 39920, OFFICE SPACE 27541, PARODY 35054, PLAY IT TO THE BONE 16964, PUSHING TIN 11728, REPOSSESSED 16974, RUNAWAY BRIDE 19297, SAFE SEX 4160, SCARY MOVIE 32591, SCREAM 3 15252, SCREWED IN TALLINN 32422, SEVEN GIRLFRIENDS 38502, SHE'S ALL THAT 36310, SIAM SUNSET 801, SIMON SEZ 25788, SIMPLY IRRESISTIBLE 3929, SOFT TOILET SEATS 8978, SPLENDOR 14077, SPOOF 27650, STRANGE PLANET 22847, STUART LITTLE 27511, SUPERSTAR 32984, SWEET AND LOWDOWN 905, TEACHING MRS. TINGLE 36394, THE ADVENTURES OF ELMO IN GROUCHLAND 3021, THE BACHELOR 4157, THE BEST MAN 19540, THE BIG BUS 27111, THE BIG KAHUNA 14175, THE BIG TEASE 8605, THE BREAKS 844, THE LOVE LETTER 35958, THE MATCH 16694, THE MUSE 35433, THE OTHER SISTER 10260, THE OUT-OF-TOWNERS 37200, THE STORY OF US 11235, THE SUBURBANS 38179, THE UNDERGROUND COMEDY MOVIE 26468, THE WAITING GAME 26226, THE WOOD 12626, THREE KINGS 25141, THREE TO TANGO 4723, TIFOSI 14499, TOY STORY 2 24435, TRAILER PARK BOYS 21904, TRICK 23874, TRIPPIN' 13101, TUMBLEWEEDS 31227, TWO HANDS 3569, WHY NOT ME? 1790, WILD WILD WEST 13644, YOUNG FRANKENSTEIN src, edge_attr, dst 13464, has_genre, 30463 13464, has_tags, 30463 13464, release_year, 8486 5620, has_genre, 30463 5620, release_year, 8486 30146, has_genre, 30463 30146, release_year, 8486 29036, has_genre, 30463 29036, release_year, 8486 27672, has_genre, 30463 27672, release_year, 8486 35603, has_genre, 30463 35603, release_year, 8486 21398, has_genre, 30463 21398, has_tags, 30463 21398, release_year, 8486 23409, has_genre, 30463 23409, has_tags, 30463 23409, release_year, 8486 8780, has_genre, 30463 8780, has_tags, 30463 8780, release_year, 8486 15458, has_genre, 30463 15458, release_year, 8486 32415, has_genre, 30463 32415, release_year, 8486 26205, has_genre, 30463 26205, has_tags, 30463 26205, release_year, 8486 24555, has_genre, 30463 24555, release_year, 8486 32602, has_genre, 30463 32602, release_year, 8486 18375, has_genre, 30463 18375, release_year, 8486 16932, has_genre, 30463 16932, release_year, 8486 21121, has_genre, 30463 21121, has_tags, 30463 21121, release_year, 8486 5826, has_genre, 30463 5826, has_tags, 30463 5826, release_year, 8486 27223, has_genre, 30463 27223, release_year, 8486 36824, has_genre, 30463 36824, release_year, 8486 3291, has_genre, 30463 3291, release_year, 8486 640, has_genre, 30463 640, release_year, 8486 32140, has_genre, 30463 32140, release_year, 8486 36492, has_genre, 30463 36492, release_year, 8486 637, has_genre, 30463 637, release_year, 8486 17219, has_genre, 30463 17219, release_year, 8486 21407, has_genre, 30463 21407, has_tags, 30463 21407, release_year, 8486 18908, has_genre, 30463 18908, release_year, 8486 8341, has_genre, 30463 8341, release_year, 8486 7568, has_genre, 30463 7568, release_year, 8486 26193, has_genre, 30463 26193, release_year, 8486 17072, has_genre, 30463 17072, release_year, 8486 25625, has_genre, 30463 25625, release_year, 8486 34555, has_genre, 30463 34555, release_year, 8486 17478, has_genre, 30463 17478, release_year, 8486 34820, has_genre, 30463 34820, release_year, 8486 6623, has_genre, 30463 6623, has_tags, 30463 6623, release_year, 8486 14426, has_genre, 30463 14426, release_year, 8486 11817, has_genre, 30463 11817, release_year, 8486 12650, has_genre, 30463 12650, release_year, 8486 21485, has_genre, 30463 21485, release_year, 8486 11900, has_genre, 30463 11900, has_tags, 30463 11900, has_tags, 14077 29729, has_genre, 30463 29729, release_year, 8486 6546, has_genre, 30463 6546, has_tags, 30463 6546, has_tags, 14077 39622, has_genre, 30463 39622, release_year, 8486 36573, has_genre, 30463 36573, release_year, 8486 25733, has_genre, 30463 25733, release_year, 8486 4912, has_genre, 30463 4912, release_year, 8486 17556, has_genre, 30463 17556, release_year, 8486 1592, has_genre, 30463 1592, release_year, 8486 22333, has_genre, 30463 22333, release_year, 8486 13898, has_genre, 30463 13898, release_year, 8486 7104, has_genre, 30463 7104, has_tags, 30463 7104, release_year, 8486 32468, has_genre, 30463 32468, release_year, 8486 27174, has_genre, 30463 37138, has_genre, 30463 37138, release_year, 8486 37867, has_genre, 30463 37867, release_year, 8486 6649, has_genre, 30463 6649, release_year, 8486 1454, has_genre, 30463 1454, has_tags, 30463 1454, release_year, 8486 19598, has_genre, 30463 19598, release_year, 8486 16428, has_genre, 30463 16428, release_year, 8486 16362, has_genre, 30463 16362, release_year, 8486 10000, has_genre, 30463 10000, release_year, 8486 5020, has_genre, 30463 5020, has_tags, 30463 5020, release_year, 8486 33718, has_genre, 30463 33718, release_year, 8486 33072, has_genre, 30463 33072, release_year, 8486 16645, has_genre, 30463 16645, release_year, 8486 37812, has_genre, 30463 37812, release_year, 8486 14898, has_genre, 30463 14898, has_tags, 30463 14898, release_year, 8486 39920, has_genre, 30463 39920, has_tags, 30463 39920, release_year, 8486 35054, has_genre, 30463 35054, release_year, 8486 16964, has_genre, 30463 16964, release_year, 8486 11728, has_genre, 30463 11728, has_genre, 5870 11728, has_tags, 14077 16974, has_genre, 30463 16974, release_year, 8486 19297, has_genre, 30463 19297, release_year, 8486 4160, has_genre, 30463 4160, has_tags, 30463 4160, has_tags, 5870 4160, has_tags, 27541 4160, has_tags, 14077 4160, release_year, 6776 32591, has_genre, 5870 32591, has_tags, 14077 32591, release_year, 6776 15252, has_genre, 30463 15252, release_year, 8486 32422, has_genre, 30463 32422, release_year, 8486 38502, has_genre, 30463 38502, has_tags, 30463 38502, release_year, 8486 36310, has_genre, 30463 36310, release_year, 8486 801, has_genre, 30463 801, has_tags, 30463 801, release_year, 8486 25788, has_genre, 30463 25788, release_year, 8486 3929, has_genre, 30463 3929, release_year, 8486 8978, has_genre, 30463 8978, release_year, 8486 27650, has_genre, 30463 27650, release_year, 8486 22847, has_genre, 30463 22847, has_tags, 30463 22847, release_year, 8486 27511, has_genre, 30463 27511, release_year, 8486 32984, has_genre, 30463 32984, release_year, 8486 905, has_genre, 30463 905, release_year, 8486 36394, has_genre, 30463 36394, release_year, 8486 3021, has_genre, 30463 3021, release_year, 8486 4157, has_genre, 30463 4157, release_year, 8486 19540, has_genre, 30463 19540, has_tags, 30463 19540, has_tags, 14077 27111, has_genre, 30463 27111, release_year, 8486 14175, has_genre, 30463 14175, release_year, 8486 8605, has_genre, 30463 8605, release_year, 8486 844, has_genre, 30463 844, release_year, 8486 35958, has_genre, 30463 35958, release_year, 8486 16694, has_genre, 30463 16694, release_year, 8486 35433, has_genre, 30463 35433, release_year, 8486 10260, has_genre, 30463 10260, release_year, 8486 37200, has_genre, 30463 37200, release_year, 8486 11235, has_genre, 30463 11235, release_year, 8486 38179, has_genre, 30463 38179, release_year, 8486 26468, has_genre, 30463 26468, release_year, 8486 26226, has_genre, 30463 26226, release_year, 8486 12626, has_genre, 30463 12626, has_tags, 30463 12626, release_year, 8486 25141, has_genre, 30463 25141, release_year, 8486 4723, has_genre, 30463 4723, release_year, 8486 14499, has_genre, 30463 14499, release_year, 8486 24435, has_genre, 30463 24435, release_year, 8486 21904, has_genre, 30463 21904, release_year, 8486 23874, has_genre, 30463 23874, release_year, 8486 13101, has_genre, 30463 13101, release_year, 8486 31227, release_year, 8486 3569, has_genre, 30463 3569, release_year, 8486 1790, has_genre, 30463 1790, has_tags, 30463 1790, release_year, 8486 13644, has_genre, 30463 13644, has_tags, 30463 13644, has_tags, 27541 13644, has_tags, 14077 Question: For what reason are MAIN HOON NA, SPOOF, and TWO HANDS associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "MAIN HOON NA", "SPOOF", "TWO HANDS" ], "valid_edges": [ [ "10 THINGS I HATE ABOUT YOU", "has_genre", "COMEDY" ], [ "10 THINGS I HATE ABOUT YOU", "has_tags", "COMEDY" ], [ "10 THINGS I HATE ABOUT YOU", "release_year", "1999" ], [ "200 CIGARETTES", "has_genre", "COMEDY" ], [ "200 CIGARETTES", "release_year", "1999" ], [ "A CHRISTMAS CAROL", "has_genre", "COMEDY" ], [ "A CHRISTMAS CAROL", "release_year", "1999" ], [ "A MIDSUMMER NIGHT'S DREAM", "has_genre", "COMEDY" ], [ "A MIDSUMMER NIGHT'S DREAM", "release_year", "1999" ], [ "A ROOM FOR ROMEO BRASS", "has_genre", "COMEDY" ], [ "A ROOM FOR ROMEO BRASS", "release_year", "1999" ], [ "AGNES BROWNE", "has_genre", "COMEDY" ], [ "AGNES BROWNE", "release_year", "1999" ], [ "AMERICAN PIE", "has_genre", "COMEDY" ], [ "AMERICAN PIE", "has_tags", "COMEDY" ], [ "AMERICAN PIE", "release_year", "1999" ], [ "AN IDEAL HUSBAND", "has_genre", "COMEDY" ], [ "AN IDEAL HUSBAND", "has_tags", "COMEDY" ], [ "AN IDEAL HUSBAND", "release_year", "1999" ], [ "ANALYZE THIS", "has_genre", "COMEDY" ], [ "ANALYZE THIS", "has_tags", "COMEDY" ], [ "ANALYZE THIS", "release_year", "1999" ], [ "BABY GENIUSES", "has_genre", "COMEDY" ], [ "BABY GENIUSES", "release_year", "1999" ], [ "BEAUTIFUL PEOPLE", "has_genre", "COMEDY" ], [ "BEAUTIFUL PEOPLE", "release_year", "1999" ], [ "BEING JOHN MALKOVICH", "has_genre", "COMEDY" ], [ "BEING JOHN MALKOVICH", "has_tags", "COMEDY" ], [ "BEING JOHN MALKOVICH", "release_year", "1999" ], [ "BETTER THAN CHOCOLATE", "has_genre", "COMEDY" ], [ "BETTER THAN CHOCOLATE", "release_year", "1999" ], [ "BIG DADDY", "has_genre", "COMEDY" ], [ "BIG DADDY", "release_year", "1999" ], [ "BLAST FROM THE PAST", "has_genre", "COMEDY" ], [ "BLAST FROM THE PAST", "release_year", "1999" ], [ "BLUE STREAK", "has_genre", "COMEDY" ], [ "BLUE STREAK", "release_year", "1999" ], [ "BOWFINGER", "has_genre", "COMEDY" ], [ "BOWFINGER", "has_tags", "COMEDY" ], [ "BOWFINGER", "release_year", "1999" ], [ "BREAKFAST OF CHAMPIONS", "has_genre", "COMEDY" ], [ "BREAKFAST OF CHAMPIONS", "has_tags", "COMEDY" ], [ "BREAKFAST OF CHAMPIONS", "release_year", "1999" ], [ "BUT FOREVER IN MY MIND", "has_genre", "COMEDY" ], [ "BUT FOREVER IN MY MIND", "release_year", "1999" ], [ "BUT I'M A CHEERLEADER", "has_genre", "COMEDY" ], [ "BUT I'M A CHEERLEADER", "release_year", "1999" ], [ "CATFISH IN BLACK BEAN SAUCE", "has_genre", "COMEDY" ], [ "CATFISH IN BLACK BEAN SAUCE", "release_year", "1999" ], [ "COOKIE'S FORTUNE", "has_genre", "COMEDY" ], [ "COOKIE'S FORTUNE", "release_year", "1999" ], [ "CRAZY IN ALABAMA", "has_genre", "COMEDY" ], [ "CRAZY IN ALABAMA", "release_year", "1999" ], [ "DIAMONDS", "has_genre", "COMEDY" ], [ "DIAMONDS", "release_year", "1999" ], [ "DICK", "has_genre", "COMEDY" ], [ "DICK", "release_year", "1999" ], [ "DO NOT DISTURB", "has_genre", "COMEDY" ], [ "DO NOT DISTURB", "release_year", "1999" ], [ "DOGMA", "has_genre", "COMEDY" ], [ "DOGMA", "has_tags", "COMEDY" ], [ "DOGMA", "release_year", "1999" ], [ "DROP DEAD GORGEOUS", "has_genre", "COMEDY" ], [ "DROP DEAD GORGEOUS", "release_year", "1999" ], [ "DUDLEY DO-RIGHT", "has_genre", "COMEDY" ], [ "DUDLEY DO-RIGHT", "release_year", "1999" ], [ "EAST IS EAST", "has_genre", "COMEDY" ], [ "EAST IS EAST", "release_year", "1999" ], [ "ELECTION", "has_genre", "COMEDY" ], [ "ELECTION", "release_year", "1999" ], [ "FAREWELL, HOME SWEET HOME", "has_genre", "COMEDY" ], [ "FAREWELL, HOME SWEET HOME", "release_year", "1999" ], [ "FIRST DAUGHTER", "has_genre", "COMEDY" ], [ "FIRST DAUGHTER", "release_year", "1999" ], [ "FLAWLESS", "has_genre", "COMEDY" ], [ "FLAWLESS", "release_year", "1999" ], [ "FOOLISH", "has_genre", "COMEDY" ], [ "FOOLISH", "release_year", "1999" ], [ "FORCES OF NATURE", "has_genre", "COMEDY" ], [ "FORCES OF NATURE", "release_year", "1999" ], [ "GO", "has_genre", "COMEDY" ], [ "GO", "has_tags", "COMEDY" ], [ "GO", "release_year", "1999" ], [ "GORGEOUS", "has_genre", "COMEDY" ], [ "GORGEOUS", "release_year", "1999" ], [ "GUEST HOUSE PARADISO", "has_genre", "COMEDY" ], [ "GUEST HOUSE PARADISO", "release_year", "1999" ], [ "HAPPY, TEXAS", "has_genre", "COMEDY" ], [ "HAPPY, TEXAS", "release_year", "1999" ], [ "HELD UP", "has_genre", "COMEDY" ], [ "HELD UP", "release_year", "1999" ], [ "HIGH SCHOOL HIGH", "has_genre", "COMEDY" ], [ "HIGH SCHOOL HIGH", "has_tags", "COMEDY" ], [ "HIGH SCHOOL HIGH", "has_tags", "SPOOF" ], [ "HIT AND RUNWAY", "has_genre", "COMEDY" ], [ "HIT AND RUNWAY", "release_year", "1999" ], [ "HOT SHOTS!", "has_genre", "COMEDY" ], [ "HOT SHOTS!", "has_tags", "COMEDY" ], [ "HOT SHOTS!", "has_tags", "SPOOF" ], [ "IDLE HANDS", "has_genre", "COMEDY" ], [ "IDLE HANDS", "release_year", "1999" ], [ "IN CHINA THEY EAT DOGS", "has_genre", "COMEDY" ], [ "IN CHINA THEY EAT DOGS", "release_year", "1999" ], [ "INSPECTOR GADGET", "has_genre", "COMEDY" ], [ "INSPECTOR GADGET", "release_year", "1999" ], [ "JAKOB THE LIAR", "has_genre", "COMEDY" ], [ "JAKOB THE LIAR", "release_year", "1999" ], [ "JAWBREAKER", "has_genre", "COMEDY" ], [ "JAWBREAKER", "release_year", "1999" ], [ "K-911", "has_genre", "COMEDY" ], [ "K-911", "release_year", "1999" ], [ "KING OF COMEDY", "has_genre", "COMEDY" ], [ "KING OF COMEDY", "release_year", "1999" ], [ "LAKE PLACID", "has_genre", "COMEDY" ], [ "LAKE PLACID", "release_year", "1999" ], [ "LIFE", "has_genre", "COMEDY" ], [ "LIFE", "has_tags", "COMEDY" ], [ "LIFE", "release_year", "1999" ], [ "LOVE STINKS", "has_genre", "COMEDY" ], [ "LOVE STINKS", "release_year", "1999" ], [ "MAIN HOON NA", "has_genre", "COMEDY" ], [ "MAN OF THE CENTURY", "has_genre", "COMEDY" ], [ "MAN OF THE CENTURY", "release_year", "1999" ], [ "MAN ON THE MOON", "has_genre", "COMEDY" ], [ "MAN ON THE MOON", "release_year", "1999" ], [ "MANSFIELD PARK", "has_genre", "COMEDY" ], [ "MANSFIELD PARK", "release_year", "1999" ], [ "MICKEY BLUE EYES", "has_genre", "COMEDY" ], [ "MICKEY BLUE EYES", "has_tags", "COMEDY" ], [ "MICKEY BLUE EYES", "release_year", "1999" ], [ "MOLLY", "has_genre", "COMEDY" ], [ "MOLLY", "release_year", "1999" ], [ "MUMFORD", "has_genre", "COMEDY" ], [ "MUMFORD", "release_year", "1999" ], [ "MUPPETS FROM SPACE", "has_genre", "COMEDY" ], [ "MUPPETS FROM SPACE", "release_year", "1999" ], [ "MY NEIGHBORS THE YAMADAS", "has_genre", "COMEDY" ], [ "MY NEIGHBORS THE YAMADAS", "release_year", "1999" ], [ "MYSTERY MEN", "has_genre", "COMEDY" ], [ "MYSTERY MEN", "has_tags", "COMEDY" ], [ "MYSTERY MEN", "release_year", "1999" ], [ "MYSTERY, ALASKA", "has_genre", "COMEDY" ], [ "MYSTERY, ALASKA", "release_year", "1999" ], [ "NEVER BEEN KISSED", "has_genre", "COMEDY" ], [ "NEVER BEEN KISSED", "release_year", "1999" ], [ "NEW WATERFORD GIRL", "has_genre", "COMEDY" ], [ "NEW WATERFORD GIRL", "release_year", "1999" ], [ "NICE GUYS SLEEP ALONE", "has_genre", "COMEDY" ], [ "NICE GUYS SLEEP ALONE", "release_year", "1999" ], [ "NOTTING HILL", "has_genre", "COMEDY" ], [ "NOTTING HILL", "has_tags", "COMEDY" ], [ "NOTTING HILL", "release_year", "1999" ], [ "OFFICE SPACE", "has_genre", "COMEDY" ], [ "OFFICE SPACE", "has_tags", "COMEDY" ], [ "OFFICE SPACE", "release_year", "1999" ], [ "PLAY IT TO THE BONE", "has_genre", "COMEDY" ], [ "PLAY IT TO THE BONE", "release_year", "1999" ], [ "PUSHING TIN", "has_genre", "COMEDY" ], [ "PUSHING TIN", "release_year", "1999" ], [ "REPOSSESSED", "has_genre", "COMEDY" ], [ "REPOSSESSED", "has_genre", "HORROR" ], [ "REPOSSESSED", "has_tags", "SPOOF" ], [ "RUNAWAY BRIDE", "has_genre", "COMEDY" ], [ "RUNAWAY BRIDE", "release_year", "1999" ], [ "SAFE SEX", "has_genre", "COMEDY" ], [ "SAFE SEX", "release_year", "1999" ], [ "SCARY MOVIE", "has_genre", "COMEDY" ], [ "SCARY MOVIE", "has_tags", "COMEDY" ], [ "SCARY MOVIE", "has_tags", "HORROR" ], [ "SCARY MOVIE", "has_tags", "PARODY" ], [ "SCARY MOVIE", "has_tags", "SPOOF" ], [ "SCARY MOVIE", "release_year", "2000" ], [ "SCREAM 3", "has_genre", "HORROR" ], [ "SCREAM 3", "has_tags", "SPOOF" ], [ "SCREAM 3", "release_year", "2000" ], [ "SCREWED IN TALLINN", "has_genre", "COMEDY" ], [ "SCREWED IN TALLINN", "release_year", "1999" ], [ "SEVEN GIRLFRIENDS", "has_genre", "COMEDY" ], [ "SEVEN GIRLFRIENDS", "release_year", "1999" ], [ "SHE'S ALL THAT", "has_genre", "COMEDY" ], [ "SHE'S ALL THAT", "has_tags", "COMEDY" ], [ "SHE'S ALL THAT", "release_year", "1999" ], [ "SIAM SUNSET", "has_genre", "COMEDY" ], [ "SIAM SUNSET", "release_year", "1999" ], [ "SIMON SEZ", "has_genre", "COMEDY" ], [ "SIMON SEZ", "has_tags", "COMEDY" ], [ "SIMON SEZ", "release_year", "1999" ], [ "SIMPLY IRRESISTIBLE", "has_genre", "COMEDY" ], [ "SIMPLY IRRESISTIBLE", "release_year", "1999" ], [ "SOFT TOILET SEATS", "has_genre", "COMEDY" ], [ "SOFT TOILET SEATS", "release_year", "1999" ], [ "SPLENDOR", "has_genre", "COMEDY" ], [ "SPLENDOR", "release_year", "1999" ], [ "STRANGE PLANET", "has_genre", "COMEDY" ], [ "STRANGE PLANET", "release_year", "1999" ], [ "STUART LITTLE", "has_genre", "COMEDY" ], [ "STUART LITTLE", "has_tags", "COMEDY" ], [ "STUART LITTLE", "release_year", "1999" ], [ "SUPERSTAR", "has_genre", "COMEDY" ], [ "SUPERSTAR", "release_year", "1999" ], [ "SWEET AND LOWDOWN", "has_genre", "COMEDY" ], [ "SWEET AND LOWDOWN", "release_year", "1999" ], [ "TEACHING MRS. TINGLE", "has_genre", "COMEDY" ], [ "TEACHING MRS. TINGLE", "release_year", "1999" ], [ "THE ADVENTURES OF ELMO IN GROUCHLAND", "has_genre", "COMEDY" ], [ "THE ADVENTURES OF ELMO IN GROUCHLAND", "release_year", "1999" ], [ "THE BACHELOR", "has_genre", "COMEDY" ], [ "THE BACHELOR", "release_year", "1999" ], [ "THE BEST MAN", "has_genre", "COMEDY" ], [ "THE BEST MAN", "release_year", "1999" ], [ "THE BIG BUS", "has_genre", "COMEDY" ], [ "THE BIG BUS", "has_tags", "COMEDY" ], [ "THE BIG BUS", "has_tags", "SPOOF" ], [ "THE BIG KAHUNA", "has_genre", "COMEDY" ], [ "THE BIG KAHUNA", "release_year", "1999" ], [ "THE BIG TEASE", "has_genre", "COMEDY" ], [ "THE BIG TEASE", "release_year", "1999" ], [ "THE BREAKS", "has_genre", "COMEDY" ], [ "THE BREAKS", "release_year", "1999" ], [ "THE LOVE LETTER", "has_genre", "COMEDY" ], [ "THE LOVE LETTER", "release_year", "1999" ], [ "THE MATCH", "has_genre", "COMEDY" ], [ "THE MATCH", "release_year", "1999" ], [ "THE MUSE", "has_genre", "COMEDY" ], [ "THE MUSE", "release_year", "1999" ], [ "THE OTHER SISTER", "has_genre", "COMEDY" ], [ "THE OTHER SISTER", "release_year", "1999" ], [ "THE OUT-OF-TOWNERS", "has_genre", "COMEDY" ], [ "THE OUT-OF-TOWNERS", "release_year", "1999" ], [ "THE STORY OF US", "has_genre", "COMEDY" ], [ "THE STORY OF US", "release_year", "1999" ], [ "THE SUBURBANS", "has_genre", "COMEDY" ], [ "THE SUBURBANS", "release_year", "1999" ], [ "THE UNDERGROUND COMEDY MOVIE", "has_genre", "COMEDY" ], [ "THE UNDERGROUND COMEDY MOVIE", "release_year", "1999" ], [ "THE WAITING GAME", "has_genre", "COMEDY" ], [ "THE WAITING GAME", "release_year", "1999" ], [ "THE WOOD", "has_genre", "COMEDY" ], [ "THE WOOD", "release_year", "1999" ], [ "THREE KINGS", "has_genre", "COMEDY" ], [ "THREE KINGS", "has_tags", "COMEDY" ], [ "THREE KINGS", "release_year", "1999" ], [ "THREE TO TANGO", "has_genre", "COMEDY" ], [ "THREE TO TANGO", "release_year", "1999" ], [ "TIFOSI", "has_genre", "COMEDY" ], [ "TIFOSI", "release_year", "1999" ], [ "TOY STORY 2", "has_genre", "COMEDY" ], [ "TOY STORY 2", "release_year", "1999" ], [ "TRAILER PARK BOYS", "has_genre", "COMEDY" ], [ "TRAILER PARK BOYS", "release_year", "1999" ], [ "TRICK", "has_genre", "COMEDY" ], [ "TRICK", "release_year", "1999" ], [ "TRIPPIN'", "has_genre", "COMEDY" ], [ "TRIPPIN'", "release_year", "1999" ], [ "TUMBLEWEEDS", "has_genre", "COMEDY" ], [ "TUMBLEWEEDS", "release_year", "1999" ], [ "TWO HANDS", "release_year", "1999" ], [ "WHY NOT ME?", "has_genre", "COMEDY" ], [ "WHY NOT ME?", "release_year", "1999" ], [ "WILD WILD WEST", "has_genre", "COMEDY" ], [ "WILD WILD WEST", "has_tags", "COMEDY" ], [ "WILD WILD WEST", "release_year", "1999" ], [ "YOUNG FRANKENSTEIN", "has_genre", "COMEDY" ], [ "YOUNG FRANKENSTEIN", "has_tags", "COMEDY" ], [ "YOUNG FRANKENSTEIN", "has_tags", "PARODY" ], [ "YOUNG FRANKENSTEIN", "has_tags", "SPOOF" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 15374, 2005 588, FRAGILE 28945, MARCH OF THE PENGUINS 1672, PENGUINS 31553, STEVE FABER 1771, WEDDING CRASHERS src, edge_attr, dst 588, release_year, 15374 28945, has_tags, 1672 28945, release_year, 15374 1771, release_year, 15374 1771, written_by, 31553 Question: In what context are FRAGILE, PENGUINS, and STEVE FABER connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "FRAGILE", "PENGUINS", "STEVE FABER" ], "valid_edges": [ [ "FRAGILE", "release_year", "2005" ], [ "MARCH OF THE PENGUINS", "has_tags", "PENGUINS" ], [ "MARCH OF THE PENGUINS", "release_year", "2005" ], [ "WEDDING CRASHERS", "release_year", "2005" ], [ "WEDDING CRASHERS", "written_by", "STEVE FABER" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 15231, BARBARA CARRERA 31783, ENGLISH 36066, FANTASY 18873, GIANTS 37407, JACK THE GIANT SLAYER 29877, THE ISLAND OF DR. MOREAU 8712, THE LORD OF THE RINGS 34128, WILLIAM SQUIRE src, edge_attr, dst 37407, has_genre, 36066 37407, has_tags, 36066 37407, has_tags, 18873 37407, in_language, 31783 29877, in_language, 31783 29877, starred_actors, 15231 8712, has_tags, 36066 8712, in_language, 31783 8712, starred_actors, 34128 Question: In what context are BARBARA CARRERA, GIANTS, and WILLIAM SQUIRE connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "BARBARA CARRERA", "GIANTS", "WILLIAM SQUIRE" ], "valid_edges": [ [ "JACK THE GIANT SLAYER", "has_genre", "FANTASY" ], [ "JACK THE GIANT SLAYER", "has_tags", "FANTASY" ], [ "JACK THE GIANT SLAYER", "has_tags", "GIANTS" ], [ "JACK THE GIANT SLAYER", "in_language", "ENGLISH" ], [ "THE ISLAND OF DR. MOREAU", "in_language", "ENGLISH" ], [ "THE ISLAND OF DR. MOREAU", "starred_actors", "BARBARA CARRERA" ], [ "THE LORD OF THE RINGS", "has_tags", "FANTASY" ], [ "THE LORD OF THE RINGS", "in_language", "ENGLISH" ], [ "THE LORD OF THE RINGS", "starred_actors", "WILLIAM SQUIRE" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 35935, 2002 1421, 2013 18644, A RESURRECTION 23682, DEVON SAWA 9641, DIRTY PRETTY THINGS 28859, EXTREME OPS 32950, GEENA DAVIS 3829, HERO 4859, HISTORY 22991, OUT OF THE BLUE 8104, PIETRO GERMI 24676, SEDUCED AND ABANDONED 15043, SLACKERS 5605, STEPHEN FREARS 1808, STUART LITTLE 2 src, edge_attr, dst 18644, release_year, 1421 18644, starred_actors, 23682 9641, directed_by, 5605 9641, has_tags, 5605 9641, release_year, 35935 28859, release_year, 35935 28859, starred_actors, 23682 3829, directed_by, 5605 3829, has_genre, 4859 3829, has_tags, 5605 3829, release_year, 35935 3829, starred_actors, 32950 22991, has_genre, 4859 22991, release_year, 35935 24676, directed_by, 8104 24676, has_tags, 8104 24676, release_year, 1421 24676, written_by, 8104 15043, release_year, 35935 15043, starred_actors, 23682 1808, release_year, 35935 1808, starred_actors, 32950 Question: For what reason are DEVON SAWA, HERO, and PIETRO GERMI associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "DEVON SAWA", "HERO", "PIETRO GERMI" ], "valid_edges": [ [ "A RESURRECTION", "release_year", "2013" ], [ "A RESURRECTION", "starred_actors", "DEVON SAWA" ], [ "DIRTY PRETTY THINGS", "directed_by", "STEPHEN FREARS" ], [ "DIRTY PRETTY THINGS", "has_tags", "STEPHEN FREARS" ], [ "DIRTY PRETTY THINGS", "release_year", "2002" ], [ "EXTREME OPS", "release_year", "2002" ], [ "EXTREME OPS", "starred_actors", "DEVON SAWA" ], [ "HERO", "directed_by", "STEPHEN FREARS" ], [ "HERO", "has_genre", "HISTORY" ], [ "HERO", "has_tags", "STEPHEN FREARS" ], [ "HERO", "release_year", "2002" ], [ "HERO", "starred_actors", "GEENA DAVIS" ], [ "OUT OF THE BLUE", "has_genre", "HISTORY" ], [ "OUT OF THE BLUE", "release_year", "2002" ], [ "SEDUCED AND ABANDONED", "directed_by", "PIETRO GERMI" ], [ "SEDUCED AND ABANDONED", "has_tags", "PIETRO GERMI" ], [ "SEDUCED AND ABANDONED", "release_year", "2013" ], [ "SEDUCED AND ABANDONED", "written_by", "PIETRO GERMI" ], [ "SLACKERS", "release_year", "2002" ], [ "SLACKERS", "starred_actors", "DEVON SAWA" ], [ "STUART LITTLE 2", "release_year", "2002" ], [ "STUART LITTLE 2", "starred_actors", "GEENA DAVIS" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 36522, 1934 29424, 2011 26212, 3 DAYS TO KILL 39501, 30 MINUTES OR LESS 7955, 5 DAYS OF WAR 35101, ABDUCTION 39289, ACTION 1805, AMBER HEARD 22265, AMERICA OLIVO 2960, ARENA 32931, ASSASSINATION GAMES 5973, BATTLE OF LOS ANGELES 26055, BITCH SLAP 22834, BLOOD OUT 39667, BLUBBERELLA 3122, CAT RUN 35701, CATCH .44 33726, COLOMBIANA 23112, CON AIR 4283, CONAN THE BARBARIAN 38780, DETENTION 9529, DON 2 20776, DRAGON 21021, DRIVE 39870, DRIVE ANGRY 25823, ELEPHANT WHITE 25227, FACE/OFF 36699, FAST FIVE 23451, FIRE BIRDS 26921, GREEN LANTERN 9479, HANNA 19720, HAYWIRE 16208, HOBO WITH A SHOTGUN 40147, HOUSE OF THE RISING SUN 3859, I AM NUMBER FOUR 32132, KILLER ELITE 3723, KUNG FU PANDA 2 19523, LEFT BEHIND 20300, MACHETE KILLS 23468, MACHINE GUN PREACHER 24437, MANIAC 36603, NEVER BACK DOWN 30350, NEXT 1128, NICOLAS CAGE 1740, PAUL CZINNER 13383, PRIEST 12428, RAGE 4939, REAL STEEL 4551, RECOIL 15071, RED STATE 10303, SEEKING JUSTICE 24874, SETUP 14948, SINGHAM 40067, STOLEN 33900, SUCKER PUNCH 18808, THE GREEN HORNET 26115, THE HIT LIST 8839, THE MECHANIC 29353, THE RISE OF CATHERINE THE GREAT 36327, THE ROCK 20261, THE VETERAN 34977, TICKING CLOCK 22110, TRESPASS 11059, WAR OF THE DEAD src, edge_attr, dst 26212, has_genre, 39289 26212, starred_actors, 1805 39501, has_genre, 39289 39501, release_year, 29424 7955, has_genre, 39289 7955, release_year, 29424 35101, has_genre, 39289 35101, has_tags, 39289 35101, release_year, 29424 2960, has_genre, 39289 2960, release_year, 29424 32931, has_genre, 39289 32931, release_year, 29424 5973, has_genre, 39289 5973, release_year, 29424 26055, has_genre, 39289 26055, starred_actors, 22265 22834, has_genre, 39289 22834, release_year, 29424 39667, has_genre, 39289 39667, release_year, 29424 3122, has_genre, 39289 3122, release_year, 29424 35701, has_genre, 39289 35701, release_year, 29424 33726, has_genre, 39289 33726, has_tags, 39289 33726, release_year, 29424 23112, has_genre, 39289 23112, has_tags, 39289 23112, has_tags, 1128 4283, has_genre, 39289 4283, has_tags, 39289 4283, release_year, 29424 38780, has_genre, 39289 38780, release_year, 29424 9529, has_genre, 39289 9529, release_year, 29424 20776, has_genre, 39289 20776, release_year, 29424 21021, has_tags, 39289 21021, release_year, 29424 39870, has_genre, 39289 39870, has_tags, 1805 39870, has_tags, 1128 39870, release_year, 29424 39870, starred_actors, 1805 39870, starred_actors, 1128 25823, has_genre, 39289 25823, release_year, 29424 25227, has_genre, 39289 25227, has_tags, 39289 25227, has_tags, 1128 25227, starred_actors, 1128 36699, has_genre, 39289 36699, release_year, 29424 23451, has_genre, 39289 23451, has_tags, 1128 23451, starred_actors, 1128 26921, has_genre, 39289 26921, release_year, 29424 9479, has_genre, 39289 9479, has_tags, 39289 9479, release_year, 29424 19720, has_genre, 39289 19720, has_tags, 39289 19720, release_year, 29424 16208, has_genre, 39289 16208, release_year, 29424 40147, has_genre, 39289 40147, release_year, 29424 3859, has_genre, 39289 3859, has_tags, 39289 3859, release_year, 29424 32132, has_genre, 39289 32132, has_tags, 39289 32132, release_year, 29424 3723, has_genre, 39289 3723, release_year, 29424 19523, has_genre, 39289 19523, has_tags, 1128 19523, starred_actors, 1128 20300, has_genre, 39289 20300, starred_actors, 1805 23468, has_genre, 39289 23468, release_year, 29424 24437, release_year, 36522 24437, starred_actors, 22265 36603, has_genre, 39289 36603, starred_actors, 1805 30350, has_genre, 39289 30350, has_tags, 39289 30350, has_tags, 1128 30350, starred_actors, 1128 13383, has_genre, 39289 13383, release_year, 29424 12428, has_genre, 39289 12428, starred_actors, 1128 4939, has_genre, 39289 4939, release_year, 29424 4551, has_genre, 39289 4551, release_year, 29424 15071, has_genre, 39289 15071, release_year, 29424 10303, has_genre, 39289 10303, has_tags, 39289 10303, has_tags, 1128 10303, release_year, 29424 10303, starred_actors, 1128 24874, has_genre, 39289 24874, release_year, 29424 14948, has_genre, 39289 14948, has_tags, 39289 14948, release_year, 29424 40067, has_genre, 39289 40067, has_tags, 1128 40067, starred_actors, 1128 33900, has_genre, 39289 33900, release_year, 29424 18808, has_genre, 39289 18808, has_tags, 39289 18808, release_year, 29424 26115, has_genre, 39289 26115, release_year, 29424 8839, has_genre, 39289 8839, has_tags, 39289 8839, release_year, 29424 29353, directed_by, 1740 29353, release_year, 36522 36327, has_genre, 39289 36327, has_tags, 39289 36327, has_tags, 1128 36327, starred_actors, 1128 20261, has_genre, 39289 20261, release_year, 29424 34977, has_genre, 39289 34977, release_year, 29424 22110, has_genre, 39289 22110, has_tags, 1128 22110, release_year, 29424 22110, starred_actors, 1128 11059, has_genre, 39289 11059, release_year, 29424 Question: For what reason are AMERICA OLIVO, DRIVE ANGRY, and PAUL CZINNER associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "AMERICA OLIVO", "DRIVE ANGRY", "PAUL CZINNER" ], "valid_edges": [ [ "3 DAYS TO KILL", "has_genre", "ACTION" ], [ "3 DAYS TO KILL", "starred_actors", "AMBER HEARD" ], [ "30 MINUTES OR LESS", "has_genre", "ACTION" ], [ "30 MINUTES OR LESS", "release_year", "2011" ], [ "5 DAYS OF WAR", "has_genre", "ACTION" ], [ "5 DAYS OF WAR", "release_year", "2011" ], [ "ABDUCTION", "has_genre", "ACTION" ], [ "ABDUCTION", "has_tags", "ACTION" ], [ "ABDUCTION", "release_year", "2011" ], [ "ARENA", "has_genre", "ACTION" ], [ "ARENA", "release_year", "2011" ], [ "ASSASSINATION GAMES", "has_genre", "ACTION" ], [ "ASSASSINATION GAMES", "release_year", "2011" ], [ "BATTLE OF LOS ANGELES", "has_genre", "ACTION" ], [ "BATTLE OF LOS ANGELES", "release_year", "2011" ], [ "BITCH SLAP", "has_genre", "ACTION" ], [ "BITCH SLAP", "starred_actors", "AMERICA OLIVO" ], [ "BLOOD OUT", "has_genre", "ACTION" ], [ "BLOOD OUT", "release_year", "2011" ], [ "BLUBBERELLA", "has_genre", "ACTION" ], [ "BLUBBERELLA", "release_year", "2011" ], [ "CAT RUN", "has_genre", "ACTION" ], [ "CAT RUN", "release_year", "2011" ], [ "CATCH .44", "has_genre", "ACTION" ], [ "CATCH .44", "release_year", "2011" ], [ "COLOMBIANA", "has_genre", "ACTION" ], [ "COLOMBIANA", "has_tags", "ACTION" ], [ "COLOMBIANA", "release_year", "2011" ], [ "CON AIR", "has_genre", "ACTION" ], [ "CON AIR", "has_tags", "ACTION" ], [ "CON AIR", "has_tags", "NICOLAS CAGE" ], [ "CONAN THE BARBARIAN", "has_genre", "ACTION" ], [ "CONAN THE BARBARIAN", "has_tags", "ACTION" ], [ "CONAN THE BARBARIAN", "release_year", "2011" ], [ "DETENTION", "has_genre", "ACTION" ], [ "DETENTION", "release_year", "2011" ], [ "DON 2", "has_genre", "ACTION" ], [ "DON 2", "release_year", "2011" ], [ "DRAGON", "has_genre", "ACTION" ], [ "DRAGON", "release_year", "2011" ], [ "DRIVE", "has_tags", "ACTION" ], [ "DRIVE", "release_year", "2011" ], [ "DRIVE ANGRY", "has_genre", "ACTION" ], [ "DRIVE ANGRY", "has_tags", "AMBER HEARD" ], [ "DRIVE ANGRY", "has_tags", "NICOLAS CAGE" ], [ "DRIVE ANGRY", "release_year", "2011" ], [ "DRIVE ANGRY", "starred_actors", "AMBER HEARD" ], [ "DRIVE ANGRY", "starred_actors", "NICOLAS CAGE" ], [ "ELEPHANT WHITE", "has_genre", "ACTION" ], [ "ELEPHANT WHITE", "release_year", "2011" ], [ "FACE/OFF", "has_genre", "ACTION" ], [ "FACE/OFF", "has_tags", "ACTION" ], [ "FACE/OFF", "has_tags", "NICOLAS CAGE" ], [ "FACE/OFF", "starred_actors", "NICOLAS CAGE" ], [ "FAST FIVE", "has_genre", "ACTION" ], [ "FAST FIVE", "release_year", "2011" ], [ "FIRE BIRDS", "has_genre", "ACTION" ], [ "FIRE BIRDS", "has_tags", "NICOLAS CAGE" ], [ "FIRE BIRDS", "starred_actors", "NICOLAS CAGE" ], [ "GREEN LANTERN", "has_genre", "ACTION" ], [ "GREEN LANTERN", "release_year", "2011" ], [ "HANNA", "has_genre", "ACTION" ], [ "HANNA", "has_tags", "ACTION" ], [ "HANNA", "release_year", "2011" ], [ "HAYWIRE", "has_genre", "ACTION" ], [ "HAYWIRE", "has_tags", "ACTION" ], [ "HAYWIRE", "release_year", "2011" ], [ "HOBO WITH A SHOTGUN", "has_genre", "ACTION" ], [ "HOBO WITH A SHOTGUN", "release_year", "2011" ], [ "HOUSE OF THE RISING SUN", "has_genre", "ACTION" ], [ "HOUSE OF THE RISING SUN", "release_year", "2011" ], [ "I AM NUMBER FOUR", "has_genre", "ACTION" ], [ "I AM NUMBER FOUR", "has_tags", "ACTION" ], [ "I AM NUMBER FOUR", "release_year", "2011" ], [ "KILLER ELITE", "has_genre", "ACTION" ], [ "KILLER ELITE", "has_tags", "ACTION" ], [ "KILLER ELITE", "release_year", "2011" ], [ "KUNG FU PANDA 2", "has_genre", "ACTION" ], [ "KUNG FU PANDA 2", "release_year", "2011" ], [ "LEFT BEHIND", "has_genre", "ACTION" ], [ "LEFT BEHIND", "has_tags", "NICOLAS CAGE" ], [ "LEFT BEHIND", "starred_actors", "NICOLAS CAGE" ], [ "MACHETE KILLS", "has_genre", "ACTION" ], [ "MACHETE KILLS", "starred_actors", "AMBER HEARD" ], [ "MACHINE GUN PREACHER", "has_genre", "ACTION" ], [ "MACHINE GUN PREACHER", "release_year", "2011" ], [ "MANIAC", "release_year", "1934" ], [ "MANIAC", "starred_actors", "AMERICA OLIVO" ], [ "NEVER BACK DOWN", "has_genre", "ACTION" ], [ "NEVER BACK DOWN", "starred_actors", "AMBER HEARD" ], [ "NEXT", "has_genre", "ACTION" ], [ "NEXT", "has_tags", "ACTION" ], [ "NEXT", "has_tags", "NICOLAS CAGE" ], [ "NEXT", "starred_actors", "NICOLAS CAGE" ], [ "PRIEST", "has_genre", "ACTION" ], [ "PRIEST", "release_year", "2011" ], [ "RAGE", "has_genre", "ACTION" ], [ "RAGE", "starred_actors", "NICOLAS CAGE" ], [ "REAL STEEL", "has_genre", "ACTION" ], [ "REAL STEEL", "release_year", "2011" ], [ "RECOIL", "has_genre", "ACTION" ], [ "RECOIL", "release_year", "2011" ], [ "RED STATE", "has_genre", "ACTION" ], [ "RED STATE", "release_year", "2011" ], [ "SEEKING JUSTICE", "has_genre", "ACTION" ], [ "SEEKING JUSTICE", "has_tags", "ACTION" ], [ "SEEKING JUSTICE", "has_tags", "NICOLAS CAGE" ], [ "SEEKING JUSTICE", "release_year", "2011" ], [ "SEEKING JUSTICE", "starred_actors", "NICOLAS CAGE" ], [ "SETUP", "has_genre", "ACTION" ], [ "SETUP", "release_year", "2011" ], [ "SINGHAM", "has_genre", "ACTION" ], [ "SINGHAM", "has_tags", "ACTION" ], [ "SINGHAM", "release_year", "2011" ], [ "STOLEN", "has_genre", "ACTION" ], [ "STOLEN", "has_tags", "NICOLAS CAGE" ], [ "STOLEN", "starred_actors", "NICOLAS CAGE" ], [ "SUCKER PUNCH", "has_genre", "ACTION" ], [ "SUCKER PUNCH", "release_year", "2011" ], [ "THE GREEN HORNET", "has_genre", "ACTION" ], [ "THE GREEN HORNET", "has_tags", "ACTION" ], [ "THE GREEN HORNET", "release_year", "2011" ], [ "THE HIT LIST", "has_genre", "ACTION" ], [ "THE HIT LIST", "release_year", "2011" ], [ "THE MECHANIC", "has_genre", "ACTION" ], [ "THE MECHANIC", "has_tags", "ACTION" ], [ "THE MECHANIC", "release_year", "2011" ], [ "THE RISE OF CATHERINE THE GREAT", "directed_by", "PAUL CZINNER" ], [ "THE RISE OF CATHERINE THE GREAT", "release_year", "1934" ], [ "THE ROCK", "has_genre", "ACTION" ], [ "THE ROCK", "has_tags", "ACTION" ], [ "THE ROCK", "has_tags", "NICOLAS CAGE" ], [ "THE ROCK", "starred_actors", "NICOLAS CAGE" ], [ "THE VETERAN", "has_genre", "ACTION" ], [ "THE VETERAN", "release_year", "2011" ], [ "TICKING CLOCK", "has_genre", "ACTION" ], [ "TICKING CLOCK", "release_year", "2011" ], [ "TRESPASS", "has_genre", "ACTION" ], [ "TRESPASS", "has_tags", "NICOLAS CAGE" ], [ "TRESPASS", "release_year", "2011" ], [ "TRESPASS", "starred_actors", "NICOLAS CAGE" ], [ "WAR OF THE DEAD", "has_genre", "ACTION" ], [ "WAR OF THE DEAD", "release_year", "2011" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 10825, 1973 35798, 2010 6718, A FAREWELL TO ARMS 12649, A LITTLE ROMANCE 37987, A ROOM WITH A VIEW 10341, ADVENTURES OF DON JUAN 15918, ALL THAT HEAVEN ALLOWS 25395, AMERICAN GRAFFITI 10045, BD-R 16400, BILLY ROSE'S JUMBO 11547, BROKEBACK MOUNTAIN 34935, DILLINGER 27950, ENTER THE DRAGON 20693, GONE WITH THE WIND 21646, HIGH AND DIZZY 5617, HOT TUB TIME MACHINE 9381, I'M HERE 36299, IT'S THE GREAT PUMPKIN, CHARLIE BROWN 7539, IVANHOE 36621, JEREMY 33561, MEAN STREETS 36083, MIRANDA 5237, MURPHY'S ROMANCE 17576, MY BRILLIANT CAREER 5338, NINOTCHKA 18184, OKLAHOMA! 7960, QUALITY STREET 680, ROB CORDDRY 8379, ROMANCE 2738, ROMEO AND JULIET 36899, SHORT 31624, SPELLBOUND 20671, SPIDER 23429, SUMMERTIME 18902, TESS 10812, THE CONSTANT NYMPH 38676, THE CREEPING FLESH 27885, THE KILLERS 8623, THE LEGEND OF HELL HOUSE 4182, THE MAN IN THE IRON MASK 20747, THE PAPER CHASE 28879, THE PILGRIM 39278, THE STING 7816, THE THREE MUSKETEERS 32709, THE WAY WE WERE 22751, THE WICKER MAN 3594, THEATRE OF BLOOD 24789, TO HAVE AND HAVE NOT 6724, TOM SAWYER 8363, TOUKI BOUKI 14868, WESTWORLD 36233, WHERE THE BOYS ARE 15674, WHITE SHADOWS IN THE SOUTH SEAS 27708, WUTHERING HEIGHTS src, edge_attr, dst 35798, has_tags, 10045 6718, has_genre, 8379 6718, has_tags, 10045 12649, has_genre, 8379 12649, has_tags, 10045 37987, has_genre, 8379 37987, has_tags, 10045 10341, has_genre, 8379 10341, has_tags, 10045 15918, has_genre, 8379 15918, has_tags, 10045 25395, has_tags, 10045 25395, release_year, 10825 16400, has_genre, 8379 16400, has_tags, 10045 11547, has_genre, 8379 11547, has_tags, 10045 11547, has_tags, 8379 34935, has_tags, 10045 34935, release_year, 10825 27950, has_tags, 10045 27950, release_year, 10825 20693, has_genre, 8379 20693, has_tags, 10045 20693, has_tags, 8379 21646, has_genre, 36899 21646, has_tags, 10045 5617, release_year, 35798 5617, starred_actors, 680 9381, has_genre, 8379 9381, has_genre, 36899 36299, has_tags, 10045 36299, has_tags, 36899 7539, has_genre, 8379 7539, has_tags, 10045 36621, has_genre, 8379 36621, release_year, 10825 33561, has_tags, 10045 33561, release_year, 10825 36083, has_genre, 8379 36083, has_tags, 10045 5237, has_genre, 8379 5237, has_tags, 10045 17576, has_genre, 8379 17576, has_tags, 10045 5338, has_genre, 8379 5338, has_tags, 10045 18184, has_genre, 8379 18184, has_tags, 10045 7960, has_genre, 8379 7960, has_tags, 10045 2738, has_genre, 8379 2738, has_tags, 10045 2738, has_tags, 8379 31624, has_genre, 8379 31624, has_tags, 10045 20671, has_genre, 36899 20671, has_tags, 10045 23429, has_genre, 8379 23429, has_tags, 10045 23429, has_tags, 8379 18902, has_genre, 8379 18902, has_tags, 10045 10812, has_genre, 8379 10812, has_tags, 10045 38676, has_tags, 10045 38676, release_year, 10825 27885, has_genre, 36899 27885, has_tags, 10045 8623, has_tags, 10045 8623, release_year, 10825 4182, has_genre, 8379 4182, has_tags, 10045 20747, has_tags, 10045 20747, release_year, 10825 28879, has_genre, 36899 28879, has_tags, 10045 39278, has_tags, 10045 39278, release_year, 10825 7816, has_tags, 10045 7816, release_year, 10825 32709, has_tags, 10045 32709, release_year, 10825 22751, has_tags, 10045 22751, release_year, 10825 3594, has_tags, 10045 3594, release_year, 10825 24789, has_genre, 8379 24789, has_tags, 10045 6724, has_tags, 10045 6724, release_year, 10825 8363, has_tags, 10045 8363, release_year, 10825 14868, has_tags, 10045 14868, release_year, 10825 36233, has_genre, 8379 36233, has_tags, 10045 15674, has_genre, 8379 15674, has_tags, 10045 27708, has_genre, 8379 27708, has_tags, 10045 Question: In what context are HIGH AND DIZZY, JEREMY, and ROB CORDDRY connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "HIGH AND DIZZY", "JEREMY", "ROB CORDDRY" ], "valid_edges": [ [ "2010", "has_tags", "BD-R" ], [ "A FAREWELL TO ARMS", "has_genre", "ROMANCE" ], [ "A FAREWELL TO ARMS", "has_tags", "BD-R" ], [ "A LITTLE ROMANCE", "has_genre", "ROMANCE" ], [ "A LITTLE ROMANCE", "has_tags", "BD-R" ], [ "A ROOM WITH A VIEW", "has_genre", "ROMANCE" ], [ "A ROOM WITH A VIEW", "has_tags", "BD-R" ], [ "ADVENTURES OF DON JUAN", "has_genre", "ROMANCE" ], [ "ADVENTURES OF DON JUAN", "has_tags", "BD-R" ], [ "ALL THAT HEAVEN ALLOWS", "has_genre", "ROMANCE" ], [ "ALL THAT HEAVEN ALLOWS", "has_tags", "BD-R" ], [ "AMERICAN GRAFFITI", "has_tags", "BD-R" ], [ "AMERICAN GRAFFITI", "release_year", "1973" ], [ "BILLY ROSE'S JUMBO", "has_genre", "ROMANCE" ], [ "BILLY ROSE'S JUMBO", "has_tags", "BD-R" ], [ "BROKEBACK MOUNTAIN", "has_genre", "ROMANCE" ], [ "BROKEBACK MOUNTAIN", "has_tags", "BD-R" ], [ "BROKEBACK MOUNTAIN", "has_tags", "ROMANCE" ], [ "DILLINGER", "has_tags", "BD-R" ], [ "DILLINGER", "release_year", "1973" ], [ "ENTER THE DRAGON", "has_tags", "BD-R" ], [ "ENTER THE DRAGON", "release_year", "1973" ], [ "GONE WITH THE WIND", "has_genre", "ROMANCE" ], [ "GONE WITH THE WIND", "has_tags", "BD-R" ], [ "GONE WITH THE WIND", "has_tags", "ROMANCE" ], [ "HIGH AND DIZZY", "has_genre", "SHORT" ], [ "HIGH AND DIZZY", "has_tags", "BD-R" ], [ "HOT TUB TIME MACHINE", "release_year", "2010" ], [ "HOT TUB TIME MACHINE", "starred_actors", "ROB CORDDRY" ], [ "I'M HERE", "has_genre", "ROMANCE" ], [ "I'M HERE", "has_genre", "SHORT" ], [ "IT'S THE GREAT PUMPKIN, CHARLIE BROWN", "has_tags", "BD-R" ], [ "IT'S THE GREAT PUMPKIN, CHARLIE BROWN", "has_tags", "SHORT" ], [ "IVANHOE", "has_genre", "ROMANCE" ], [ "IVANHOE", "has_tags", "BD-R" ], [ "JEREMY", "has_genre", "ROMANCE" ], [ "JEREMY", "release_year", "1973" ], [ "MEAN STREETS", "has_tags", "BD-R" ], [ "MEAN STREETS", "release_year", "1973" ], [ "MIRANDA", "has_genre", "ROMANCE" ], [ "MIRANDA", "has_tags", "BD-R" ], [ "MURPHY'S ROMANCE", "has_genre", "ROMANCE" ], [ "MURPHY'S ROMANCE", "has_tags", "BD-R" ], [ "MY BRILLIANT CAREER", "has_genre", "ROMANCE" ], [ "MY BRILLIANT CAREER", "has_tags", "BD-R" ], [ "NINOTCHKA", "has_genre", "ROMANCE" ], [ "NINOTCHKA", "has_tags", "BD-R" ], [ "OKLAHOMA!", "has_genre", "ROMANCE" ], [ "OKLAHOMA!", "has_tags", "BD-R" ], [ "QUALITY STREET", "has_genre", "ROMANCE" ], [ "QUALITY STREET", "has_tags", "BD-R" ], [ "ROMEO AND JULIET", "has_genre", "ROMANCE" ], [ "ROMEO AND JULIET", "has_tags", "BD-R" ], [ "ROMEO AND JULIET", "has_tags", "ROMANCE" ], [ "SPELLBOUND", "has_genre", "ROMANCE" ], [ "SPELLBOUND", "has_tags", "BD-R" ], [ "SPIDER", "has_genre", "SHORT" ], [ "SPIDER", "has_tags", "BD-R" ], [ "SUMMERTIME", "has_genre", "ROMANCE" ], [ "SUMMERTIME", "has_tags", "BD-R" ], [ "SUMMERTIME", "has_tags", "ROMANCE" ], [ "TESS", "has_genre", "ROMANCE" ], [ "TESS", "has_tags", "BD-R" ], [ "THE CONSTANT NYMPH", "has_genre", "ROMANCE" ], [ "THE CONSTANT NYMPH", "has_tags", "BD-R" ], [ "THE CREEPING FLESH", "has_tags", "BD-R" ], [ "THE CREEPING FLESH", "release_year", "1973" ], [ "THE KILLERS", "has_genre", "SHORT" ], [ "THE KILLERS", "has_tags", "BD-R" ], [ "THE LEGEND OF HELL HOUSE", "has_tags", "BD-R" ], [ "THE LEGEND OF HELL HOUSE", "release_year", "1973" ], [ "THE MAN IN THE IRON MASK", "has_genre", "ROMANCE" ], [ "THE MAN IN THE IRON MASK", "has_tags", "BD-R" ], [ "THE PAPER CHASE", "has_tags", "BD-R" ], [ "THE PAPER CHASE", "release_year", "1973" ], [ "THE PILGRIM", "has_genre", "SHORT" ], [ "THE PILGRIM", "has_tags", "BD-R" ], [ "THE STING", "has_tags", "BD-R" ], [ "THE STING", "release_year", "1973" ], [ "THE THREE MUSKETEERS", "has_tags", "BD-R" ], [ "THE THREE MUSKETEERS", "release_year", "1973" ], [ "THE WAY WE WERE", "has_tags", "BD-R" ], [ "THE WAY WE WERE", "release_year", "1973" ], [ "THE WICKER MAN", "has_tags", "BD-R" ], [ "THE WICKER MAN", "release_year", "1973" ], [ "THEATRE OF BLOOD", "has_tags", "BD-R" ], [ "THEATRE OF BLOOD", "release_year", "1973" ], [ "TO HAVE AND HAVE NOT", "has_genre", "ROMANCE" ], [ "TO HAVE AND HAVE NOT", "has_tags", "BD-R" ], [ "TOM SAWYER", "has_tags", "BD-R" ], [ "TOM SAWYER", "release_year", "1973" ], [ "TOUKI BOUKI", "has_tags", "BD-R" ], [ "TOUKI BOUKI", "release_year", "1973" ], [ "WESTWORLD", "has_tags", "BD-R" ], [ "WESTWORLD", "release_year", "1973" ], [ "WHERE THE BOYS ARE", "has_genre", "ROMANCE" ], [ "WHERE THE BOYS ARE", "has_tags", "BD-R" ], [ "WHITE SHADOWS IN THE SOUTH SEAS", "has_genre", "ROMANCE" ], [ "WHITE SHADOWS IN THE SOUTH SEAS", "has_tags", "BD-R" ], [ "WUTHERING HEIGHTS", "has_genre", "ROMANCE" ], [ "WUTHERING HEIGHTS", "has_tags", "BD-R" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 11, 1940 27261, 2009 29424, 2011 39964, 247°F 39452, 96 MINUTES 35101, ABDUCTION 22786, ANONYMOUS 17883, BARRY LEVINSON 10045, BD-R 7724, BLITZ 11985, CEDRIC HARDWICKE 38751, CHRISTOPHER LEE 12226, CONTAGION 25607, CREATURE WITH THE ATOM BRAIN 6358, CURT SIODMAK 13659, DISCLOSURE 3154, DONOVAN'S BRAIN 7392, DREAM HOUSE 2232, DUSTIN HOFFMAN 3786, ENTER NOWHERE 1329, ENVY 16678, FALSE TRAIL 11565, GOOD 21763, GOOD MORNING, VIETNAM 9479, HANNA 19720, HAYWIRE 10975, HEADHUNTERS 580, HELLGATE 3595, HILARY SWANK 3436, IN TIME 13825, INSOMNIA 30511, INVISIBLE AGENT 3743, JUDAS KISS 32132, KILLER ELITE 7647, LIMITLESS 29754, MARTHA MARCY MAY MARLENE 28910, MICHAEL CRICHTON 13103, NO REST FOR THE WICKED 1309, OCCUPANT 31160, PAGE EIGHT 37623, RAIN MAN 25241, RETREAT 9216, ROSEWOOD LANE 10303, SEEKING JUSTICE 34723, SLEEPLESS NIGHT 30851, SPHERE 16127, STRAW DOGS 19102, SUPER 8 35243, TAKE SHELTER 16231, TARZAN'S MAGIC FOUNTAIN 21402, THE ADJUSTMENT BUREAU 16069, THE APE 10171, THE CALLER 7240, THE GIRL WITH THE DRAGON TATTOO 13340, THE GOOD DOCTOR 15989, THE GREY 8273, THE HIDDEN FACE 31667, THE HOLDING 23688, THE HUNTER 27604, THE INTERNECINE PROJECT 26776, THE INVISIBLE MAN RETURNS 5521, THE LEDGE 20779, THE LINCOLN LAWYER 8839, THE MECHANIC 29250, THE MONITOR 10049, THE MONK 28084, THE RESIDENT 18953, THE RITE 10053, THE RIVER MURDERS 11596, THE ROOMMATE 4957, THE SKIN I LIVE IN 21676, THE SON OF NO ONE 15340, THE SPEED OF THOUGHT 22751, THE WICKER MAN 24811, THRILLER 22110, TRESPASS 36954, TWIXT 36262, UNFAITHFULLY YOURS 10133, UNKNOWN 22214, WAR src, edge_attr, dst 39964, has_genre, 24811 39964, release_year, 29424 39452, has_genre, 24811 39452, release_year, 29424 35101, has_genre, 24811 35101, release_year, 29424 22786, has_genre, 24811 22786, release_year, 29424 7724, has_genre, 24811 7724, release_year, 29424 12226, has_genre, 24811 12226, has_tags, 24811 12226, release_year, 29424 25607, has_tags, 10045 25607, written_by, 6358 13659, directed_by, 17883 13659, has_genre, 24811 13659, has_tags, 28910 13659, written_by, 28910 3154, has_tags, 10045 3154, written_by, 6358 7392, has_genre, 24811 7392, release_year, 29424 3786, has_genre, 24811 3786, release_year, 29424 1329, directed_by, 17883 1329, release_year, 27261 16678, has_genre, 24811 16678, release_year, 29424 21763, directed_by, 17883 21763, has_genre, 22214 21763, has_imdb_rating, 11565 21763, has_tags, 17883 21763, has_tags, 10045 21763, has_tags, 22214 9479, has_genre, 24811 9479, has_tags, 24811 9479, release_year, 29424 19720, has_genre, 24811 19720, release_year, 29424 10975, has_genre, 24811 10975, release_year, 29424 580, has_genre, 24811 580, release_year, 29424 3436, has_genre, 24811 3436, has_tags, 24811 3436, release_year, 29424 13825, has_genre, 24811 13825, has_tags, 3595 13825, starred_actors, 3595 30511, has_genre, 22214 30511, starred_actors, 11985 30511, written_by, 6358 3743, has_genre, 24811 3743, release_year, 29424 32132, has_genre, 24811 32132, release_year, 29424 7647, has_genre, 24811 7647, release_year, 29424 29754, has_genre, 24811 29754, has_tags, 24811 29754, release_year, 29424 13103, has_genre, 24811 13103, has_tags, 24811 13103, release_year, 29424 1309, has_genre, 24811 1309, release_year, 29424 31160, has_genre, 24811 31160, release_year, 29424 37623, directed_by, 17883 37623, has_imdb_rating, 11565 37623, has_tags, 17883 37623, has_tags, 2232 37623, starred_actors, 2232 25241, has_genre, 24811 25241, release_year, 29424 9216, has_genre, 24811 9216, release_year, 29424 10303, has_genre, 24811 10303, release_year, 29424 34723, has_genre, 24811 34723, release_year, 29424 30851, directed_by, 17883 30851, has_tags, 17883 30851, has_tags, 2232 30851, has_tags, 28910 30851, starred_actors, 2232 30851, written_by, 28910 16127, has_genre, 24811 16127, release_year, 29424 19102, has_genre, 24811 19102, release_year, 29424 35243, has_genre, 24811 35243, release_year, 29424 16231, has_tags, 10045 16231, written_by, 6358 21402, has_genre, 24811 21402, release_year, 29424 16069, release_year, 11 16069, release_year, 27261 16069, written_by, 6358 10171, has_genre, 24811 10171, release_year, 29424 7240, has_tags, 24811 7240, release_year, 29424 13340, has_genre, 24811 13340, release_year, 29424 15989, has_genre, 24811 15989, release_year, 29424 8273, has_genre, 24811 8273, has_tags, 24811 8273, release_year, 29424 31667, has_genre, 24811 31667, release_year, 29424 23688, has_genre, 24811 23688, release_year, 29424 27604, has_genre, 24811 27604, written_by, 17883 26776, has_imdb_rating, 11565 26776, release_year, 11 26776, starred_actors, 11985 26776, written_by, 6358 5521, has_genre, 24811 5521, release_year, 29424 20779, has_genre, 24811 20779, release_year, 29424 8839, has_genre, 24811 8839, release_year, 29424 29250, has_genre, 24811 29250, release_year, 29424 10049, has_genre, 24811 10049, release_year, 29424 28084, has_genre, 24811 28084, release_year, 29424 28084, starred_actors, 38751 28084, starred_actors, 3595 18953, has_tags, 24811 18953, release_year, 29424 10053, has_genre, 24811 10053, release_year, 29424 11596, has_genre, 24811 11596, has_tags, 24811 11596, release_year, 29424 4957, has_genre, 24811 4957, release_year, 29424 21676, has_genre, 24811 21676, has_tags, 24811 21676, release_year, 29424 15340, has_genre, 24811 15340, release_year, 29424 22751, has_genre, 24811 22751, has_tags, 38751 22751, starred_actors, 38751 22110, has_genre, 24811 22110, release_year, 29424 36954, has_genre, 24811 36954, release_year, 29424 36262, has_tags, 10045 36262, written_by, 17883 10133, has_genre, 24811 10133, release_year, 29424 Question: In what context are BARRY LEVINSON, CURT SIODMAK, and THE RESIDENT connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "BARRY LEVINSON", "CURT SIODMAK", "THE RESIDENT" ], "valid_edges": [ [ "247°F", "has_genre", "THRILLER" ], [ "247°F", "release_year", "2011" ], [ "96 MINUTES", "has_genre", "THRILLER" ], [ "96 MINUTES", "release_year", "2011" ], [ "ABDUCTION", "has_genre", "THRILLER" ], [ "ABDUCTION", "release_year", "2011" ], [ "ANONYMOUS", "has_genre", "THRILLER" ], [ "ANONYMOUS", "release_year", "2011" ], [ "BLITZ", "has_genre", "THRILLER" ], [ "BLITZ", "release_year", "2011" ], [ "CONTAGION", "has_genre", "THRILLER" ], [ "CONTAGION", "has_tags", "THRILLER" ], [ "CONTAGION", "release_year", "2011" ], [ "CREATURE WITH THE ATOM BRAIN", "has_tags", "BD-R" ], [ "CREATURE WITH THE ATOM BRAIN", "written_by", "CURT SIODMAK" ], [ "DISCLOSURE", "directed_by", "BARRY LEVINSON" ], [ "DISCLOSURE", "has_genre", "THRILLER" ], [ "DISCLOSURE", "has_tags", "MICHAEL CRICHTON" ], [ "DISCLOSURE", "written_by", "MICHAEL CRICHTON" ], [ "DONOVAN'S BRAIN", "has_tags", "BD-R" ], [ "DONOVAN'S BRAIN", "written_by", "CURT SIODMAK" ], [ "DREAM HOUSE", "has_genre", "THRILLER" ], [ "DREAM HOUSE", "release_year", "2011" ], [ "ENTER NOWHERE", "has_genre", "THRILLER" ], [ "ENTER NOWHERE", "release_year", "2011" ], [ "ENVY", "directed_by", "BARRY LEVINSON" ], [ "ENVY", "release_year", "2009" ], [ "FALSE TRAIL", "has_genre", "THRILLER" ], [ "FALSE TRAIL", "release_year", "2011" ], [ "GOOD MORNING, VIETNAM", "directed_by", "BARRY LEVINSON" ], [ "GOOD MORNING, VIETNAM", "has_genre", "WAR" ], [ "GOOD MORNING, VIETNAM", "has_imdb_rating", "GOOD" ], [ "GOOD MORNING, VIETNAM", "has_tags", "BARRY LEVINSON" ], [ "GOOD MORNING, VIETNAM", "has_tags", "BD-R" ], [ "GOOD MORNING, VIETNAM", "has_tags", "WAR" ], [ "HANNA", "has_genre", "THRILLER" ], [ "HANNA", "has_tags", "THRILLER" ], [ "HANNA", "release_year", "2011" ], [ "HAYWIRE", "has_genre", "THRILLER" ], [ "HAYWIRE", "release_year", "2011" ], [ "HEADHUNTERS", "has_genre", "THRILLER" ], [ "HEADHUNTERS", "release_year", "2011" ], [ "HELLGATE", "has_genre", "THRILLER" ], [ "HELLGATE", "release_year", "2011" ], [ "IN TIME", "has_genre", "THRILLER" ], [ "IN TIME", "has_tags", "THRILLER" ], [ "IN TIME", "release_year", "2011" ], [ "INSOMNIA", "has_genre", "THRILLER" ], [ "INSOMNIA", "has_tags", "HILARY SWANK" ], [ "INSOMNIA", "starred_actors", "HILARY SWANK" ], [ "INVISIBLE AGENT", "has_genre", "WAR" ], [ "INVISIBLE AGENT", "starred_actors", "CEDRIC HARDWICKE" ], [ "INVISIBLE AGENT", "written_by", "CURT SIODMAK" ], [ "JUDAS KISS", "has_genre", "THRILLER" ], [ "JUDAS KISS", "release_year", "2011" ], [ "KILLER ELITE", "has_genre", "THRILLER" ], [ "KILLER ELITE", "release_year", "2011" ], [ "LIMITLESS", "has_genre", "THRILLER" ], [ "LIMITLESS", "release_year", "2011" ], [ "MARTHA MARCY MAY MARLENE", "has_genre", "THRILLER" ], [ "MARTHA MARCY MAY MARLENE", "has_tags", "THRILLER" ], [ "MARTHA MARCY MAY MARLENE", "release_year", "2011" ], [ "NO REST FOR THE WICKED", "has_genre", "THRILLER" ], [ "NO REST FOR THE WICKED", "has_tags", "THRILLER" ], [ "NO REST FOR THE WICKED", "release_year", "2011" ], [ "OCCUPANT", "has_genre", "THRILLER" ], [ "OCCUPANT", "release_year", "2011" ], [ "PAGE EIGHT", "has_genre", "THRILLER" ], [ "PAGE EIGHT", "release_year", "2011" ], [ "RAIN MAN", "directed_by", "BARRY LEVINSON" ], [ "RAIN MAN", "has_imdb_rating", "GOOD" ], [ "RAIN MAN", "has_tags", "BARRY LEVINSON" ], [ "RAIN MAN", "has_tags", "DUSTIN HOFFMAN" ], [ "RAIN MAN", "starred_actors", "DUSTIN HOFFMAN" ], [ "RETREAT", "has_genre", "THRILLER" ], [ "RETREAT", "release_year", "2011" ], [ "ROSEWOOD LANE", "has_genre", "THRILLER" ], [ "ROSEWOOD LANE", "release_year", "2011" ], [ "SEEKING JUSTICE", "has_genre", "THRILLER" ], [ "SEEKING JUSTICE", "release_year", "2011" ], [ "SLEEPLESS NIGHT", "has_genre", "THRILLER" ], [ "SLEEPLESS NIGHT", "release_year", "2011" ], [ "SPHERE", "directed_by", "BARRY LEVINSON" ], [ "SPHERE", "has_tags", "BARRY LEVINSON" ], [ "SPHERE", "has_tags", "DUSTIN HOFFMAN" ], [ "SPHERE", "has_tags", "MICHAEL CRICHTON" ], [ "SPHERE", "starred_actors", "DUSTIN HOFFMAN" ], [ "SPHERE", "written_by", "MICHAEL CRICHTON" ], [ "STRAW DOGS", "has_genre", "THRILLER" ], [ "STRAW DOGS", "release_year", "2011" ], [ "SUPER 8", "has_genre", "THRILLER" ], [ "SUPER 8", "release_year", "2011" ], [ "TAKE SHELTER", "has_genre", "THRILLER" ], [ "TAKE SHELTER", "release_year", "2011" ], [ "TARZAN'S MAGIC FOUNTAIN", "has_tags", "BD-R" ], [ "TARZAN'S MAGIC FOUNTAIN", "written_by", "CURT SIODMAK" ], [ "THE ADJUSTMENT BUREAU", "has_genre", "THRILLER" ], [ "THE ADJUSTMENT BUREAU", "release_year", "2011" ], [ "THE APE", "release_year", "1940" ], [ "THE APE", "release_year", "2009" ], [ "THE APE", "written_by", "CURT SIODMAK" ], [ "THE CALLER", "has_genre", "THRILLER" ], [ "THE CALLER", "release_year", "2011" ], [ "THE GIRL WITH THE DRAGON TATTOO", "has_tags", "THRILLER" ], [ "THE GIRL WITH THE DRAGON TATTOO", "release_year", "2011" ], [ "THE GOOD DOCTOR", "has_genre", "THRILLER" ], [ "THE GOOD DOCTOR", "release_year", "2011" ], [ "THE GREY", "has_genre", "THRILLER" ], [ "THE GREY", "release_year", "2011" ], [ "THE HIDDEN FACE", "has_genre", "THRILLER" ], [ "THE HIDDEN FACE", "has_tags", "THRILLER" ], [ "THE HIDDEN FACE", "release_year", "2011" ], [ "THE HOLDING", "has_genre", "THRILLER" ], [ "THE HOLDING", "release_year", "2011" ], [ "THE HUNTER", "has_genre", "THRILLER" ], [ "THE HUNTER", "release_year", "2011" ], [ "THE INTERNECINE PROJECT", "has_genre", "THRILLER" ], [ "THE INTERNECINE PROJECT", "written_by", "BARRY LEVINSON" ], [ "THE INVISIBLE MAN RETURNS", "has_imdb_rating", "GOOD" ], [ "THE INVISIBLE MAN RETURNS", "release_year", "1940" ], [ "THE INVISIBLE MAN RETURNS", "starred_actors", "CEDRIC HARDWICKE" ], [ "THE INVISIBLE MAN RETURNS", "written_by", "CURT SIODMAK" ], [ "THE LEDGE", "has_genre", "THRILLER" ], [ "THE LEDGE", "release_year", "2011" ], [ "THE LINCOLN LAWYER", "has_genre", "THRILLER" ], [ "THE LINCOLN LAWYER", "release_year", "2011" ], [ "THE MECHANIC", "has_genre", "THRILLER" ], [ "THE MECHANIC", "release_year", "2011" ], [ "THE MONITOR", "has_genre", "THRILLER" ], [ "THE MONITOR", "release_year", "2011" ], [ "THE MONK", "has_genre", "THRILLER" ], [ "THE MONK", "release_year", "2011" ], [ "THE RESIDENT", "has_genre", "THRILLER" ], [ "THE RESIDENT", "release_year", "2011" ], [ "THE RESIDENT", "starred_actors", "CHRISTOPHER LEE" ], [ "THE RESIDENT", "starred_actors", "HILARY SWANK" ], [ "THE RITE", "has_tags", "THRILLER" ], [ "THE RITE", "release_year", "2011" ], [ "THE RIVER MURDERS", "has_genre", "THRILLER" ], [ "THE RIVER MURDERS", "release_year", "2011" ], [ "THE ROOMMATE", "has_genre", "THRILLER" ], [ "THE ROOMMATE", "has_tags", "THRILLER" ], [ "THE ROOMMATE", "release_year", "2011" ], [ "THE SKIN I LIVE IN", "has_genre", "THRILLER" ], [ "THE SKIN I LIVE IN", "release_year", "2011" ], [ "THE SON OF NO ONE", "has_genre", "THRILLER" ], [ "THE SON OF NO ONE", "has_tags", "THRILLER" ], [ "THE SON OF NO ONE", "release_year", "2011" ], [ "THE SPEED OF THOUGHT", "has_genre", "THRILLER" ], [ "THE SPEED OF THOUGHT", "release_year", "2011" ], [ "THE WICKER MAN", "has_genre", "THRILLER" ], [ "THE WICKER MAN", "has_tags", "CHRISTOPHER LEE" ], [ "THE WICKER MAN", "starred_actors", "CHRISTOPHER LEE" ], [ "TRESPASS", "has_genre", "THRILLER" ], [ "TRESPASS", "release_year", "2011" ], [ "TWIXT", "has_genre", "THRILLER" ], [ "TWIXT", "release_year", "2011" ], [ "UNFAITHFULLY YOURS", "has_tags", "BD-R" ], [ "UNFAITHFULLY YOURS", "written_by", "BARRY LEVINSON" ], [ "UNKNOWN", "has_genre", "THRILLER" ], [ "UNKNOWN", "release_year", "2011" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 9189, 50 CENT 3541, BRIGHT LEAVES 12841, DOCUMENTARY 18116, HOW TO MAKE MONEY SELLING DRUGS 5697, JAMES TOBACK 36869, ROSS MCELWEE 24676, SEDUCED AND ABANDONED 30043, SHERMAN'S MARCH 12757, TYSON src, edge_attr, dst 3541, directed_by, 36869 3541, has_genre, 12841 3541, written_by, 36869 18116, has_genre, 12841 18116, has_tags, 12841 18116, starred_actors, 9189 24676, directed_by, 5697 24676, has_genre, 12841 24676, has_tags, 5697 24676, written_by, 5697 30043, directed_by, 36869 30043, has_genre, 12841 30043, starred_actors, 36869 30043, written_by, 36869 12757, directed_by, 5697 12757, has_genre, 12841 12757, has_tags, 5697 12757, written_by, 5697 Question: How are 50 CENT, ROSS MCELWEE, and SEDUCED AND ABANDONED related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "50 CENT", "ROSS MCELWEE", "SEDUCED AND ABANDONED" ], "valid_edges": [ [ "BRIGHT LEAVES", "directed_by", "ROSS MCELWEE" ], [ "BRIGHT LEAVES", "has_genre", "DOCUMENTARY" ], [ "BRIGHT LEAVES", "written_by", "ROSS MCELWEE" ], [ "HOW TO MAKE MONEY SELLING DRUGS", "has_genre", "DOCUMENTARY" ], [ "HOW TO MAKE MONEY SELLING DRUGS", "has_tags", "DOCUMENTARY" ], [ "HOW TO MAKE MONEY SELLING DRUGS", "starred_actors", "50 CENT" ], [ "SEDUCED AND ABANDONED", "directed_by", "JAMES TOBACK" ], [ "SEDUCED AND ABANDONED", "has_genre", "DOCUMENTARY" ], [ "SEDUCED AND ABANDONED", "has_tags", "JAMES TOBACK" ], [ "SEDUCED AND ABANDONED", "written_by", "JAMES TOBACK" ], [ "SHERMAN'S MARCH", "directed_by", "ROSS MCELWEE" ], [ "SHERMAN'S MARCH", "has_genre", "DOCUMENTARY" ], [ "SHERMAN'S MARCH", "starred_actors", "ROSS MCELWEE" ], [ "SHERMAN'S MARCH", "written_by", "ROSS MCELWEE" ], [ "TYSON", "directed_by", "JAMES TOBACK" ], [ "TYSON", "has_genre", "DOCUMENTARY" ], [ "TYSON", "has_tags", "JAMES TOBACK" ], [ "TYSON", "written_by", "JAMES TOBACK" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 33637, 1959 25221, 1981 35845, 2006 27261, 2009 2779, A PROPHET 10429, A SUNDAY IN KIGALI 21524, A TOWN CALLED PANIC 29167, AMER 24216, ASTERIX AND THE VIKINGS 2156, AVENUE MONTAIGNE 25570, BEAUTY AND THE BEAST 26602, BETTY 4197, BLUEBEARD 6283, CARGO 33914, CHÉRI 36000, CLAUDE CHABROL 25853, COCO BEFORE CHANEL 6855, COME DANCE WITH ME! 23571, COMEDY OF POWER 4513, DANS PARIS 3567, DAYS OF GLORY 36405, DON'T LOOK BACK 37874, DON'T WORRY, I'M FINE 7480, EDEN 8176, FAREWELL 22941, FATHER AND GUNS 36601, FLANDERS 1273, FLYBOYS 6012, FRENCH 36001, HADEWIJCH 38589, I DO 7569, IN THE BEGINNING 16560, INGLOURIOUS BASTERDS 15366, KORKORO 18091, L'ENFER 27429, LA CÉRÉMONIE 21884, LADY CHATTERLEY 1311, LASCARS 35149, LE BEAU SERGE 13066, LE BOUCHER 31837, LEAVING 13227, LES BICHES 39572, LES COUSINS 17372, LOL 5214, LOOKING FOR ERIC 2889, MADAME BOVARY 2533, MADEMOISELLE CHAMBON 29822, MAKING PLANS FOR LENA 19594, MAMMUTH 28455, MARIE ANTOINETTE 39644, MUTANTS 29894, OCEANS 29693, PICKPOCKET 20440, PICNIC ON THE GRASS 1103, PLEASURE PARTY 8171, PRICELESS 12223, PRIVATE FEARS IN PUBLIC PLACES 27445, PRIVATE PROPERTY 5538, QUEEN TO PLAY 12820, RAPT 18480, RENAISSANCE 16482, RICKY 3942, SALVAGE 28126, SHEITAN 27301, SPLICE 15194, STORY OF WOMEN 5467, SÉRAPHINE 37807, TELL NO ONE 18486, THE 400 BLOWS 23231, THE BRIDESMAID 1059, THE DA VINCI CODE 39211, THE FLOWER OF EVIL 33810, THE FRENCH KISSERS 36893, THE GIRL ON THE TRAIN 17555, THE HEDGEHOG 25529, THE ILLUSIONIST 37047, THE MAN OF MY LIFE 23972, THE PAGE TURNER 11383, THE SCIENCE OF SLEEP 20919, THE STRING 26678, THE SWINDLE 39999, THE THORN IN THE HEART 29199, THE UNFAITHFUL WIFE 4542, THE VALET 35283, THEM 10179, THIS MAN MUST DIE 10988, TOMORROW AT DAWN 37543, TRANSYLVANIA 19606, TWO MEN IN MANHATTAN 32772, UNFAITHFUL 10735, VENGEANCE 17001, VILLA AMALIA 22910, WEDDING IN BLOOD 34053, WELCOME 23392, WHITE MATERIAL 9876, WILD GRASS 3739, YOLANDE MOREAU src, edge_attr, dst 25221, in_language, 6012 25221, release_year, 27261 2779, has_tags, 6012 2779, in_language, 6012 2779, release_year, 27261 10429, in_language, 6012 10429, release_year, 35845 21524, has_tags, 6012 21524, in_language, 6012 21524, release_year, 27261 29167, in_language, 6012 29167, release_year, 27261 24216, in_language, 6012 24216, release_year, 35845 2156, has_tags, 6012 2156, in_language, 6012 2156, release_year, 35845 25570, in_language, 6012 25570, release_year, 27261 26602, directed_by, 36000 26602, in_language, 6012 26602, written_by, 36000 4197, in_language, 6012 4197, release_year, 27261 6283, release_year, 35845 6283, release_year, 27261 33914, in_language, 6012 33914, release_year, 27261 25853, has_tags, 6012 25853, in_language, 6012 25853, release_year, 27261 6855, in_language, 6012 6855, release_year, 33637 23571, directed_by, 36000 23571, in_language, 6012 23571, release_year, 35845 23571, written_by, 36000 4513, in_language, 6012 4513, release_year, 35845 3567, in_language, 6012 3567, release_year, 35845 36405, in_language, 6012 36405, release_year, 27261 37874, in_language, 6012 37874, release_year, 35845 7480, in_language, 6012 7480, release_year, 35845 8176, in_language, 6012 8176, release_year, 27261 22941, in_language, 6012 22941, release_year, 27261 36601, in_language, 6012 36601, release_year, 35845 1273, in_language, 6012 1273, release_year, 35845 36001, in_language, 6012 36001, release_year, 27261 38589, has_tags, 6012 38589, in_language, 6012 38589, release_year, 35845 7569, in_language, 6012 7569, release_year, 27261 16560, has_tags, 6012 16560, in_language, 6012 16560, release_year, 27261 15366, has_tags, 6012 15366, in_language, 6012 15366, release_year, 27261 18091, directed_by, 36000 18091, has_tags, 36000 18091, in_language, 6012 18091, written_by, 36000 27429, directed_by, 36000 27429, has_tags, 36000 27429, in_language, 6012 27429, written_by, 36000 21884, in_language, 6012 21884, release_year, 35845 1311, in_language, 6012 1311, release_year, 27261 35149, directed_by, 36000 35149, has_tags, 36000 35149, in_language, 6012 35149, written_by, 36000 13066, directed_by, 36000 13066, has_tags, 36000 13066, in_language, 6012 13066, written_by, 36000 31837, in_language, 6012 31837, release_year, 27261 13227, directed_by, 36000 13227, has_tags, 36000 13227, in_language, 6012 13227, written_by, 36000 39572, directed_by, 36000 39572, has_tags, 36000 39572, in_language, 6012 39572, release_year, 33637 39572, written_by, 36000 17372, in_language, 6012 17372, release_year, 35845 5214, in_language, 6012 5214, release_year, 27261 2889, directed_by, 36000 2889, in_language, 6012 2889, written_by, 36000 2533, in_language, 6012 2533, release_year, 27261 29822, in_language, 6012 29822, release_year, 27261 19594, in_language, 6012 19594, starred_actors, 3739 28455, in_language, 6012 28455, release_year, 35845 39644, in_language, 6012 39644, release_year, 27261 29894, in_language, 6012 29894, release_year, 27261 29693, in_language, 6012 29693, release_year, 33637 20440, in_language, 6012 20440, release_year, 33637 1103, directed_by, 36000 1103, in_language, 6012 8171, has_tags, 6012 8171, in_language, 6012 8171, release_year, 35845 12223, in_language, 6012 12223, release_year, 35845 27445, in_language, 6012 27445, release_year, 35845 5538, in_language, 6012 5538, release_year, 27261 12820, in_language, 6012 12820, release_year, 27261 18480, in_language, 6012 18480, release_year, 35845 16482, in_language, 6012 16482, release_year, 27261 3942, release_year, 35845 3942, release_year, 27261 28126, in_language, 6012 28126, release_year, 35845 27301, in_language, 6012 27301, release_year, 27261 15194, directed_by, 36000 15194, has_tags, 36000 15194, in_language, 6012 15194, written_by, 36000 5467, in_language, 6012 5467, starred_actors, 3739 37807, has_tags, 6012 37807, in_language, 6012 37807, release_year, 35845 18486, in_language, 6012 18486, release_year, 33637 23231, directed_by, 36000 23231, in_language, 6012 23231, written_by, 36000 1059, in_language, 6012 1059, release_year, 35845 39211, directed_by, 36000 39211, in_language, 6012 39211, written_by, 36000 33810, in_language, 6012 33810, release_year, 27261 36893, in_language, 6012 36893, release_year, 27261 17555, has_tags, 6012 17555, in_language, 6012 17555, release_year, 27261 25529, in_language, 6012 25529, release_year, 35845 37047, in_language, 6012 37047, release_year, 35845 23972, has_tags, 6012 23972, in_language, 6012 23972, release_year, 35845 11383, in_language, 6012 11383, release_year, 35845 20919, in_language, 6012 20919, release_year, 27261 26678, directed_by, 36000 26678, in_language, 6012 26678, written_by, 36000 39999, in_language, 6012 39999, release_year, 27261 29199, directed_by, 36000 29199, has_tags, 36000 29199, in_language, 6012 29199, written_by, 36000 4542, has_tags, 6012 4542, in_language, 6012 4542, release_year, 35845 35283, in_language, 6012 35283, release_year, 35845 10179, directed_by, 36000 10179, has_tags, 36000 10179, in_language, 6012 10179, written_by, 36000 10988, in_language, 6012 10988, release_year, 27261 37543, in_language, 6012 37543, release_year, 35845 19606, in_language, 6012 19606, release_year, 33637 32772, in_language, 6012 32772, written_by, 36000 10735, in_language, 6012 10735, release_year, 27261 17001, in_language, 6012 17001, release_year, 27261 22910, directed_by, 36000 22910, has_tags, 36000 22910, in_language, 6012 22910, written_by, 36000 34053, in_language, 6012 34053, release_year, 27261 23392, in_language, 6012 23392, release_year, 27261 9876, has_tags, 6012 9876, in_language, 6012 9876, release_year, 27261 Question: In what context are CARGO, LES COUSINS, and YOLANDE MOREAU connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "CARGO", "LES COUSINS", "YOLANDE MOREAU" ], "valid_edges": [ [ "1981", "in_language", "FRENCH" ], [ "1981", "release_year", "2009" ], [ "A PROPHET", "has_tags", "FRENCH" ], [ "A PROPHET", "in_language", "FRENCH" ], [ "A PROPHET", "release_year", "2009" ], [ "A SUNDAY IN KIGALI", "in_language", "FRENCH" ], [ "A SUNDAY IN KIGALI", "release_year", "2006" ], [ "A TOWN CALLED PANIC", "has_tags", "FRENCH" ], [ "A TOWN CALLED PANIC", "in_language", "FRENCH" ], [ "A TOWN CALLED PANIC", "release_year", "2009" ], [ "AMER", "in_language", "FRENCH" ], [ "AMER", "release_year", "2009" ], [ "ASTERIX AND THE VIKINGS", "in_language", "FRENCH" ], [ "ASTERIX AND THE VIKINGS", "release_year", "2006" ], [ "AVENUE MONTAIGNE", "has_tags", "FRENCH" ], [ "AVENUE MONTAIGNE", "in_language", "FRENCH" ], [ "AVENUE MONTAIGNE", "release_year", "2006" ], [ "BEAUTY AND THE BEAST", "in_language", "FRENCH" ], [ "BEAUTY AND THE BEAST", "release_year", "2009" ], [ "BETTY", "directed_by", "CLAUDE CHABROL" ], [ "BETTY", "in_language", "FRENCH" ], [ "BETTY", "written_by", "CLAUDE CHABROL" ], [ "BLUEBEARD", "in_language", "FRENCH" ], [ "BLUEBEARD", "release_year", "2009" ], [ "CARGO", "release_year", "2006" ], [ "CARGO", "release_year", "2009" ], [ "CHÉRI", "in_language", "FRENCH" ], [ "CHÉRI", "release_year", "2009" ], [ "COCO BEFORE CHANEL", "has_tags", "FRENCH" ], [ "COCO BEFORE CHANEL", "in_language", "FRENCH" ], [ "COCO BEFORE CHANEL", "release_year", "2009" ], [ "COME DANCE WITH ME!", "in_language", "FRENCH" ], [ "COME DANCE WITH ME!", "release_year", "1959" ], [ "COMEDY OF POWER", "directed_by", "CLAUDE CHABROL" ], [ "COMEDY OF POWER", "in_language", "FRENCH" ], [ "COMEDY OF POWER", "release_year", "2006" ], [ "COMEDY OF POWER", "written_by", "CLAUDE CHABROL" ], [ "DANS PARIS", "in_language", "FRENCH" ], [ "DANS PARIS", "release_year", "2006" ], [ "DAYS OF GLORY", "in_language", "FRENCH" ], [ "DAYS OF GLORY", "release_year", "2006" ], [ "DON'T LOOK BACK", "in_language", "FRENCH" ], [ "DON'T LOOK BACK", "release_year", "2009" ], [ "DON'T WORRY, I'M FINE", "in_language", "FRENCH" ], [ "DON'T WORRY, I'M FINE", "release_year", "2006" ], [ "EDEN", "in_language", "FRENCH" ], [ "EDEN", "release_year", "2006" ], [ "FAREWELL", "in_language", "FRENCH" ], [ "FAREWELL", "release_year", "2009" ], [ "FATHER AND GUNS", "in_language", "FRENCH" ], [ "FATHER AND GUNS", "release_year", "2009" ], [ "FLANDERS", "in_language", "FRENCH" ], [ "FLANDERS", "release_year", "2006" ], [ "FLYBOYS", "in_language", "FRENCH" ], [ "FLYBOYS", "release_year", "2006" ], [ "HADEWIJCH", "in_language", "FRENCH" ], [ "HADEWIJCH", "release_year", "2009" ], [ "I DO", "has_tags", "FRENCH" ], [ "I DO", "in_language", "FRENCH" ], [ "I DO", "release_year", "2006" ], [ "IN THE BEGINNING", "in_language", "FRENCH" ], [ "IN THE BEGINNING", "release_year", "2009" ], [ "INGLOURIOUS BASTERDS", "has_tags", "FRENCH" ], [ "INGLOURIOUS BASTERDS", "in_language", "FRENCH" ], [ "INGLOURIOUS BASTERDS", "release_year", "2009" ], [ "KORKORO", "has_tags", "FRENCH" ], [ "KORKORO", "in_language", "FRENCH" ], [ "KORKORO", "release_year", "2009" ], [ "L'ENFER", "directed_by", "CLAUDE CHABROL" ], [ "L'ENFER", "has_tags", "CLAUDE CHABROL" ], [ "L'ENFER", "in_language", "FRENCH" ], [ "L'ENFER", "written_by", "CLAUDE CHABROL" ], [ "LA CÉRÉMONIE", "directed_by", "CLAUDE CHABROL" ], [ "LA CÉRÉMONIE", "has_tags", "CLAUDE CHABROL" ], [ "LA CÉRÉMONIE", "in_language", "FRENCH" ], [ "LA CÉRÉMONIE", "written_by", "CLAUDE CHABROL" ], [ "LADY CHATTERLEY", "in_language", "FRENCH" ], [ "LADY CHATTERLEY", "release_year", "2006" ], [ "LASCARS", "in_language", "FRENCH" ], [ "LASCARS", "release_year", "2009" ], [ "LE BEAU SERGE", "directed_by", "CLAUDE CHABROL" ], [ "LE BEAU SERGE", "has_tags", "CLAUDE CHABROL" ], [ "LE BEAU SERGE", "in_language", "FRENCH" ], [ "LE BEAU SERGE", "written_by", "CLAUDE CHABROL" ], [ "LE BOUCHER", "directed_by", "CLAUDE CHABROL" ], [ "LE BOUCHER", "has_tags", "CLAUDE CHABROL" ], [ "LE BOUCHER", "in_language", "FRENCH" ], [ "LE BOUCHER", "written_by", "CLAUDE CHABROL" ], [ "LEAVING", "in_language", "FRENCH" ], [ "LEAVING", "release_year", "2009" ], [ "LES BICHES", "directed_by", "CLAUDE CHABROL" ], [ "LES BICHES", "has_tags", "CLAUDE CHABROL" ], [ "LES BICHES", "in_language", "FRENCH" ], [ "LES BICHES", "written_by", "CLAUDE CHABROL" ], [ "LES COUSINS", "directed_by", "CLAUDE CHABROL" ], [ "LES COUSINS", "has_tags", "CLAUDE CHABROL" ], [ "LES COUSINS", "in_language", "FRENCH" ], [ "LES COUSINS", "release_year", "1959" ], [ "LES COUSINS", "written_by", "CLAUDE CHABROL" ], [ "LOL", "in_language", "FRENCH" ], [ "LOL", "release_year", "2006" ], [ "LOOKING FOR ERIC", "in_language", "FRENCH" ], [ "LOOKING FOR ERIC", "release_year", "2009" ], [ "MADAME BOVARY", "directed_by", "CLAUDE CHABROL" ], [ "MADAME BOVARY", "in_language", "FRENCH" ], [ "MADAME BOVARY", "written_by", "CLAUDE CHABROL" ], [ "MADEMOISELLE CHAMBON", "in_language", "FRENCH" ], [ "MADEMOISELLE CHAMBON", "release_year", "2009" ], [ "MAKING PLANS FOR LENA", "in_language", "FRENCH" ], [ "MAKING PLANS FOR LENA", "release_year", "2009" ], [ "MAMMUTH", "in_language", "FRENCH" ], [ "MAMMUTH", "starred_actors", "YOLANDE MOREAU" ], [ "MARIE ANTOINETTE", "in_language", "FRENCH" ], [ "MARIE ANTOINETTE", "release_year", "2006" ], [ "MUTANTS", "in_language", "FRENCH" ], [ "MUTANTS", "release_year", "2009" ], [ "OCEANS", "in_language", "FRENCH" ], [ "OCEANS", "release_year", "2009" ], [ "PICKPOCKET", "in_language", "FRENCH" ], [ "PICKPOCKET", "release_year", "1959" ], [ "PICNIC ON THE GRASS", "in_language", "FRENCH" ], [ "PICNIC ON THE GRASS", "release_year", "1959" ], [ "PLEASURE PARTY", "directed_by", "CLAUDE CHABROL" ], [ "PLEASURE PARTY", "in_language", "FRENCH" ], [ "PRICELESS", "has_tags", "FRENCH" ], [ "PRICELESS", "in_language", "FRENCH" ], [ "PRICELESS", "release_year", "2006" ], [ "PRIVATE FEARS IN PUBLIC PLACES", "in_language", "FRENCH" ], [ "PRIVATE FEARS IN PUBLIC PLACES", "release_year", "2006" ], [ "PRIVATE PROPERTY", "in_language", "FRENCH" ], [ "PRIVATE PROPERTY", "release_year", "2006" ], [ "QUEEN TO PLAY", "in_language", "FRENCH" ], [ "QUEEN TO PLAY", "release_year", "2009" ], [ "RAPT", "in_language", "FRENCH" ], [ "RAPT", "release_year", "2009" ], [ "RENAISSANCE", "in_language", "FRENCH" ], [ "RENAISSANCE", "release_year", "2006" ], [ "RICKY", "in_language", "FRENCH" ], [ "RICKY", "release_year", "2009" ], [ "SALVAGE", "release_year", "2006" ], [ "SALVAGE", "release_year", "2009" ], [ "SHEITAN", "in_language", "FRENCH" ], [ "SHEITAN", "release_year", "2006" ], [ "SPLICE", "in_language", "FRENCH" ], [ "SPLICE", "release_year", "2009" ], [ "STORY OF WOMEN", "directed_by", "CLAUDE CHABROL" ], [ "STORY OF WOMEN", "has_tags", "CLAUDE CHABROL" ], [ "STORY OF WOMEN", "in_language", "FRENCH" ], [ "STORY OF WOMEN", "written_by", "CLAUDE CHABROL" ], [ "SÉRAPHINE", "in_language", "FRENCH" ], [ "SÉRAPHINE", "starred_actors", "YOLANDE MOREAU" ], [ "TELL NO ONE", "has_tags", "FRENCH" ], [ "TELL NO ONE", "in_language", "FRENCH" ], [ "TELL NO ONE", "release_year", "2006" ], [ "THE 400 BLOWS", "in_language", "FRENCH" ], [ "THE 400 BLOWS", "release_year", "1959" ], [ "THE BRIDESMAID", "directed_by", "CLAUDE CHABROL" ], [ "THE BRIDESMAID", "in_language", "FRENCH" ], [ "THE BRIDESMAID", "written_by", "CLAUDE CHABROL" ], [ "THE DA VINCI CODE", "in_language", "FRENCH" ], [ "THE DA VINCI CODE", "release_year", "2006" ], [ "THE FLOWER OF EVIL", "directed_by", "CLAUDE CHABROL" ], [ "THE FLOWER OF EVIL", "in_language", "FRENCH" ], [ "THE FLOWER OF EVIL", "written_by", "CLAUDE CHABROL" ], [ "THE FRENCH KISSERS", "in_language", "FRENCH" ], [ "THE FRENCH KISSERS", "release_year", "2009" ], [ "THE GIRL ON THE TRAIN", "in_language", "FRENCH" ], [ "THE GIRL ON THE TRAIN", "release_year", "2009" ], [ "THE HEDGEHOG", "has_tags", "FRENCH" ], [ "THE HEDGEHOG", "in_language", "FRENCH" ], [ "THE HEDGEHOG", "release_year", "2009" ], [ "THE ILLUSIONIST", "in_language", "FRENCH" ], [ "THE ILLUSIONIST", "release_year", "2006" ], [ "THE MAN OF MY LIFE", "in_language", "FRENCH" ], [ "THE MAN OF MY LIFE", "release_year", "2006" ], [ "THE PAGE TURNER", "has_tags", "FRENCH" ], [ "THE PAGE TURNER", "in_language", "FRENCH" ], [ "THE PAGE TURNER", "release_year", "2006" ], [ "THE SCIENCE OF SLEEP", "in_language", "FRENCH" ], [ "THE SCIENCE OF SLEEP", "release_year", "2006" ], [ "THE STRING", "in_language", "FRENCH" ], [ "THE STRING", "release_year", "2009" ], [ "THE SWINDLE", "directed_by", "CLAUDE CHABROL" ], [ "THE SWINDLE", "in_language", "FRENCH" ], [ "THE SWINDLE", "written_by", "CLAUDE CHABROL" ], [ "THE THORN IN THE HEART", "in_language", "FRENCH" ], [ "THE THORN IN THE HEART", "release_year", "2009" ], [ "THE UNFAITHFUL WIFE", "directed_by", "CLAUDE CHABROL" ], [ "THE UNFAITHFUL WIFE", "has_tags", "CLAUDE CHABROL" ], [ "THE UNFAITHFUL WIFE", "in_language", "FRENCH" ], [ "THE UNFAITHFUL WIFE", "written_by", "CLAUDE CHABROL" ], [ "THE VALET", "has_tags", "FRENCH" ], [ "THE VALET", "in_language", "FRENCH" ], [ "THE VALET", "release_year", "2006" ], [ "THEM", "in_language", "FRENCH" ], [ "THEM", "release_year", "2006" ], [ "THIS MAN MUST DIE", "directed_by", "CLAUDE CHABROL" ], [ "THIS MAN MUST DIE", "has_tags", "CLAUDE CHABROL" ], [ "THIS MAN MUST DIE", "in_language", "FRENCH" ], [ "THIS MAN MUST DIE", "written_by", "CLAUDE CHABROL" ], [ "TOMORROW AT DAWN", "in_language", "FRENCH" ], [ "TOMORROW AT DAWN", "release_year", "2009" ], [ "TRANSYLVANIA", "in_language", "FRENCH" ], [ "TRANSYLVANIA", "release_year", "2006" ], [ "TWO MEN IN MANHATTAN", "in_language", "FRENCH" ], [ "TWO MEN IN MANHATTAN", "release_year", "1959" ], [ "UNFAITHFUL", "in_language", "FRENCH" ], [ "UNFAITHFUL", "written_by", "CLAUDE CHABROL" ], [ "VENGEANCE", "in_language", "FRENCH" ], [ "VENGEANCE", "release_year", "2009" ], [ "VILLA AMALIA", "in_language", "FRENCH" ], [ "VILLA AMALIA", "release_year", "2009" ], [ "WEDDING IN BLOOD", "directed_by", "CLAUDE CHABROL" ], [ "WEDDING IN BLOOD", "has_tags", "CLAUDE CHABROL" ], [ "WEDDING IN BLOOD", "in_language", "FRENCH" ], [ "WEDDING IN BLOOD", "written_by", "CLAUDE CHABROL" ], [ "WELCOME", "in_language", "FRENCH" ], [ "WELCOME", "release_year", "2009" ], [ "WHITE MATERIAL", "in_language", "FRENCH" ], [ "WHITE MATERIAL", "release_year", "2009" ], [ "WILD GRASS", "has_tags", "FRENCH" ], [ "WILD GRASS", "in_language", "FRENCH" ], [ "WILD GRASS", "release_year", "2009" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 39435, 1975 8539, 1982 35205, DARK AND STORMY NIGHT 14492, DEAD MEN DON'T WEAR PLAID 29266, FITZCARRALDO 15145, MYSTERY 6446, NIGHT MOVES 27115, PICNIC AT HANGING ROCK 9875, THE DRAUGHTSMAN'S CONTRACT 476, THE NIGHT THAT PANICKED AMERICA 25255, THREE DAYS OF THE CONDOR src, edge_attr, dst 35205, has_genre, 15145 14492, has_genre, 15145 14492, has_tags, 15145 14492, release_year, 8539 29266, release_year, 8539 6446, has_genre, 15145 6446, release_year, 39435 27115, has_genre, 15145 27115, release_year, 39435 9875, has_genre, 15145 9875, release_year, 8539 476, release_year, 39435 25255, has_genre, 15145 25255, release_year, 39435 Question: For what reason are DARK AND STORMY NIGHT, FITZCARRALDO, and THE NIGHT THAT PANICKED AMERICA associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "DARK AND STORMY NIGHT", "FITZCARRALDO", "THE NIGHT THAT PANICKED AMERICA" ], "valid_edges": [ [ "DARK AND STORMY NIGHT", "has_genre", "MYSTERY" ], [ "DEAD MEN DON'T WEAR PLAID", "has_genre", "MYSTERY" ], [ "DEAD MEN DON'T WEAR PLAID", "has_tags", "MYSTERY" ], [ "DEAD MEN DON'T WEAR PLAID", "release_year", "1982" ], [ "FITZCARRALDO", "release_year", "1982" ], [ "NIGHT MOVES", "has_genre", "MYSTERY" ], [ "NIGHT MOVES", "release_year", "1975" ], [ "PICNIC AT HANGING ROCK", "has_genre", "MYSTERY" ], [ "PICNIC AT HANGING ROCK", "release_year", "1975" ], [ "THE DRAUGHTSMAN'S CONTRACT", "has_genre", "MYSTERY" ], [ "THE DRAUGHTSMAN'S CONTRACT", "release_year", "1982" ], [ "THE NIGHT THAT PANICKED AMERICA", "release_year", "1975" ], [ "THREE DAYS OF THE CONDOR", "has_genre", "MYSTERY" ], [ "THREE DAYS OF THE CONDOR", "release_year", "1975" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 23897, 1942 34322, AMERICAN HARDCORE 30870, BEAUTIFUL CREATURES 30019, CROSSROADS 35259, GLENN MILLER 29418, JEREMY IRONS 22845, MUSIC 37682, ORCHESTRA WIVES 24383, PAUL RACHMAN 39227, SUN VALLEY SERENADE 14478, THE LION KING src, edge_attr, dst 34322, directed_by, 24383 34322, has_genre, 22845 30870, starred_actors, 29418 30019, has_genre, 22845 30019, release_year, 23897 37682, has_genre, 22845 37682, release_year, 23897 37682, starred_actors, 35259 39227, has_genre, 22845 39227, starred_actors, 35259 14478, has_tags, 29418 14478, has_tags, 22845 14478, starred_actors, 29418 Question: In what context are BEAUTIFUL CREATURES, ORCHESTRA WIVES, and PAUL RACHMAN connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "BEAUTIFUL CREATURES", "ORCHESTRA WIVES", "PAUL RACHMAN" ], "valid_edges": [ [ "AMERICAN HARDCORE", "directed_by", "PAUL RACHMAN" ], [ "AMERICAN HARDCORE", "has_genre", "MUSIC" ], [ "BEAUTIFUL CREATURES", "starred_actors", "JEREMY IRONS" ], [ "CROSSROADS", "has_genre", "MUSIC" ], [ "CROSSROADS", "release_year", "1942" ], [ "ORCHESTRA WIVES", "has_genre", "MUSIC" ], [ "ORCHESTRA WIVES", "release_year", "1942" ], [ "ORCHESTRA WIVES", "starred_actors", "GLENN MILLER" ], [ "SUN VALLEY SERENADE", "has_genre", "MUSIC" ], [ "SUN VALLEY SERENADE", "starred_actors", "GLENN MILLER" ], [ "THE LION KING", "has_tags", "JEREMY IRONS" ], [ "THE LION KING", "has_tags", "MUSIC" ], [ "THE LION KING", "starred_actors", "JEREMY IRONS" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 16089, 13 GOING ON 30 37484, 2004 31079, 50 FIRST DATES 27455, A CINDERELLA STORY 31327, A DIRTY SHAME 4028, AALTRA 39289, ACTION 33087, AFTER THE SUNSET 16602, AGATA AND THE STORM 1698, ALFIE 32427, ALL THE QUEEN'S MEN 36361, ALONG CAME POLLY 18310, AROUND THE WORLD IN 80 DAYS 39895, BLAST 7318, BLOOD, GUTS, BULLETS AND OCTANE 21490, BOOK OF LOVE 13790, BREAKIN' ALL THE RULES 17453, CATCH THAT KID 6261, CELLULAR 19950, CHASING LIBERTY 24598, CHRISTMAS WITH THE KRANKS 1551, CLUB DREAD 30463, COMEDY 10272, CONFESSIONS OF A TEENAGE DRAMA QUEEN 24750, CONNIE AND CARLA 22220, D.E.B.S. 15779, DORIAN BLUES 1200, DUPLICATE 14645, ELLA ENCHANTED 22658, EMPLOYEE OF THE MONTH 1329, ENVY 5449, EULOGY 2449, EUROTRIP 19305, FAT ALBERT 25625, FIRST DAUGHTER 20743, FOUR SHADES OF BROWN 38061, G.O.R.A. 21640, GARDEN STATE 24815, GOING THE DISTANCE 24145, HAIR SHOW 21992, HOME ON THE RANGE 26968, HOT FUZZ 12857, HUM TUM 141, I HEART HUCKABEES 38304, IN GOOD COMPANY 26189, IT'S ALL GONE PETE TONG 26372, JERRY SPRINGER 21861, JERSEY GIRL 29431, JIMINY GLICK IN LALAWOOD 32303, JOHNSON FAMILY VACATION 9821, KUNG FU HUSTLE 31997, LAWS OF ATTRACTION 35898, LEMONY SNICKET'S A SERIES OF UNFORTUNATE EVENTS 1555, LITTLE BLACK BOOK 21412, LOST EMBRACE 17043, LOVE IS ETERNAL WHILE IT LASTS 26370, MADHOUSE 27174, MAIN HOON NA 29853, MASH 28590, MASTI 19791, MEAN GIRLS 39051, MEET THE FOCKERS 831, MELINDA AND MELINDA 13143, MILLIONS 14649, MUJHSE SHAADI KAROGI 27224, MY BABY'S DADDY 9951, NAPOLEON DYNAMITE 10574, NEW YORK MINUTE 13268, OYSTER FARMER 28047, PALINDROMES 33224, POSTAL 5693, RAISING HELEN 39339, RICHARD HOOKER 24415, RINGMASTER 32607, RUSH HOUR 18478, RUSH HOUR 3 35586, SAHARA 34022, SATAN'S LITTLE HELPER 11313, SAVED! 2135, SAVING FACE 136, SEE THIS MOVIE 2186, SEED OF CHUCKY 39218, SEX LIVES OF THE POTATO MEN 31340, SHARK TALE 29855, SHAUN OF THE DEAD 12902, SHE HATE ME 21512, SHERLOCK HOLMES 11357, SHOOT 'EM UP 16264, SHREK 2 36797, SIDEWAYS 32387, SIMON 32807, SIX-STRING SAMURAI 36556, SMALL SOLDIERS 17493, SOUL PLANE 7717, SPANGLISH 24987, SUMMER STORM 29095, SURVIVING CHRISTMAS 10732, TAXI 5285, THE BIG BOUNCE 36412, THE BIG HIT 29403, THE BOURNE SUPREMACY 2556, THE CALCIUM KID 2127, THE COOKOUT 30857, THE DEFENDER 4068, THE GENERAL 14807, THE GOODBYE GIRL 7447, THE INCREDIBLES 4223, THE INTERVIEW 30690, THE LADYKILLERS 11214, THE LAST SHOT 32925, THE LIFE AND DEATH OF PETER SELLERS 28217, THE LIFE AQUATIC WITH STEVE ZISSOU 36024, THE LIZARD 21149, THE NINE LIVES OF TOMAS KATZ 1619, THE PRINCE AND ME 15608, THE SPONGEBOB SQUAREPANTS MOVIE 23847, THE STEPFORD WIVES 15768, THE TERMINAL 18065, THE WHOLE TEN YARDS 32881, TOUCH OF PINK 5729, TROY 32741, UNDERDOG 22214, WAR 17375, WELCOME TO MOOSEPORT 12842, WHISKY 11366, WHITE CHICKS 11800, WIMBLEDON 2062, WIN A DATE WITH TAD HAMILTON! src, edge_attr, dst 16089, has_genre, 30463 16089, has_tags, 30463 16089, release_year, 37484 31079, has_genre, 30463 31079, has_tags, 30463 31079, release_year, 37484 27455, has_genre, 30463 27455, release_year, 37484 31327, has_genre, 30463 31327, release_year, 37484 4028, has_genre, 30463 4028, release_year, 37484 33087, has_genre, 39289 33087, has_genre, 30463 33087, release_year, 37484 16602, has_genre, 30463 16602, release_year, 37484 1698, has_genre, 30463 1698, release_year, 37484 32427, has_genre, 39289 32427, has_genre, 30463 36361, has_genre, 30463 36361, has_tags, 30463 36361, release_year, 37484 18310, has_genre, 30463 18310, release_year, 37484 39895, has_genre, 39289 39895, has_genre, 30463 39895, release_year, 37484 7318, has_genre, 39289 7318, has_genre, 30463 21490, has_genre, 30463 21490, release_year, 37484 13790, has_genre, 30463 13790, release_year, 37484 17453, has_genre, 30463 17453, release_year, 37484 6261, has_tags, 39289 6261, release_year, 37484 19950, has_genre, 30463 19950, release_year, 37484 24598, has_genre, 30463 24598, release_year, 37484 1551, has_genre, 30463 1551, release_year, 37484 10272, has_genre, 30463 10272, has_tags, 30463 10272, release_year, 37484 24750, has_genre, 30463 24750, release_year, 37484 22220, has_genre, 39289 22220, has_genre, 30463 22220, release_year, 37484 15779, has_genre, 30463 15779, release_year, 37484 1200, has_genre, 39289 1200, has_genre, 30463 14645, has_genre, 30463 14645, release_year, 37484 22658, has_genre, 30463 22658, has_tags, 30463 22658, release_year, 37484 1329, has_genre, 30463 1329, release_year, 37484 5449, has_genre, 30463 5449, release_year, 37484 2449, has_genre, 30463 2449, has_tags, 30463 2449, release_year, 37484 19305, has_genre, 30463 19305, release_year, 37484 25625, has_genre, 30463 25625, release_year, 37484 20743, has_genre, 30463 20743, release_year, 37484 38061, has_genre, 30463 38061, release_year, 37484 21640, has_genre, 30463 21640, release_year, 37484 24815, has_genre, 30463 24815, has_tags, 30463 24815, release_year, 37484 24145, has_genre, 30463 24145, release_year, 37484 21992, has_genre, 30463 21992, release_year, 37484 26968, has_genre, 30463 26968, has_tags, 39289 26968, has_tags, 30463 12857, has_genre, 30463 12857, has_tags, 30463 12857, release_year, 37484 141, has_genre, 30463 141, has_tags, 30463 141, release_year, 37484 38304, has_genre, 30463 38304, release_year, 37484 26189, has_genre, 30463 26189, release_year, 37484 21861, has_genre, 30463 21861, has_tags, 30463 21861, release_year, 37484 29431, has_genre, 30463 29431, release_year, 37484 32303, has_genre, 30463 32303, release_year, 37484 9821, has_genre, 39289 9821, has_genre, 30463 9821, has_tags, 39289 9821, has_tags, 30463 9821, release_year, 37484 31997, has_genre, 30463 31997, has_tags, 30463 31997, release_year, 37484 35898, has_genre, 30463 35898, release_year, 37484 1555, has_genre, 30463 1555, release_year, 37484 21412, has_genre, 30463 21412, release_year, 37484 17043, has_genre, 30463 17043, release_year, 37484 26370, has_genre, 30463 26370, release_year, 37484 27174, has_genre, 39289 27174, has_genre, 30463 27174, release_year, 37484 29853, has_genre, 30463 29853, has_genre, 22214 29853, written_by, 39339 28590, has_genre, 30463 28590, release_year, 37484 19791, has_genre, 30463 19791, has_tags, 30463 19791, release_year, 37484 39051, has_genre, 30463 39051, release_year, 37484 831, has_genre, 30463 831, release_year, 37484 13143, has_genre, 30463 13143, release_year, 37484 14649, has_genre, 30463 14649, release_year, 37484 27224, has_genre, 30463 27224, release_year, 37484 9951, has_genre, 30463 9951, has_tags, 30463 9951, release_year, 37484 10574, has_genre, 30463 10574, release_year, 37484 13268, has_genre, 30463 13268, release_year, 37484 28047, has_genre, 30463 28047, release_year, 37484 33224, has_genre, 39289 33224, has_genre, 30463 5693, has_genre, 30463 5693, release_year, 37484 24415, has_genre, 30463 24415, starred_actors, 26372 32607, has_genre, 39289 32607, has_genre, 30463 32607, has_tags, 39289 32607, has_tags, 30463 18478, has_genre, 39289 18478, has_genre, 30463 18478, has_tags, 30463 35586, has_genre, 39289 35586, has_genre, 30463 35586, has_tags, 39289 34022, has_genre, 30463 34022, release_year, 37484 11313, has_genre, 30463 11313, release_year, 37484 2135, has_genre, 30463 2135, release_year, 37484 136, has_genre, 30463 136, release_year, 37484 2186, has_genre, 30463 2186, release_year, 37484 39218, has_genre, 30463 39218, release_year, 37484 31340, has_genre, 30463 31340, release_year, 37484 29855, has_genre, 30463 29855, has_tags, 30463 29855, release_year, 37484 12902, has_genre, 30463 12902, release_year, 37484 21512, has_genre, 39289 21512, has_tags, 39289 21512, has_tags, 30463 11357, has_genre, 39289 11357, has_genre, 30463 16264, has_genre, 30463 16264, has_tags, 30463 16264, release_year, 37484 36797, has_genre, 30463 36797, release_year, 37484 32387, has_genre, 30463 32387, release_year, 37484 32807, has_genre, 39289 32807, has_genre, 30463 36556, has_genre, 39289 36556, has_genre, 30463 17493, has_genre, 30463 17493, release_year, 37484 7717, has_genre, 30463 7717, release_year, 37484 24987, has_genre, 30463 24987, release_year, 37484 29095, has_genre, 30463 29095, release_year, 37484 10732, has_genre, 39289 10732, has_genre, 30463 10732, has_tags, 30463 10732, release_year, 37484 5285, has_genre, 30463 5285, release_year, 37484 36412, has_genre, 39289 36412, has_genre, 30463 36412, has_tags, 39289 36412, has_tags, 30463 29403, has_genre, 39289 29403, has_tags, 39289 29403, release_year, 37484 2556, has_genre, 30463 2556, release_year, 37484 2127, has_genre, 30463 2127, release_year, 37484 30857, has_genre, 39289 30857, release_year, 37484 30857, starred_actors, 26372 4068, has_genre, 39289 4068, has_genre, 30463 4068, has_tags, 30463 14807, has_genre, 30463 14807, release_year, 37484 7447, has_tags, 30463 7447, release_year, 37484 4223, has_genre, 39289 4223, has_genre, 30463 4223, has_tags, 30463 30690, has_genre, 30463 30690, has_tags, 30463 30690, release_year, 37484 11214, has_genre, 30463 11214, release_year, 37484 32925, has_genre, 30463 32925, release_year, 37484 28217, has_genre, 30463 28217, has_tags, 30463 28217, release_year, 37484 36024, has_genre, 30463 36024, has_tags, 30463 36024, release_year, 37484 21149, has_genre, 30463 1619, has_genre, 30463 1619, release_year, 37484 15608, has_genre, 30463 15608, release_year, 37484 23847, has_genre, 30463 23847, release_year, 37484 15768, has_genre, 30463 15768, has_tags, 30463 15768, release_year, 37484 18065, has_genre, 30463 18065, release_year, 37484 32881, has_genre, 30463 32881, has_tags, 30463 32881, release_year, 37484 5729, has_tags, 39289 5729, release_year, 37484 32741, has_genre, 39289 32741, has_genre, 30463 22214, has_genre, 39289 17375, has_genre, 30463 17375, release_year, 37484 12842, has_genre, 30463 12842, release_year, 37484 11366, has_genre, 30463 11366, has_tags, 30463 11366, release_year, 37484 11800, has_genre, 30463 11800, release_year, 37484 2062, has_genre, 30463 2062, has_tags, 30463 2062, release_year, 37484 Question: In what context are RICHARD HOOKER, THE DEFENDER, and THE NINE LIVES OF TOMAS KATZ connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "RICHARD HOOKER", "THE DEFENDER", "THE NINE LIVES OF TOMAS KATZ" ], "valid_edges": [ [ "13 GOING ON 30", "has_genre", "COMEDY" ], [ "13 GOING ON 30", "has_tags", "COMEDY" ], [ "13 GOING ON 30", "release_year", "2004" ], [ "50 FIRST DATES", "has_genre", "COMEDY" ], [ "50 FIRST DATES", "has_tags", "COMEDY" ], [ "50 FIRST DATES", "release_year", "2004" ], [ "A CINDERELLA STORY", "has_genre", "COMEDY" ], [ "A CINDERELLA STORY", "release_year", "2004" ], [ "A DIRTY SHAME", "has_genre", "COMEDY" ], [ "A DIRTY SHAME", "release_year", "2004" ], [ "AALTRA", "has_genre", "COMEDY" ], [ "AALTRA", "release_year", "2004" ], [ "AFTER THE SUNSET", "has_genre", "ACTION" ], [ "AFTER THE SUNSET", "has_genre", "COMEDY" ], [ "AFTER THE SUNSET", "release_year", "2004" ], [ "AGATA AND THE STORM", "has_genre", "COMEDY" ], [ "AGATA AND THE STORM", "release_year", "2004" ], [ "ALFIE", "has_genre", "COMEDY" ], [ "ALFIE", "release_year", "2004" ], [ "ALL THE QUEEN'S MEN", "has_genre", "ACTION" ], [ "ALL THE QUEEN'S MEN", "has_genre", "COMEDY" ], [ "ALONG CAME POLLY", "has_genre", "COMEDY" ], [ "ALONG CAME POLLY", "has_tags", "COMEDY" ], [ "ALONG CAME POLLY", "release_year", "2004" ], [ "AROUND THE WORLD IN 80 DAYS", "has_genre", "COMEDY" ], [ "AROUND THE WORLD IN 80 DAYS", "release_year", "2004" ], [ "BLAST", "has_genre", "ACTION" ], [ "BLAST", "has_genre", "COMEDY" ], [ "BLAST", "release_year", "2004" ], [ "BLOOD, GUTS, BULLETS AND OCTANE", "has_genre", "ACTION" ], [ "BLOOD, GUTS, BULLETS AND OCTANE", "has_genre", "COMEDY" ], [ "BOOK OF LOVE", "has_genre", "COMEDY" ], [ "BOOK OF LOVE", "release_year", "2004" ], [ "BREAKIN' ALL THE RULES", "has_genre", "COMEDY" ], [ "BREAKIN' ALL THE RULES", "release_year", "2004" ], [ "CATCH THAT KID", "has_genre", "COMEDY" ], [ "CATCH THAT KID", "release_year", "2004" ], [ "CELLULAR", "has_tags", "ACTION" ], [ "CELLULAR", "release_year", "2004" ], [ "CHASING LIBERTY", "has_genre", "COMEDY" ], [ "CHASING LIBERTY", "release_year", "2004" ], [ "CHRISTMAS WITH THE KRANKS", "has_genre", "COMEDY" ], [ "CHRISTMAS WITH THE KRANKS", "release_year", "2004" ], [ "CLUB DREAD", "has_genre", "COMEDY" ], [ "CLUB DREAD", "release_year", "2004" ], [ "CONFESSIONS OF A TEENAGE DRAMA QUEEN", "has_genre", "COMEDY" ], [ "CONFESSIONS OF A TEENAGE DRAMA QUEEN", "has_tags", "COMEDY" ], [ "CONFESSIONS OF A TEENAGE DRAMA QUEEN", "release_year", "2004" ], [ "CONNIE AND CARLA", "has_genre", "COMEDY" ], [ "CONNIE AND CARLA", "release_year", "2004" ], [ "D.E.B.S.", "has_genre", "ACTION" ], [ "D.E.B.S.", "has_genre", "COMEDY" ], [ "D.E.B.S.", "release_year", "2004" ], [ "DORIAN BLUES", "has_genre", "COMEDY" ], [ "DORIAN BLUES", "release_year", "2004" ], [ "DUPLICATE", "has_genre", "ACTION" ], [ "DUPLICATE", "has_genre", "COMEDY" ], [ "ELLA ENCHANTED", "has_genre", "COMEDY" ], [ "ELLA ENCHANTED", "release_year", "2004" ], [ "EMPLOYEE OF THE MONTH", "has_genre", "COMEDY" ], [ "EMPLOYEE OF THE MONTH", "has_tags", "COMEDY" ], [ "EMPLOYEE OF THE MONTH", "release_year", "2004" ], [ "ENVY", "has_genre", "COMEDY" ], [ "ENVY", "release_year", "2004" ], [ "EULOGY", "has_genre", "COMEDY" ], [ "EULOGY", "release_year", "2004" ], [ "EUROTRIP", "has_genre", "COMEDY" ], [ "EUROTRIP", "has_tags", "COMEDY" ], [ "EUROTRIP", "release_year", "2004" ], [ "FAT ALBERT", "has_genre", "COMEDY" ], [ "FAT ALBERT", "release_year", "2004" ], [ "FIRST DAUGHTER", "has_genre", "COMEDY" ], [ "FIRST DAUGHTER", "release_year", "2004" ], [ "FOUR SHADES OF BROWN", "has_genre", "COMEDY" ], [ "FOUR SHADES OF BROWN", "release_year", "2004" ], [ "G.O.R.A.", "has_genre", "COMEDY" ], [ "G.O.R.A.", "release_year", "2004" ], [ "GARDEN STATE", "has_genre", "COMEDY" ], [ "GARDEN STATE", "release_year", "2004" ], [ "GOING THE DISTANCE", "has_genre", "COMEDY" ], [ "GOING THE DISTANCE", "has_tags", "COMEDY" ], [ "GOING THE DISTANCE", "release_year", "2004" ], [ "HAIR SHOW", "has_genre", "COMEDY" ], [ "HAIR SHOW", "release_year", "2004" ], [ "HOME ON THE RANGE", "has_genre", "COMEDY" ], [ "HOME ON THE RANGE", "release_year", "2004" ], [ "HOT FUZZ", "has_genre", "COMEDY" ], [ "HOT FUZZ", "has_tags", "ACTION" ], [ "HOT FUZZ", "has_tags", "COMEDY" ], [ "HUM TUM", "has_genre", "COMEDY" ], [ "HUM TUM", "has_tags", "COMEDY" ], [ "HUM TUM", "release_year", "2004" ], [ "I HEART HUCKABEES", "has_genre", "COMEDY" ], [ "I HEART HUCKABEES", "has_tags", "COMEDY" ], [ "I HEART HUCKABEES", "release_year", "2004" ], [ "IN GOOD COMPANY", "has_genre", "COMEDY" ], [ "IN GOOD COMPANY", "release_year", "2004" ], [ "IT'S ALL GONE PETE TONG", "has_genre", "COMEDY" ], [ "IT'S ALL GONE PETE TONG", "release_year", "2004" ], [ "JERSEY GIRL", "has_genre", "COMEDY" ], [ "JERSEY GIRL", "has_tags", "COMEDY" ], [ "JERSEY GIRL", "release_year", "2004" ], [ "JIMINY GLICK IN LALAWOOD", "has_genre", "COMEDY" ], [ "JIMINY GLICK IN LALAWOOD", "release_year", "2004" ], [ "JOHNSON FAMILY VACATION", "has_genre", "COMEDY" ], [ "JOHNSON FAMILY VACATION", "release_year", "2004" ], [ "KUNG FU HUSTLE", "has_genre", "ACTION" ], [ "KUNG FU HUSTLE", "has_genre", "COMEDY" ], [ "KUNG FU HUSTLE", "has_tags", "ACTION" ], [ "KUNG FU HUSTLE", "has_tags", "COMEDY" ], [ "KUNG FU HUSTLE", "release_year", "2004" ], [ "LAWS OF ATTRACTION", "has_genre", "COMEDY" ], [ "LAWS OF ATTRACTION", "has_tags", "COMEDY" ], [ "LAWS OF ATTRACTION", "release_year", "2004" ], [ "LEMONY SNICKET'S A SERIES OF UNFORTUNATE EVENTS", "has_genre", "COMEDY" ], [ "LEMONY SNICKET'S A SERIES OF UNFORTUNATE EVENTS", "release_year", "2004" ], [ "LITTLE BLACK BOOK", "has_genre", "COMEDY" ], [ "LITTLE BLACK BOOK", "release_year", "2004" ], [ "LOST EMBRACE", "has_genre", "COMEDY" ], [ "LOST EMBRACE", "release_year", "2004" ], [ "LOVE IS ETERNAL WHILE IT LASTS", "has_genre", "COMEDY" ], [ "LOVE IS ETERNAL WHILE IT LASTS", "release_year", "2004" ], [ "MADHOUSE", "has_genre", "COMEDY" ], [ "MADHOUSE", "release_year", "2004" ], [ "MAIN HOON NA", "has_genre", "ACTION" ], [ "MAIN HOON NA", "has_genre", "COMEDY" ], [ "MAIN HOON NA", "release_year", "2004" ], [ "MASH", "has_genre", "COMEDY" ], [ "MASH", "has_genre", "WAR" ], [ "MASH", "written_by", "RICHARD HOOKER" ], [ "MASTI", "has_genre", "COMEDY" ], [ "MASTI", "release_year", "2004" ], [ "MEAN GIRLS", "has_genre", "COMEDY" ], [ "MEAN GIRLS", "has_tags", "COMEDY" ], [ "MEAN GIRLS", "release_year", "2004" ], [ "MEET THE FOCKERS", "has_genre", "COMEDY" ], [ "MEET THE FOCKERS", "release_year", "2004" ], [ "MELINDA AND MELINDA", "has_genre", "COMEDY" ], [ "MELINDA AND MELINDA", "release_year", "2004" ], [ "MILLIONS", "has_genre", "COMEDY" ], [ "MILLIONS", "release_year", "2004" ], [ "MUJHSE SHAADI KAROGI", "has_genre", "COMEDY" ], [ "MUJHSE SHAADI KAROGI", "release_year", "2004" ], [ "MY BABY'S DADDY", "has_genre", "COMEDY" ], [ "MY BABY'S DADDY", "release_year", "2004" ], [ "NAPOLEON DYNAMITE", "has_genre", "COMEDY" ], [ "NAPOLEON DYNAMITE", "has_tags", "COMEDY" ], [ "NAPOLEON DYNAMITE", "release_year", "2004" ], [ "NEW YORK MINUTE", "has_genre", "COMEDY" ], [ "NEW YORK MINUTE", "release_year", "2004" ], [ "OYSTER FARMER", "has_genre", "COMEDY" ], [ "OYSTER FARMER", "release_year", "2004" ], [ "PALINDROMES", "has_genre", "COMEDY" ], [ "PALINDROMES", "release_year", "2004" ], [ "POSTAL", "has_genre", "ACTION" ], [ "POSTAL", "has_genre", "COMEDY" ], [ "RAISING HELEN", "has_genre", "COMEDY" ], [ "RAISING HELEN", "release_year", "2004" ], [ "RINGMASTER", "has_genre", "COMEDY" ], [ "RINGMASTER", "starred_actors", "JERRY SPRINGER" ], [ "RUSH HOUR", "has_genre", "ACTION" ], [ "RUSH HOUR", "has_genre", "COMEDY" ], [ "RUSH HOUR", "has_tags", "ACTION" ], [ "RUSH HOUR", "has_tags", "COMEDY" ], [ "RUSH HOUR 3", "has_genre", "ACTION" ], [ "RUSH HOUR 3", "has_genre", "COMEDY" ], [ "RUSH HOUR 3", "has_tags", "COMEDY" ], [ "SAHARA", "has_genre", "ACTION" ], [ "SAHARA", "has_genre", "COMEDY" ], [ "SAHARA", "has_tags", "ACTION" ], [ "SATAN'S LITTLE HELPER", "has_genre", "COMEDY" ], [ "SATAN'S LITTLE HELPER", "release_year", "2004" ], [ "SAVED!", "has_genre", "COMEDY" ], [ "SAVED!", "release_year", "2004" ], [ "SAVING FACE", "has_genre", "COMEDY" ], [ "SAVING FACE", "release_year", "2004" ], [ "SEE THIS MOVIE", "has_genre", "COMEDY" ], [ "SEE THIS MOVIE", "release_year", "2004" ], [ "SEED OF CHUCKY", "has_genre", "COMEDY" ], [ "SEED OF CHUCKY", "release_year", "2004" ], [ "SEX LIVES OF THE POTATO MEN", "has_genre", "COMEDY" ], [ "SEX LIVES OF THE POTATO MEN", "release_year", "2004" ], [ "SHARK TALE", "has_genre", "COMEDY" ], [ "SHARK TALE", "release_year", "2004" ], [ "SHAUN OF THE DEAD", "has_genre", "COMEDY" ], [ "SHAUN OF THE DEAD", "has_tags", "COMEDY" ], [ "SHAUN OF THE DEAD", "release_year", "2004" ], [ "SHE HATE ME", "has_genre", "COMEDY" ], [ "SHE HATE ME", "release_year", "2004" ], [ "SHERLOCK HOLMES", "has_genre", "ACTION" ], [ "SHERLOCK HOLMES", "has_tags", "ACTION" ], [ "SHERLOCK HOLMES", "has_tags", "COMEDY" ], [ "SHOOT 'EM UP", "has_genre", "ACTION" ], [ "SHOOT 'EM UP", "has_genre", "COMEDY" ], [ "SHREK 2", "has_genre", "COMEDY" ], [ "SHREK 2", "has_tags", "COMEDY" ], [ "SHREK 2", "release_year", "2004" ], [ "SIDEWAYS", "has_genre", "COMEDY" ], [ "SIDEWAYS", "release_year", "2004" ], [ "SIMON", "has_genre", "COMEDY" ], [ "SIMON", "release_year", "2004" ], [ "SIX-STRING SAMURAI", "has_genre", "ACTION" ], [ "SIX-STRING SAMURAI", "has_genre", "COMEDY" ], [ "SMALL SOLDIERS", "has_genre", "ACTION" ], [ "SMALL SOLDIERS", "has_genre", "COMEDY" ], [ "SOUL PLANE", "has_genre", "COMEDY" ], [ "SOUL PLANE", "release_year", "2004" ], [ "SPANGLISH", "has_genre", "COMEDY" ], [ "SPANGLISH", "release_year", "2004" ], [ "SUMMER STORM", "has_genre", "COMEDY" ], [ "SUMMER STORM", "release_year", "2004" ], [ "SURVIVING CHRISTMAS", "has_genre", "COMEDY" ], [ "SURVIVING CHRISTMAS", "release_year", "2004" ], [ "TAXI", "has_genre", "ACTION" ], [ "TAXI", "has_genre", "COMEDY" ], [ "TAXI", "has_tags", "COMEDY" ], [ "TAXI", "release_year", "2004" ], [ "THE BIG BOUNCE", "has_genre", "COMEDY" ], [ "THE BIG BOUNCE", "release_year", "2004" ], [ "THE BIG HIT", "has_genre", "ACTION" ], [ "THE BIG HIT", "has_genre", "COMEDY" ], [ "THE BIG HIT", "has_tags", "ACTION" ], [ "THE BIG HIT", "has_tags", "COMEDY" ], [ "THE BOURNE SUPREMACY", "has_genre", "ACTION" ], [ "THE BOURNE SUPREMACY", "has_tags", "ACTION" ], [ "THE BOURNE SUPREMACY", "release_year", "2004" ], [ "THE CALCIUM KID", "has_genre", "COMEDY" ], [ "THE CALCIUM KID", "release_year", "2004" ], [ "THE COOKOUT", "has_genre", "COMEDY" ], [ "THE COOKOUT", "release_year", "2004" ], [ "THE DEFENDER", "has_genre", "ACTION" ], [ "THE DEFENDER", "release_year", "2004" ], [ "THE DEFENDER", "starred_actors", "JERRY SPRINGER" ], [ "THE GENERAL", "has_genre", "ACTION" ], [ "THE GENERAL", "has_genre", "COMEDY" ], [ "THE GENERAL", "has_tags", "COMEDY" ], [ "THE GOODBYE GIRL", "has_genre", "COMEDY" ], [ "THE GOODBYE GIRL", "release_year", "2004" ], [ "THE INCREDIBLES", "has_tags", "COMEDY" ], [ "THE INCREDIBLES", "release_year", "2004" ], [ "THE INTERVIEW", "has_genre", "ACTION" ], [ "THE INTERVIEW", "has_genre", "COMEDY" ], [ "THE INTERVIEW", "has_tags", "COMEDY" ], [ "THE LADYKILLERS", "has_genre", "COMEDY" ], [ "THE LADYKILLERS", "has_tags", "COMEDY" ], [ "THE LADYKILLERS", "release_year", "2004" ], [ "THE LAST SHOT", "has_genre", "COMEDY" ], [ "THE LAST SHOT", "release_year", "2004" ], [ "THE LIFE AND DEATH OF PETER SELLERS", "has_genre", "COMEDY" ], [ "THE LIFE AND DEATH OF PETER SELLERS", "release_year", "2004" ], [ "THE LIFE AQUATIC WITH STEVE ZISSOU", "has_genre", "COMEDY" ], [ "THE LIFE AQUATIC WITH STEVE ZISSOU", "has_tags", "COMEDY" ], [ "THE LIFE AQUATIC WITH STEVE ZISSOU", "release_year", "2004" ], [ "THE LIZARD", "has_genre", "COMEDY" ], [ "THE LIZARD", "has_tags", "COMEDY" ], [ "THE LIZARD", "release_year", "2004" ], [ "THE NINE LIVES OF TOMAS KATZ", "has_genre", "COMEDY" ], [ "THE PRINCE AND ME", "has_genre", "COMEDY" ], [ "THE PRINCE AND ME", "release_year", "2004" ], [ "THE SPONGEBOB SQUAREPANTS MOVIE", "has_genre", "COMEDY" ], [ "THE SPONGEBOB SQUAREPANTS MOVIE", "release_year", "2004" ], [ "THE STEPFORD WIVES", "has_genre", "COMEDY" ], [ "THE STEPFORD WIVES", "release_year", "2004" ], [ "THE TERMINAL", "has_genre", "COMEDY" ], [ "THE TERMINAL", "has_tags", "COMEDY" ], [ "THE TERMINAL", "release_year", "2004" ], [ "THE WHOLE TEN YARDS", "has_genre", "COMEDY" ], [ "THE WHOLE TEN YARDS", "release_year", "2004" ], [ "TOUCH OF PINK", "has_genre", "COMEDY" ], [ "TOUCH OF PINK", "has_tags", "COMEDY" ], [ "TOUCH OF PINK", "release_year", "2004" ], [ "TROY", "has_tags", "ACTION" ], [ "TROY", "release_year", "2004" ], [ "UNDERDOG", "has_genre", "ACTION" ], [ "UNDERDOG", "has_genre", "COMEDY" ], [ "WAR", "has_genre", "ACTION" ], [ "WELCOME TO MOOSEPORT", "has_genre", "COMEDY" ], [ "WELCOME TO MOOSEPORT", "release_year", "2004" ], [ "WHISKY", "has_genre", "COMEDY" ], [ "WHISKY", "release_year", "2004" ], [ "WHITE CHICKS", "has_genre", "COMEDY" ], [ "WHITE CHICKS", "has_tags", "COMEDY" ], [ "WHITE CHICKS", "release_year", "2004" ], [ "WIMBLEDON", "has_genre", "COMEDY" ], [ "WIMBLEDON", "release_year", "2004" ], [ "WIN A DATE WITH TAD HAMILTON!", "has_genre", "COMEDY" ], [ "WIN A DATE WITH TAD HAMILTON!", "has_tags", "COMEDY" ], [ "WIN A DATE WITH TAD HAMILTON!", "release_year", "2004" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 36434, BLIND WOMAN 23134, EILEEN HECKART 17360, JOSÉ CORONADO 13103, NO REST FOR THE WICKED 15262, NO WAY TO TREAT A LADY 24811, THRILLER 499, WAIT UNTIL DARK src, edge_attr, dst 13103, has_genre, 24811 13103, has_tags, 24811 13103, starred_actors, 17360 15262, has_genre, 24811 15262, starred_actors, 23134 499, has_genre, 24811 499, has_tags, 36434 499, has_tags, 24811 Question: For what reason are BLIND WOMAN, EILEEN HECKART, and JOSÉ CORONADO associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "BLIND WOMAN", "EILEEN HECKART", "JOSÉ CORONADO" ], "valid_edges": [ [ "NO REST FOR THE WICKED", "has_genre", "THRILLER" ], [ "NO REST FOR THE WICKED", "has_tags", "THRILLER" ], [ "NO REST FOR THE WICKED", "starred_actors", "JOSÉ CORONADO" ], [ "NO WAY TO TREAT A LADY", "has_genre", "THRILLER" ], [ "NO WAY TO TREAT A LADY", "starred_actors", "EILEEN HECKART" ], [ "WAIT UNTIL DARK", "has_genre", "THRILLER" ], [ "WAIT UNTIL DARK", "has_tags", "BLIND WOMAN" ], [ "WAIT UNTIL DARK", "has_tags", "THRILLER" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 11, 1940 1097, 2003 24715, CAMP 36504, ERIKA CHRISTENSEN 23553, OUR TOWN 37536, SWIMFAN 36649, TORRID ZONE 27708, WUTHERING HEIGHTS src, edge_attr, dst 24715, release_year, 1097 23553, release_year, 11 23553, release_year, 1097 37536, starred_actors, 36504 36649, release_year, 11 27708, release_year, 1097 27708, starred_actors, 36504 Question: How are CAMP, SWIMFAN, and TORRID ZONE related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "CAMP", "SWIMFAN", "TORRID ZONE" ], "valid_edges": [ [ "CAMP", "release_year", "2003" ], [ "OUR TOWN", "release_year", "1940" ], [ "OUR TOWN", "release_year", "2003" ], [ "SWIMFAN", "starred_actors", "ERIKA CHRISTENSEN" ], [ "TORRID ZONE", "release_year", "1940" ], [ "WUTHERING HEIGHTS", "release_year", "2003" ], [ "WUTHERING HEIGHTS", "starred_actors", "ERIKA CHRISTENSEN" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 22772, 1961 22088, A BRIDGE TOO FAR 34734, BATTLE OF THE BULGE 25285, COME AND SEE 18972, DAS BOOT 37240, DAVID NIVEN 11363, DEFIANCE 19194, ENIGMA 30030, EUROPA 6480, GERMAN 8287, GREGORY PECK 15765, HAMSUN 15343, IN DARKNESS 38574, IT HAPPENED HERE 22600, JUDGMENT AT NUREMBERG 30157, LOLA 5127, MOTHER NIGHT 38294, MRS. MINIVER 9036, PAISAN 1009, ROBERT STADLOBER 24027, SOLO SUNNY 21196, STALAG 17 11124, STALINGRAD 24987, SUMMER STORM 29788, THE BRIDGE AT REMAGEN 39700, THE DAWN PATROL 10001, THE EAGLE HAS LANDED 6424, THE GREAT ESCAPE 9166, THE GUNS OF NAVARONE 9406, THE IMITATION GAME 27237, THE LONGEST DAY 12614, THE PIANIST 2813, THE SEA WOLVES 4962, THE SORROW AND THE PITY 37831, TOWN WITHOUT PITY 37253, U-571 39558, UNDERGROUND 33011, VALKYRIE 2175, VON RYAN'S EXPRESS 15308, WOLFGANG KOHLHAASE 24155, WORLD WAR II src, edge_attr, dst 22088, has_tags, 24155 22088, in_language, 6480 34734, has_tags, 24155 34734, in_language, 6480 25285, has_tags, 24155 25285, in_language, 6480 18972, has_tags, 6480 18972, has_tags, 24155 18972, in_language, 6480 11363, has_tags, 24155 11363, in_language, 6480 19194, has_tags, 24155 19194, in_language, 6480 30030, has_tags, 24155 30030, in_language, 6480 15765, has_tags, 24155 15765, in_language, 6480 15343, has_tags, 24155 15343, in_language, 6480 38574, has_tags, 24155 38574, in_language, 6480 22600, in_language, 6480 22600, release_year, 22772 30157, in_language, 6480 30157, release_year, 22772 5127, has_tags, 24155 5127, in_language, 6480 38294, has_tags, 24155 38294, in_language, 6480 9036, has_tags, 24155 9036, in_language, 6480 24027, directed_by, 15308 24027, in_language, 6480 24027, written_by, 15308 21196, has_tags, 24155 21196, in_language, 6480 11124, has_tags, 6480 11124, has_tags, 24155 11124, in_language, 6480 24987, has_tags, 1009 24987, in_language, 6480 24987, starred_actors, 1009 29788, has_tags, 24155 29788, in_language, 6480 39700, in_language, 6480 39700, starred_actors, 37240 10001, has_tags, 6480 10001, has_tags, 24155 10001, in_language, 6480 6424, has_tags, 24155 6424, in_language, 6480 9166, has_tags, 24155 9166, in_language, 6480 9166, release_year, 22772 9166, starred_actors, 37240 9166, starred_actors, 8287 9406, has_tags, 24155 9406, in_language, 6480 27237, has_tags, 24155 27237, in_language, 6480 12614, has_tags, 24155 12614, in_language, 6480 2813, in_language, 6480 2813, starred_actors, 37240 2813, starred_actors, 8287 4962, has_tags, 24155 4962, in_language, 6480 37831, in_language, 6480 37831, release_year, 22772 37253, has_tags, 24155 37253, in_language, 6480 39558, has_tags, 24155 39558, in_language, 6480 33011, has_tags, 24155 33011, in_language, 6480 2175, has_tags, 24155 2175, in_language, 6480 Question: How are ROBERT STADLOBER, THE GUNS OF NAVARONE, and WOLFGANG KOHLHAASE related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "ROBERT STADLOBER", "THE GUNS OF NAVARONE", "WOLFGANG KOHLHAASE" ], "valid_edges": [ [ "A BRIDGE TOO FAR", "has_tags", "WORLD WAR II" ], [ "A BRIDGE TOO FAR", "in_language", "GERMAN" ], [ "BATTLE OF THE BULGE", "has_tags", "WORLD WAR II" ], [ "BATTLE OF THE BULGE", "in_language", "GERMAN" ], [ "COME AND SEE", "has_tags", "WORLD WAR II" ], [ "COME AND SEE", "in_language", "GERMAN" ], [ "DAS BOOT", "has_tags", "GERMAN" ], [ "DAS BOOT", "has_tags", "WORLD WAR II" ], [ "DAS BOOT", "in_language", "GERMAN" ], [ "DEFIANCE", "has_tags", "WORLD WAR II" ], [ "DEFIANCE", "in_language", "GERMAN" ], [ "ENIGMA", "has_tags", "WORLD WAR II" ], [ "ENIGMA", "in_language", "GERMAN" ], [ "EUROPA", "has_tags", "WORLD WAR II" ], [ "EUROPA", "in_language", "GERMAN" ], [ "HAMSUN", "has_tags", "WORLD WAR II" ], [ "HAMSUN", "in_language", "GERMAN" ], [ "IN DARKNESS", "has_tags", "WORLD WAR II" ], [ "IN DARKNESS", "in_language", "GERMAN" ], [ "IT HAPPENED HERE", "has_tags", "WORLD WAR II" ], [ "IT HAPPENED HERE", "in_language", "GERMAN" ], [ "JUDGMENT AT NUREMBERG", "in_language", "GERMAN" ], [ "JUDGMENT AT NUREMBERG", "release_year", "1961" ], [ "LOLA", "in_language", "GERMAN" ], [ "LOLA", "release_year", "1961" ], [ "MOTHER NIGHT", "has_tags", "WORLD WAR II" ], [ "MOTHER NIGHT", "in_language", "GERMAN" ], [ "MRS. MINIVER", "has_tags", "WORLD WAR II" ], [ "MRS. MINIVER", "in_language", "GERMAN" ], [ "PAISAN", "has_tags", "WORLD WAR II" ], [ "PAISAN", "in_language", "GERMAN" ], [ "SOLO SUNNY", "directed_by", "WOLFGANG KOHLHAASE" ], [ "SOLO SUNNY", "in_language", "GERMAN" ], [ "SOLO SUNNY", "written_by", "WOLFGANG KOHLHAASE" ], [ "STALAG 17", "has_tags", "WORLD WAR II" ], [ "STALAG 17", "in_language", "GERMAN" ], [ "STALINGRAD", "has_tags", "GERMAN" ], [ "STALINGRAD", "has_tags", "WORLD WAR II" ], [ "STALINGRAD", "in_language", "GERMAN" ], [ "SUMMER STORM", "has_tags", "ROBERT STADLOBER" ], [ "SUMMER STORM", "in_language", "GERMAN" ], [ "SUMMER STORM", "starred_actors", "ROBERT STADLOBER" ], [ "THE BRIDGE AT REMAGEN", "has_tags", "WORLD WAR II" ], [ "THE BRIDGE AT REMAGEN", "in_language", "GERMAN" ], [ "THE DAWN PATROL", "in_language", "GERMAN" ], [ "THE DAWN PATROL", "starred_actors", "DAVID NIVEN" ], [ "THE EAGLE HAS LANDED", "has_tags", "GERMAN" ], [ "THE EAGLE HAS LANDED", "has_tags", "WORLD WAR II" ], [ "THE EAGLE HAS LANDED", "in_language", "GERMAN" ], [ "THE GREAT ESCAPE", "has_tags", "WORLD WAR II" ], [ "THE GREAT ESCAPE", "in_language", "GERMAN" ], [ "THE GUNS OF NAVARONE", "has_tags", "WORLD WAR II" ], [ "THE GUNS OF NAVARONE", "in_language", "GERMAN" ], [ "THE GUNS OF NAVARONE", "release_year", "1961" ], [ "THE GUNS OF NAVARONE", "starred_actors", "DAVID NIVEN" ], [ "THE GUNS OF NAVARONE", "starred_actors", "GREGORY PECK" ], [ "THE IMITATION GAME", "has_tags", "WORLD WAR II" ], [ "THE IMITATION GAME", "in_language", "GERMAN" ], [ "THE LONGEST DAY", "has_tags", "WORLD WAR II" ], [ "THE LONGEST DAY", "in_language", "GERMAN" ], [ "THE PIANIST", "has_tags", "WORLD WAR II" ], [ "THE PIANIST", "in_language", "GERMAN" ], [ "THE SEA WOLVES", "in_language", "GERMAN" ], [ "THE SEA WOLVES", "starred_actors", "DAVID NIVEN" ], [ "THE SEA WOLVES", "starred_actors", "GREGORY PECK" ], [ "THE SORROW AND THE PITY", "has_tags", "WORLD WAR II" ], [ "THE SORROW AND THE PITY", "in_language", "GERMAN" ], [ "TOWN WITHOUT PITY", "in_language", "GERMAN" ], [ "TOWN WITHOUT PITY", "release_year", "1961" ], [ "U-571", "has_tags", "WORLD WAR II" ], [ "U-571", "in_language", "GERMAN" ], [ "UNDERGROUND", "has_tags", "WORLD WAR II" ], [ "UNDERGROUND", "in_language", "GERMAN" ], [ "VALKYRIE", "has_tags", "WORLD WAR II" ], [ "VALKYRIE", "in_language", "GERMAN" ], [ "VON RYAN'S EXPRESS", "has_tags", "WORLD WAR II" ], [ "VON RYAN'S EXPRESS", "in_language", "GERMAN" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 23897, 1942 9152, A STAR IS BORN 20257, ADOLPHE MENJOU 30019, CROSSROADS 22845, MUSIC 37682, ORCHESTRA WIVES 22107, ROCK 'N' ROLL HIGH SCHOOL 20954, ROXIE HART 30160, THE EDDY DUCHIN STORY 19677, YOU WERE NEVER LOVELIER src, edge_attr, dst 9152, has_genre, 22845 9152, starred_actors, 20257 30019, has_genre, 22845 30019, release_year, 23897 37682, has_genre, 22845 37682, release_year, 23897 22107, has_genre, 22845 20954, release_year, 23897 20954, starred_actors, 20257 30160, has_genre, 22845 19677, release_year, 23897 19677, starred_actors, 20257 Question: In what context are ROCK 'N' ROLL HIGH SCHOOL, THE EDDY DUCHIN STORY, and YOU WERE NEVER LOVELIER connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "ROCK 'N' ROLL HIGH SCHOOL", "THE EDDY DUCHIN STORY", "YOU WERE NEVER LOVELIER" ], "valid_edges": [ [ "A STAR IS BORN", "has_genre", "MUSIC" ], [ "A STAR IS BORN", "starred_actors", "ADOLPHE MENJOU" ], [ "CROSSROADS", "has_genre", "MUSIC" ], [ "CROSSROADS", "release_year", "1942" ], [ "ORCHESTRA WIVES", "has_genre", "MUSIC" ], [ "ORCHESTRA WIVES", "release_year", "1942" ], [ "ROCK 'N' ROLL HIGH SCHOOL", "has_genre", "MUSIC" ], [ "ROXIE HART", "release_year", "1942" ], [ "ROXIE HART", "starred_actors", "ADOLPHE MENJOU" ], [ "THE EDDY DUCHIN STORY", "has_genre", "MUSIC" ], [ "YOU WERE NEVER LOVELIER", "release_year", "1942" ], [ "YOU WERE NEVER LOVELIER", "starred_actors", "ADOLPHE MENJOU" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 36279, 10 YEARS 25221, 1981 29424, 2011 23250, 50/50 5158, A BAG OF HAMMERS 35775, A BURNING HOT SUMMER 33013, A LETTER TO MOMO 10158, A PRINCESS FOR CHRISTMAS 29800, ACE ATTORNEY 29816, AIR DOLL 29881, AMERICANO 188, ANOTHER HAPPY DAY 23286, CARNAGE 8520, CHICKEN WITH PLUMS 28503, CLOUDBURST 29904, CONDORMAN 23452, DARK HORSE 6375, DELICACY 24410, DEMONLOVER 14132, DESI BOYZ 36212, DRAMA 1612, FROM UP ON POPPY HILL 17854, GOING DOWN IN LA-LA LAND 6941, GUILTY 22180, HIMIZU 13198, HOLY FLYING CIRCUS 4209, HOUSE OF TOLERANCE 25499, I WISH 21922, JANE EYRE 36874, JAPANESE 37830, JEFF, WHO LIVES AT HOME 39091, KARATE GIRL 4526, KARATE-ROBO ZABORGAR 13594, LA OTRA FAMILIA 15175, LE HAVRE 3800, LOSERS' CLUB 4234, MADEA'S BIG HAPPY FAMILY 19916, MONSIEUR LAZHAR 21686, MOONLIGHT SERENADE 33300, NATURAL SELECTION 20537, NEWLYWEDS 10021, OUR IDIOT BROTHER 8017, PATRIOTISM 5493, POLISSE 39594, REBELLION 674, ROBERT SHECKLEY 12301, SALMON FISHING IN THE YEMEN 18005, TAKE THIS WALTZ 26586, THAT'S WHAT I AM 39795, THE ARTIST 5838, THE CLOWN 11393, THE DESCENDANTS 32295, THE DILEMMA 16031, THE FAIRY 34462, THE FLOWERS OF WAR 24493, THE FUNERAL 7240, THE GIRL WITH THE DRAGON TATTOO 6289, THE INTOUCHABLES 15562, THE ROAD 16308, THE SNOWS OF KILIMANJARO 7816, THE THREE MUSKETEERS 13003, THE WELL-DIGGER'S DAUGHTER 8555, THE WOMAN IN THE FIFTH 5529, THIN ICE 23781, TOMBOY 8957, WE BOUGHT A ZOO 35511, WE HAVE A POPE 33483, WEEKEND 36565, WIN WIN 21449, YOU WILL BE MY SON 11924, YOUNG ADULT 16822, YOUR SISTER'S SISTER 28489, ZINDAGI NA MILEGI DOBARA src, edge_attr, dst 36279, has_genre, 36212 36279, release_year, 29424 25221, has_genre, 36212 23250, has_genre, 36212 23250, release_year, 29424 5158, has_genre, 36212 5158, release_year, 29424 35775, has_genre, 36212 35775, release_year, 29424 33013, has_genre, 36212 33013, in_language, 36874 33013, release_year, 29424 10158, has_genre, 36212 10158, release_year, 29424 29800, has_genre, 36212 29800, in_language, 36874 29816, has_genre, 36212 29816, in_language, 36874 29881, has_genre, 36212 29881, release_year, 29424 188, has_genre, 36212 188, release_year, 29424 23286, has_genre, 36212 23286, release_year, 29424 8520, has_genre, 36212 8520, release_year, 29424 28503, has_genre, 36212 28503, release_year, 29424 29904, release_year, 25221 29904, written_by, 674 23452, has_genre, 36212 23452, release_year, 29424 6375, has_genre, 36212 6375, release_year, 29424 24410, has_genre, 36212 24410, in_language, 36874 14132, has_genre, 36212 14132, release_year, 29424 1612, has_genre, 36212 1612, in_language, 36874 1612, release_year, 29424 17854, has_genre, 36212 17854, release_year, 29424 6941, has_genre, 36212 6941, has_tags, 36212 6941, release_year, 29424 22180, has_genre, 36212 22180, in_language, 36874 22180, release_year, 29424 13198, has_genre, 36212 13198, release_year, 29424 4209, has_genre, 36212 4209, release_year, 29424 25499, in_language, 36874 25499, release_year, 29424 21922, has_genre, 36212 21922, release_year, 29424 37830, has_genre, 36212 37830, release_year, 29424 39091, in_language, 36874 39091, release_year, 29424 4526, in_language, 36874 4526, release_year, 29424 13594, has_genre, 36212 13594, release_year, 29424 15175, has_genre, 36212 15175, release_year, 29424 3800, has_genre, 36212 3800, release_year, 29424 4234, has_genre, 36212 4234, release_year, 29424 19916, has_genre, 36212 19916, release_year, 29424 21686, has_genre, 36212 21686, in_language, 36874 33300, has_genre, 36212 33300, release_year, 29424 20537, has_genre, 36212 20537, release_year, 29424 10021, has_genre, 36212 10021, release_year, 29424 8017, in_language, 36874 5493, has_genre, 36212 5493, release_year, 29424 39594, has_genre, 36212 39594, release_year, 29424 12301, has_genre, 36212 12301, release_year, 29424 18005, has_genre, 36212 18005, release_year, 29424 26586, has_genre, 36212 26586, release_year, 29424 39795, has_genre, 36212 39795, has_tags, 36212 39795, release_year, 29424 5838, has_genre, 36212 5838, release_year, 29424 11393, has_genre, 36212 11393, has_tags, 36212 11393, release_year, 29424 32295, has_genre, 36212 32295, release_year, 29424 16031, has_genre, 36212 16031, release_year, 29424 34462, has_genre, 36212 34462, in_language, 36874 34462, release_year, 29424 24493, has_genre, 36212 24493, in_language, 36874 7240, has_genre, 36212 7240, release_year, 29424 6289, has_genre, 36212 6289, release_year, 29424 15562, has_genre, 36212 15562, release_year, 29424 16308, has_genre, 36212 16308, release_year, 29424 7816, has_genre, 36212 7816, release_year, 29424 13003, has_genre, 36212 13003, release_year, 29424 8555, has_genre, 36212 8555, release_year, 29424 5529, has_genre, 36212 5529, release_year, 29424 23781, has_genre, 36212 23781, release_year, 29424 8957, has_genre, 36212 8957, release_year, 29424 35511, has_genre, 36212 35511, release_year, 29424 33483, has_genre, 36212 33483, release_year, 29424 36565, has_genre, 36212 36565, release_year, 29424 21449, has_genre, 36212 21449, release_year, 29424 11924, has_genre, 36212 11924, has_tags, 36212 11924, release_year, 29424 16822, has_genre, 36212 16822, release_year, 29424 28489, has_genre, 36212 28489, release_year, 29424 Question: How are LA OTRA FAMILIA, PATRIOTISM, and ROBERT SHECKLEY related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "LA OTRA FAMILIA", "PATRIOTISM", "ROBERT SHECKLEY" ], "valid_edges": [ [ "10 YEARS", "has_genre", "DRAMA" ], [ "10 YEARS", "release_year", "2011" ], [ "1981", "has_genre", "DRAMA" ], [ "50/50", "has_genre", "DRAMA" ], [ "50/50", "release_year", "2011" ], [ "A BAG OF HAMMERS", "has_genre", "DRAMA" ], [ "A BAG OF HAMMERS", "release_year", "2011" ], [ "A BURNING HOT SUMMER", "has_genre", "DRAMA" ], [ "A BURNING HOT SUMMER", "release_year", "2011" ], [ "A LETTER TO MOMO", "has_genre", "DRAMA" ], [ "A LETTER TO MOMO", "in_language", "JAPANESE" ], [ "A LETTER TO MOMO", "release_year", "2011" ], [ "A PRINCESS FOR CHRISTMAS", "has_genre", "DRAMA" ], [ "A PRINCESS FOR CHRISTMAS", "release_year", "2011" ], [ "ACE ATTORNEY", "has_genre", "DRAMA" ], [ "ACE ATTORNEY", "in_language", "JAPANESE" ], [ "AIR DOLL", "has_genre", "DRAMA" ], [ "AIR DOLL", "in_language", "JAPANESE" ], [ "AMERICANO", "has_genre", "DRAMA" ], [ "AMERICANO", "release_year", "2011" ], [ "ANOTHER HAPPY DAY", "has_genre", "DRAMA" ], [ "ANOTHER HAPPY DAY", "release_year", "2011" ], [ "CARNAGE", "has_genre", "DRAMA" ], [ "CARNAGE", "release_year", "2011" ], [ "CHICKEN WITH PLUMS", "has_genre", "DRAMA" ], [ "CHICKEN WITH PLUMS", "release_year", "2011" ], [ "CLOUDBURST", "has_genre", "DRAMA" ], [ "CLOUDBURST", "release_year", "2011" ], [ "CONDORMAN", "release_year", "1981" ], [ "CONDORMAN", "written_by", "ROBERT SHECKLEY" ], [ "DARK HORSE", "has_genre", "DRAMA" ], [ "DARK HORSE", "release_year", "2011" ], [ "DELICACY", "has_genre", "DRAMA" ], [ "DELICACY", "release_year", "2011" ], [ "DEMONLOVER", "has_genre", "DRAMA" ], [ "DEMONLOVER", "in_language", "JAPANESE" ], [ "DESI BOYZ", "has_genre", "DRAMA" ], [ "DESI BOYZ", "release_year", "2011" ], [ "FROM UP ON POPPY HILL", "has_genre", "DRAMA" ], [ "FROM UP ON POPPY HILL", "in_language", "JAPANESE" ], [ "FROM UP ON POPPY HILL", "release_year", "2011" ], [ "GOING DOWN IN LA-LA LAND", "has_genre", "DRAMA" ], [ "GOING DOWN IN LA-LA LAND", "release_year", "2011" ], [ "GUILTY", "has_genre", "DRAMA" ], [ "GUILTY", "has_tags", "DRAMA" ], [ "GUILTY", "release_year", "2011" ], [ "HIMIZU", "has_genre", "DRAMA" ], [ "HIMIZU", "in_language", "JAPANESE" ], [ "HIMIZU", "release_year", "2011" ], [ "HOLY FLYING CIRCUS", "has_genre", "DRAMA" ], [ "HOLY FLYING CIRCUS", "release_year", "2011" ], [ "HOUSE OF TOLERANCE", "has_genre", "DRAMA" ], [ "HOUSE OF TOLERANCE", "release_year", "2011" ], [ "I WISH", "in_language", "JAPANESE" ], [ "I WISH", "release_year", "2011" ], [ "JANE EYRE", "has_genre", "DRAMA" ], [ "JANE EYRE", "release_year", "2011" ], [ "JEFF, WHO LIVES AT HOME", "has_genre", "DRAMA" ], [ "JEFF, WHO LIVES AT HOME", "release_year", "2011" ], [ "KARATE GIRL", "in_language", "JAPANESE" ], [ "KARATE GIRL", "release_year", "2011" ], [ "KARATE-ROBO ZABORGAR", "in_language", "JAPANESE" ], [ "KARATE-ROBO ZABORGAR", "release_year", "2011" ], [ "LA OTRA FAMILIA", "has_genre", "DRAMA" ], [ "LA OTRA FAMILIA", "release_year", "2011" ], [ "LE HAVRE", "has_genre", "DRAMA" ], [ "LE HAVRE", "release_year", "2011" ], [ "LOSERS' CLUB", "has_genre", "DRAMA" ], [ "LOSERS' CLUB", "release_year", "2011" ], [ "MADEA'S BIG HAPPY FAMILY", "has_genre", "DRAMA" ], [ "MADEA'S BIG HAPPY FAMILY", "release_year", "2011" ], [ "MONSIEUR LAZHAR", "has_genre", "DRAMA" ], [ "MONSIEUR LAZHAR", "release_year", "2011" ], [ "MOONLIGHT SERENADE", "has_genre", "DRAMA" ], [ "MOONLIGHT SERENADE", "in_language", "JAPANESE" ], [ "NATURAL SELECTION", "has_genre", "DRAMA" ], [ "NATURAL SELECTION", "release_year", "2011" ], [ "NEWLYWEDS", "has_genre", "DRAMA" ], [ "NEWLYWEDS", "release_year", "2011" ], [ "OUR IDIOT BROTHER", "has_genre", "DRAMA" ], [ "OUR IDIOT BROTHER", "release_year", "2011" ], [ "PATRIOTISM", "in_language", "JAPANESE" ], [ "POLISSE", "has_genre", "DRAMA" ], [ "POLISSE", "release_year", "2011" ], [ "REBELLION", "has_genre", "DRAMA" ], [ "REBELLION", "release_year", "2011" ], [ "SALMON FISHING IN THE YEMEN", "has_genre", "DRAMA" ], [ "SALMON FISHING IN THE YEMEN", "release_year", "2011" ], [ "TAKE THIS WALTZ", "has_genre", "DRAMA" ], [ "TAKE THIS WALTZ", "release_year", "2011" ], [ "THAT'S WHAT I AM", "has_genre", "DRAMA" ], [ "THAT'S WHAT I AM", "release_year", "2011" ], [ "THE ARTIST", "has_genre", "DRAMA" ], [ "THE ARTIST", "has_tags", "DRAMA" ], [ "THE ARTIST", "release_year", "2011" ], [ "THE CLOWN", "has_genre", "DRAMA" ], [ "THE CLOWN", "release_year", "2011" ], [ "THE DESCENDANTS", "has_genre", "DRAMA" ], [ "THE DESCENDANTS", "has_tags", "DRAMA" ], [ "THE DESCENDANTS", "release_year", "2011" ], [ "THE DILEMMA", "has_genre", "DRAMA" ], [ "THE DILEMMA", "release_year", "2011" ], [ "THE FAIRY", "has_genre", "DRAMA" ], [ "THE FAIRY", "release_year", "2011" ], [ "THE FLOWERS OF WAR", "has_genre", "DRAMA" ], [ "THE FLOWERS OF WAR", "in_language", "JAPANESE" ], [ "THE FLOWERS OF WAR", "release_year", "2011" ], [ "THE FUNERAL", "has_genre", "DRAMA" ], [ "THE FUNERAL", "in_language", "JAPANESE" ], [ "THE GIRL WITH THE DRAGON TATTOO", "has_genre", "DRAMA" ], [ "THE GIRL WITH THE DRAGON TATTOO", "release_year", "2011" ], [ "THE INTOUCHABLES", "has_genre", "DRAMA" ], [ "THE INTOUCHABLES", "release_year", "2011" ], [ "THE ROAD", "has_genre", "DRAMA" ], [ "THE ROAD", "release_year", "2011" ], [ "THE SNOWS OF KILIMANJARO", "has_genre", "DRAMA" ], [ "THE SNOWS OF KILIMANJARO", "release_year", "2011" ], [ "THE THREE MUSKETEERS", "has_genre", "DRAMA" ], [ "THE THREE MUSKETEERS", "release_year", "2011" ], [ "THE WELL-DIGGER'S DAUGHTER", "has_genre", "DRAMA" ], [ "THE WELL-DIGGER'S DAUGHTER", "release_year", "2011" ], [ "THE WOMAN IN THE FIFTH", "has_genre", "DRAMA" ], [ "THE WOMAN IN THE FIFTH", "release_year", "2011" ], [ "THIN ICE", "has_genre", "DRAMA" ], [ "THIN ICE", "release_year", "2011" ], [ "TOMBOY", "has_genre", "DRAMA" ], [ "TOMBOY", "release_year", "2011" ], [ "WE BOUGHT A ZOO", "has_genre", "DRAMA" ], [ "WE BOUGHT A ZOO", "release_year", "2011" ], [ "WE HAVE A POPE", "has_genre", "DRAMA" ], [ "WE HAVE A POPE", "release_year", "2011" ], [ "WEEKEND", "has_genre", "DRAMA" ], [ "WEEKEND", "release_year", "2011" ], [ "WIN WIN", "has_genre", "DRAMA" ], [ "WIN WIN", "release_year", "2011" ], [ "YOU WILL BE MY SON", "has_genre", "DRAMA" ], [ "YOU WILL BE MY SON", "release_year", "2011" ], [ "YOUNG ADULT", "has_genre", "DRAMA" ], [ "YOUNG ADULT", "has_tags", "DRAMA" ], [ "YOUNG ADULT", "release_year", "2011" ], [ "YOUR SISTER'S SISTER", "has_genre", "DRAMA" ], [ "YOUR SISTER'S SISTER", "release_year", "2011" ], [ "ZINDAGI NA MILEGI DOBARA", "has_genre", "DRAMA" ], [ "ZINDAGI NA MILEGI DOBARA", "release_year", "2011" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 30172, 1964 30261, A CAROL FOR ANOTHER CHRISTMAS 4269, A HARD DAY'S NIGHT 21572, ACCATTONE 28463, AFTER THE FOX 8848, ALL THE LIGHT IN THE SKY 17157, ARABIAN NIGHTS 10045, BD-R 38657, BEAT THE DEVIL 22030, BEFORE THE REVOLUTION 8139, BICYCLE THIEVES 19992, BIG DEAL ON MADONNA STREET 39539, BLOOD AND BLACK LACE 32075, BURN! 12227, CASTLE OF BLOOD 7432, CHEYENNE AUTUMN 34792, CONTEMPT 29300, DEAD RINGER 34004, FAIL SAFE 7157, FIRST MEN IN THE MOON 19696, GIRL WITH GREEN EYES 20941, HAMLET 17344, I VITELLONI 16200, ITALIAN 30236, JOE SWANBERG 4285, KISS ME, STUPID 38326, L'ECLISSE 20913, LA STRADA 27312, MAIL ORDER BRIDE 13074, MARRIAGE ITALIAN STYLE 31661, MY FAIR LADY 24745, PURPLE NOON 23686, RED DESERT 24744, ROCCO AND HIS BROTHERS 29931, ROME, OPEN CITY 35586, SAHARA 14486, SANTA CLAUS CONQUERS THE MARTIANS 24232, SEND ME NO FLOWERS 9936, SEVEN DAYS IN MAY 6119, SLEUTH 8436, SPIRITS OF THE DEAD 24045, STRAIT-JACKET 4157, THE BEST MAN 17385, THE CAT O' NINE TAILS 13352, THE FLOWERS OF ST. FRANCIS 21435, THE GOOD, THE BAD AND THE UGLY 14382, THE GORGON 11668, THE GOSPEL ACCORDING TO ST. MATTHEW 25818, THE INCREDIBLE MR. LIMPET 1443, THE ITALIAN JOB 27885, THE KILLERS 11243, THE MASQUE OF THE RED DEATH 34829, THE NIGHT OF THE IGUANA 25850, THE PAWNBROKER 18274, THE ROSE TATTOO 17143, THE STRANGER 593, THE THIEF OF BAGDAD 38808, THE TRAIN 29678, THE UMBRELLAS OF CHERBOURG 35956, THE UNSINKABLE MOLLY BROWN 39026, TWO WOMEN 31252, V/H/S 16996, ZORBA THE GREEK src, edge_attr, dst 30261, has_tags, 10045 30261, release_year, 30172 4269, has_tags, 10045 4269, release_year, 30172 21572, has_tags, 10045 21572, in_language, 16200 28463, has_tags, 10045 28463, in_language, 16200 8848, directed_by, 30236 8848, written_by, 30236 17157, has_tags, 10045 17157, in_language, 16200 38657, has_tags, 10045 38657, in_language, 16200 22030, in_language, 16200 22030, release_year, 30172 8139, has_tags, 10045 8139, has_tags, 16200 8139, in_language, 16200 19992, has_tags, 10045 19992, in_language, 16200 39539, in_language, 16200 39539, release_year, 30172 32075, has_tags, 10045 32075, in_language, 16200 12227, in_language, 16200 12227, release_year, 30172 7432, has_tags, 10045 7432, release_year, 30172 34792, has_tags, 10045 34792, in_language, 16200 29300, has_tags, 10045 29300, release_year, 30172 34004, has_tags, 10045 34004, release_year, 30172 7157, has_tags, 10045 7157, release_year, 30172 19696, has_tags, 10045 19696, release_year, 30172 20941, has_tags, 10045 20941, release_year, 30172 17344, has_tags, 10045 17344, has_tags, 16200 17344, in_language, 16200 4285, has_tags, 10045 4285, release_year, 30172 38326, has_tags, 10045 38326, in_language, 16200 20913, has_tags, 10045 20913, has_tags, 16200 20913, in_language, 16200 27312, has_tags, 10045 27312, release_year, 30172 13074, in_language, 16200 13074, release_year, 30172 31661, has_tags, 10045 31661, release_year, 30172 24745, has_tags, 10045 24745, in_language, 16200 23686, in_language, 16200 23686, release_year, 30172 24744, has_tags, 10045 24744, in_language, 16200 29931, has_tags, 10045 29931, in_language, 16200 35586, has_tags, 10045 35586, in_language, 16200 14486, has_tags, 10045 14486, release_year, 30172 24232, has_tags, 10045 24232, release_year, 30172 9936, has_tags, 10045 9936, release_year, 30172 6119, has_tags, 10045 6119, in_language, 16200 8436, has_tags, 10045 8436, in_language, 16200 24045, has_tags, 10045 24045, release_year, 30172 4157, in_language, 16200 4157, release_year, 30172 17385, has_tags, 10045 17385, in_language, 16200 13352, has_tags, 10045 13352, in_language, 16200 21435, has_tags, 10045 21435, has_tags, 16200 21435, in_language, 16200 14382, has_tags, 10045 14382, release_year, 30172 11668, in_language, 16200 11668, release_year, 30172 25818, has_tags, 10045 25818, release_year, 30172 1443, has_tags, 10045 1443, has_tags, 16200 1443, in_language, 16200 27885, has_tags, 10045 27885, release_year, 30172 11243, has_tags, 10045 11243, release_year, 30172 34829, has_tags, 10045 34829, release_year, 30172 25850, has_tags, 10045 25850, release_year, 30172 18274, has_tags, 10045 18274, in_language, 16200 17143, has_tags, 10045 17143, in_language, 16200 593, has_tags, 10045 38808, has_tags, 10045 38808, release_year, 30172 29678, has_tags, 10045 29678, release_year, 30172 35956, has_tags, 10045 35956, release_year, 30172 39026, has_tags, 10045 39026, has_tags, 16200 39026, in_language, 16200 31252, directed_by, 30236 31252, has_tags, 10045 31252, has_tags, 30236 16996, has_tags, 10045 16996, release_year, 30172 Question: For what reason are ALL THE LIGHT IN THE SKY, MARRIAGE ITALIAN STYLE, and THE THIEF OF BAGDAD associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "ALL THE LIGHT IN THE SKY", "MARRIAGE ITALIAN STYLE", "THE THIEF OF BAGDAD" ], "valid_edges": [ [ "A CAROL FOR ANOTHER CHRISTMAS", "has_tags", "BD-R" ], [ "A CAROL FOR ANOTHER CHRISTMAS", "release_year", "1964" ], [ "A HARD DAY'S NIGHT", "has_tags", "BD-R" ], [ "A HARD DAY'S NIGHT", "release_year", "1964" ], [ "ACCATTONE", "has_tags", "BD-R" ], [ "ACCATTONE", "in_language", "ITALIAN" ], [ "AFTER THE FOX", "has_tags", "BD-R" ], [ "AFTER THE FOX", "in_language", "ITALIAN" ], [ "ALL THE LIGHT IN THE SKY", "directed_by", "JOE SWANBERG" ], [ "ALL THE LIGHT IN THE SKY", "written_by", "JOE SWANBERG" ], [ "ARABIAN NIGHTS", "has_tags", "BD-R" ], [ "ARABIAN NIGHTS", "in_language", "ITALIAN" ], [ "BEAT THE DEVIL", "has_tags", "BD-R" ], [ "BEAT THE DEVIL", "in_language", "ITALIAN" ], [ "BEFORE THE REVOLUTION", "in_language", "ITALIAN" ], [ "BEFORE THE REVOLUTION", "release_year", "1964" ], [ "BICYCLE THIEVES", "has_tags", "BD-R" ], [ "BICYCLE THIEVES", "has_tags", "ITALIAN" ], [ "BICYCLE THIEVES", "in_language", "ITALIAN" ], [ "BIG DEAL ON MADONNA STREET", "has_tags", "BD-R" ], [ "BIG DEAL ON MADONNA STREET", "in_language", "ITALIAN" ], [ "BLOOD AND BLACK LACE", "in_language", "ITALIAN" ], [ "BLOOD AND BLACK LACE", "release_year", "1964" ], [ "BURN!", "has_tags", "BD-R" ], [ "BURN!", "in_language", "ITALIAN" ], [ "CASTLE OF BLOOD", "in_language", "ITALIAN" ], [ "CASTLE OF BLOOD", "release_year", "1964" ], [ "CHEYENNE AUTUMN", "has_tags", "BD-R" ], [ "CHEYENNE AUTUMN", "release_year", "1964" ], [ "CONTEMPT", "has_tags", "BD-R" ], [ "CONTEMPT", "in_language", "ITALIAN" ], [ "DEAD RINGER", "has_tags", "BD-R" ], [ "DEAD RINGER", "release_year", "1964" ], [ "FAIL SAFE", "has_tags", "BD-R" ], [ "FAIL SAFE", "release_year", "1964" ], [ "FIRST MEN IN THE MOON", "has_tags", "BD-R" ], [ "FIRST MEN IN THE MOON", "release_year", "1964" ], [ "GIRL WITH GREEN EYES", "has_tags", "BD-R" ], [ "GIRL WITH GREEN EYES", "release_year", "1964" ], [ "HAMLET", "has_tags", "BD-R" ], [ "HAMLET", "release_year", "1964" ], [ "I VITELLONI", "has_tags", "BD-R" ], [ "I VITELLONI", "has_tags", "ITALIAN" ], [ "I VITELLONI", "in_language", "ITALIAN" ], [ "KISS ME, STUPID", "has_tags", "BD-R" ], [ "KISS ME, STUPID", "release_year", "1964" ], [ "L'ECLISSE", "has_tags", "BD-R" ], [ "L'ECLISSE", "in_language", "ITALIAN" ], [ "LA STRADA", "has_tags", "BD-R" ], [ "LA STRADA", "has_tags", "ITALIAN" ], [ "LA STRADA", "in_language", "ITALIAN" ], [ "MAIL ORDER BRIDE", "has_tags", "BD-R" ], [ "MAIL ORDER BRIDE", "release_year", "1964" ], [ "MARRIAGE ITALIAN STYLE", "in_language", "ITALIAN" ], [ "MARRIAGE ITALIAN STYLE", "release_year", "1964" ], [ "MY FAIR LADY", "has_tags", "BD-R" ], [ "MY FAIR LADY", "release_year", "1964" ], [ "PURPLE NOON", "has_tags", "BD-R" ], [ "PURPLE NOON", "in_language", "ITALIAN" ], [ "RED DESERT", "in_language", "ITALIAN" ], [ "RED DESERT", "release_year", "1964" ], [ "ROCCO AND HIS BROTHERS", "has_tags", "BD-R" ], [ "ROCCO AND HIS BROTHERS", "in_language", "ITALIAN" ], [ "ROME, OPEN CITY", "has_tags", "BD-R" ], [ "ROME, OPEN CITY", "in_language", "ITALIAN" ], [ "SAHARA", "has_tags", "BD-R" ], [ "SAHARA", "in_language", "ITALIAN" ], [ "SANTA CLAUS CONQUERS THE MARTIANS", "has_tags", "BD-R" ], [ "SANTA CLAUS CONQUERS THE MARTIANS", "release_year", "1964" ], [ "SEND ME NO FLOWERS", "has_tags", "BD-R" ], [ "SEND ME NO FLOWERS", "release_year", "1964" ], [ "SEVEN DAYS IN MAY", "has_tags", "BD-R" ], [ "SEVEN DAYS IN MAY", "release_year", "1964" ], [ "SLEUTH", "has_tags", "BD-R" ], [ "SLEUTH", "in_language", "ITALIAN" ], [ "SPIRITS OF THE DEAD", "has_tags", "BD-R" ], [ "SPIRITS OF THE DEAD", "in_language", "ITALIAN" ], [ "STRAIT-JACKET", "has_tags", "BD-R" ], [ "STRAIT-JACKET", "release_year", "1964" ], [ "THE BEST MAN", "in_language", "ITALIAN" ], [ "THE BEST MAN", "release_year", "1964" ], [ "THE CAT O' NINE TAILS", "has_tags", "BD-R" ], [ "THE CAT O' NINE TAILS", "in_language", "ITALIAN" ], [ "THE FLOWERS OF ST. FRANCIS", "has_tags", "BD-R" ], [ "THE FLOWERS OF ST. FRANCIS", "in_language", "ITALIAN" ], [ "THE GOOD, THE BAD AND THE UGLY", "has_tags", "BD-R" ], [ "THE GOOD, THE BAD AND THE UGLY", "has_tags", "ITALIAN" ], [ "THE GOOD, THE BAD AND THE UGLY", "in_language", "ITALIAN" ], [ "THE GORGON", "has_tags", "BD-R" ], [ "THE GORGON", "release_year", "1964" ], [ "THE GOSPEL ACCORDING TO ST. MATTHEW", "in_language", "ITALIAN" ], [ "THE GOSPEL ACCORDING TO ST. MATTHEW", "release_year", "1964" ], [ "THE INCREDIBLE MR. LIMPET", "has_tags", "BD-R" ], [ "THE INCREDIBLE MR. LIMPET", "release_year", "1964" ], [ "THE ITALIAN JOB", "has_tags", "BD-R" ], [ "THE ITALIAN JOB", "has_tags", "ITALIAN" ], [ "THE ITALIAN JOB", "in_language", "ITALIAN" ], [ "THE KILLERS", "has_tags", "BD-R" ], [ "THE KILLERS", "release_year", "1964" ], [ "THE MASQUE OF THE RED DEATH", "has_tags", "BD-R" ], [ "THE MASQUE OF THE RED DEATH", "release_year", "1964" ], [ "THE NIGHT OF THE IGUANA", "has_tags", "BD-R" ], [ "THE NIGHT OF THE IGUANA", "release_year", "1964" ], [ "THE PAWNBROKER", "has_tags", "BD-R" ], [ "THE PAWNBROKER", "release_year", "1964" ], [ "THE ROSE TATTOO", "has_tags", "BD-R" ], [ "THE ROSE TATTOO", "in_language", "ITALIAN" ], [ "THE STRANGER", "has_tags", "BD-R" ], [ "THE STRANGER", "in_language", "ITALIAN" ], [ "THE THIEF OF BAGDAD", "has_tags", "BD-R" ], [ "THE TRAIN", "has_tags", "BD-R" ], [ "THE TRAIN", "release_year", "1964" ], [ "THE UMBRELLAS OF CHERBOURG", "has_tags", "BD-R" ], [ "THE UMBRELLAS OF CHERBOURG", "release_year", "1964" ], [ "THE UNSINKABLE MOLLY BROWN", "has_tags", "BD-R" ], [ "THE UNSINKABLE MOLLY BROWN", "release_year", "1964" ], [ "TWO WOMEN", "has_tags", "BD-R" ], [ "TWO WOMEN", "has_tags", "ITALIAN" ], [ "TWO WOMEN", "in_language", "ITALIAN" ], [ "V/H/S", "directed_by", "JOE SWANBERG" ], [ "V/H/S", "has_tags", "BD-R" ], [ "V/H/S", "has_tags", "JOE SWANBERG" ], [ "ZORBA THE GREEK", "has_tags", "BD-R" ], [ "ZORBA THE GREEK", "release_year", "1964" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 18366, 1960 9790, BLAKE EDWARDS 15662, EARL MILLS 35347, HIGH TIME 38552, INTRODUCING DOROTHY DANDRIDGE 30183, JOHN BROPHY 22845, MUSIC 28600, THE DAY THEY ROBBED THE BANK OF ENGLAND 32562, VICTOR VICTORIA src, edge_attr, dst 35347, directed_by, 9790 35347, release_year, 18366 38552, has_genre, 22845 38552, written_by, 15662 28600, release_year, 18366 28600, written_by, 30183 32562, directed_by, 9790 32562, has_genre, 22845 32562, has_tags, 9790 32562, written_by, 9790 Question: How are BLAKE EDWARDS, EARL MILLS, and JOHN BROPHY related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "BLAKE EDWARDS", "EARL MILLS", "JOHN BROPHY" ], "valid_edges": [ [ "HIGH TIME", "directed_by", "BLAKE EDWARDS" ], [ "HIGH TIME", "release_year", "1960" ], [ "INTRODUCING DOROTHY DANDRIDGE", "has_genre", "MUSIC" ], [ "INTRODUCING DOROTHY DANDRIDGE", "written_by", "EARL MILLS" ], [ "THE DAY THEY ROBBED THE BANK OF ENGLAND", "release_year", "1960" ], [ "THE DAY THEY ROBBED THE BANK OF ENGLAND", "written_by", "JOHN BROPHY" ], [ "VICTOR VICTORIA", "directed_by", "BLAKE EDWARDS" ], [ "VICTOR VICTORIA", "has_genre", "MUSIC" ], [ "VICTOR VICTORIA", "has_tags", "BLAKE EDWARDS" ], [ "VICTOR VICTORIA", "written_by", "BLAKE EDWARDS" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 17737, 12 ANGRY MEN 26399, 12 STOREYS 14259, 1997 2566, A BETTER PLACE 30146, A CHRISTMAS CAROL 20629, A SINGLE SHOT 14986, A THOUSAND ACRES 15136, AFFLICTION 9313, ALL OVER ME 7983, AMERICAN PERFEKT 20480, AMISTAD 21856, ANASTASIA 36963, ANNA KARENINA 23952, BANDITS 15240, BENT 25930, BETTER LIVING THROUGH CHEMISTRY 2217, BOOGIE NIGHTS 22919, BROADWAY DAMAGE 314, BUUD YAM 33121, CAREER GIRLS 31459, CHILDREN OF HEAVEN 2869, CLOCKWATCHERS 7142, COMANCHE TERRITORY 22452, COMMANDMENTS 2859, CONTACT 18235, CONVICTION 6871, COP LAND 5726, DEFYING GRAVITY 38834, DESTINY 15892, DONNIE BRASCO 36212, DRAMA 30833, DÉJÀ VU 26106, END OF WATCH 16328, EVE'S BAYOU 23387, EVERYBODY'S FINE 20378, FACE 18446, FEVER PITCH 5829, FIRE DOWN BELOW 21606, FLIRTING 35150, FRIED GREEN TOMATOES 34449, FRIENDSHIP 31224, G.I. JANE 22311, GANG RELATED 12664, GHOST WORLD 26708, GOOD WILL HUNTING 30479, GRIDLOCK'D 37982, GUMMO 7879, HALF NELSON 4840, HEAD IN THE CLOUDS 4464, HOODLUM 16164, HURRICANE STREETS 31481, ISHQ 19868, JACK FROST 19939, JACKIE BROWN 26410, JEFFREY CAINE 17974, JOHN DUIGAN 31226, JULIE JOHNSON 4447, LAWN DOGS 24419, LIFE IS BEAUTIFUL 233, LIVE FLESH 15322, LOLITA 22386, LOST AND DELIRIOUS 31294, LOVE JONES 21344, LOVE WALKED IN 18198, MATCHSTICK MEN 14102, MEN WITH GUNS 31515, METROLAND 995, MIDNIGHT IN THE GARDEN OF GOOD AND EVIL 12246, MISCHA BARTON 19598, MOLLY 32149, MOON 21686, MOONLIGHT SERENADE 22938, MOTHER AND SON 693, MRS DALLOWAY 6767, MY SON THE FANATIC 2624, NIL BY MOUTH 34420, NOWHERE 17528, ONCE UPON A TIME IN AMERICA 24682, ONE EIGHT SEVEN 30412, ONE NIGHT STAND 33979, OSCAR AND LUCINDA 22965, PATRICIA HEATON 34639, POSTMAN BLUES 18584, PRINCESS MONONOKE 10039, PUPS 30377, SAM ROCKWELL 5171, SELENA 3896, SLAVES TO THE UNDERGROUND 3826, SNOW ANGELS 38386, SOUL FOOD 28494, TELLING LIES IN AMERICA 24335, TENTAÇÃO 22564, THE APOSTLE 23009, THE BLACKOUT 15029, THE BUTCHER BOY 31161, THE CHAMBERMAID ON THE TITANIC 18142, THE CONSTANT GARDENER 26567, THE EDGE 13675, THE FULL MONTY 26569, THE GAMBLER 14807, THE GOODBYE GIRL 15840, THE ICE STORM 15006, THE JOURNEY OF AUGUST KING 34252, THE LAST TIME I COMMITTED SUICIDE 26819, THE LEADING MAN 31848, THE MYTH OF FINGERPRINTS 16072, THE RAINMAKER 15718, THE TANGO LESSON 32458, THE THIEF 34916, THE WAY WAY BACK 3201, THE WINGS OF THE DOVE 2986, THE YEAR MY VOICE BROKE 5612, TITANIC 29271, TOUCH 28819, UNDER THE SKIN 29810, VOLCANO 30676, VOYAGE TO THE BEGINNING OF THE WORLD 24288, WASHINGTON SQUARE 35647, WRINKLES src, edge_attr, dst 17737, has_genre, 36212 17737, has_tags, 36212 17737, release_year, 14259 26399, has_genre, 36212 26399, release_year, 14259 2566, has_genre, 36212 2566, release_year, 14259 30146, has_genre, 36212 30146, release_year, 14259 20629, has_genre, 36212 20629, starred_actors, 30377 14986, has_genre, 36212 14986, release_year, 14259 15136, has_genre, 36212 15136, release_year, 14259 9313, has_genre, 36212 9313, release_year, 14259 7983, has_genre, 36212 7983, release_year, 14259 20480, has_genre, 36212 20480, release_year, 14259 21856, has_genre, 36212 21856, release_year, 14259 36963, has_genre, 36212 36963, has_tags, 36212 36963, release_year, 14259 23952, has_genre, 36212 23952, release_year, 14259 15240, has_genre, 36212 15240, release_year, 14259 25930, has_genre, 36212 25930, has_tags, 30377 25930, starred_actors, 30377 2217, has_genre, 36212 2217, has_tags, 36212 2217, release_year, 14259 22919, has_genre, 36212 22919, release_year, 14259 314, has_genre, 36212 314, release_year, 14259 33121, has_genre, 36212 33121, release_year, 14259 31459, has_genre, 36212 31459, release_year, 14259 2869, has_genre, 36212 2869, release_year, 14259 7142, has_genre, 36212 7142, release_year, 14259 22452, has_genre, 36212 22452, release_year, 14259 2859, has_genre, 36212 2859, release_year, 14259 18235, has_genre, 36212 18235, starred_actors, 30377 6871, has_genre, 36212 6871, has_tags, 36212 6871, release_year, 14259 5726, has_genre, 36212 5726, release_year, 14259 38834, has_genre, 36212 38834, release_year, 14259 15892, has_genre, 36212 15892, release_year, 14259 30833, has_genre, 36212 30833, release_year, 14259 26106, has_genre, 36212 26106, has_tags, 34449 16328, has_genre, 36212 16328, release_year, 14259 23387, has_genre, 36212 23387, starred_actors, 30377 20378, has_genre, 36212 20378, release_year, 14259 18446, has_genre, 36212 18446, release_year, 14259 5829, has_genre, 36212 5829, release_year, 14259 21606, directed_by, 17974 21606, has_genre, 36212 21606, has_tags, 17974 21606, written_by, 17974 35150, has_genre, 36212 35150, has_tags, 36212 35150, has_tags, 34449 31224, has_genre, 36212 31224, release_year, 14259 22311, has_genre, 36212 22311, release_year, 14259 12664, has_genre, 36212 12664, has_tags, 34449 26708, has_genre, 36212 26708, release_year, 14259 30479, has_genre, 36212 30479, release_year, 14259 37982, has_genre, 36212 37982, release_year, 14259 7879, has_genre, 36212 7879, has_tags, 34449 4840, directed_by, 17974 4840, has_genre, 36212 4840, written_by, 17974 4464, has_genre, 36212 4464, release_year, 14259 16164, has_genre, 36212 16164, release_year, 14259 31481, has_genre, 36212 31481, release_year, 14259 19868, has_genre, 36212 19868, release_year, 14259 19939, has_genre, 36212 19939, release_year, 14259 31226, has_genre, 36212 31226, starred_actors, 12246 4447, directed_by, 17974 4447, has_genre, 36212 4447, has_tags, 34449 4447, has_tags, 17974 4447, has_tags, 30377 4447, release_year, 14259 4447, starred_actors, 12246 4447, starred_actors, 30377 24419, has_genre, 36212 24419, release_year, 14259 233, has_genre, 36212 233, release_year, 14259 15322, has_genre, 36212 15322, has_tags, 36212 15322, release_year, 14259 22386, has_genre, 36212 22386, has_tags, 12246 22386, starred_actors, 12246 31294, has_genre, 36212 31294, release_year, 14259 21344, has_genre, 36212 21344, release_year, 14259 18198, has_genre, 36212 18198, has_tags, 36212 18198, has_tags, 30377 18198, starred_actors, 30377 14102, has_genre, 36212 14102, release_year, 14259 31515, has_genre, 36212 31515, release_year, 14259 995, has_genre, 36212 995, release_year, 14259 19598, directed_by, 17974 19598, has_genre, 36212 32149, has_genre, 36212 32149, has_tags, 36212 32149, has_tags, 30377 32149, starred_actors, 30377 21686, has_genre, 36212 21686, release_year, 14259 22938, has_genre, 36212 22938, release_year, 14259 693, has_genre, 36212 693, release_year, 14259 6767, has_genre, 36212 6767, release_year, 14259 2624, has_genre, 36212 2624, release_year, 14259 34420, has_genre, 36212 34420, release_year, 14259 17528, has_genre, 36212 17528, has_tags, 34449 24682, has_genre, 36212 24682, release_year, 14259 30412, has_genre, 36212 30412, release_year, 14259 33979, has_genre, 36212 33979, release_year, 14259 34639, has_genre, 36212 34639, release_year, 14259 18584, has_tags, 36212 18584, release_year, 14259 10039, has_genre, 36212 10039, starred_actors, 12246 5171, has_genre, 36212 5171, release_year, 14259 3896, has_genre, 36212 3896, release_year, 14259 3826, has_genre, 36212 3826, has_tags, 30377 3826, starred_actors, 30377 38386, has_genre, 36212 38386, release_year, 14259 28494, has_genre, 36212 28494, release_year, 14259 24335, has_genre, 36212 24335, release_year, 14259 22564, has_genre, 36212 22564, has_tags, 36212 22564, release_year, 14259 23009, has_genre, 36212 23009, release_year, 14259 15029, has_genre, 36212 15029, release_year, 14259 31161, has_genre, 36212 31161, release_year, 14259 18142, has_genre, 36212 18142, has_tags, 36212 18142, written_by, 26410 26567, has_genre, 36212 26567, release_year, 14259 13675, has_genre, 36212 13675, release_year, 14259 26569, has_genre, 36212 26569, release_year, 14259 14807, has_genre, 36212 14807, starred_actors, 22965 15840, has_genre, 36212 15840, has_tags, 36212 15840, release_year, 14259 15006, directed_by, 17974 15006, has_genre, 36212 34252, has_genre, 36212 34252, release_year, 14259 26819, directed_by, 17974 26819, has_genre, 36212 31848, has_genre, 36212 31848, release_year, 14259 16072, has_genre, 36212 16072, release_year, 14259 15718, has_genre, 36212 15718, release_year, 14259 32458, has_genre, 36212 32458, release_year, 14259 34916, has_genre, 36212 34916, has_tags, 36212 34916, has_tags, 30377 3201, has_genre, 36212 3201, release_year, 14259 2986, directed_by, 17974 2986, has_genre, 36212 2986, has_tags, 17974 2986, written_by, 17974 5612, has_genre, 36212 5612, release_year, 14259 29271, has_genre, 36212 29271, release_year, 14259 28819, has_genre, 36212 28819, release_year, 14259 29810, has_genre, 36212 29810, release_year, 14259 30676, has_genre, 36212 30676, release_year, 14259 24288, has_genre, 36212 24288, release_year, 14259 35647, has_genre, 36212 35647, has_tags, 34449 Question: For what reason are JEFFREY CAINE, LAWN DOGS, and PATRICIA HEATON associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "JEFFREY CAINE", "LAWN DOGS", "PATRICIA HEATON" ], "valid_edges": [ [ "12 ANGRY MEN", "has_genre", "DRAMA" ], [ "12 ANGRY MEN", "has_tags", "DRAMA" ], [ "12 ANGRY MEN", "release_year", "1997" ], [ "12 STOREYS", "has_genre", "DRAMA" ], [ "12 STOREYS", "release_year", "1997" ], [ "A BETTER PLACE", "has_genre", "DRAMA" ], [ "A BETTER PLACE", "release_year", "1997" ], [ "A CHRISTMAS CAROL", "has_genre", "DRAMA" ], [ "A CHRISTMAS CAROL", "release_year", "1997" ], [ "A SINGLE SHOT", "has_genre", "DRAMA" ], [ "A SINGLE SHOT", "starred_actors", "SAM ROCKWELL" ], [ "A THOUSAND ACRES", "has_genre", "DRAMA" ], [ "A THOUSAND ACRES", "release_year", "1997" ], [ "AFFLICTION", "has_genre", "DRAMA" ], [ "AFFLICTION", "release_year", "1997" ], [ "ALL OVER ME", "has_genre", "DRAMA" ], [ "ALL OVER ME", "release_year", "1997" ], [ "AMERICAN PERFEKT", "has_genre", "DRAMA" ], [ "AMERICAN PERFEKT", "release_year", "1997" ], [ "AMISTAD", "has_genre", "DRAMA" ], [ "AMISTAD", "release_year", "1997" ], [ "ANASTASIA", "has_genre", "DRAMA" ], [ "ANASTASIA", "release_year", "1997" ], [ "ANNA KARENINA", "has_genre", "DRAMA" ], [ "ANNA KARENINA", "has_tags", "DRAMA" ], [ "ANNA KARENINA", "release_year", "1997" ], [ "BANDITS", "has_genre", "DRAMA" ], [ "BANDITS", "release_year", "1997" ], [ "BENT", "has_genre", "DRAMA" ], [ "BENT", "release_year", "1997" ], [ "BETTER LIVING THROUGH CHEMISTRY", "has_genre", "DRAMA" ], [ "BETTER LIVING THROUGH CHEMISTRY", "has_tags", "SAM ROCKWELL" ], [ "BETTER LIVING THROUGH CHEMISTRY", "starred_actors", "SAM ROCKWELL" ], [ "BOOGIE NIGHTS", "has_genre", "DRAMA" ], [ "BOOGIE NIGHTS", "has_tags", "DRAMA" ], [ "BOOGIE NIGHTS", "release_year", "1997" ], [ "BROADWAY DAMAGE", "has_genre", "DRAMA" ], [ "BROADWAY DAMAGE", "release_year", "1997" ], [ "BUUD YAM", "has_genre", "DRAMA" ], [ "BUUD YAM", "release_year", "1997" ], [ "CAREER GIRLS", "has_genre", "DRAMA" ], [ "CAREER GIRLS", "release_year", "1997" ], [ "CHILDREN OF HEAVEN", "has_genre", "DRAMA" ], [ "CHILDREN OF HEAVEN", "release_year", "1997" ], [ "CLOCKWATCHERS", "has_genre", "DRAMA" ], [ "CLOCKWATCHERS", "release_year", "1997" ], [ "COMANCHE TERRITORY", "has_genre", "DRAMA" ], [ "COMANCHE TERRITORY", "release_year", "1997" ], [ "COMMANDMENTS", "has_genre", "DRAMA" ], [ "COMMANDMENTS", "release_year", "1997" ], [ "CONTACT", "has_genre", "DRAMA" ], [ "CONTACT", "release_year", "1997" ], [ "CONVICTION", "has_genre", "DRAMA" ], [ "CONVICTION", "starred_actors", "SAM ROCKWELL" ], [ "COP LAND", "has_genre", "DRAMA" ], [ "COP LAND", "has_tags", "DRAMA" ], [ "COP LAND", "release_year", "1997" ], [ "DEFYING GRAVITY", "has_genre", "DRAMA" ], [ "DEFYING GRAVITY", "release_year", "1997" ], [ "DESTINY", "has_genre", "DRAMA" ], [ "DESTINY", "release_year", "1997" ], [ "DONNIE BRASCO", "has_genre", "DRAMA" ], [ "DONNIE BRASCO", "release_year", "1997" ], [ "DÉJÀ VU", "has_genre", "DRAMA" ], [ "DÉJÀ VU", "release_year", "1997" ], [ "END OF WATCH", "has_genre", "DRAMA" ], [ "END OF WATCH", "has_tags", "FRIENDSHIP" ], [ "EVE'S BAYOU", "has_genre", "DRAMA" ], [ "EVE'S BAYOU", "release_year", "1997" ], [ "EVERYBODY'S FINE", "has_genre", "DRAMA" ], [ "EVERYBODY'S FINE", "starred_actors", "SAM ROCKWELL" ], [ "FACE", "has_genre", "DRAMA" ], [ "FACE", "release_year", "1997" ], [ "FEVER PITCH", "has_genre", "DRAMA" ], [ "FEVER PITCH", "release_year", "1997" ], [ "FIRE DOWN BELOW", "has_genre", "DRAMA" ], [ "FIRE DOWN BELOW", "release_year", "1997" ], [ "FLIRTING", "directed_by", "JOHN DUIGAN" ], [ "FLIRTING", "has_genre", "DRAMA" ], [ "FLIRTING", "has_tags", "JOHN DUIGAN" ], [ "FLIRTING", "written_by", "JOHN DUIGAN" ], [ "FRIED GREEN TOMATOES", "has_genre", "DRAMA" ], [ "FRIED GREEN TOMATOES", "has_tags", "DRAMA" ], [ "FRIED GREEN TOMATOES", "has_tags", "FRIENDSHIP" ], [ "G.I. JANE", "has_genre", "DRAMA" ], [ "G.I. JANE", "release_year", "1997" ], [ "GANG RELATED", "has_genre", "DRAMA" ], [ "GANG RELATED", "release_year", "1997" ], [ "GHOST WORLD", "has_genre", "DRAMA" ], [ "GHOST WORLD", "has_tags", "FRIENDSHIP" ], [ "GOOD WILL HUNTING", "has_genre", "DRAMA" ], [ "GOOD WILL HUNTING", "release_year", "1997" ], [ "GRIDLOCK'D", "has_genre", "DRAMA" ], [ "GRIDLOCK'D", "release_year", "1997" ], [ "GUMMO", "has_genre", "DRAMA" ], [ "GUMMO", "release_year", "1997" ], [ "HALF NELSON", "has_genre", "DRAMA" ], [ "HALF NELSON", "has_tags", "FRIENDSHIP" ], [ "HEAD IN THE CLOUDS", "directed_by", "JOHN DUIGAN" ], [ "HEAD IN THE CLOUDS", "has_genre", "DRAMA" ], [ "HEAD IN THE CLOUDS", "written_by", "JOHN DUIGAN" ], [ "HOODLUM", "has_genre", "DRAMA" ], [ "HOODLUM", "release_year", "1997" ], [ "HURRICANE STREETS", "has_genre", "DRAMA" ], [ "HURRICANE STREETS", "release_year", "1997" ], [ "ISHQ", "has_genre", "DRAMA" ], [ "ISHQ", "release_year", "1997" ], [ "JACK FROST", "has_genre", "DRAMA" ], [ "JACK FROST", "release_year", "1997" ], [ "JACKIE BROWN", "has_genre", "DRAMA" ], [ "JACKIE BROWN", "release_year", "1997" ], [ "JULIE JOHNSON", "has_genre", "DRAMA" ], [ "JULIE JOHNSON", "starred_actors", "MISCHA BARTON" ], [ "LAWN DOGS", "directed_by", "JOHN DUIGAN" ], [ "LAWN DOGS", "has_genre", "DRAMA" ], [ "LAWN DOGS", "has_tags", "FRIENDSHIP" ], [ "LAWN DOGS", "has_tags", "JOHN DUIGAN" ], [ "LAWN DOGS", "has_tags", "SAM ROCKWELL" ], [ "LAWN DOGS", "release_year", "1997" ], [ "LAWN DOGS", "starred_actors", "MISCHA BARTON" ], [ "LAWN DOGS", "starred_actors", "SAM ROCKWELL" ], [ "LIFE IS BEAUTIFUL", "has_genre", "DRAMA" ], [ "LIFE IS BEAUTIFUL", "release_year", "1997" ], [ "LIVE FLESH", "has_genre", "DRAMA" ], [ "LIVE FLESH", "release_year", "1997" ], [ "LOLITA", "has_genre", "DRAMA" ], [ "LOLITA", "has_tags", "DRAMA" ], [ "LOLITA", "release_year", "1997" ], [ "LOST AND DELIRIOUS", "has_genre", "DRAMA" ], [ "LOST AND DELIRIOUS", "has_tags", "MISCHA BARTON" ], [ "LOST AND DELIRIOUS", "starred_actors", "MISCHA BARTON" ], [ "LOVE JONES", "has_genre", "DRAMA" ], [ "LOVE JONES", "release_year", "1997" ], [ "LOVE WALKED IN", "has_genre", "DRAMA" ], [ "LOVE WALKED IN", "release_year", "1997" ], [ "MATCHSTICK MEN", "has_genre", "DRAMA" ], [ "MATCHSTICK MEN", "has_tags", "DRAMA" ], [ "MATCHSTICK MEN", "has_tags", "SAM ROCKWELL" ], [ "MATCHSTICK MEN", "starred_actors", "SAM ROCKWELL" ], [ "MEN WITH GUNS", "has_genre", "DRAMA" ], [ "MEN WITH GUNS", "release_year", "1997" ], [ "METROLAND", "has_genre", "DRAMA" ], [ "METROLAND", "release_year", "1997" ], [ "MIDNIGHT IN THE GARDEN OF GOOD AND EVIL", "has_genre", "DRAMA" ], [ "MIDNIGHT IN THE GARDEN OF GOOD AND EVIL", "release_year", "1997" ], [ "MOLLY", "directed_by", "JOHN DUIGAN" ], [ "MOLLY", "has_genre", "DRAMA" ], [ "MOON", "has_genre", "DRAMA" ], [ "MOON", "has_tags", "DRAMA" ], [ "MOON", "has_tags", "SAM ROCKWELL" ], [ "MOON", "starred_actors", "SAM ROCKWELL" ], [ "MOONLIGHT SERENADE", "has_genre", "DRAMA" ], [ "MOONLIGHT SERENADE", "release_year", "1997" ], [ "MOTHER AND SON", "has_genre", "DRAMA" ], [ "MOTHER AND SON", "release_year", "1997" ], [ "MRS DALLOWAY", "has_genre", "DRAMA" ], [ "MRS DALLOWAY", "release_year", "1997" ], [ "MY SON THE FANATIC", "has_genre", "DRAMA" ], [ "MY SON THE FANATIC", "release_year", "1997" ], [ "NIL BY MOUTH", "has_genre", "DRAMA" ], [ "NIL BY MOUTH", "release_year", "1997" ], [ "NOWHERE", "has_genre", "DRAMA" ], [ "NOWHERE", "release_year", "1997" ], [ "ONCE UPON A TIME IN AMERICA", "has_genre", "DRAMA" ], [ "ONCE UPON A TIME IN AMERICA", "has_tags", "FRIENDSHIP" ], [ "ONE EIGHT SEVEN", "has_genre", "DRAMA" ], [ "ONE EIGHT SEVEN", "release_year", "1997" ], [ "ONE NIGHT STAND", "has_genre", "DRAMA" ], [ "ONE NIGHT STAND", "release_year", "1997" ], [ "OSCAR AND LUCINDA", "has_genre", "DRAMA" ], [ "OSCAR AND LUCINDA", "release_year", "1997" ], [ "POSTMAN BLUES", "has_genre", "DRAMA" ], [ "POSTMAN BLUES", "release_year", "1997" ], [ "PRINCESS MONONOKE", "has_tags", "DRAMA" ], [ "PRINCESS MONONOKE", "release_year", "1997" ], [ "PUPS", "has_genre", "DRAMA" ], [ "PUPS", "starred_actors", "MISCHA BARTON" ], [ "SELENA", "has_genre", "DRAMA" ], [ "SELENA", "release_year", "1997" ], [ "SLAVES TO THE UNDERGROUND", "has_genre", "DRAMA" ], [ "SLAVES TO THE UNDERGROUND", "release_year", "1997" ], [ "SNOW ANGELS", "has_genre", "DRAMA" ], [ "SNOW ANGELS", "has_tags", "SAM ROCKWELL" ], [ "SNOW ANGELS", "starred_actors", "SAM ROCKWELL" ], [ "SOUL FOOD", "has_genre", "DRAMA" ], [ "SOUL FOOD", "release_year", "1997" ], [ "TELLING LIES IN AMERICA", "has_genre", "DRAMA" ], [ "TELLING LIES IN AMERICA", "release_year", "1997" ], [ "TENTAÇÃO", "has_genre", "DRAMA" ], [ "TENTAÇÃO", "release_year", "1997" ], [ "THE APOSTLE", "has_genre", "DRAMA" ], [ "THE APOSTLE", "has_tags", "DRAMA" ], [ "THE APOSTLE", "release_year", "1997" ], [ "THE BLACKOUT", "has_genre", "DRAMA" ], [ "THE BLACKOUT", "release_year", "1997" ], [ "THE BUTCHER BOY", "has_genre", "DRAMA" ], [ "THE BUTCHER BOY", "release_year", "1997" ], [ "THE CHAMBERMAID ON THE TITANIC", "has_genre", "DRAMA" ], [ "THE CHAMBERMAID ON THE TITANIC", "release_year", "1997" ], [ "THE CONSTANT GARDENER", "has_genre", "DRAMA" ], [ "THE CONSTANT GARDENER", "has_tags", "DRAMA" ], [ "THE CONSTANT GARDENER", "written_by", "JEFFREY CAINE" ], [ "THE EDGE", "has_genre", "DRAMA" ], [ "THE EDGE", "release_year", "1997" ], [ "THE FULL MONTY", "has_genre", "DRAMA" ], [ "THE FULL MONTY", "release_year", "1997" ], [ "THE GAMBLER", "has_genre", "DRAMA" ], [ "THE GAMBLER", "release_year", "1997" ], [ "THE GOODBYE GIRL", "has_genre", "DRAMA" ], [ "THE GOODBYE GIRL", "starred_actors", "PATRICIA HEATON" ], [ "THE ICE STORM", "has_genre", "DRAMA" ], [ "THE ICE STORM", "has_tags", "DRAMA" ], [ "THE ICE STORM", "release_year", "1997" ], [ "THE JOURNEY OF AUGUST KING", "directed_by", "JOHN DUIGAN" ], [ "THE JOURNEY OF AUGUST KING", "has_genre", "DRAMA" ], [ "THE LAST TIME I COMMITTED SUICIDE", "has_genre", "DRAMA" ], [ "THE LAST TIME I COMMITTED SUICIDE", "release_year", "1997" ], [ "THE LEADING MAN", "directed_by", "JOHN DUIGAN" ], [ "THE LEADING MAN", "has_genre", "DRAMA" ], [ "THE MYTH OF FINGERPRINTS", "has_genre", "DRAMA" ], [ "THE MYTH OF FINGERPRINTS", "release_year", "1997" ], [ "THE RAINMAKER", "has_genre", "DRAMA" ], [ "THE RAINMAKER", "release_year", "1997" ], [ "THE TANGO LESSON", "has_genre", "DRAMA" ], [ "THE TANGO LESSON", "release_year", "1997" ], [ "THE THIEF", "has_genre", "DRAMA" ], [ "THE THIEF", "release_year", "1997" ], [ "THE WAY WAY BACK", "has_genre", "DRAMA" ], [ "THE WAY WAY BACK", "has_tags", "DRAMA" ], [ "THE WAY WAY BACK", "has_tags", "SAM ROCKWELL" ], [ "THE WINGS OF THE DOVE", "has_genre", "DRAMA" ], [ "THE WINGS OF THE DOVE", "release_year", "1997" ], [ "THE YEAR MY VOICE BROKE", "directed_by", "JOHN DUIGAN" ], [ "THE YEAR MY VOICE BROKE", "has_genre", "DRAMA" ], [ "THE YEAR MY VOICE BROKE", "has_tags", "JOHN DUIGAN" ], [ "THE YEAR MY VOICE BROKE", "written_by", "JOHN DUIGAN" ], [ "TITANIC", "has_genre", "DRAMA" ], [ "TITANIC", "release_year", "1997" ], [ "TOUCH", "has_genre", "DRAMA" ], [ "TOUCH", "release_year", "1997" ], [ "UNDER THE SKIN", "has_genre", "DRAMA" ], [ "UNDER THE SKIN", "release_year", "1997" ], [ "VOLCANO", "has_genre", "DRAMA" ], [ "VOLCANO", "release_year", "1997" ], [ "VOYAGE TO THE BEGINNING OF THE WORLD", "has_genre", "DRAMA" ], [ "VOYAGE TO THE BEGINNING OF THE WORLD", "release_year", "1997" ], [ "WASHINGTON SQUARE", "has_genre", "DRAMA" ], [ "WASHINGTON SQUARE", "release_year", "1997" ], [ "WRINKLES", "has_genre", "DRAMA" ], [ "WRINKLES", "has_tags", "FRIENDSHIP" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 2452, 13 ASSASSINS 25221, 1981 7596, 4 3830, 47 RONIN 30045, AKIRA KUROSAWA 9855, AMSTERDAMNED 36212, DRAMA 31008, DUTCH 8248, JAPAN 36874, JAPANESE 27034, KUROSAWA 24299, MONIQUE VAN DE VEN 4807, PASSION FLOWER 39594, REBELLION 35944, SAMURAI 25217, SAMURAI REBELLION 29960, SAMURAI REINCARNATION 25538, SANJURO 20932, SEVEN SAMURAI 22852, THE ASSAULT 21468, THE LAST SAMURAI 8873, THE TALE OF ZATOICHI 29888, THREE OUTLAW SAMURAI 36569, TURKISH DELIGHT src, edge_attr, dst 2452, has_genre, 36212 2452, has_tags, 8248 2452, has_tags, 35944 2452, in_language, 36874 25221, has_genre, 36212 7596, has_genre, 36212 3830, has_tags, 35944 3830, in_language, 36874 9855, in_language, 31008 9855, starred_actors, 24299 31008, has_genre, 36212 4807, has_genre, 36212 39594, has_genre, 36212 25217, has_tags, 8248 25217, has_tags, 35944 25217, in_language, 36874 29960, has_tags, 35944 29960, in_language, 36874 29960, release_year, 25221 25538, directed_by, 30045 25538, has_tags, 30045 25538, has_tags, 8248 25538, has_tags, 36874 25538, has_tags, 27034 25538, has_tags, 35944 25538, in_language, 36874 25538, written_by, 30045 20932, directed_by, 30045 20932, has_genre, 36212 20932, has_tags, 7596 20932, has_tags, 30045 20932, has_tags, 36212 20932, has_tags, 8248 20932, has_tags, 27034 20932, has_tags, 35944 20932, in_language, 36874 20932, written_by, 30045 22852, in_language, 31008 22852, starred_actors, 24299 21468, has_tags, 8248 21468, has_tags, 39594 21468, has_tags, 35944 8873, has_genre, 36212 8873, has_tags, 35944 8873, in_language, 36874 29888, has_tags, 35944 29888, in_language, 36874 36569, in_language, 31008 36569, starred_actors, 24299 Question: In what context are MONIQUE VAN DE VEN, PASSION FLOWER, and SAMURAI connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "MONIQUE VAN DE VEN", "PASSION FLOWER", "SAMURAI" ], "valid_edges": [ [ "13 ASSASSINS", "has_genre", "DRAMA" ], [ "13 ASSASSINS", "has_tags", "JAPAN" ], [ "13 ASSASSINS", "has_tags", "SAMURAI" ], [ "13 ASSASSINS", "in_language", "JAPANESE" ], [ "1981", "has_genre", "DRAMA" ], [ "4", "has_genre", "DRAMA" ], [ "47 RONIN", "has_tags", "SAMURAI" ], [ "47 RONIN", "in_language", "JAPANESE" ], [ "AMSTERDAMNED", "in_language", "DUTCH" ], [ "AMSTERDAMNED", "starred_actors", "MONIQUE VAN DE VEN" ], [ "DUTCH", "has_genre", "DRAMA" ], [ "PASSION FLOWER", "has_genre", "DRAMA" ], [ "REBELLION", "has_genre", "DRAMA" ], [ "SAMURAI REBELLION", "has_tags", "JAPAN" ], [ "SAMURAI REBELLION", "has_tags", "SAMURAI" ], [ "SAMURAI REBELLION", "in_language", "JAPANESE" ], [ "SAMURAI REINCARNATION", "has_tags", "SAMURAI" ], [ "SAMURAI REINCARNATION", "in_language", "JAPANESE" ], [ "SAMURAI REINCARNATION", "release_year", "1981" ], [ "SANJURO", "directed_by", "AKIRA KUROSAWA" ], [ "SANJURO", "has_tags", "AKIRA KUROSAWA" ], [ "SANJURO", "has_tags", "JAPAN" ], [ "SANJURO", "has_tags", "JAPANESE" ], [ "SANJURO", "has_tags", "KUROSAWA" ], [ "SANJURO", "has_tags", "SAMURAI" ], [ "SANJURO", "in_language", "JAPANESE" ], [ "SANJURO", "written_by", "AKIRA KUROSAWA" ], [ "SEVEN SAMURAI", "directed_by", "AKIRA KUROSAWA" ], [ "SEVEN SAMURAI", "has_genre", "DRAMA" ], [ "SEVEN SAMURAI", "has_tags", "4" ], [ "SEVEN SAMURAI", "has_tags", "AKIRA KUROSAWA" ], [ "SEVEN SAMURAI", "has_tags", "DRAMA" ], [ "SEVEN SAMURAI", "has_tags", "JAPAN" ], [ "SEVEN SAMURAI", "has_tags", "KUROSAWA" ], [ "SEVEN SAMURAI", "has_tags", "SAMURAI" ], [ "SEVEN SAMURAI", "in_language", "JAPANESE" ], [ "SEVEN SAMURAI", "written_by", "AKIRA KUROSAWA" ], [ "THE ASSAULT", "in_language", "DUTCH" ], [ "THE ASSAULT", "starred_actors", "MONIQUE VAN DE VEN" ], [ "THE LAST SAMURAI", "has_tags", "JAPAN" ], [ "THE LAST SAMURAI", "has_tags", "REBELLION" ], [ "THE LAST SAMURAI", "has_tags", "SAMURAI" ], [ "THE TALE OF ZATOICHI", "has_genre", "DRAMA" ], [ "THE TALE OF ZATOICHI", "has_tags", "SAMURAI" ], [ "THE TALE OF ZATOICHI", "in_language", "JAPANESE" ], [ "THREE OUTLAW SAMURAI", "has_tags", "SAMURAI" ], [ "THREE OUTLAW SAMURAI", "in_language", "JAPANESE" ], [ "TURKISH DELIGHT", "in_language", "DUTCH" ], [ "TURKISH DELIGHT", "starred_actors", "MONIQUE VAN DE VEN" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 12401, 1937 11112, 1939 11, 1940 29561, 1943 35187, 1948 3863, 1962 6925, 1966 27810, 1968 25221, 1981 15374, 2005 18561, A BIG HAND FOR THE LITTLE LADY 29881, AMERICANO 27981, ANGEL-A 8284, ANTHONY QUINN 21815, ANTHONY ZIMMER 10511, BACKSTAGE 34734, BATTLE OF THE BULGE 35487, C.R.A.Z.Y. 38311, CHAOS 6176, COLD SHOWERS 2394, DICK RICKARD 11172, DRUMS ALONG THE MOHAWK 33955, EMPIRE OF THE WOLVES 27441, ENTRE SES MAINS 8406, FIRECREEK 38886, FORT APACHE 6012, FRENCH 10387, FRITZ LANG 7770, GABRIELLE 6480, GERMAN 29188, HEADING SOUTH 34073, HELL 34149, HENRY FONDA 4429, HOW MUCH DO YOU LOVE ME? 7515, HOW THE WEST WAS WON 617, IMMORTAL SERGEANT 16200, ITALIAN 7736, JAMES STEWART 17968, JASON ROBARDS 13255, JOHN FORD 12435, JOHN WAYNE 3215, KEN ANNAKIN 12898, KING VIDOR 28945, MARCH OF THE PENGUINS 31701, MISTER ROBERTS 22845, MUSIC 15797, MY DARLING CLEMENTINE 37497, NATIONAL FILM REGISTRY 24488, NOT HERE TO BE LOVED 7450, ON GOLDEN POND 9638, ON OUR MERRY WAY 147, ONCE UPON A TIME IN THE WEST 5730, RUSSIAN DOLLS 31632, SAM HELLMAN 6054, SKY FIGHTERS 4717, SNOW WHITE AND THE SEVEN DWARFS 27831, THE BEAT THAT MY HEART SKIPPED 3354, THE BROTHERS GRIMM 7763, THE CHEYENNE SOCIAL CLUB 1748, THE GRAPES OF WRATH 1806, THE LADY EVE 27237, THE LONGEST DAY 4624, THE OX-BOW INCIDENT 14824, THE RETURN OF FRANK JAMES 34185, THE TIN STAR 11918, TIME TO LEAVE 20251, TO PAINT OR MAKE LOVE 22680, TRANSPORTER 2 22214, WAR 26367, WAR AND PEACE 10352, WARLOCK 36026, WESTERN 24155, WORLD WAR II 1088, YOU ONLY LIVE ONCE 6277, YOUNG MR. LINCOLN src, edge_attr, dst 25221, in_language, 6012 18561, has_genre, 36026 18561, release_year, 6925 18561, starred_actors, 34149 18561, starred_actors, 17968 29881, in_language, 6012 29881, release_year, 15374 27981, has_tags, 6012 27981, in_language, 6012 27981, release_year, 15374 21815, in_language, 6012 21815, release_year, 15374 10511, in_language, 6012 10511, release_year, 15374 34734, directed_by, 3215 34734, has_genre, 22214 34734, has_tags, 34149 34734, has_tags, 24155 34734, in_language, 6480 34734, starred_actors, 34149 35487, in_language, 6012 35487, release_year, 15374 38311, in_language, 6012 38311, release_year, 15374 6176, in_language, 6012 6176, release_year, 15374 11172, directed_by, 13255 11172, has_genre, 22214 11172, has_tags, 13255 11172, release_year, 11112 11172, starred_actors, 34149 33955, has_tags, 6012 33955, in_language, 6012 33955, release_year, 15374 27441, in_language, 6012 27441, release_year, 15374 8406, has_genre, 36026 8406, release_year, 27810 8406, starred_actors, 34149 8406, starred_actors, 7736 38886, directed_by, 13255 38886, has_genre, 36026 38886, has_tags, 13255 38886, has_tags, 12435 38886, release_year, 35187 38886, starred_actors, 34149 38886, starred_actors, 12435 7770, in_language, 6012 7770, release_year, 15374 29188, in_language, 6012 29188, release_year, 15374 34073, in_language, 6012 34073, release_year, 15374 4429, in_language, 6012 4429, release_year, 15374 7515, directed_by, 13255 7515, has_genre, 36026 7515, has_tags, 13255 7515, has_tags, 37497 7515, has_tags, 36026 7515, release_year, 3863 7515, starred_actors, 34149 617, has_genre, 22214 617, release_year, 29561 617, starred_actors, 34149 28945, has_tags, 6012 28945, in_language, 6012 28945, release_year, 15374 31701, directed_by, 13255 31701, has_genre, 22214 31701, has_tags, 34149 31701, has_tags, 13255 31701, starred_actors, 34149 15797, directed_by, 13255 15797, has_genre, 36026 15797, has_tags, 13255 15797, starred_actors, 34149 15797, written_by, 31632 24488, in_language, 6012 24488, release_year, 15374 7450, has_tags, 34149 7450, release_year, 25221 7450, starred_actors, 34149 9638, directed_by, 12898 9638, has_genre, 22845 9638, release_year, 35187 9638, starred_actors, 34149 9638, starred_actors, 7736 147, has_genre, 36026 147, has_tags, 34149 147, has_tags, 17968 147, has_tags, 36026 147, in_language, 16200 147, release_year, 27810 147, starred_actors, 34149 147, starred_actors, 17968 5730, in_language, 6012 5730, release_year, 15374 6054, in_language, 6012 6054, release_year, 15374 4717, has_tags, 22845 4717, has_tags, 37497 4717, release_year, 12401 4717, written_by, 2394 27831, has_tags, 6012 27831, in_language, 6012 27831, release_year, 15374 3354, in_language, 6012 3354, release_year, 15374 7763, has_genre, 36026 7763, starred_actors, 34149 7763, starred_actors, 7736 1748, directed_by, 13255 1748, has_tags, 34149 1748, has_tags, 13255 1748, has_tags, 37497 1748, release_year, 11 1748, starred_actors, 34149 1806, has_tags, 34149 1806, has_tags, 37497 1806, starred_actors, 34149 27237, directed_by, 3215 27237, has_tags, 34149 27237, has_tags, 12435 27237, has_tags, 3215 27237, has_tags, 22214 27237, has_tags, 24155 27237, in_language, 6012 27237, in_language, 6480 27237, release_year, 3863 4624, has_genre, 36026 4624, has_tags, 8284 4624, has_tags, 34149 4624, has_tags, 37497 4624, has_tags, 36026 4624, release_year, 29561 4624, starred_actors, 8284 4624, starred_actors, 34149 14824, directed_by, 10387 14824, has_genre, 36026 14824, release_year, 11 14824, starred_actors, 34149 14824, written_by, 31632 34185, has_genre, 36026 34185, starred_actors, 34149 11918, in_language, 6012 11918, release_year, 15374 20251, in_language, 6012 20251, release_year, 15374 22680, in_language, 6012 22680, release_year, 15374 26367, directed_by, 12898 26367, has_genre, 22214 26367, in_language, 16200 26367, release_year, 6925 26367, starred_actors, 34149 26367, written_by, 12898 10352, has_genre, 36026 10352, starred_actors, 8284 10352, starred_actors, 34149 36026, in_language, 6012 1088, directed_by, 10387 1088, has_tags, 10387 1088, release_year, 12401 1088, starred_actors, 34149 6277, directed_by, 13255 6277, has_tags, 13255 6277, has_tags, 37497 6277, release_year, 11112 6277, starred_actors, 34149 Question: How are COLD SHOWERS, DICK RICKARD, and HENRY FONDA related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "COLD SHOWERS", "DICK RICKARD", "HENRY FONDA" ], "valid_edges": [ [ "1981", "in_language", "FRENCH" ], [ "A BIG HAND FOR THE LITTLE LADY", "has_genre", "WESTERN" ], [ "A BIG HAND FOR THE LITTLE LADY", "release_year", "1966" ], [ "A BIG HAND FOR THE LITTLE LADY", "starred_actors", "HENRY FONDA" ], [ "A BIG HAND FOR THE LITTLE LADY", "starred_actors", "JASON ROBARDS" ], [ "AMERICANO", "in_language", "FRENCH" ], [ "AMERICANO", "release_year", "2005" ], [ "ANGEL-A", "has_tags", "FRENCH" ], [ "ANGEL-A", "in_language", "FRENCH" ], [ "ANGEL-A", "release_year", "2005" ], [ "ANTHONY ZIMMER", "in_language", "FRENCH" ], [ "ANTHONY ZIMMER", "release_year", "2005" ], [ "BACKSTAGE", "in_language", "FRENCH" ], [ "BACKSTAGE", "release_year", "2005" ], [ "BATTLE OF THE BULGE", "directed_by", "KEN ANNAKIN" ], [ "BATTLE OF THE BULGE", "has_genre", "WAR" ], [ "BATTLE OF THE BULGE", "has_tags", "HENRY FONDA" ], [ "BATTLE OF THE BULGE", "has_tags", "WORLD WAR II" ], [ "BATTLE OF THE BULGE", "in_language", "GERMAN" ], [ "BATTLE OF THE BULGE", "starred_actors", "HENRY FONDA" ], [ "C.R.A.Z.Y.", "in_language", "FRENCH" ], [ "C.R.A.Z.Y.", "release_year", "2005" ], [ "CHAOS", "in_language", "FRENCH" ], [ "CHAOS", "release_year", "2005" ], [ "COLD SHOWERS", "in_language", "FRENCH" ], [ "COLD SHOWERS", "release_year", "2005" ], [ "DRUMS ALONG THE MOHAWK", "directed_by", "JOHN FORD" ], [ "DRUMS ALONG THE MOHAWK", "has_genre", "WAR" ], [ "DRUMS ALONG THE MOHAWK", "has_tags", "JOHN FORD" ], [ "DRUMS ALONG THE MOHAWK", "release_year", "1939" ], [ "DRUMS ALONG THE MOHAWK", "starred_actors", "HENRY FONDA" ], [ "EMPIRE OF THE WOLVES", "has_tags", "FRENCH" ], [ "EMPIRE OF THE WOLVES", "in_language", "FRENCH" ], [ "EMPIRE OF THE WOLVES", "release_year", "2005" ], [ "ENTRE SES MAINS", "in_language", "FRENCH" ], [ "ENTRE SES MAINS", "release_year", "2005" ], [ "FIRECREEK", "has_genre", "WESTERN" ], [ "FIRECREEK", "release_year", "1968" ], [ "FIRECREEK", "starred_actors", "HENRY FONDA" ], [ "FIRECREEK", "starred_actors", "JAMES STEWART" ], [ "FORT APACHE", "directed_by", "JOHN FORD" ], [ "FORT APACHE", "has_genre", "WESTERN" ], [ "FORT APACHE", "has_tags", "JOHN FORD" ], [ "FORT APACHE", "has_tags", "JOHN WAYNE" ], [ "FORT APACHE", "release_year", "1948" ], [ "FORT APACHE", "starred_actors", "HENRY FONDA" ], [ "FORT APACHE", "starred_actors", "JOHN WAYNE" ], [ "GABRIELLE", "in_language", "FRENCH" ], [ "GABRIELLE", "release_year", "2005" ], [ "HEADING SOUTH", "in_language", "FRENCH" ], [ "HEADING SOUTH", "release_year", "2005" ], [ "HELL", "in_language", "FRENCH" ], [ "HELL", "release_year", "2005" ], [ "HOW MUCH DO YOU LOVE ME?", "in_language", "FRENCH" ], [ "HOW MUCH DO YOU LOVE ME?", "release_year", "2005" ], [ "HOW THE WEST WAS WON", "directed_by", "JOHN FORD" ], [ "HOW THE WEST WAS WON", "has_genre", "WESTERN" ], [ "HOW THE WEST WAS WON", "has_tags", "JOHN FORD" ], [ "HOW THE WEST WAS WON", "has_tags", "NATIONAL FILM REGISTRY" ], [ "HOW THE WEST WAS WON", "has_tags", "WESTERN" ], [ "HOW THE WEST WAS WON", "release_year", "1962" ], [ "HOW THE WEST WAS WON", "starred_actors", "HENRY FONDA" ], [ "IMMORTAL SERGEANT", "has_genre", "WAR" ], [ "IMMORTAL SERGEANT", "release_year", "1943" ], [ "IMMORTAL SERGEANT", "starred_actors", "HENRY FONDA" ], [ "MARCH OF THE PENGUINS", "has_tags", "FRENCH" ], [ "MARCH OF THE PENGUINS", "in_language", "FRENCH" ], [ "MARCH OF THE PENGUINS", "release_year", "2005" ], [ "MISTER ROBERTS", "directed_by", "JOHN FORD" ], [ "MISTER ROBERTS", "has_genre", "WAR" ], [ "MISTER ROBERTS", "has_tags", "HENRY FONDA" ], [ "MISTER ROBERTS", "has_tags", "JOHN FORD" ], [ "MISTER ROBERTS", "starred_actors", "HENRY FONDA" ], [ "MY DARLING CLEMENTINE", "directed_by", "JOHN FORD" ], [ "MY DARLING CLEMENTINE", "has_genre", "WESTERN" ], [ "MY DARLING CLEMENTINE", "has_tags", "JOHN FORD" ], [ "MY DARLING CLEMENTINE", "starred_actors", "HENRY FONDA" ], [ "MY DARLING CLEMENTINE", "written_by", "SAM HELLMAN" ], [ "NOT HERE TO BE LOVED", "in_language", "FRENCH" ], [ "NOT HERE TO BE LOVED", "release_year", "2005" ], [ "ON GOLDEN POND", "has_tags", "HENRY FONDA" ], [ "ON GOLDEN POND", "release_year", "1981" ], [ "ON GOLDEN POND", "starred_actors", "HENRY FONDA" ], [ "ON OUR MERRY WAY", "directed_by", "KING VIDOR" ], [ "ON OUR MERRY WAY", "has_genre", "MUSIC" ], [ "ON OUR MERRY WAY", "release_year", "1948" ], [ "ON OUR MERRY WAY", "starred_actors", "HENRY FONDA" ], [ "ON OUR MERRY WAY", "starred_actors", "JAMES STEWART" ], [ "ONCE UPON A TIME IN THE WEST", "has_genre", "WESTERN" ], [ "ONCE UPON A TIME IN THE WEST", "has_tags", "HENRY FONDA" ], [ "ONCE UPON A TIME IN THE WEST", "has_tags", "JASON ROBARDS" ], [ "ONCE UPON A TIME IN THE WEST", "has_tags", "WESTERN" ], [ "ONCE UPON A TIME IN THE WEST", "in_language", "ITALIAN" ], [ "ONCE UPON A TIME IN THE WEST", "release_year", "1968" ], [ "ONCE UPON A TIME IN THE WEST", "starred_actors", "HENRY FONDA" ], [ "ONCE UPON A TIME IN THE WEST", "starred_actors", "JASON ROBARDS" ], [ "RUSSIAN DOLLS", "in_language", "FRENCH" ], [ "RUSSIAN DOLLS", "release_year", "2005" ], [ "SKY FIGHTERS", "in_language", "FRENCH" ], [ "SKY FIGHTERS", "release_year", "2005" ], [ "SNOW WHITE AND THE SEVEN DWARFS", "has_tags", "MUSIC" ], [ "SNOW WHITE AND THE SEVEN DWARFS", "has_tags", "NATIONAL FILM REGISTRY" ], [ "SNOW WHITE AND THE SEVEN DWARFS", "release_year", "1937" ], [ "SNOW WHITE AND THE SEVEN DWARFS", "written_by", "DICK RICKARD" ], [ "THE BEAT THAT MY HEART SKIPPED", "has_tags", "FRENCH" ], [ "THE BEAT THAT MY HEART SKIPPED", "in_language", "FRENCH" ], [ "THE BEAT THAT MY HEART SKIPPED", "release_year", "2005" ], [ "THE BROTHERS GRIMM", "in_language", "FRENCH" ], [ "THE BROTHERS GRIMM", "release_year", "2005" ], [ "THE CHEYENNE SOCIAL CLUB", "has_genre", "WESTERN" ], [ "THE CHEYENNE SOCIAL CLUB", "starred_actors", "HENRY FONDA" ], [ "THE CHEYENNE SOCIAL CLUB", "starred_actors", "JAMES STEWART" ], [ "THE GRAPES OF WRATH", "directed_by", "JOHN FORD" ], [ "THE GRAPES OF WRATH", "has_tags", "HENRY FONDA" ], [ "THE GRAPES OF WRATH", "has_tags", "JOHN FORD" ], [ "THE GRAPES OF WRATH", "has_tags", "NATIONAL FILM REGISTRY" ], [ "THE GRAPES OF WRATH", "release_year", "1940" ], [ "THE GRAPES OF WRATH", "starred_actors", "HENRY FONDA" ], [ "THE LADY EVE", "has_tags", "HENRY FONDA" ], [ "THE LADY EVE", "has_tags", "NATIONAL FILM REGISTRY" ], [ "THE LADY EVE", "starred_actors", "HENRY FONDA" ], [ "THE LONGEST DAY", "directed_by", "KEN ANNAKIN" ], [ "THE LONGEST DAY", "has_tags", "HENRY FONDA" ], [ "THE LONGEST DAY", "has_tags", "JOHN WAYNE" ], [ "THE LONGEST DAY", "has_tags", "KEN ANNAKIN" ], [ "THE LONGEST DAY", "has_tags", "WAR" ], [ "THE LONGEST DAY", "has_tags", "WORLD WAR II" ], [ "THE LONGEST DAY", "in_language", "FRENCH" ], [ "THE LONGEST DAY", "in_language", "GERMAN" ], [ "THE LONGEST DAY", "release_year", "1962" ], [ "THE OX-BOW INCIDENT", "has_genre", "WESTERN" ], [ "THE OX-BOW INCIDENT", "has_tags", "ANTHONY QUINN" ], [ "THE OX-BOW INCIDENT", "has_tags", "HENRY FONDA" ], [ "THE OX-BOW INCIDENT", "has_tags", "NATIONAL FILM REGISTRY" ], [ "THE OX-BOW INCIDENT", "has_tags", "WESTERN" ], [ "THE OX-BOW INCIDENT", "release_year", "1943" ], [ "THE OX-BOW INCIDENT", "starred_actors", "ANTHONY QUINN" ], [ "THE OX-BOW INCIDENT", "starred_actors", "HENRY FONDA" ], [ "THE RETURN OF FRANK JAMES", "directed_by", "FRITZ LANG" ], [ "THE RETURN OF FRANK JAMES", "has_genre", "WESTERN" ], [ "THE RETURN OF FRANK JAMES", "release_year", "1940" ], [ "THE RETURN OF FRANK JAMES", "starred_actors", "HENRY FONDA" ], [ "THE RETURN OF FRANK JAMES", "written_by", "SAM HELLMAN" ], [ "THE TIN STAR", "has_genre", "WESTERN" ], [ "THE TIN STAR", "starred_actors", "HENRY FONDA" ], [ "TIME TO LEAVE", "in_language", "FRENCH" ], [ "TIME TO LEAVE", "release_year", "2005" ], [ "TO PAINT OR MAKE LOVE", "in_language", "FRENCH" ], [ "TO PAINT OR MAKE LOVE", "release_year", "2005" ], [ "TRANSPORTER 2", "in_language", "FRENCH" ], [ "TRANSPORTER 2", "release_year", "2005" ], [ "WAR AND PEACE", "directed_by", "KING VIDOR" ], [ "WAR AND PEACE", "has_genre", "WAR" ], [ "WAR AND PEACE", "in_language", "ITALIAN" ], [ "WAR AND PEACE", "release_year", "1966" ], [ "WAR AND PEACE", "starred_actors", "HENRY FONDA" ], [ "WAR AND PEACE", "written_by", "KING VIDOR" ], [ "WARLOCK", "has_genre", "WESTERN" ], [ "WARLOCK", "starred_actors", "ANTHONY QUINN" ], [ "WARLOCK", "starred_actors", "HENRY FONDA" ], [ "WESTERN", "in_language", "FRENCH" ], [ "YOU ONLY LIVE ONCE", "directed_by", "FRITZ LANG" ], [ "YOU ONLY LIVE ONCE", "has_tags", "FRITZ LANG" ], [ "YOU ONLY LIVE ONCE", "release_year", "1937" ], [ "YOU ONLY LIVE ONCE", "starred_actors", "HENRY FONDA" ], [ "YOUNG MR. LINCOLN", "directed_by", "JOHN FORD" ], [ "YOUNG MR. LINCOLN", "has_tags", "JOHN FORD" ], [ "YOUNG MR. LINCOLN", "has_tags", "NATIONAL FILM REGISTRY" ], [ "YOUNG MR. LINCOLN", "release_year", "1939" ], [ "YOUNG MR. LINCOLN", "starred_actors", "HENRY FONDA" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 36268, 1980 3702, 1995 1097, 2003 12144, BAD BOYS 26812, CRUISING 29606, FRISK 9198, MALIBU'S MOST WANTED 24437, MANIAC 27827, MONSTER 10981, SERIAL KILLER 16151, THE FIENDISH PLOT OF DR. FU MANCHU 3579, THE HUNTED src, edge_attr, dst 12144, release_year, 3702 12144, release_year, 1097 26812, has_tags, 10981 26812, release_year, 36268 29606, has_tags, 10981 29606, release_year, 3702 9198, release_year, 1097 24437, has_tags, 10981 24437, release_year, 36268 27827, has_tags, 10981 27827, release_year, 1097 16151, release_year, 36268 3579, release_year, 3702 3579, release_year, 1097 Question: For what reason are FRISK, MALIBU'S MOST WANTED, and THE FIENDISH PLOT OF DR. FU MANCHU associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "FRISK", "MALIBU'S MOST WANTED", "THE FIENDISH PLOT OF DR. FU MANCHU" ], "valid_edges": [ [ "BAD BOYS", "release_year", "1995" ], [ "BAD BOYS", "release_year", "2003" ], [ "CRUISING", "has_tags", "SERIAL KILLER" ], [ "CRUISING", "release_year", "1980" ], [ "FRISK", "has_tags", "SERIAL KILLER" ], [ "FRISK", "release_year", "1995" ], [ "MALIBU'S MOST WANTED", "release_year", "2003" ], [ "MANIAC", "has_tags", "SERIAL KILLER" ], [ "MANIAC", "release_year", "1980" ], [ "MONSTER", "has_tags", "SERIAL KILLER" ], [ "MONSTER", "release_year", "2003" ], [ "THE FIENDISH PLOT OF DR. FU MANCHU", "release_year", "1980" ], [ "THE HUNTED", "release_year", "1995" ], [ "THE HUNTED", "release_year", "2003" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 29145, 10 ITEMS OR LESS 35845, 2006 14242, A FRIEND OF MINE 24039, A GOOD YEAR 19790, A GUIDE TO RECOGNIZING YOUR SAINTS 8198, A PRAIRIE HOME COMPANION 23754, AFTER THE WEDDING 11183, AKEELAH AND THE BEE 6181, ALL THE KING'S MEN 6938, ALPHA DOG 29918, AMAZING GRACE 7806, ANDREA RISEBOROUGH 29422, ANNA AND THE KING 9846, ANNAPOLIS 21852, APICHATPONG WEERASETHAKUL 24301, ART SCHOOL CONFIDENTIAL 24366, BABEL 38436, BAMBI II 34728, BEAUTIFUL OHIO 5791, BLACK SNAKE MOAN 10531, BOBBY 26553, BONNEVILLE 11079, BORDERTOWN 867, BREAKING AND ENTERING 7918, BROKEDOWN PALACE 34030, BROKEN BRIDGES 13657, BROKEN FLOWERS 12724, BROKEN SKY 33360, CANDY 24510, CANVAS 31906, CATCH A FIRE 29065, CHOKING MAN 18016, CLICK 30012, CLIMATES 23571, COMEDY OF POWER 12407, COPYING BEETHOVEN 15115, CURSE OF THE GOLDEN FLOWER 36298, DAY NIGHT DAY NIGHT 26244, DESTRICTED 37874, DON'T WORRY, I'M FINE 36212, DRAMA 37267, DREAMGIRLS 7480, EDEN 25844, EIGHT BELOW 20591, EYE OF THE DOLPHIN 37952, FACING THE GIANTS 8262, FAMILY LAW 13766, FAST FOOD NATION 36222, FEARLESS 8294, FIVE FINGERS 29786, FLOWERS 1273, FLYBOYS 13308, FREEDOMLAND 14023, GLORY ROAD 27044, GRIDIRON GANG 33097, HALF LIGHT 7879, HALF NELSON 15613, HOLLY 26170, HOLLYWOODLAND 38589, I DO 2924, I DON'T WANT TO SLEEP ALONE 17120, INFAMOUS 23380, INVINCIBLE 880, IRRESISTIBLE 9264, JAM 35835, JINDABYNE 16337, JOURNEY FROM THE FALL 35012, KABUL EXPRESS 22547, KIDULTHOOD 37319, KILL YOUR DARLINGS 2289, LAND OF THE BLIND 35863, LIGHTS IN THE DUSK 11277, LITTLE CHILDREN 24376, LITTLE MISS SUNSHINE 17372, LOL 36308, LONGFORD 7221, LOVE SICK 13713, MADE IN DAGENHAM 39979, MADEA'S FAMILY REUNION 10502, MAN ABOUT TOWN 27801, MAN OF THE YEAR 28455, MARIE ANTOINETTE 6059, MENTOR 3519, MY NAME IS JUANI 25264, NOTES ON A SCANDAL 16171, OFF THE BLACK 36508, ONE NIGHT WITH THE KING 869, ONLY GOD KNOWS 22991, OUT OF THE BLUE 39852, PAN'S LABYRINTH 2753, PEACEFUL WARRIOR 685, PLOY 24369, QUINCEAÑERA 24793, RANG DE BASANTI 36352, REQUIEM 39310, RESCUE DAWN 8379, ROMANCE 5766, RUNNING WITH SCISSORS 31315, SCENES OF A SEXUAL NATURE 17383, SHERRYBABY 3237, SIXTY SIX 35449, SNOW CAKE 27398, SOMETHING NEW 28005, SOUTHLAND TALES 21048, SPECIAL 26020, STARTER FOR 10 947, STEP UP 39786, STICK IT 15851, SWEET MUD 35075, SYNDROMES AND A CENTURY 25661, TAKE THE LEAD 38498, TAXIDERMIA 13090, THAI 6958, THE ASTRONAUT FARMER 35559, THE BANQUET 30285, THE BEACH 12982, THE BUBBLE 36932, THE CAIMAN 19883, THE CHATTERLEY AFFAIR 1096, THE CONRAD BOYS 18997, THE DEPARTED 22346, THE DEVIL WEARS PRADA 31676, THE FLYING SCOTSMAN 33027, THE FOUNTAIN 21650, THE FREE WILL 3655, THE FRONT LINE 15616, THE GUARDIAN 15420, THE HISTORY BOYS 31309, THE HOAX 37551, THE HOTTEST STATE 25529, THE ILLUSIONIST 16834, THE KILLING OF JOHN LENNON 36917, THE LAKE HOUSE 2467, THE LAST KING OF SCOTLAND 28107, THE LAST KISS 14315, THE LIVES OF OTHERS 7800, THE LIVING AND THE DEAD 6207, THE LOVE OF SIAM 19600, THE MISSING STAR 23084, THE PAINTED VEIL 471, THE PURSUIT OF HAPPYNESS 5289, THE QUEEN 28919, THE RETURN 31265, THE SECOND CHANCE 20293, THE WEDDING DIRECTOR 2783, THE WIND THAT SHAKES THE BARLEY 35021, THE YEAR MY PARENTS WENT ON VACATION 18052, THIS IS ENGLAND 13051, TIMES AND WINDS 37543, TRANSYLVANIA 16413, TROPICAL MALADY 25806, UNITED 93 36753, VENUS 20531, VITUS 35728, VOLVER 6338, W.E. 33239, WAIST DEEP 28493, WE ARE MARSHALL 13698, WORLD TRADE CENTER src, edge_attr, dst 29145, has_genre, 36212 29145, release_year, 35845 14242, has_genre, 36212 14242, release_year, 35845 24039, has_genre, 36212 24039, release_year, 35845 19790, has_genre, 36212 19790, release_year, 35845 8198, has_genre, 36212 8198, release_year, 35845 23754, has_genre, 36212 23754, has_tags, 36212 23754, release_year, 35845 11183, has_genre, 36212 11183, release_year, 35845 6181, has_genre, 36212 6181, release_year, 35845 6938, has_genre, 36212 6938, release_year, 35845 29918, has_genre, 36212 29918, release_year, 35845 29422, has_genre, 36212 29422, in_language, 13090 9846, has_genre, 36212 9846, release_year, 35845 24301, has_genre, 36212 24301, release_year, 35845 24366, has_genre, 36212 24366, has_tags, 36212 24366, release_year, 35845 38436, has_genre, 36212 38436, release_year, 35845 34728, has_genre, 36212 34728, release_year, 35845 5791, has_genre, 36212 5791, release_year, 35845 10531, has_genre, 36212 10531, release_year, 35845 26553, has_genre, 36212 26553, release_year, 35845 11079, has_genre, 36212 11079, release_year, 35845 867, has_genre, 36212 867, release_year, 35845 7918, has_genre, 36212 7918, in_language, 13090 34030, has_genre, 36212 34030, release_year, 35845 13657, has_genre, 36212 13657, has_tags, 36212 13657, has_tags, 29786 12724, has_genre, 36212 12724, release_year, 35845 33360, has_genre, 36212 33360, release_year, 35845 24510, has_genre, 36212 24510, release_year, 35845 31906, has_genre, 36212 31906, release_year, 35845 29065, has_genre, 36212 29065, release_year, 35845 18016, has_genre, 36212 18016, release_year, 35845 30012, has_genre, 36212 30012, release_year, 35845 23571, has_genre, 36212 23571, release_year, 35845 12407, has_genre, 36212 12407, release_year, 35845 15115, has_genre, 36212 15115, release_year, 35845 36298, has_genre, 36212 36298, release_year, 35845 26244, has_genre, 36212 26244, release_year, 35845 37874, has_genre, 36212 37874, release_year, 35845 37267, has_genre, 36212 37267, release_year, 35845 7480, has_genre, 36212 7480, release_year, 35845 25844, has_genre, 36212 25844, release_year, 35845 20591, has_genre, 36212 20591, release_year, 35845 37952, has_genre, 36212 37952, release_year, 35845 8262, has_genre, 36212 8262, release_year, 35845 13766, has_genre, 36212 13766, release_year, 35845 36222, has_genre, 36212 36222, release_year, 35845 8294, has_genre, 36212 8294, release_year, 35845 1273, has_genre, 36212 1273, release_year, 35845 13308, has_genre, 36212 13308, release_year, 35845 14023, has_genre, 36212 14023, release_year, 35845 27044, has_genre, 36212 27044, release_year, 35845 33097, has_genre, 36212 33097, release_year, 35845 7879, has_genre, 36212 7879, release_year, 35845 15613, has_genre, 36212 15613, release_year, 35845 26170, has_genre, 36212 26170, release_year, 35845 38589, has_genre, 36212 38589, release_year, 35845 2924, has_genre, 36212 2924, has_tags, 36212 2924, release_year, 35845 17120, has_genre, 36212 17120, release_year, 35845 23380, has_genre, 36212 23380, release_year, 35845 880, has_genre, 36212 880, release_year, 35845 9264, has_genre, 36212 9264, release_year, 35845 35835, has_genre, 36212 35835, release_year, 35845 16337, has_genre, 36212 16337, release_year, 35845 35012, has_genre, 36212 35012, release_year, 35845 22547, has_genre, 36212 22547, release_year, 35845 37319, has_genre, 36212 37319, release_year, 35845 2289, has_genre, 36212 2289, release_year, 35845 35863, has_genre, 36212 35863, release_year, 35845 11277, has_genre, 36212 11277, has_tags, 36212 11277, release_year, 35845 24376, has_genre, 36212 24376, release_year, 35845 17372, has_genre, 36212 17372, release_year, 35845 36308, has_genre, 36212 36308, release_year, 35845 7221, has_genre, 36212 7221, release_year, 35845 13713, has_genre, 36212 13713, starred_actors, 7806 39979, has_genre, 36212 39979, release_year, 35845 10502, has_genre, 36212 10502, release_year, 35845 27801, has_genre, 36212 27801, release_year, 35845 28455, has_genre, 36212 28455, release_year, 35845 6059, has_genre, 36212 6059, release_year, 35845 3519, has_genre, 36212 3519, release_year, 35845 25264, has_genre, 36212 25264, release_year, 35845 16171, has_genre, 36212 16171, release_year, 35845 36508, has_genre, 36212 36508, release_year, 35845 869, has_genre, 36212 869, release_year, 35845 22991, has_genre, 36212 22991, release_year, 35845 39852, has_genre, 36212 39852, has_tags, 36212 39852, release_year, 35845 2753, has_genre, 36212 2753, release_year, 35845 685, has_genre, 36212 685, in_language, 13090 24369, has_genre, 36212 24369, release_year, 35845 24793, has_genre, 36212 24793, release_year, 35845 36352, has_genre, 36212 36352, release_year, 35845 39310, has_genre, 36212 39310, release_year, 35845 8379, has_genre, 36212 5766, has_genre, 36212 5766, release_year, 35845 31315, has_genre, 36212 31315, release_year, 35845 17383, has_genre, 36212 17383, release_year, 35845 3237, has_genre, 36212 3237, release_year, 35845 35449, has_genre, 36212 35449, release_year, 35845 27398, has_genre, 36212 27398, release_year, 35845 28005, has_genre, 36212 28005, release_year, 35845 21048, has_genre, 36212 21048, release_year, 35845 26020, has_genre, 36212 26020, release_year, 35845 947, has_genre, 36212 947, release_year, 35845 39786, has_genre, 36212 39786, release_year, 35845 15851, has_genre, 36212 15851, release_year, 35845 35075, directed_by, 21852 35075, has_genre, 36212 35075, in_language, 13090 35075, release_year, 35845 35075, written_by, 21852 25661, has_genre, 36212 25661, release_year, 35845 38498, has_genre, 36212 38498, release_year, 35845 6958, has_genre, 36212 6958, release_year, 35845 35559, has_genre, 36212 35559, release_year, 35845 30285, has_genre, 36212 30285, in_language, 13090 12982, has_genre, 36212 12982, release_year, 35845 36932, has_genre, 36212 36932, release_year, 35845 19883, has_genre, 36212 19883, release_year, 35845 1096, has_genre, 36212 1096, release_year, 35845 18997, has_genre, 36212 18997, release_year, 35845 22346, has_genre, 36212 22346, release_year, 35845 31676, has_genre, 36212 31676, release_year, 35845 33027, has_genre, 36212 33027, release_year, 35845 21650, has_genre, 36212 21650, release_year, 35845 3655, has_genre, 36212 3655, release_year, 35845 15616, has_genre, 36212 15616, release_year, 35845 15420, has_genre, 36212 15420, release_year, 35845 31309, has_genre, 36212 31309, release_year, 35845 37551, has_genre, 36212 37551, release_year, 35845 25529, has_genre, 36212 25529, release_year, 35845 16834, has_genre, 36212 16834, release_year, 35845 36917, has_genre, 36212 36917, release_year, 35845 2467, has_genre, 36212 2467, has_tags, 36212 2467, release_year, 35845 28107, has_genre, 36212 28107, release_year, 35845 14315, has_genre, 36212 14315, has_tags, 36212 14315, release_year, 35845 7800, has_genre, 36212 7800, release_year, 35845 6207, has_genre, 36212 6207, in_language, 13090 19600, has_genre, 36212 19600, release_year, 35845 23084, has_genre, 36212 23084, release_year, 35845 471, has_genre, 36212 471, release_year, 35845 5289, has_genre, 36212 5289, release_year, 35845 28919, has_genre, 36212 28919, release_year, 35845 31265, has_genre, 36212 31265, release_year, 35845 20293, has_genre, 36212 20293, release_year, 35845 2783, has_genre, 36212 2783, has_tags, 36212 2783, release_year, 35845 35021, has_genre, 36212 35021, release_year, 35845 18052, has_genre, 36212 18052, release_year, 35845 13051, has_genre, 36212 13051, release_year, 35845 37543, has_genre, 36212 37543, release_year, 35845 16413, directed_by, 21852 16413, has_genre, 36212 16413, in_language, 13090 16413, written_by, 21852 25806, has_genre, 36212 25806, release_year, 35845 36753, has_genre, 36212 36753, release_year, 35845 20531, has_genre, 36212 20531, release_year, 35845 35728, has_genre, 36212 35728, release_year, 35845 6338, has_genre, 36212 6338, has_genre, 8379 6338, starred_actors, 7806 33239, has_genre, 36212 33239, release_year, 35845 28493, has_genre, 36212 28493, release_year, 35845 13698, has_genre, 36212 13698, release_year, 35845 Question: How are ANDREA RISEBOROUGH, FLOWERS, and SYNDROMES AND A CENTURY related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "ANDREA RISEBOROUGH", "FLOWERS", "SYNDROMES AND A CENTURY" ], "valid_edges": [ [ "10 ITEMS OR LESS", "has_genre", "DRAMA" ], [ "10 ITEMS OR LESS", "release_year", "2006" ], [ "A FRIEND OF MINE", "has_genre", "DRAMA" ], [ "A FRIEND OF MINE", "release_year", "2006" ], [ "A GOOD YEAR", "has_genre", "DRAMA" ], [ "A GOOD YEAR", "release_year", "2006" ], [ "A GUIDE TO RECOGNIZING YOUR SAINTS", "has_genre", "DRAMA" ], [ "A GUIDE TO RECOGNIZING YOUR SAINTS", "release_year", "2006" ], [ "A PRAIRIE HOME COMPANION", "has_genre", "DRAMA" ], [ "A PRAIRIE HOME COMPANION", "release_year", "2006" ], [ "AFTER THE WEDDING", "has_genre", "DRAMA" ], [ "AFTER THE WEDDING", "has_tags", "DRAMA" ], [ "AFTER THE WEDDING", "release_year", "2006" ], [ "AKEELAH AND THE BEE", "has_genre", "DRAMA" ], [ "AKEELAH AND THE BEE", "release_year", "2006" ], [ "ALL THE KING'S MEN", "has_genre", "DRAMA" ], [ "ALL THE KING'S MEN", "release_year", "2006" ], [ "ALPHA DOG", "has_genre", "DRAMA" ], [ "ALPHA DOG", "release_year", "2006" ], [ "AMAZING GRACE", "has_genre", "DRAMA" ], [ "AMAZING GRACE", "release_year", "2006" ], [ "ANNA AND THE KING", "has_genre", "DRAMA" ], [ "ANNA AND THE KING", "in_language", "THAI" ], [ "ANNAPOLIS", "has_genre", "DRAMA" ], [ "ANNAPOLIS", "release_year", "2006" ], [ "ART SCHOOL CONFIDENTIAL", "has_genre", "DRAMA" ], [ "ART SCHOOL CONFIDENTIAL", "release_year", "2006" ], [ "BABEL", "has_genre", "DRAMA" ], [ "BABEL", "has_tags", "DRAMA" ], [ "BABEL", "release_year", "2006" ], [ "BAMBI II", "has_genre", "DRAMA" ], [ "BAMBI II", "release_year", "2006" ], [ "BEAUTIFUL OHIO", "has_genre", "DRAMA" ], [ "BEAUTIFUL OHIO", "release_year", "2006" ], [ "BLACK SNAKE MOAN", "has_genre", "DRAMA" ], [ "BLACK SNAKE MOAN", "release_year", "2006" ], [ "BOBBY", "has_genre", "DRAMA" ], [ "BOBBY", "release_year", "2006" ], [ "BONNEVILLE", "has_genre", "DRAMA" ], [ "BONNEVILLE", "release_year", "2006" ], [ "BORDERTOWN", "has_genre", "DRAMA" ], [ "BORDERTOWN", "release_year", "2006" ], [ "BREAKING AND ENTERING", "has_genre", "DRAMA" ], [ "BREAKING AND ENTERING", "release_year", "2006" ], [ "BROKEDOWN PALACE", "has_genre", "DRAMA" ], [ "BROKEDOWN PALACE", "in_language", "THAI" ], [ "BROKEN BRIDGES", "has_genre", "DRAMA" ], [ "BROKEN BRIDGES", "release_year", "2006" ], [ "BROKEN FLOWERS", "has_genre", "DRAMA" ], [ "BROKEN FLOWERS", "has_tags", "DRAMA" ], [ "BROKEN FLOWERS", "has_tags", "FLOWERS" ], [ "BROKEN SKY", "has_genre", "DRAMA" ], [ "BROKEN SKY", "release_year", "2006" ], [ "CANDY", "has_genre", "DRAMA" ], [ "CANDY", "release_year", "2006" ], [ "CANVAS", "has_genre", "DRAMA" ], [ "CANVAS", "release_year", "2006" ], [ "CATCH A FIRE", "has_genre", "DRAMA" ], [ "CATCH A FIRE", "release_year", "2006" ], [ "CHOKING MAN", "has_genre", "DRAMA" ], [ "CHOKING MAN", "release_year", "2006" ], [ "CLICK", "has_genre", "DRAMA" ], [ "CLICK", "release_year", "2006" ], [ "CLIMATES", "has_genre", "DRAMA" ], [ "CLIMATES", "release_year", "2006" ], [ "COMEDY OF POWER", "has_genre", "DRAMA" ], [ "COMEDY OF POWER", "release_year", "2006" ], [ "COPYING BEETHOVEN", "has_genre", "DRAMA" ], [ "COPYING BEETHOVEN", "release_year", "2006" ], [ "CURSE OF THE GOLDEN FLOWER", "has_genre", "DRAMA" ], [ "CURSE OF THE GOLDEN FLOWER", "release_year", "2006" ], [ "DAY NIGHT DAY NIGHT", "has_genre", "DRAMA" ], [ "DAY NIGHT DAY NIGHT", "release_year", "2006" ], [ "DESTRICTED", "has_genre", "DRAMA" ], [ "DESTRICTED", "release_year", "2006" ], [ "DON'T WORRY, I'M FINE", "has_genre", "DRAMA" ], [ "DON'T WORRY, I'M FINE", "release_year", "2006" ], [ "DREAMGIRLS", "has_genre", "DRAMA" ], [ "DREAMGIRLS", "release_year", "2006" ], [ "EDEN", "has_genre", "DRAMA" ], [ "EDEN", "release_year", "2006" ], [ "EIGHT BELOW", "has_genre", "DRAMA" ], [ "EIGHT BELOW", "release_year", "2006" ], [ "EYE OF THE DOLPHIN", "has_genre", "DRAMA" ], [ "EYE OF THE DOLPHIN", "release_year", "2006" ], [ "FACING THE GIANTS", "has_genre", "DRAMA" ], [ "FACING THE GIANTS", "release_year", "2006" ], [ "FAMILY LAW", "has_genre", "DRAMA" ], [ "FAMILY LAW", "release_year", "2006" ], [ "FAST FOOD NATION", "has_genre", "DRAMA" ], [ "FAST FOOD NATION", "release_year", "2006" ], [ "FEARLESS", "has_genre", "DRAMA" ], [ "FEARLESS", "release_year", "2006" ], [ "FIVE FINGERS", "has_genre", "DRAMA" ], [ "FIVE FINGERS", "release_year", "2006" ], [ "FLYBOYS", "has_genre", "DRAMA" ], [ "FLYBOYS", "release_year", "2006" ], [ "FREEDOMLAND", "has_genre", "DRAMA" ], [ "FREEDOMLAND", "release_year", "2006" ], [ "GLORY ROAD", "has_genre", "DRAMA" ], [ "GLORY ROAD", "release_year", "2006" ], [ "GRIDIRON GANG", "has_genre", "DRAMA" ], [ "GRIDIRON GANG", "release_year", "2006" ], [ "HALF LIGHT", "has_genre", "DRAMA" ], [ "HALF LIGHT", "release_year", "2006" ], [ "HALF NELSON", "has_genre", "DRAMA" ], [ "HALF NELSON", "release_year", "2006" ], [ "HOLLY", "has_genre", "DRAMA" ], [ "HOLLY", "release_year", "2006" ], [ "HOLLYWOODLAND", "has_genre", "DRAMA" ], [ "HOLLYWOODLAND", "release_year", "2006" ], [ "I DO", "has_genre", "DRAMA" ], [ "I DO", "release_year", "2006" ], [ "I DON'T WANT TO SLEEP ALONE", "has_genre", "DRAMA" ], [ "I DON'T WANT TO SLEEP ALONE", "has_tags", "DRAMA" ], [ "I DON'T WANT TO SLEEP ALONE", "release_year", "2006" ], [ "INFAMOUS", "has_genre", "DRAMA" ], [ "INFAMOUS", "release_year", "2006" ], [ "INVINCIBLE", "has_genre", "DRAMA" ], [ "INVINCIBLE", "release_year", "2006" ], [ "IRRESISTIBLE", "has_genre", "DRAMA" ], [ "IRRESISTIBLE", "release_year", "2006" ], [ "JAM", "has_genre", "DRAMA" ], [ "JAM", "release_year", "2006" ], [ "JINDABYNE", "has_genre", "DRAMA" ], [ "JINDABYNE", "release_year", "2006" ], [ "JOURNEY FROM THE FALL", "has_genre", "DRAMA" ], [ "JOURNEY FROM THE FALL", "release_year", "2006" ], [ "KABUL EXPRESS", "has_genre", "DRAMA" ], [ "KABUL EXPRESS", "release_year", "2006" ], [ "KIDULTHOOD", "has_genre", "DRAMA" ], [ "KIDULTHOOD", "release_year", "2006" ], [ "KILL YOUR DARLINGS", "has_genre", "DRAMA" ], [ "KILL YOUR DARLINGS", "release_year", "2006" ], [ "LAND OF THE BLIND", "has_genre", "DRAMA" ], [ "LAND OF THE BLIND", "release_year", "2006" ], [ "LIGHTS IN THE DUSK", "has_genre", "DRAMA" ], [ "LIGHTS IN THE DUSK", "release_year", "2006" ], [ "LITTLE CHILDREN", "has_genre", "DRAMA" ], [ "LITTLE CHILDREN", "has_tags", "DRAMA" ], [ "LITTLE CHILDREN", "release_year", "2006" ], [ "LITTLE MISS SUNSHINE", "has_genre", "DRAMA" ], [ "LITTLE MISS SUNSHINE", "release_year", "2006" ], [ "LOL", "has_genre", "DRAMA" ], [ "LOL", "release_year", "2006" ], [ "LONGFORD", "has_genre", "DRAMA" ], [ "LONGFORD", "release_year", "2006" ], [ "LOVE SICK", "has_genre", "DRAMA" ], [ "LOVE SICK", "release_year", "2006" ], [ "MADE IN DAGENHAM", "has_genre", "DRAMA" ], [ "MADE IN DAGENHAM", "starred_actors", "ANDREA RISEBOROUGH" ], [ "MADEA'S FAMILY REUNION", "has_genre", "DRAMA" ], [ "MADEA'S FAMILY REUNION", "release_year", "2006" ], [ "MAN ABOUT TOWN", "has_genre", "DRAMA" ], [ "MAN ABOUT TOWN", "release_year", "2006" ], [ "MAN OF THE YEAR", "has_genre", "DRAMA" ], [ "MAN OF THE YEAR", "release_year", "2006" ], [ "MARIE ANTOINETTE", "has_genre", "DRAMA" ], [ "MARIE ANTOINETTE", "release_year", "2006" ], [ "MENTOR", "has_genre", "DRAMA" ], [ "MENTOR", "release_year", "2006" ], [ "MY NAME IS JUANI", "has_genre", "DRAMA" ], [ "MY NAME IS JUANI", "release_year", "2006" ], [ "NOTES ON A SCANDAL", "has_genre", "DRAMA" ], [ "NOTES ON A SCANDAL", "release_year", "2006" ], [ "OFF THE BLACK", "has_genre", "DRAMA" ], [ "OFF THE BLACK", "release_year", "2006" ], [ "ONE NIGHT WITH THE KING", "has_genre", "DRAMA" ], [ "ONE NIGHT WITH THE KING", "release_year", "2006" ], [ "ONLY GOD KNOWS", "has_genre", "DRAMA" ], [ "ONLY GOD KNOWS", "release_year", "2006" ], [ "OUT OF THE BLUE", "has_genre", "DRAMA" ], [ "OUT OF THE BLUE", "release_year", "2006" ], [ "PAN'S LABYRINTH", "has_genre", "DRAMA" ], [ "PAN'S LABYRINTH", "has_tags", "DRAMA" ], [ "PAN'S LABYRINTH", "release_year", "2006" ], [ "PEACEFUL WARRIOR", "has_genre", "DRAMA" ], [ "PEACEFUL WARRIOR", "release_year", "2006" ], [ "PLOY", "has_genre", "DRAMA" ], [ "PLOY", "in_language", "THAI" ], [ "QUINCEAÑERA", "has_genre", "DRAMA" ], [ "QUINCEAÑERA", "release_year", "2006" ], [ "RANG DE BASANTI", "has_genre", "DRAMA" ], [ "RANG DE BASANTI", "release_year", "2006" ], [ "REQUIEM", "has_genre", "DRAMA" ], [ "REQUIEM", "release_year", "2006" ], [ "RESCUE DAWN", "has_genre", "DRAMA" ], [ "RESCUE DAWN", "release_year", "2006" ], [ "ROMANCE", "has_genre", "DRAMA" ], [ "RUNNING WITH SCISSORS", "has_genre", "DRAMA" ], [ "RUNNING WITH SCISSORS", "release_year", "2006" ], [ "SCENES OF A SEXUAL NATURE", "has_genre", "DRAMA" ], [ "SCENES OF A SEXUAL NATURE", "release_year", "2006" ], [ "SHERRYBABY", "has_genre", "DRAMA" ], [ "SHERRYBABY", "release_year", "2006" ], [ "SIXTY SIX", "has_genre", "DRAMA" ], [ "SIXTY SIX", "release_year", "2006" ], [ "SNOW CAKE", "has_genre", "DRAMA" ], [ "SNOW CAKE", "release_year", "2006" ], [ "SOMETHING NEW", "has_genre", "DRAMA" ], [ "SOMETHING NEW", "release_year", "2006" ], [ "SOUTHLAND TALES", "has_genre", "DRAMA" ], [ "SOUTHLAND TALES", "release_year", "2006" ], [ "SPECIAL", "has_genre", "DRAMA" ], [ "SPECIAL", "release_year", "2006" ], [ "STARTER FOR 10", "has_genre", "DRAMA" ], [ "STARTER FOR 10", "release_year", "2006" ], [ "STEP UP", "has_genre", "DRAMA" ], [ "STEP UP", "release_year", "2006" ], [ "STICK IT", "has_genre", "DRAMA" ], [ "STICK IT", "release_year", "2006" ], [ "SWEET MUD", "has_genre", "DRAMA" ], [ "SWEET MUD", "release_year", "2006" ], [ "SYNDROMES AND A CENTURY", "directed_by", "APICHATPONG WEERASETHAKUL" ], [ "SYNDROMES AND A CENTURY", "has_genre", "DRAMA" ], [ "SYNDROMES AND A CENTURY", "in_language", "THAI" ], [ "SYNDROMES AND A CENTURY", "release_year", "2006" ], [ "SYNDROMES AND A CENTURY", "written_by", "APICHATPONG WEERASETHAKUL" ], [ "TAKE THE LEAD", "has_genre", "DRAMA" ], [ "TAKE THE LEAD", "release_year", "2006" ], [ "TAXIDERMIA", "has_genre", "DRAMA" ], [ "TAXIDERMIA", "release_year", "2006" ], [ "THE ASTRONAUT FARMER", "has_genre", "DRAMA" ], [ "THE ASTRONAUT FARMER", "release_year", "2006" ], [ "THE BANQUET", "has_genre", "DRAMA" ], [ "THE BANQUET", "release_year", "2006" ], [ "THE BEACH", "has_genre", "DRAMA" ], [ "THE BEACH", "in_language", "THAI" ], [ "THE BUBBLE", "has_genre", "DRAMA" ], [ "THE BUBBLE", "release_year", "2006" ], [ "THE CAIMAN", "has_genre", "DRAMA" ], [ "THE CAIMAN", "release_year", "2006" ], [ "THE CHATTERLEY AFFAIR", "has_genre", "DRAMA" ], [ "THE CHATTERLEY AFFAIR", "release_year", "2006" ], [ "THE CONRAD BOYS", "has_genre", "DRAMA" ], [ "THE CONRAD BOYS", "release_year", "2006" ], [ "THE DEPARTED", "has_genre", "DRAMA" ], [ "THE DEPARTED", "release_year", "2006" ], [ "THE DEVIL WEARS PRADA", "has_genre", "DRAMA" ], [ "THE DEVIL WEARS PRADA", "release_year", "2006" ], [ "THE FLYING SCOTSMAN", "has_genre", "DRAMA" ], [ "THE FLYING SCOTSMAN", "release_year", "2006" ], [ "THE FOUNTAIN", "has_genre", "DRAMA" ], [ "THE FOUNTAIN", "release_year", "2006" ], [ "THE FREE WILL", "has_genre", "DRAMA" ], [ "THE FREE WILL", "release_year", "2006" ], [ "THE FRONT LINE", "has_genre", "DRAMA" ], [ "THE FRONT LINE", "release_year", "2006" ], [ "THE GUARDIAN", "has_genre", "DRAMA" ], [ "THE GUARDIAN", "release_year", "2006" ], [ "THE HISTORY BOYS", "has_genre", "DRAMA" ], [ "THE HISTORY BOYS", "release_year", "2006" ], [ "THE HOAX", "has_genre", "DRAMA" ], [ "THE HOAX", "release_year", "2006" ], [ "THE HOTTEST STATE", "has_genre", "DRAMA" ], [ "THE HOTTEST STATE", "release_year", "2006" ], [ "THE ILLUSIONIST", "has_genre", "DRAMA" ], [ "THE ILLUSIONIST", "release_year", "2006" ], [ "THE KILLING OF JOHN LENNON", "has_genre", "DRAMA" ], [ "THE KILLING OF JOHN LENNON", "release_year", "2006" ], [ "THE LAKE HOUSE", "has_genre", "DRAMA" ], [ "THE LAKE HOUSE", "release_year", "2006" ], [ "THE LAST KING OF SCOTLAND", "has_genre", "DRAMA" ], [ "THE LAST KING OF SCOTLAND", "has_tags", "DRAMA" ], [ "THE LAST KING OF SCOTLAND", "release_year", "2006" ], [ "THE LAST KISS", "has_genre", "DRAMA" ], [ "THE LAST KISS", "release_year", "2006" ], [ "THE LIVES OF OTHERS", "has_genre", "DRAMA" ], [ "THE LIVES OF OTHERS", "has_tags", "DRAMA" ], [ "THE LIVES OF OTHERS", "release_year", "2006" ], [ "THE LIVING AND THE DEAD", "has_genre", "DRAMA" ], [ "THE LIVING AND THE DEAD", "release_year", "2006" ], [ "THE LOVE OF SIAM", "has_genre", "DRAMA" ], [ "THE LOVE OF SIAM", "in_language", "THAI" ], [ "THE MISSING STAR", "has_genre", "DRAMA" ], [ "THE MISSING STAR", "release_year", "2006" ], [ "THE PAINTED VEIL", "has_genre", "DRAMA" ], [ "THE PAINTED VEIL", "release_year", "2006" ], [ "THE PURSUIT OF HAPPYNESS", "has_genre", "DRAMA" ], [ "THE PURSUIT OF HAPPYNESS", "release_year", "2006" ], [ "THE QUEEN", "has_genre", "DRAMA" ], [ "THE QUEEN", "release_year", "2006" ], [ "THE RETURN", "has_genre", "DRAMA" ], [ "THE RETURN", "release_year", "2006" ], [ "THE SECOND CHANCE", "has_genre", "DRAMA" ], [ "THE SECOND CHANCE", "release_year", "2006" ], [ "THE WEDDING DIRECTOR", "has_genre", "DRAMA" ], [ "THE WEDDING DIRECTOR", "release_year", "2006" ], [ "THE WIND THAT SHAKES THE BARLEY", "has_genre", "DRAMA" ], [ "THE WIND THAT SHAKES THE BARLEY", "has_tags", "DRAMA" ], [ "THE WIND THAT SHAKES THE BARLEY", "release_year", "2006" ], [ "THE YEAR MY PARENTS WENT ON VACATION", "has_genre", "DRAMA" ], [ "THE YEAR MY PARENTS WENT ON VACATION", "release_year", "2006" ], [ "THIS IS ENGLAND", "has_genre", "DRAMA" ], [ "THIS IS ENGLAND", "release_year", "2006" ], [ "TIMES AND WINDS", "has_genre", "DRAMA" ], [ "TIMES AND WINDS", "release_year", "2006" ], [ "TRANSYLVANIA", "has_genre", "DRAMA" ], [ "TRANSYLVANIA", "release_year", "2006" ], [ "TROPICAL MALADY", "directed_by", "APICHATPONG WEERASETHAKUL" ], [ "TROPICAL MALADY", "has_genre", "DRAMA" ], [ "TROPICAL MALADY", "in_language", "THAI" ], [ "TROPICAL MALADY", "written_by", "APICHATPONG WEERASETHAKUL" ], [ "UNITED 93", "has_genre", "DRAMA" ], [ "UNITED 93", "release_year", "2006" ], [ "VENUS", "has_genre", "DRAMA" ], [ "VENUS", "release_year", "2006" ], [ "VITUS", "has_genre", "DRAMA" ], [ "VITUS", "release_year", "2006" ], [ "VOLVER", "has_genre", "DRAMA" ], [ "VOLVER", "release_year", "2006" ], [ "W.E.", "has_genre", "DRAMA" ], [ "W.E.", "has_genre", "ROMANCE" ], [ "W.E.", "starred_actors", "ANDREA RISEBOROUGH" ], [ "WAIST DEEP", "has_genre", "DRAMA" ], [ "WAIST DEEP", "release_year", "2006" ], [ "WE ARE MARSHALL", "has_genre", "DRAMA" ], [ "WE ARE MARSHALL", "release_year", "2006" ], [ "WORLD TRADE CENTER", "has_genre", "DRAMA" ], [ "WORLD TRADE CENTER", "release_year", "2006" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 24438, 1993 12342, 54 19407, 8½ 37315, A BRONX TALE 30146, A CHRISTMAS CAROL 26698, A FAR OFF PLACE 9302, A HOME OF OUR OWN 458, A PERFECT WORLD 18239, A RAISIN IN THE SUN 28624, A SHINE OF RAINBOWS 30135, ABRAHAM'S VALLEY 35253, ACE OF HEARTS 25900, ALMOST FAMOUS 9677, ANATOMY OF A MURDER 28792, AND THE BAND PLAYED ON 3952, ANGELS SING 36963, ANNA KARENINA 6309, BABY TAKE A BOW 14561, BEETHOVEN'S 2ND 16426, BELLE DE JOUR 2313, BEN-HUR 3256, BHAJI ON THE BEACH 20511, BOPHA! 17565, BORN ON THE FOURTH OF JULY 37616, BORN YESTERDAY 4847, BOXING HELENA 12541, BRASSED OFF 7461, BROTHERHOOD OF THE WOLF 37190, CALENDAR 16076, CALIGULA 33362, CARLITO'S WAY 3034, CAT ON A HOT TIN ROOF 31459, CHILDREN OF HEAVEN 18016, CLICK 30463, COMEDY 10272, CONFESSIONS OF A TEENAGE DRAMA QUEEN 31694, DEADFALL 13280, DENNIS THE MENACE 25805, DOCTOR ZHIVAGO 3032, DOLPHIN TALE 8573, DR. DOLITTLE 3 36212, DRAMA 7543, EDWARD SCISSORHANDS 8413, ETHAN FROME 10648, EVEN COWGIRLS GET THE BLUES 36165, FALLING DOWN 10509, FAMILY 22958, FAMOUS 26935, FAREWELL MY CONCUBINE 19305, FAT ALBERT 36222, FEARLESS 28574, FIDDLER ON THE ROOF 26507, FIORILE 25869, FIRE IN THE SKY 255, FLASHDANCE 18521, FLY AWAY HOME 20125, FREE WILLY 28119, GRAND HOTEL 18687, GUILTY AS SIN 19871, GYPSY 1937, HANNAH AND HER SISTERS 17345, HERE WITHOUT ME 1044, HOTEL RWANDA 34869, HOTEL TRANSYLVANIA 19380, HOUSE OF CARDS 390, HOW GREEN WAS MY VALLEY 12466, I DON'T WANT TO TALK ABOUT IT 11757, IF.... 10400, INDECENT PROPOSAL 18026, INDIAN SUMMER 17120, INFAMOUS 39987, IT RUNS IN THE FAMILY 1331, IT'S A WONDERFUL LIFE 14188, JACK THE BEAR 7228, JOSH AND S.A.M. 6713, KAMCHATKA 21224, KIKUJIRO 38467, KIND HEARTS AND CORONETS 634, KYLA PRATT 27812, LA ESTRATEGIA DEL CARACOL 14601, LES MISÉRABLES 39471, LETTERS TO JULIET 36763, LITTLE BUDDHA 2352, LITTLE LORD FAUNTLEROY 26784, LITTLE WOMEN 35491, LOOK WHO'S TALKING NOW 35537, LORDS OF DOGTOWN 36539, M. BUTTERFLY 14587, MAD DOG AND GLORY 37867, MAN ON THE MOON 18216, MENACE II SOCIETY 995, MIDNIGHT IN THE GARDEN OF GOOD AND EVIL 25936, MONA LISA SMILE 21188, MR. JONES 12358, MY FAVORITE SEASON 3159, NAKED 20367, NICHOLAS MONSARRAT 16827, NOWHERE TO RUN 15644, OLIVER TWIST 3656, ORDINARY PEOPLE 5023, PARENTHOOD 27284, PARIS, FRANCE 23801, PARTY MONSTER 11222, PATHER PANCHALI 3389, PHILADELPHIA 4343, POETIC JUSTICE 40032, PUBLIC ACCESS 2738, ROMEO AND JULIET 14507, SAVANNAH 34329, SCHINDLER'S LIST 15974, SEARCHING FOR BOBBY FISCHER 6577, SHILOH 26699, SHORT CUTS 31824, SIX DEGREES OF SEPARATION 37133, SOMEWHERE 5873, SOMMERSBY 11124, STALINGRAD 13467, STRAPPED 14474, SULLIVAN'S TRAVELS 32587, SUMMER HOURS 33839, SWING KIDS 27310, THE AGE OF INNOCENCE 4789, THE BROTHERS MCMULLEN 9399, THE CEMENT GARDEN 6882, THE COLOR PURPLE 30812, THE DARK CRYSTAL 18997, THE DEPARTED 26726, THE DIARY OF ANNE FRANK 32295, THE DILEMMA 28948, THE FAMILY STONE 10363, THE FUGITIVE 34001, THE HOUSE OF THE SPIRITS 39978, THE HUMAN COMEDY 40066, THE JUNGLE BOOK 22224, THE LITTLEST REBEL 36676, THE MAN WITHOUT A FACE 30868, THE MUSIC OF CHANCE 19496, THE PIANO 6296, THE RED SQUIRREL 13761, THE ROOKIE 26278, THE SECRET GARDEN 2702, THE SILVER BRUMBY 24562, THE SLINGSHOT 11064, THE SNAPPER 12455, THE STORY OF ESTHER COSTELLO 39883, THE STORY OF THE WEEPING CAMEL 25489, THE THING CALLED LOVE 7816, THE THREE MUSKETEERS 14983, THE WINSLOW BOY 34407, THE WRONG MAN 11863, THE YEAR OF LIVING DANGEROUSLY 27519, THE YEARLING 37639, THE YOUNG AMERICANS 25299, UNTAMED HEART 8957, WE BOUGHT A ZOO 9837, WHAT'S EATING GILBERT GRAPE 34987, WHAT'S LOVE GOT TO DO WITH IT 19679, WIDE AWAKE 3585, WIDE-EYED AND LEGLESS 22756, WINDOW TO PARIS 22077, WRESTLING ERNEST HEMINGWAY 12162, YOU CAN COUNT ON ME src, edge_attr, dst 12342, has_genre, 36212 12342, has_imdb_votes, 22958 19407, has_genre, 36212 19407, has_imdb_votes, 22958 37315, has_genre, 36212 37315, release_year, 24438 30146, has_genre, 36212 30146, has_genre, 10509 30146, has_imdb_votes, 22958 26698, has_genre, 36212 26698, has_genre, 10509 26698, release_year, 24438 9302, has_genre, 36212 9302, release_year, 24438 458, has_genre, 36212 458, release_year, 24438 18239, has_genre, 36212 18239, has_tags, 10509 28624, has_genre, 36212 28624, has_genre, 10509 30135, has_genre, 36212 30135, release_year, 24438 35253, has_genre, 36212 35253, has_genre, 10509 25900, has_genre, 36212 25900, has_imdb_votes, 22958 25900, has_tags, 36212 9677, has_genre, 36212 9677, has_imdb_votes, 22958 28792, has_genre, 36212 28792, release_year, 24438 3952, has_genre, 36212 3952, has_genre, 10509 36963, has_genre, 36212 36963, has_imdb_votes, 22958 36963, has_tags, 36212 6309, has_genre, 36212 6309, has_genre, 10509 14561, has_genre, 10509 14561, release_year, 24438 16426, has_genre, 36212 16426, has_imdb_votes, 22958 16426, has_tags, 36212 2313, has_genre, 36212 2313, has_imdb_votes, 22958 3256, has_genre, 36212 3256, release_year, 24438 20511, has_genre, 36212 20511, release_year, 24438 17565, has_genre, 36212 17565, has_imdb_votes, 22958 17565, has_tags, 36212 37616, has_genre, 36212 37616, release_year, 24438 4847, has_genre, 36212 4847, release_year, 24438 12541, has_genre, 36212 12541, has_imdb_votes, 22958 7461, has_genre, 36212 7461, has_imdb_votes, 22958 37190, has_genre, 36212 37190, release_year, 24438 16076, has_genre, 36212 16076, has_imdb_votes, 22958 33362, has_genre, 36212 33362, release_year, 24438 3034, has_genre, 36212 3034, has_tags, 10509 31459, has_genre, 36212 31459, has_genre, 10509 18016, has_genre, 36212 18016, has_tags, 10509 10272, has_genre, 10509 10272, has_tags, 36212 31694, has_genre, 36212 31694, release_year, 24438 13280, has_genre, 10509 13280, release_year, 24438 25805, has_genre, 36212 25805, has_imdb_votes, 22958 3032, has_genre, 36212 3032, has_genre, 10509 3032, has_tags, 10509 8573, has_genre, 30463 8573, has_genre, 10509 8573, starred_actors, 634 7543, has_genre, 36212 7543, has_tags, 10509 8413, has_genre, 36212 8413, release_year, 24438 10648, has_genre, 36212 10648, release_year, 24438 36165, has_genre, 36212 36165, release_year, 24438 26935, has_genre, 36212 26935, release_year, 24438 19305, has_genre, 30463 19305, starred_actors, 634 36222, has_genre, 36212 36222, release_year, 24438 28574, has_genre, 36212 28574, has_genre, 10509 28574, has_imdb_votes, 22958 26507, has_genre, 36212 26507, release_year, 24438 25869, has_genre, 36212 25869, release_year, 24438 255, has_genre, 36212 255, has_imdb_votes, 22958 18521, has_genre, 36212 18521, has_genre, 10509 20125, has_genre, 36212 20125, has_genre, 10509 20125, has_imdb_votes, 22958 20125, has_tags, 10509 20125, release_year, 24438 28119, has_genre, 36212 28119, has_imdb_votes, 22958 18687, has_genre, 36212 18687, release_year, 24438 19871, has_genre, 36212 19871, release_year, 24438 1937, has_genre, 36212 1937, has_tags, 10509 17345, has_genre, 36212 17345, has_genre, 10509 1044, has_genre, 36212 1044, has_tags, 36212 1044, has_tags, 10509 34869, has_genre, 10509 34869, has_imdb_votes, 22958 19380, has_genre, 36212 19380, release_year, 24438 390, has_genre, 36212 390, has_genre, 10509 12466, has_genre, 36212 12466, release_year, 24438 11757, has_genre, 36212 11757, has_imdb_votes, 22958 10400, has_genre, 36212 10400, release_year, 24438 18026, has_genre, 36212 18026, release_year, 24438 17120, has_genre, 36212 17120, has_imdb_votes, 22958 39987, has_genre, 36212 39987, has_genre, 10509 1331, has_genre, 36212 1331, has_genre, 10509 1331, has_tags, 36212 1331, has_tags, 10509 14188, has_genre, 36212 14188, release_year, 24438 7228, has_genre, 36212 7228, release_year, 24438 6713, has_genre, 36212 6713, has_tags, 10509 21224, has_genre, 36212 21224, has_imdb_votes, 22958 38467, has_imdb_votes, 22958 38467, has_tags, 10509 27812, has_genre, 36212 27812, release_year, 24438 14601, has_genre, 36212 14601, has_imdb_votes, 22958 39471, has_genre, 36212 39471, has_imdb_votes, 22958 36763, has_genre, 36212 36763, release_year, 24438 2352, has_genre, 36212 2352, has_genre, 10509 26784, has_genre, 36212 26784, has_genre, 10509 26784, has_tags, 36212 35491, has_genre, 10509 35491, has_tags, 10509 35491, release_year, 24438 35537, has_genre, 36212 35537, has_imdb_votes, 22958 36539, has_genre, 36212 36539, release_year, 24438 14587, has_genre, 36212 14587, release_year, 24438 37867, has_genre, 36212 37867, has_imdb_votes, 22958 18216, has_genre, 36212 18216, release_year, 24438 995, has_genre, 36212 995, has_imdb_votes, 22958 25936, has_genre, 36212 25936, has_imdb_votes, 22958 21188, has_genre, 36212 21188, release_year, 24438 12358, has_genre, 36212 12358, release_year, 24438 3159, has_genre, 36212 3159, release_year, 24438 16827, has_genre, 36212 16827, release_year, 24438 15644, has_genre, 36212 15644, has_imdb_votes, 22958 3656, has_genre, 36212 3656, has_tags, 10509 5023, has_genre, 36212 5023, has_tags, 10509 27284, has_genre, 36212 27284, release_year, 24438 23801, has_genre, 36212 23801, has_imdb_votes, 22958 11222, has_genre, 36212 11222, has_tags, 10509 3389, has_genre, 36212 3389, release_year, 24438 4343, has_genre, 36212 4343, release_year, 24438 40032, has_genre, 36212 40032, release_year, 24438 2738, has_genre, 36212 2738, has_imdb_votes, 22958 14507, has_genre, 36212 14507, has_genre, 10509 34329, has_genre, 36212 34329, has_tags, 36212 34329, release_year, 24438 15974, has_genre, 36212 15974, release_year, 24438 6577, has_genre, 36212 6577, has_genre, 10509 26699, has_genre, 36212 26699, release_year, 24438 31824, has_genre, 36212 31824, release_year, 24438 37133, has_genre, 36212 37133, has_imdb_votes, 22958 5873, has_genre, 36212 5873, release_year, 24438 11124, has_genre, 36212 11124, release_year, 24438 13467, has_genre, 36212 13467, release_year, 24438 14474, has_genre, 36212 14474, has_imdb_votes, 22958 32587, has_genre, 36212 32587, has_genre, 10509 33839, has_genre, 36212 33839, release_year, 24438 27310, has_genre, 36212 27310, release_year, 24438 4789, has_genre, 36212 4789, has_tags, 10509 9399, has_genre, 36212 9399, release_year, 24438 6882, has_genre, 36212 6882, has_imdb_votes, 22958 30812, has_genre, 10509 30812, has_imdb_votes, 22958 18997, has_genre, 36212 18997, has_imdb_votes, 22958 26726, has_genre, 36212 26726, has_genre, 10509 32295, has_genre, 36212 32295, has_imdb_votes, 22958 28948, has_genre, 36212 28948, has_tags, 36212 28948, has_tags, 10509 10363, has_genre, 36212 10363, release_year, 24438 34001, has_genre, 36212 34001, release_year, 24438 39978, has_genre, 36212 39978, has_genre, 10509 40066, has_genre, 10509 40066, has_imdb_votes, 22958 22224, has_genre, 36212 22224, has_genre, 10509 36676, has_genre, 36212 36676, has_tags, 36212 36676, release_year, 24438 30868, has_genre, 36212 30868, release_year, 24438 19496, has_genre, 36212 19496, release_year, 24438 6296, has_genre, 36212 6296, release_year, 24438 13761, has_genre, 36212 13761, has_imdb_votes, 22958 26278, has_genre, 36212 26278, release_year, 24438 2702, has_genre, 36212 2702, has_genre, 10509 2702, release_year, 24438 24562, has_genre, 36212 24562, release_year, 24438 11064, has_tags, 10509 11064, release_year, 24438 12455, has_genre, 36212 12455, written_by, 20367 39883, has_genre, 36212 39883, has_genre, 10509 39883, has_tags, 10509 25489, has_genre, 36212 25489, release_year, 24438 7816, has_genre, 36212 7816, release_year, 24438 14983, has_genre, 36212 14983, has_tags, 10509 34407, has_genre, 36212 34407, release_year, 24438 11863, has_genre, 36212 11863, has_imdb_votes, 22958 27519, has_genre, 36212 27519, has_genre, 10509 37639, has_genre, 36212 37639, release_year, 24438 25299, has_genre, 36212 25299, release_year, 24438 8957, has_genre, 36212 8957, has_genre, 10509 8957, has_tags, 10509 9837, has_genre, 36212 9837, release_year, 24438 34987, has_genre, 36212 34987, release_year, 24438 19679, has_genre, 36212 19679, has_genre, 10509 3585, has_genre, 36212 3585, release_year, 24438 22756, has_genre, 36212 22756, release_year, 24438 22077, has_genre, 36212 22077, release_year, 24438 12162, has_genre, 36212 12162, has_tags, 10509 Question: In what context are FREE WILLY, KYLA PRATT, and NICHOLAS MONSARRAT connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "FREE WILLY", "KYLA PRATT", "NICHOLAS MONSARRAT" ], "valid_edges": [ [ "54", "has_genre", "DRAMA" ], [ "54", "has_imdb_votes", "FAMOUS" ], [ "8½", "has_genre", "DRAMA" ], [ "8½", "has_imdb_votes", "FAMOUS" ], [ "A BRONX TALE", "has_genre", "DRAMA" ], [ "A BRONX TALE", "release_year", "1993" ], [ "A CHRISTMAS CAROL", "has_genre", "DRAMA" ], [ "A CHRISTMAS CAROL", "has_genre", "FAMILY" ], [ "A CHRISTMAS CAROL", "has_imdb_votes", "FAMOUS" ], [ "A FAR OFF PLACE", "has_genre", "DRAMA" ], [ "A FAR OFF PLACE", "has_genre", "FAMILY" ], [ "A FAR OFF PLACE", "release_year", "1993" ], [ "A HOME OF OUR OWN", "has_genre", "DRAMA" ], [ "A HOME OF OUR OWN", "release_year", "1993" ], [ "A PERFECT WORLD", "has_genre", "DRAMA" ], [ "A PERFECT WORLD", "release_year", "1993" ], [ "A RAISIN IN THE SUN", "has_genre", "DRAMA" ], [ "A RAISIN IN THE SUN", "has_tags", "FAMILY" ], [ "A SHINE OF RAINBOWS", "has_genre", "DRAMA" ], [ "A SHINE OF RAINBOWS", "has_genre", "FAMILY" ], [ "ABRAHAM'S VALLEY", "has_genre", "DRAMA" ], [ "ABRAHAM'S VALLEY", "release_year", "1993" ], [ "ACE OF HEARTS", "has_genre", "DRAMA" ], [ "ACE OF HEARTS", "has_genre", "FAMILY" ], [ "ALMOST FAMOUS", "has_genre", "DRAMA" ], [ "ALMOST FAMOUS", "has_imdb_votes", "FAMOUS" ], [ "ALMOST FAMOUS", "has_tags", "DRAMA" ], [ "ANATOMY OF A MURDER", "has_genre", "DRAMA" ], [ "ANATOMY OF A MURDER", "has_imdb_votes", "FAMOUS" ], [ "AND THE BAND PLAYED ON", "has_genre", "DRAMA" ], [ "AND THE BAND PLAYED ON", "release_year", "1993" ], [ "ANGELS SING", "has_genre", "DRAMA" ], [ "ANGELS SING", "has_genre", "FAMILY" ], [ "ANNA KARENINA", "has_genre", "DRAMA" ], [ "ANNA KARENINA", "has_imdb_votes", "FAMOUS" ], [ "ANNA KARENINA", "has_tags", "DRAMA" ], [ "BABY TAKE A BOW", "has_genre", "DRAMA" ], [ "BABY TAKE A BOW", "has_genre", "FAMILY" ], [ "BEETHOVEN'S 2ND", "has_genre", "FAMILY" ], [ "BEETHOVEN'S 2ND", "release_year", "1993" ], [ "BELLE DE JOUR", "has_genre", "DRAMA" ], [ "BELLE DE JOUR", "has_imdb_votes", "FAMOUS" ], [ "BELLE DE JOUR", "has_tags", "DRAMA" ], [ "BEN-HUR", "has_genre", "DRAMA" ], [ "BEN-HUR", "has_imdb_votes", "FAMOUS" ], [ "BHAJI ON THE BEACH", "has_genre", "DRAMA" ], [ "BHAJI ON THE BEACH", "release_year", "1993" ], [ "BOPHA!", "has_genre", "DRAMA" ], [ "BOPHA!", "release_year", "1993" ], [ "BORN ON THE FOURTH OF JULY", "has_genre", "DRAMA" ], [ "BORN ON THE FOURTH OF JULY", "has_imdb_votes", "FAMOUS" ], [ "BORN ON THE FOURTH OF JULY", "has_tags", "DRAMA" ], [ "BORN YESTERDAY", "has_genre", "DRAMA" ], [ "BORN YESTERDAY", "release_year", "1993" ], [ "BOXING HELENA", "has_genre", "DRAMA" ], [ "BOXING HELENA", "release_year", "1993" ], [ "BRASSED OFF", "has_genre", "DRAMA" ], [ "BRASSED OFF", "has_imdb_votes", "FAMOUS" ], [ "BROTHERHOOD OF THE WOLF", "has_genre", "DRAMA" ], [ "BROTHERHOOD OF THE WOLF", "has_imdb_votes", "FAMOUS" ], [ "CALENDAR", "has_genre", "DRAMA" ], [ "CALENDAR", "release_year", "1993" ], [ "CALIGULA", "has_genre", "DRAMA" ], [ "CALIGULA", "has_imdb_votes", "FAMOUS" ], [ "CARLITO'S WAY", "has_genre", "DRAMA" ], [ "CARLITO'S WAY", "release_year", "1993" ], [ "CAT ON A HOT TIN ROOF", "has_genre", "DRAMA" ], [ "CAT ON A HOT TIN ROOF", "has_tags", "FAMILY" ], [ "CHILDREN OF HEAVEN", "has_genre", "DRAMA" ], [ "CHILDREN OF HEAVEN", "has_genre", "FAMILY" ], [ "CLICK", "has_genre", "DRAMA" ], [ "CLICK", "has_tags", "FAMILY" ], [ "CONFESSIONS OF A TEENAGE DRAMA QUEEN", "has_genre", "FAMILY" ], [ "CONFESSIONS OF A TEENAGE DRAMA QUEEN", "has_tags", "DRAMA" ], [ "DEADFALL", "has_genre", "DRAMA" ], [ "DEADFALL", "release_year", "1993" ], [ "DENNIS THE MENACE", "has_genre", "FAMILY" ], [ "DENNIS THE MENACE", "release_year", "1993" ], [ "DOCTOR ZHIVAGO", "has_genre", "DRAMA" ], [ "DOCTOR ZHIVAGO", "has_imdb_votes", "FAMOUS" ], [ "DOLPHIN TALE", "has_genre", "DRAMA" ], [ "DOLPHIN TALE", "has_genre", "FAMILY" ], [ "DOLPHIN TALE", "has_tags", "FAMILY" ], [ "DR. DOLITTLE 3", "has_genre", "COMEDY" ], [ "DR. DOLITTLE 3", "has_genre", "FAMILY" ], [ "DR. DOLITTLE 3", "starred_actors", "KYLA PRATT" ], [ "EDWARD SCISSORHANDS", "has_genre", "DRAMA" ], [ "EDWARD SCISSORHANDS", "has_tags", "FAMILY" ], [ "ETHAN FROME", "has_genre", "DRAMA" ], [ "ETHAN FROME", "release_year", "1993" ], [ "EVEN COWGIRLS GET THE BLUES", "has_genre", "DRAMA" ], [ "EVEN COWGIRLS GET THE BLUES", "release_year", "1993" ], [ "FALLING DOWN", "has_genre", "DRAMA" ], [ "FALLING DOWN", "release_year", "1993" ], [ "FAREWELL MY CONCUBINE", "has_genre", "DRAMA" ], [ "FAREWELL MY CONCUBINE", "release_year", "1993" ], [ "FAT ALBERT", "has_genre", "COMEDY" ], [ "FAT ALBERT", "starred_actors", "KYLA PRATT" ], [ "FEARLESS", "has_genre", "DRAMA" ], [ "FEARLESS", "release_year", "1993" ], [ "FIDDLER ON THE ROOF", "has_genre", "DRAMA" ], [ "FIDDLER ON THE ROOF", "has_genre", "FAMILY" ], [ "FIDDLER ON THE ROOF", "has_imdb_votes", "FAMOUS" ], [ "FIORILE", "has_genre", "DRAMA" ], [ "FIORILE", "release_year", "1993" ], [ "FIRE IN THE SKY", "has_genre", "DRAMA" ], [ "FIRE IN THE SKY", "release_year", "1993" ], [ "FLASHDANCE", "has_genre", "DRAMA" ], [ "FLASHDANCE", "has_imdb_votes", "FAMOUS" ], [ "FLY AWAY HOME", "has_genre", "DRAMA" ], [ "FLY AWAY HOME", "has_genre", "FAMILY" ], [ "FREE WILLY", "has_genre", "DRAMA" ], [ "FREE WILLY", "has_genre", "FAMILY" ], [ "FREE WILLY", "has_imdb_votes", "FAMOUS" ], [ "FREE WILLY", "has_tags", "FAMILY" ], [ "FREE WILLY", "release_year", "1993" ], [ "GRAND HOTEL", "has_genre", "DRAMA" ], [ "GRAND HOTEL", "has_imdb_votes", "FAMOUS" ], [ "GUILTY AS SIN", "has_genre", "DRAMA" ], [ "GUILTY AS SIN", "release_year", "1993" ], [ "GYPSY", "has_genre", "DRAMA" ], [ "GYPSY", "release_year", "1993" ], [ "HANNAH AND HER SISTERS", "has_genre", "DRAMA" ], [ "HANNAH AND HER SISTERS", "has_tags", "FAMILY" ], [ "HERE WITHOUT ME", "has_genre", "DRAMA" ], [ "HERE WITHOUT ME", "has_genre", "FAMILY" ], [ "HOTEL RWANDA", "has_genre", "DRAMA" ], [ "HOTEL RWANDA", "has_tags", "DRAMA" ], [ "HOTEL RWANDA", "has_tags", "FAMILY" ], [ "HOTEL TRANSYLVANIA", "has_genre", "FAMILY" ], [ "HOTEL TRANSYLVANIA", "has_imdb_votes", "FAMOUS" ], [ "HOUSE OF CARDS", "has_genre", "DRAMA" ], [ "HOUSE OF CARDS", "release_year", "1993" ], [ "HOW GREEN WAS MY VALLEY", "has_genre", "DRAMA" ], [ "HOW GREEN WAS MY VALLEY", "has_genre", "FAMILY" ], [ "I DON'T WANT TO TALK ABOUT IT", "has_genre", "DRAMA" ], [ "I DON'T WANT TO TALK ABOUT IT", "release_year", "1993" ], [ "IF....", "has_genre", "DRAMA" ], [ "IF....", "has_imdb_votes", "FAMOUS" ], [ "INDECENT PROPOSAL", "has_genre", "DRAMA" ], [ "INDECENT PROPOSAL", "release_year", "1993" ], [ "INDIAN SUMMER", "has_genre", "DRAMA" ], [ "INDIAN SUMMER", "release_year", "1993" ], [ "INFAMOUS", "has_genre", "DRAMA" ], [ "INFAMOUS", "has_imdb_votes", "FAMOUS" ], [ "IT RUNS IN THE FAMILY", "has_genre", "DRAMA" ], [ "IT RUNS IN THE FAMILY", "has_genre", "FAMILY" ], [ "IT'S A WONDERFUL LIFE", "has_genre", "DRAMA" ], [ "IT'S A WONDERFUL LIFE", "has_genre", "FAMILY" ], [ "IT'S A WONDERFUL LIFE", "has_tags", "DRAMA" ], [ "IT'S A WONDERFUL LIFE", "has_tags", "FAMILY" ], [ "JACK THE BEAR", "has_genre", "DRAMA" ], [ "JACK THE BEAR", "release_year", "1993" ], [ "JOSH AND S.A.M.", "has_genre", "DRAMA" ], [ "JOSH AND S.A.M.", "release_year", "1993" ], [ "KAMCHATKA", "has_genre", "DRAMA" ], [ "KAMCHATKA", "has_tags", "FAMILY" ], [ "KIKUJIRO", "has_genre", "DRAMA" ], [ "KIKUJIRO", "has_imdb_votes", "FAMOUS" ], [ "KIND HEARTS AND CORONETS", "has_imdb_votes", "FAMOUS" ], [ "KIND HEARTS AND CORONETS", "has_tags", "FAMILY" ], [ "LA ESTRATEGIA DEL CARACOL", "has_genre", "DRAMA" ], [ "LA ESTRATEGIA DEL CARACOL", "release_year", "1993" ], [ "LES MISÉRABLES", "has_genre", "DRAMA" ], [ "LES MISÉRABLES", "has_imdb_votes", "FAMOUS" ], [ "LETTERS TO JULIET", "has_genre", "DRAMA" ], [ "LETTERS TO JULIET", "has_imdb_votes", "FAMOUS" ], [ "LITTLE BUDDHA", "has_genre", "DRAMA" ], [ "LITTLE BUDDHA", "release_year", "1993" ], [ "LITTLE LORD FAUNTLEROY", "has_genre", "DRAMA" ], [ "LITTLE LORD FAUNTLEROY", "has_genre", "FAMILY" ], [ "LITTLE WOMEN", "has_genre", "DRAMA" ], [ "LITTLE WOMEN", "has_genre", "FAMILY" ], [ "LITTLE WOMEN", "has_tags", "DRAMA" ], [ "LOOK WHO'S TALKING NOW", "has_genre", "FAMILY" ], [ "LOOK WHO'S TALKING NOW", "has_tags", "FAMILY" ], [ "LOOK WHO'S TALKING NOW", "release_year", "1993" ], [ "LORDS OF DOGTOWN", "has_genre", "DRAMA" ], [ "LORDS OF DOGTOWN", "has_imdb_votes", "FAMOUS" ], [ "M. BUTTERFLY", "has_genre", "DRAMA" ], [ "M. BUTTERFLY", "release_year", "1993" ], [ "MAD DOG AND GLORY", "has_genre", "DRAMA" ], [ "MAD DOG AND GLORY", "release_year", "1993" ], [ "MAN ON THE MOON", "has_genre", "DRAMA" ], [ "MAN ON THE MOON", "has_imdb_votes", "FAMOUS" ], [ "MENACE II SOCIETY", "has_genre", "DRAMA" ], [ "MENACE II SOCIETY", "release_year", "1993" ], [ "MIDNIGHT IN THE GARDEN OF GOOD AND EVIL", "has_genre", "DRAMA" ], [ "MIDNIGHT IN THE GARDEN OF GOOD AND EVIL", "has_imdb_votes", "FAMOUS" ], [ "MONA LISA SMILE", "has_genre", "DRAMA" ], [ "MONA LISA SMILE", "has_imdb_votes", "FAMOUS" ], [ "MR. JONES", "has_genre", "DRAMA" ], [ "MR. JONES", "release_year", "1993" ], [ "MY FAVORITE SEASON", "has_genre", "DRAMA" ], [ "MY FAVORITE SEASON", "release_year", "1993" ], [ "NAKED", "has_genre", "DRAMA" ], [ "NAKED", "release_year", "1993" ], [ "NOWHERE TO RUN", "has_genre", "DRAMA" ], [ "NOWHERE TO RUN", "release_year", "1993" ], [ "OLIVER TWIST", "has_genre", "DRAMA" ], [ "OLIVER TWIST", "has_imdb_votes", "FAMOUS" ], [ "ORDINARY PEOPLE", "has_genre", "DRAMA" ], [ "ORDINARY PEOPLE", "has_tags", "FAMILY" ], [ "PARENTHOOD", "has_genre", "DRAMA" ], [ "PARENTHOOD", "has_tags", "FAMILY" ], [ "PARIS, FRANCE", "has_genre", "DRAMA" ], [ "PARIS, FRANCE", "release_year", "1993" ], [ "PARTY MONSTER", "has_genre", "DRAMA" ], [ "PARTY MONSTER", "has_imdb_votes", "FAMOUS" ], [ "PATHER PANCHALI", "has_genre", "DRAMA" ], [ "PATHER PANCHALI", "has_tags", "FAMILY" ], [ "PHILADELPHIA", "has_genre", "DRAMA" ], [ "PHILADELPHIA", "release_year", "1993" ], [ "POETIC JUSTICE", "has_genre", "DRAMA" ], [ "POETIC JUSTICE", "release_year", "1993" ], [ "PUBLIC ACCESS", "has_genre", "DRAMA" ], [ "PUBLIC ACCESS", "release_year", "1993" ], [ "ROMEO AND JULIET", "has_genre", "DRAMA" ], [ "ROMEO AND JULIET", "has_imdb_votes", "FAMOUS" ], [ "SAVANNAH", "has_genre", "DRAMA" ], [ "SAVANNAH", "has_genre", "FAMILY" ], [ "SCHINDLER'S LIST", "has_genre", "DRAMA" ], [ "SCHINDLER'S LIST", "has_tags", "DRAMA" ], [ "SCHINDLER'S LIST", "release_year", "1993" ], [ "SEARCHING FOR BOBBY FISCHER", "has_genre", "DRAMA" ], [ "SEARCHING FOR BOBBY FISCHER", "release_year", "1993" ], [ "SHILOH", "has_genre", "DRAMA" ], [ "SHILOH", "has_genre", "FAMILY" ], [ "SHORT CUTS", "has_genre", "DRAMA" ], [ "SHORT CUTS", "release_year", "1993" ], [ "SIX DEGREES OF SEPARATION", "has_genre", "DRAMA" ], [ "SIX DEGREES OF SEPARATION", "release_year", "1993" ], [ "SOMEWHERE", "has_genre", "DRAMA" ], [ "SOMEWHERE", "has_imdb_votes", "FAMOUS" ], [ "SOMMERSBY", "has_genre", "DRAMA" ], [ "SOMMERSBY", "release_year", "1993" ], [ "STALINGRAD", "has_genre", "DRAMA" ], [ "STALINGRAD", "release_year", "1993" ], [ "STRAPPED", "has_genre", "DRAMA" ], [ "STRAPPED", "release_year", "1993" ], [ "SULLIVAN'S TRAVELS", "has_genre", "DRAMA" ], [ "SULLIVAN'S TRAVELS", "has_imdb_votes", "FAMOUS" ], [ "SUMMER HOURS", "has_genre", "DRAMA" ], [ "SUMMER HOURS", "has_genre", "FAMILY" ], [ "SWING KIDS", "has_genre", "DRAMA" ], [ "SWING KIDS", "release_year", "1993" ], [ "THE AGE OF INNOCENCE", "has_genre", "DRAMA" ], [ "THE AGE OF INNOCENCE", "release_year", "1993" ], [ "THE BROTHERS MCMULLEN", "has_genre", "DRAMA" ], [ "THE BROTHERS MCMULLEN", "has_tags", "FAMILY" ], [ "THE CEMENT GARDEN", "has_genre", "DRAMA" ], [ "THE CEMENT GARDEN", "release_year", "1993" ], [ "THE COLOR PURPLE", "has_genre", "DRAMA" ], [ "THE COLOR PURPLE", "has_imdb_votes", "FAMOUS" ], [ "THE DARK CRYSTAL", "has_genre", "FAMILY" ], [ "THE DARK CRYSTAL", "has_imdb_votes", "FAMOUS" ], [ "THE DEPARTED", "has_genre", "DRAMA" ], [ "THE DEPARTED", "has_imdb_votes", "FAMOUS" ], [ "THE DIARY OF ANNE FRANK", "has_genre", "DRAMA" ], [ "THE DIARY OF ANNE FRANK", "has_genre", "FAMILY" ], [ "THE DILEMMA", "has_genre", "DRAMA" ], [ "THE DILEMMA", "has_imdb_votes", "FAMOUS" ], [ "THE FAMILY STONE", "has_genre", "DRAMA" ], [ "THE FAMILY STONE", "has_tags", "DRAMA" ], [ "THE FAMILY STONE", "has_tags", "FAMILY" ], [ "THE FUGITIVE", "has_genre", "DRAMA" ], [ "THE FUGITIVE", "release_year", "1993" ], [ "THE HOUSE OF THE SPIRITS", "has_genre", "DRAMA" ], [ "THE HOUSE OF THE SPIRITS", "release_year", "1993" ], [ "THE HUMAN COMEDY", "has_genre", "DRAMA" ], [ "THE HUMAN COMEDY", "has_genre", "FAMILY" ], [ "THE JUNGLE BOOK", "has_genre", "FAMILY" ], [ "THE JUNGLE BOOK", "has_imdb_votes", "FAMOUS" ], [ "THE LITTLEST REBEL", "has_genre", "DRAMA" ], [ "THE LITTLEST REBEL", "has_genre", "FAMILY" ], [ "THE MAN WITHOUT A FACE", "has_genre", "DRAMA" ], [ "THE MAN WITHOUT A FACE", "has_tags", "DRAMA" ], [ "THE MAN WITHOUT A FACE", "release_year", "1993" ], [ "THE MUSIC OF CHANCE", "has_genre", "DRAMA" ], [ "THE MUSIC OF CHANCE", "release_year", "1993" ], [ "THE PIANO", "has_genre", "DRAMA" ], [ "THE PIANO", "release_year", "1993" ], [ "THE RED SQUIRREL", "has_genre", "DRAMA" ], [ "THE RED SQUIRREL", "release_year", "1993" ], [ "THE ROOKIE", "has_genre", "DRAMA" ], [ "THE ROOKIE", "has_imdb_votes", "FAMOUS" ], [ "THE SECRET GARDEN", "has_genre", "DRAMA" ], [ "THE SECRET GARDEN", "release_year", "1993" ], [ "THE SILVER BRUMBY", "has_genre", "DRAMA" ], [ "THE SILVER BRUMBY", "has_genre", "FAMILY" ], [ "THE SILVER BRUMBY", "release_year", "1993" ], [ "THE SLINGSHOT", "has_genre", "DRAMA" ], [ "THE SLINGSHOT", "release_year", "1993" ], [ "THE SNAPPER", "has_tags", "FAMILY" ], [ "THE SNAPPER", "release_year", "1993" ], [ "THE STORY OF ESTHER COSTELLO", "has_genre", "DRAMA" ], [ "THE STORY OF ESTHER COSTELLO", "written_by", "NICHOLAS MONSARRAT" ], [ "THE STORY OF THE WEEPING CAMEL", "has_genre", "DRAMA" ], [ "THE STORY OF THE WEEPING CAMEL", "has_genre", "FAMILY" ], [ "THE STORY OF THE WEEPING CAMEL", "has_tags", "FAMILY" ], [ "THE THING CALLED LOVE", "has_genre", "DRAMA" ], [ "THE THING CALLED LOVE", "release_year", "1993" ], [ "THE THREE MUSKETEERS", "has_genre", "DRAMA" ], [ "THE THREE MUSKETEERS", "release_year", "1993" ], [ "THE WINSLOW BOY", "has_genre", "DRAMA" ], [ "THE WINSLOW BOY", "has_tags", "FAMILY" ], [ "THE WRONG MAN", "has_genre", "DRAMA" ], [ "THE WRONG MAN", "release_year", "1993" ], [ "THE YEAR OF LIVING DANGEROUSLY", "has_genre", "DRAMA" ], [ "THE YEAR OF LIVING DANGEROUSLY", "has_imdb_votes", "FAMOUS" ], [ "THE YEARLING", "has_genre", "DRAMA" ], [ "THE YEARLING", "has_genre", "FAMILY" ], [ "THE YOUNG AMERICANS", "has_genre", "DRAMA" ], [ "THE YOUNG AMERICANS", "release_year", "1993" ], [ "UNTAMED HEART", "has_genre", "DRAMA" ], [ "UNTAMED HEART", "release_year", "1993" ], [ "WE BOUGHT A ZOO", "has_genre", "DRAMA" ], [ "WE BOUGHT A ZOO", "has_genre", "FAMILY" ], [ "WE BOUGHT A ZOO", "has_tags", "FAMILY" ], [ "WHAT'S EATING GILBERT GRAPE", "has_genre", "DRAMA" ], [ "WHAT'S EATING GILBERT GRAPE", "release_year", "1993" ], [ "WHAT'S LOVE GOT TO DO WITH IT", "has_genre", "DRAMA" ], [ "WHAT'S LOVE GOT TO DO WITH IT", "release_year", "1993" ], [ "WIDE AWAKE", "has_genre", "DRAMA" ], [ "WIDE AWAKE", "has_genre", "FAMILY" ], [ "WIDE-EYED AND LEGLESS", "has_genre", "DRAMA" ], [ "WIDE-EYED AND LEGLESS", "release_year", "1993" ], [ "WINDOW TO PARIS", "has_genre", "DRAMA" ], [ "WINDOW TO PARIS", "release_year", "1993" ], [ "WRESTLING ERNEST HEMINGWAY", "has_genre", "DRAMA" ], [ "WRESTLING ERNEST HEMINGWAY", "release_year", "1993" ], [ "YOU CAN COUNT ON ME", "has_genre", "DRAMA" ], [ "YOU CAN COUNT ON ME", "has_tags", "FAMILY" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 26257, 1994 13634, ARTHUR PENN 9243, CHARLES GRODIN 9387, CLIFFORD 13176, DEAD OF WINTER 6012, FRENCH 7569, IN THE BEGINNING 24208, INSIDE 39987, IT RUNS IN THE FAMILY 21474, MARLON BRANDO 16619, MARY STEENBURGEN 13876, PONTIAC MOON 13685, THE CHASE 26879, THE MISSOURI BREAKS 4632, XAVIER GIANNOLI src, edge_attr, dst 9387, release_year, 26257 9387, starred_actors, 9243 9387, starred_actors, 16619 13176, directed_by, 13634 13176, starred_actors, 16619 7569, directed_by, 4632 7569, in_language, 6012 7569, written_by, 4632 24208, directed_by, 13634 24208, has_tags, 6012 24208, in_language, 6012 39987, release_year, 26257 39987, starred_actors, 9243 39987, starred_actors, 16619 13876, release_year, 26257 13876, starred_actors, 16619 13685, directed_by, 13634 13685, has_tags, 13634 13685, has_tags, 21474 13685, release_year, 26257 13685, starred_actors, 21474 26879, directed_by, 13634 26879, has_tags, 21474 26879, starred_actors, 21474 Question: In what context are ARTHUR PENN, CLIFFORD, and XAVIER GIANNOLI connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "ARTHUR PENN", "CLIFFORD", "XAVIER GIANNOLI" ], "valid_edges": [ [ "CLIFFORD", "release_year", "1994" ], [ "CLIFFORD", "starred_actors", "CHARLES GRODIN" ], [ "CLIFFORD", "starred_actors", "MARY STEENBURGEN" ], [ "DEAD OF WINTER", "directed_by", "ARTHUR PENN" ], [ "DEAD OF WINTER", "starred_actors", "MARY STEENBURGEN" ], [ "IN THE BEGINNING", "directed_by", "XAVIER GIANNOLI" ], [ "IN THE BEGINNING", "in_language", "FRENCH" ], [ "IN THE BEGINNING", "written_by", "XAVIER GIANNOLI" ], [ "INSIDE", "directed_by", "ARTHUR PENN" ], [ "INSIDE", "has_tags", "FRENCH" ], [ "INSIDE", "in_language", "FRENCH" ], [ "IT RUNS IN THE FAMILY", "release_year", "1994" ], [ "IT RUNS IN THE FAMILY", "starred_actors", "CHARLES GRODIN" ], [ "IT RUNS IN THE FAMILY", "starred_actors", "MARY STEENBURGEN" ], [ "PONTIAC MOON", "release_year", "1994" ], [ "PONTIAC MOON", "starred_actors", "MARY STEENBURGEN" ], [ "THE CHASE", "directed_by", "ARTHUR PENN" ], [ "THE CHASE", "has_tags", "ARTHUR PENN" ], [ "THE CHASE", "has_tags", "MARLON BRANDO" ], [ "THE CHASE", "release_year", "1994" ], [ "THE CHASE", "starred_actors", "MARLON BRANDO" ], [ "THE MISSOURI BREAKS", "directed_by", "ARTHUR PENN" ], [ "THE MISSOURI BREAKS", "has_tags", "MARLON BRANDO" ], [ "THE MISSOURI BREAKS", "starred_actors", "MARLON BRANDO" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 25221, 1981 4763, ADVENTURE 4152, COMIN' AT YA! 14616, OUTLAND 36591, SEAN CONNERY 4635, SERENITY 12165, SHALAKO 28395, SPACE 32435, SPACE WESTERN 18657, SPIES LIKE US 37179, STEVE FORREST 17426, THE LAND UNKNOWN 15027, THE LEGEND OF THE LONE RANGER 22340, THE SECOND TIME AROUND 36026, WESTERN 14905, WILLIAM REYNOLDS src, edge_attr, dst 4152, has_genre, 36026 4152, release_year, 25221 14616, has_tags, 36591 14616, has_tags, 28395 14616, has_tags, 32435 14616, has_tags, 36026 14616, release_year, 25221 14616, starred_actors, 36591 4635, has_tags, 28395 4635, has_tags, 32435 4635, has_tags, 36026 12165, has_genre, 36026 12165, starred_actors, 36591 18657, has_genre, 4763 18657, starred_actors, 37179 17426, has_genre, 4763 17426, starred_actors, 14905 15027, has_genre, 36026 15027, release_year, 25221 22340, has_genre, 36026 22340, starred_actors, 37179 Question: How are OUTLAND, STEVE FORREST, and WILLIAM REYNOLDS related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "OUTLAND", "STEVE FORREST", "WILLIAM REYNOLDS" ], "valid_edges": [ [ "COMIN' AT YA!", "has_genre", "WESTERN" ], [ "COMIN' AT YA!", "release_year", "1981" ], [ "OUTLAND", "has_tags", "SEAN CONNERY" ], [ "OUTLAND", "has_tags", "SPACE" ], [ "OUTLAND", "has_tags", "SPACE WESTERN" ], [ "OUTLAND", "has_tags", "WESTERN" ], [ "OUTLAND", "release_year", "1981" ], [ "OUTLAND", "starred_actors", "SEAN CONNERY" ], [ "SERENITY", "has_tags", "SPACE" ], [ "SERENITY", "has_tags", "SPACE WESTERN" ], [ "SERENITY", "has_tags", "WESTERN" ], [ "SHALAKO", "has_genre", "WESTERN" ], [ "SHALAKO", "starred_actors", "SEAN CONNERY" ], [ "SPIES LIKE US", "has_genre", "ADVENTURE" ], [ "SPIES LIKE US", "starred_actors", "STEVE FORREST" ], [ "THE LAND UNKNOWN", "has_genre", "ADVENTURE" ], [ "THE LAND UNKNOWN", "starred_actors", "WILLIAM REYNOLDS" ], [ "THE LEGEND OF THE LONE RANGER", "has_genre", "WESTERN" ], [ "THE LEGEND OF THE LONE RANGER", "release_year", "1981" ], [ "THE SECOND TIME AROUND", "has_genre", "WESTERN" ], [ "THE SECOND TIME AROUND", "starred_actors", "STEVE FORREST" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 37493, 102 DALMATIANS 23986, 18 AGAIN! 17480, 1988 24818, 1992 13578, 22 JUMP STREET 9005, 3 NINJAS 9351, A FISH CALLED WANDA 31650, A HAUNTED HOUSE 2 31344, A LEAGUE OF THEIR OWN 12929, A VERY BRADY SEQUEL 22412, ALLAN QUATERMAIN AND THE LOST CITY OF GOLD 34371, ALOHA SUMMER 34899, AMERICAN PIE 2 368, AMERICAN WEDDING 27571, AN AMERICAN WEREWOLF IN PARIS 26858, ARMY OF DARKNESS 31229, BANDSLAM 20940, BEACHES 14271, BEETHOVEN 39695, BEETLEJUICE 24579, BEVERLY HILLS COP II 15905, BIG 35901, BIG BUSINESS 9127, BIG GIRLS DON'T CRY... THEY GET EVEN 11779, BIG TOP PEE-WEE 18599, BILOXI BLUES 32193, BLAME IT ON THE BELLBOY 16023, BLUES BROTHERS 2000 19829, BOOMERANG 9190, BRAIN DAMAGE 8606, BRAIN DONORS 23128, BRIDGET JONES'S DIARY 23319, BUFFY THE VAMPIRE SLAYER 16714, BULL DURHAM 38286, BUSTER 33773, BÉBÉ'S KIDS 31116, CADDYSHACK II 24715, CAMP 10877, CAPTAIN RON 39255, CARS 2 27136, CASUAL SEX? 15721, CIAO, PROFESSORE! 12356, CLASS ACT 21625, CLERKS II 29046, CLOUDY WITH A CHANCE OF MEATBALLS 2 30463, COMEDY 9144, COMING TO AMERICA 26689, COMPAGNI DI SCUOLA 11807, CRITTERS 4 11441, CROSSING DELANCEY 27380, DEATH BECOMES HER 1463, DIRTY ROTTEN SCOUNDRELS 22341, DRAGONS FOREVER 18349, EARTH GIRLS ARE EASY 9457, ENCINO MAN 29258, ERNEST SAVES CHRISTMAS 31630, EVIL TOONS 21243, FATHER OF THE BRIDE PART II 4880, FEDS 5636, FOLKS! 32553, FROZEN ASSETS 17144, GRUMPIER OLD MEN 9798, HAIRSPRAY 10658, HEARTBREAK HOTEL 949, HEATHERS 3829, HERO 10555, HIGH HOPES 37827, HIGH SCHOOL 35566, HIGH SPIRITS 18546, HONEYMOON IN VEGAS 5068, HOT SHOTS! PART DEUX 30435, HOT TO TROT 25277, HUSBANDS AND WIVES 4419, IN THE SOUP 17556, JAWBREAKER 29896, JOHNNY BE GOOD 8923, JOHNNY ENGLISH REBORN 16510, JOYFUL NOISE 7729, JULIE BENZ 25894, KICK-ASS 2 11048, KILLER KLOWNS FROM OUTER SPACE 25510, KING OF BEGGARS 13704, KUFFS 18950, LADYBUGS 191, LEAVING NORMAL 25390, LIFE IS A LONG QUIET RIVER 24500, LITTLE SISTER 19450, LOOK WHO'S TALKING TOO 8268, MALEDETTO IL GIORNO CHE T'HO INCONTRATO 10560, MAN BITES DOG 24068, MAN TROUBLE 28521, MARRIED TO THE MOB 30022, MEAN GIRLS 2 4561, MEMOIRS OF AN INVISIBLE MAN 35049, MIDNIGHT RUN 34536, MISTRESS 39399, MO' MONEY 17135, MOM AND DAD SAVE THE WORLD 27936, MONSTERS UNIVERSITY 32033, MOVING 815, MR. BASEBALL 3855, MR. NORTH 21919, MY COUSIN VINNY 2581, MY NEW GUN 25950, MY STEPMOTHER IS AN ALIEN 5229, OLLIE HOPNOODLE'S HAVEN OF BLISS 14917, OUT ON A LIMB 16910, PARENTI SERPENTI 25678, PETER'S FRIENDS 8526, PUNCHLINE 9555, RED HEAT 28034, SCREAM 2 4187, SCROOGED 18762, SEQUEL 32127, SHE'S HAVING A BABY 701, SHORT CIRCUIT 2 36159, SHREK 16264, SHREK 2 3358, SINGLES 8652, SISTER ACT 29298, SON OF THE MASK 38010, STARS AND BARS 17370, STAY TUNED 2033, STOP! OR MY MOM WILL SHOOT 22993, STRAIGHT TALK 1432, STRICTLY BALLROOM 40018, SUNSET 40054, SWITCHING CHANNELS 20121, TAPEHEADS 2584, THE ADVENTURES OF BARON MUNCHAUSEN 1876, THE APPOINTMENTS OF DENNIS JENNINGS 36928, THE BIKINI CARWASH COMPANY 12710, THE COUCH TRIP 13869, THE DISTINGUISHED GENTLEMAN 7087, THE GREAT OUTDOORS 21831, THE GUN IN BETTY LOU'S HANDBAG 18150, THE JEWEL OF THE NILE 24724, THE MIGHTY DUCKS 26128, THE MUPPET CHRISTMAS CAROL 24035, THE NORTHERNERS 29027, THE TELEPHONE 12922, THE WRONG GUYS 21375, THINGS CHANGE 939, THIS IS 40 13520, TODD GRAFF 11574, TORCH SONG TRILOGY 14499, TOY STORY 2 2281, TOYS 7279, TWIN DRAGONS 31301, TWINS 10376, USED PEOPLE 38723, VIBES 21967, VICE VERSA 10177, WAXWORK 38839, WAYNE'S WORLD 20751, WHITE MEN CAN'T JUMP 3912, WHO FRAMED ROGER RABBIT 13847, WITHOUT A CLUE 29650, WOMEN ON THE VERGE OF A NERVOUS BREAKDOWN 33275, WORKING GIRL 32182, YOUNG EINSTEIN src, edge_attr, dst 37493, has_genre, 30463 37493, has_tags, 18762 23986, has_genre, 30463 23986, release_year, 17480 13578, has_genre, 30463 13578, has_tags, 18762 9005, has_genre, 30463 9005, release_year, 24818 9351, has_genre, 30463 9351, release_year, 17480 31650, has_genre, 30463 31650, has_tags, 18762 31344, has_genre, 30463 31344, release_year, 24818 12929, has_genre, 30463 12929, has_tags, 18762 22412, has_genre, 30463 22412, has_tags, 18762 34371, has_genre, 30463 34371, release_year, 17480 34899, has_genre, 30463 34899, has_tags, 30463 34899, has_tags, 18762 368, has_genre, 30463 368, has_tags, 30463 368, has_tags, 18762 27571, has_genre, 30463 27571, has_tags, 18762 26858, has_genre, 30463 26858, has_tags, 30463 26858, release_year, 24818 31229, directed_by, 13520 31229, has_genre, 30463 31229, written_by, 13520 20940, has_genre, 30463 20940, release_year, 17480 14271, has_genre, 30463 14271, has_tags, 30463 14271, release_year, 24818 39695, has_genre, 30463 39695, has_tags, 30463 39695, release_year, 17480 24579, has_genre, 30463 24579, has_tags, 18762 15905, has_genre, 30463 15905, has_tags, 30463 15905, release_year, 17480 35901, has_genre, 30463 35901, release_year, 17480 9127, has_genre, 30463 9127, release_year, 24818 11779, has_genre, 30463 11779, release_year, 17480 18599, has_genre, 30463 18599, release_year, 17480 32193, has_genre, 30463 32193, release_year, 24818 16023, has_genre, 30463 16023, has_tags, 18762 19829, has_genre, 30463 19829, release_year, 24818 9190, has_genre, 30463 9190, release_year, 17480 8606, has_genre, 30463 8606, release_year, 24818 23128, has_genre, 30463 23128, has_tags, 30463 23128, has_tags, 18762 23319, has_genre, 30463 23319, has_tags, 30463 23319, release_year, 24818 16714, has_genre, 30463 16714, release_year, 17480 38286, has_genre, 30463 38286, release_year, 17480 33773, has_genre, 30463 33773, release_year, 24818 31116, has_genre, 30463 31116, release_year, 17480 24715, directed_by, 13520 24715, has_genre, 30463 24715, written_by, 13520 10877, has_genre, 30463 10877, has_tags, 30463 10877, release_year, 24818 39255, has_genre, 30463 39255, has_tags, 18762 27136, has_genre, 30463 27136, release_year, 17480 15721, has_genre, 30463 15721, release_year, 24818 12356, has_genre, 30463 12356, release_year, 24818 21625, has_genre, 30463 21625, has_tags, 30463 21625, has_tags, 18762 29046, has_genre, 30463 29046, has_tags, 18762 9144, has_genre, 30463 9144, has_tags, 30463 9144, release_year, 17480 26689, has_genre, 30463 26689, release_year, 17480 11807, has_genre, 30463 11807, release_year, 24818 11441, has_genre, 30463 11441, release_year, 17480 27380, has_genre, 30463 27380, release_year, 24818 1463, has_genre, 30463 1463, release_year, 17480 22341, has_genre, 30463 22341, release_year, 17480 18349, has_genre, 30463 18349, release_year, 17480 9457, has_genre, 30463 9457, release_year, 24818 29258, has_genre, 30463 29258, release_year, 17480 31630, has_genre, 30463 31630, release_year, 24818 21243, has_genre, 30463 21243, has_tags, 30463 21243, has_tags, 18762 4880, has_genre, 30463 4880, release_year, 17480 5636, has_genre, 30463 5636, release_year, 24818 32553, has_genre, 30463 32553, release_year, 24818 17144, has_genre, 30463 17144, has_tags, 30463 17144, has_tags, 18762 9798, has_genre, 30463 9798, has_tags, 30463 9798, release_year, 17480 10658, has_genre, 30463 10658, release_year, 17480 949, has_genre, 30463 949, release_year, 17480 3829, has_genre, 30463 3829, release_year, 24818 10555, has_genre, 30463 10555, release_year, 17480 37827, has_genre, 30463 35566, has_genre, 30463 35566, release_year, 17480 18546, has_genre, 30463 18546, release_year, 24818 5068, has_genre, 30463 5068, has_tags, 30463 5068, has_tags, 18762 30435, has_genre, 30463 30435, release_year, 17480 25277, has_genre, 30463 25277, release_year, 24818 4419, has_genre, 30463 4419, release_year, 24818 17556, has_genre, 30463 17556, has_tags, 37827 17556, has_tags, 7729 17556, starred_actors, 7729 29896, has_genre, 30463 29896, release_year, 17480 8923, has_genre, 30463 8923, has_tags, 30463 8923, has_tags, 18762 16510, directed_by, 13520 16510, has_genre, 30463 16510, written_by, 13520 25894, has_genre, 30463 25894, has_tags, 18762 11048, has_genre, 30463 11048, release_year, 17480 25510, has_genre, 30463 25510, release_year, 24818 13704, has_genre, 30463 13704, release_year, 24818 18950, has_genre, 30463 18950, release_year, 24818 191, has_genre, 30463 191, release_year, 24818 25390, has_genre, 30463 25390, release_year, 17480 24500, has_genre, 30463 24500, release_year, 24818 19450, has_genre, 30463 19450, has_tags, 18762 8268, has_genre, 30463 8268, release_year, 24818 10560, has_genre, 30463 10560, release_year, 24818 24068, has_genre, 30463 24068, release_year, 24818 28521, has_genre, 30463 28521, release_year, 17480 30022, has_genre, 30463 30022, has_tags, 18762 4561, has_genre, 30463 4561, release_year, 24818 35049, has_genre, 30463 35049, has_tags, 30463 35049, release_year, 17480 34536, has_genre, 30463 34536, release_year, 24818 39399, has_genre, 30463 39399, release_year, 24818 17135, has_genre, 30463 17135, release_year, 24818 27936, has_genre, 30463 27936, has_tags, 30463 27936, has_tags, 18762 32033, has_genre, 30463 32033, release_year, 17480 815, has_genre, 30463 815, release_year, 24818 3855, has_genre, 30463 3855, release_year, 17480 21919, has_genre, 30463 21919, has_tags, 30463 21919, release_year, 24818 2581, has_genre, 30463 2581, release_year, 24818 25950, has_genre, 30463 25950, release_year, 17480 5229, has_genre, 30463 5229, release_year, 17480 14917, has_genre, 30463 14917, release_year, 24818 16910, has_genre, 30463 16910, release_year, 24818 25678, has_genre, 30463 25678, release_year, 24818 8526, has_genre, 30463 8526, release_year, 17480 9555, has_genre, 30463 9555, release_year, 17480 28034, has_tags, 30463 28034, has_tags, 18762 4187, has_genre, 30463 4187, has_tags, 30463 4187, release_year, 17480 32127, has_genre, 30463 32127, release_year, 17480 701, has_tags, 18762 701, release_year, 17480 36159, has_genre, 30463 36159, has_tags, 30463 36159, has_tags, 18762 16264, has_genre, 30463 16264, has_tags, 30463 16264, has_tags, 18762 3358, has_genre, 30463 3358, release_year, 24818 8652, has_genre, 30463 8652, release_year, 24818 29298, has_genre, 30463 29298, has_tags, 18762 38010, has_genre, 30463 38010, release_year, 17480 17370, has_genre, 30463 17370, release_year, 24818 2033, has_genre, 30463 2033, has_tags, 30463 2033, release_year, 24818 22993, has_genre, 30463 22993, release_year, 24818 1432, has_genre, 30463 1432, release_year, 24818 40018, has_genre, 30463 40018, release_year, 17480 40054, has_genre, 30463 40054, release_year, 17480 20121, has_genre, 30463 20121, release_year, 17480 2584, has_genre, 30463 2584, release_year, 17480 1876, has_genre, 30463 1876, release_year, 17480 36928, has_genre, 30463 36928, release_year, 24818 12710, has_genre, 30463 12710, release_year, 17480 13869, has_genre, 30463 13869, release_year, 24818 7087, has_genre, 30463 7087, release_year, 17480 21831, has_genre, 30463 21831, release_year, 24818 18150, has_genre, 30463 18150, has_tags, 30463 18150, has_tags, 18762 24724, has_genre, 30463 24724, release_year, 24818 26128, has_genre, 30463 26128, release_year, 24818 24035, has_genre, 30463 24035, release_year, 24818 29027, has_genre, 30463 29027, release_year, 17480 12922, has_genre, 30463 12922, release_year, 17480 21375, has_genre, 30463 21375, release_year, 17480 939, has_genre, 30463 939, has_tags, 18762 11574, has_genre, 30463 11574, release_year, 17480 14499, has_genre, 30463 14499, has_tags, 18762 2281, has_genre, 30463 2281, release_year, 24818 7279, has_genre, 30463 7279, release_year, 24818 31301, has_genre, 30463 31301, has_tags, 30463 31301, release_year, 17480 10376, has_genre, 30463 10376, release_year, 24818 10376, written_by, 13520 38723, has_genre, 30463 38723, release_year, 17480 21967, has_genre, 30463 21967, release_year, 17480 10177, has_genre, 30463 10177, release_year, 17480 38839, has_genre, 30463 38839, has_tags, 30463 38839, release_year, 24818 20751, has_genre, 30463 20751, has_tags, 30463 20751, release_year, 24818 3912, has_genre, 30463 3912, has_tags, 30463 3912, release_year, 17480 13847, has_genre, 30463 13847, release_year, 17480 29650, has_genre, 30463 29650, release_year, 17480 33275, has_genre, 30463 33275, release_year, 17480 32182, has_genre, 30463 32182, release_year, 17480 Question: For what reason are JULIE BENZ, SHORT CIRCUIT 2, and USED PEOPLE associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "JULIE BENZ", "SHORT CIRCUIT 2", "USED PEOPLE" ], "valid_edges": [ [ "102 DALMATIANS", "has_genre", "COMEDY" ], [ "102 DALMATIANS", "has_tags", "SEQUEL" ], [ "18 AGAIN!", "has_genre", "COMEDY" ], [ "18 AGAIN!", "release_year", "1988" ], [ "22 JUMP STREET", "has_genre", "COMEDY" ], [ "22 JUMP STREET", "has_tags", "SEQUEL" ], [ "3 NINJAS", "has_genre", "COMEDY" ], [ "3 NINJAS", "release_year", "1992" ], [ "A FISH CALLED WANDA", "has_genre", "COMEDY" ], [ "A FISH CALLED WANDA", "release_year", "1988" ], [ "A HAUNTED HOUSE 2", "has_genre", "COMEDY" ], [ "A HAUNTED HOUSE 2", "has_tags", "SEQUEL" ], [ "A LEAGUE OF THEIR OWN", "has_genre", "COMEDY" ], [ "A LEAGUE OF THEIR OWN", "release_year", "1992" ], [ "A VERY BRADY SEQUEL", "has_genre", "COMEDY" ], [ "A VERY BRADY SEQUEL", "has_tags", "SEQUEL" ], [ "ALLAN QUATERMAIN AND THE LOST CITY OF GOLD", "has_genre", "COMEDY" ], [ "ALLAN QUATERMAIN AND THE LOST CITY OF GOLD", "has_tags", "SEQUEL" ], [ "ALOHA SUMMER", "has_genre", "COMEDY" ], [ "ALOHA SUMMER", "release_year", "1988" ], [ "AMERICAN PIE 2", "has_genre", "COMEDY" ], [ "AMERICAN PIE 2", "has_tags", "COMEDY" ], [ "AMERICAN PIE 2", "has_tags", "SEQUEL" ], [ "AMERICAN WEDDING", "has_genre", "COMEDY" ], [ "AMERICAN WEDDING", "has_tags", "COMEDY" ], [ "AMERICAN WEDDING", "has_tags", "SEQUEL" ], [ "AN AMERICAN WEREWOLF IN PARIS", "has_genre", "COMEDY" ], [ "AN AMERICAN WEREWOLF IN PARIS", "has_tags", "SEQUEL" ], [ "ARMY OF DARKNESS", "has_genre", "COMEDY" ], [ "ARMY OF DARKNESS", "has_tags", "COMEDY" ], [ "ARMY OF DARKNESS", "release_year", "1992" ], [ "BANDSLAM", "directed_by", "TODD GRAFF" ], [ "BANDSLAM", "has_genre", "COMEDY" ], [ "BANDSLAM", "written_by", "TODD GRAFF" ], [ "BEACHES", "has_genre", "COMEDY" ], [ "BEACHES", "release_year", "1988" ], [ "BEETHOVEN", "has_genre", "COMEDY" ], [ "BEETHOVEN", "has_tags", "COMEDY" ], [ "BEETHOVEN", "release_year", "1992" ], [ "BEETLEJUICE", "has_genre", "COMEDY" ], [ "BEETLEJUICE", "has_tags", "COMEDY" ], [ "BEETLEJUICE", "release_year", "1988" ], [ "BEVERLY HILLS COP II", "has_genre", "COMEDY" ], [ "BEVERLY HILLS COP II", "has_tags", "SEQUEL" ], [ "BIG", "has_genre", "COMEDY" ], [ "BIG", "has_tags", "COMEDY" ], [ "BIG", "release_year", "1988" ], [ "BIG BUSINESS", "has_genre", "COMEDY" ], [ "BIG BUSINESS", "release_year", "1988" ], [ "BIG GIRLS DON'T CRY... THEY GET EVEN", "has_genre", "COMEDY" ], [ "BIG GIRLS DON'T CRY... THEY GET EVEN", "release_year", "1992" ], [ "BIG TOP PEE-WEE", "has_genre", "COMEDY" ], [ "BIG TOP PEE-WEE", "release_year", "1988" ], [ "BILOXI BLUES", "has_genre", "COMEDY" ], [ "BILOXI BLUES", "release_year", "1988" ], [ "BLAME IT ON THE BELLBOY", "has_genre", "COMEDY" ], [ "BLAME IT ON THE BELLBOY", "release_year", "1992" ], [ "BLUES BROTHERS 2000", "has_genre", "COMEDY" ], [ "BLUES BROTHERS 2000", "has_tags", "SEQUEL" ], [ "BOOMERANG", "has_genre", "COMEDY" ], [ "BOOMERANG", "release_year", "1992" ], [ "BRAIN DAMAGE", "has_genre", "COMEDY" ], [ "BRAIN DAMAGE", "release_year", "1988" ], [ "BRAIN DONORS", "has_genre", "COMEDY" ], [ "BRAIN DONORS", "release_year", "1992" ], [ "BRIDGET JONES'S DIARY", "has_genre", "COMEDY" ], [ "BRIDGET JONES'S DIARY", "has_tags", "COMEDY" ], [ "BRIDGET JONES'S DIARY", "has_tags", "SEQUEL" ], [ "BUFFY THE VAMPIRE SLAYER", "has_genre", "COMEDY" ], [ "BUFFY THE VAMPIRE SLAYER", "has_tags", "COMEDY" ], [ "BUFFY THE VAMPIRE SLAYER", "release_year", "1992" ], [ "BULL DURHAM", "has_genre", "COMEDY" ], [ "BULL DURHAM", "release_year", "1988" ], [ "BUSTER", "has_genre", "COMEDY" ], [ "BUSTER", "release_year", "1988" ], [ "BÉBÉ'S KIDS", "has_genre", "COMEDY" ], [ "BÉBÉ'S KIDS", "release_year", "1992" ], [ "CADDYSHACK II", "has_genre", "COMEDY" ], [ "CADDYSHACK II", "release_year", "1988" ], [ "CAMP", "directed_by", "TODD GRAFF" ], [ "CAMP", "has_genre", "COMEDY" ], [ "CAMP", "written_by", "TODD GRAFF" ], [ "CAPTAIN RON", "has_genre", "COMEDY" ], [ "CAPTAIN RON", "has_tags", "COMEDY" ], [ "CAPTAIN RON", "release_year", "1992" ], [ "CARS 2", "has_genre", "COMEDY" ], [ "CARS 2", "has_tags", "SEQUEL" ], [ "CASUAL SEX?", "has_genre", "COMEDY" ], [ "CASUAL SEX?", "release_year", "1988" ], [ "CIAO, PROFESSORE!", "has_genre", "COMEDY" ], [ "CIAO, PROFESSORE!", "release_year", "1992" ], [ "CLASS ACT", "has_genre", "COMEDY" ], [ "CLASS ACT", "release_year", "1992" ], [ "CLERKS II", "has_genre", "COMEDY" ], [ "CLERKS II", "has_tags", "COMEDY" ], [ "CLERKS II", "has_tags", "SEQUEL" ], [ "CLOUDY WITH A CHANCE OF MEATBALLS 2", "has_genre", "COMEDY" ], [ "CLOUDY WITH A CHANCE OF MEATBALLS 2", "has_tags", "SEQUEL" ], [ "COMING TO AMERICA", "has_genre", "COMEDY" ], [ "COMING TO AMERICA", "has_tags", "COMEDY" ], [ "COMING TO AMERICA", "release_year", "1988" ], [ "COMPAGNI DI SCUOLA", "has_genre", "COMEDY" ], [ "COMPAGNI DI SCUOLA", "release_year", "1988" ], [ "CRITTERS 4", "has_genre", "COMEDY" ], [ "CRITTERS 4", "release_year", "1992" ], [ "CROSSING DELANCEY", "has_genre", "COMEDY" ], [ "CROSSING DELANCEY", "release_year", "1988" ], [ "DEATH BECOMES HER", "has_genre", "COMEDY" ], [ "DEATH BECOMES HER", "release_year", "1992" ], [ "DIRTY ROTTEN SCOUNDRELS", "has_genre", "COMEDY" ], [ "DIRTY ROTTEN SCOUNDRELS", "release_year", "1988" ], [ "DRAGONS FOREVER", "has_genre", "COMEDY" ], [ "DRAGONS FOREVER", "release_year", "1988" ], [ "EARTH GIRLS ARE EASY", "has_genre", "COMEDY" ], [ "EARTH GIRLS ARE EASY", "release_year", "1988" ], [ "ENCINO MAN", "has_genre", "COMEDY" ], [ "ENCINO MAN", "release_year", "1992" ], [ "ERNEST SAVES CHRISTMAS", "has_genre", "COMEDY" ], [ "ERNEST SAVES CHRISTMAS", "release_year", "1988" ], [ "EVIL TOONS", "has_genre", "COMEDY" ], [ "EVIL TOONS", "release_year", "1992" ], [ "FATHER OF THE BRIDE PART II", "has_genre", "COMEDY" ], [ "FATHER OF THE BRIDE PART II", "has_tags", "COMEDY" ], [ "FATHER OF THE BRIDE PART II", "has_tags", "SEQUEL" ], [ "FEDS", "has_genre", "COMEDY" ], [ "FEDS", "release_year", "1988" ], [ "FOLKS!", "has_genre", "COMEDY" ], [ "FOLKS!", "release_year", "1992" ], [ "FROZEN ASSETS", "has_genre", "COMEDY" ], [ "FROZEN ASSETS", "release_year", "1992" ], [ "GRUMPIER OLD MEN", "has_genre", "COMEDY" ], [ "GRUMPIER OLD MEN", "has_tags", "COMEDY" ], [ "GRUMPIER OLD MEN", "has_tags", "SEQUEL" ], [ "HAIRSPRAY", "has_genre", "COMEDY" ], [ "HAIRSPRAY", "has_tags", "COMEDY" ], [ "HAIRSPRAY", "release_year", "1988" ], [ "HEARTBREAK HOTEL", "has_genre", "COMEDY" ], [ "HEARTBREAK HOTEL", "release_year", "1988" ], [ "HEATHERS", "has_genre", "COMEDY" ], [ "HEATHERS", "release_year", "1988" ], [ "HERO", "has_genre", "COMEDY" ], [ "HERO", "release_year", "1992" ], [ "HIGH HOPES", "has_genre", "COMEDY" ], [ "HIGH HOPES", "release_year", "1988" ], [ "HIGH SCHOOL", "has_genre", "COMEDY" ], [ "HIGH SPIRITS", "has_genre", "COMEDY" ], [ "HIGH SPIRITS", "release_year", "1988" ], [ "HONEYMOON IN VEGAS", "has_genre", "COMEDY" ], [ "HONEYMOON IN VEGAS", "release_year", "1992" ], [ "HOT SHOTS! PART DEUX", "has_genre", "COMEDY" ], [ "HOT SHOTS! PART DEUX", "has_tags", "COMEDY" ], [ "HOT SHOTS! PART DEUX", "has_tags", "SEQUEL" ], [ "HOT TO TROT", "has_genre", "COMEDY" ], [ "HOT TO TROT", "release_year", "1988" ], [ "HUSBANDS AND WIVES", "has_genre", "COMEDY" ], [ "HUSBANDS AND WIVES", "release_year", "1992" ], [ "IN THE SOUP", "has_genre", "COMEDY" ], [ "IN THE SOUP", "release_year", "1992" ], [ "JAWBREAKER", "has_genre", "COMEDY" ], [ "JAWBREAKER", "has_tags", "HIGH SCHOOL" ], [ "JAWBREAKER", "has_tags", "JULIE BENZ" ], [ "JAWBREAKER", "starred_actors", "JULIE BENZ" ], [ "JOHNNY BE GOOD", "has_genre", "COMEDY" ], [ "JOHNNY BE GOOD", "release_year", "1988" ], [ "JOHNNY ENGLISH REBORN", "has_genre", "COMEDY" ], [ "JOHNNY ENGLISH REBORN", "has_tags", "COMEDY" ], [ "JOHNNY ENGLISH REBORN", "has_tags", "SEQUEL" ], [ "JOYFUL NOISE", "directed_by", "TODD GRAFF" ], [ "JOYFUL NOISE", "has_genre", "COMEDY" ], [ "JOYFUL NOISE", "written_by", "TODD GRAFF" ], [ "KICK-ASS 2", "has_genre", "COMEDY" ], [ "KICK-ASS 2", "has_tags", "SEQUEL" ], [ "KILLER KLOWNS FROM OUTER SPACE", "has_genre", "COMEDY" ], [ "KILLER KLOWNS FROM OUTER SPACE", "release_year", "1988" ], [ "KING OF BEGGARS", "has_genre", "COMEDY" ], [ "KING OF BEGGARS", "release_year", "1992" ], [ "KUFFS", "has_genre", "COMEDY" ], [ "KUFFS", "release_year", "1992" ], [ "LADYBUGS", "has_genre", "COMEDY" ], [ "LADYBUGS", "release_year", "1992" ], [ "LEAVING NORMAL", "has_genre", "COMEDY" ], [ "LEAVING NORMAL", "release_year", "1992" ], [ "LIFE IS A LONG QUIET RIVER", "has_genre", "COMEDY" ], [ "LIFE IS A LONG QUIET RIVER", "release_year", "1988" ], [ "LITTLE SISTER", "has_genre", "COMEDY" ], [ "LITTLE SISTER", "release_year", "1992" ], [ "LOOK WHO'S TALKING TOO", "has_genre", "COMEDY" ], [ "LOOK WHO'S TALKING TOO", "has_tags", "SEQUEL" ], [ "MALEDETTO IL GIORNO CHE T'HO INCONTRATO", "has_genre", "COMEDY" ], [ "MALEDETTO IL GIORNO CHE T'HO INCONTRATO", "release_year", "1992" ], [ "MAN BITES DOG", "has_genre", "COMEDY" ], [ "MAN BITES DOG", "release_year", "1992" ], [ "MAN TROUBLE", "has_genre", "COMEDY" ], [ "MAN TROUBLE", "release_year", "1992" ], [ "MARRIED TO THE MOB", "has_genre", "COMEDY" ], [ "MARRIED TO THE MOB", "release_year", "1988" ], [ "MEAN GIRLS 2", "has_genre", "COMEDY" ], [ "MEAN GIRLS 2", "has_tags", "SEQUEL" ], [ "MEMOIRS OF AN INVISIBLE MAN", "has_genre", "COMEDY" ], [ "MEMOIRS OF AN INVISIBLE MAN", "release_year", "1992" ], [ "MIDNIGHT RUN", "has_genre", "COMEDY" ], [ "MIDNIGHT RUN", "has_tags", "COMEDY" ], [ "MIDNIGHT RUN", "release_year", "1988" ], [ "MISTRESS", "has_genre", "COMEDY" ], [ "MISTRESS", "release_year", "1992" ], [ "MO' MONEY", "has_genre", "COMEDY" ], [ "MO' MONEY", "release_year", "1992" ], [ "MOM AND DAD SAVE THE WORLD", "has_genre", "COMEDY" ], [ "MOM AND DAD SAVE THE WORLD", "release_year", "1992" ], [ "MONSTERS UNIVERSITY", "has_genre", "COMEDY" ], [ "MONSTERS UNIVERSITY", "has_tags", "COMEDY" ], [ "MONSTERS UNIVERSITY", "has_tags", "SEQUEL" ], [ "MOVING", "has_genre", "COMEDY" ], [ "MOVING", "release_year", "1988" ], [ "MR. BASEBALL", "has_genre", "COMEDY" ], [ "MR. BASEBALL", "release_year", "1992" ], [ "MR. NORTH", "has_genre", "COMEDY" ], [ "MR. NORTH", "release_year", "1988" ], [ "MY COUSIN VINNY", "has_genre", "COMEDY" ], [ "MY COUSIN VINNY", "has_tags", "COMEDY" ], [ "MY COUSIN VINNY", "release_year", "1992" ], [ "MY NEW GUN", "has_genre", "COMEDY" ], [ "MY NEW GUN", "release_year", "1992" ], [ "MY STEPMOTHER IS AN ALIEN", "has_genre", "COMEDY" ], [ "MY STEPMOTHER IS AN ALIEN", "release_year", "1988" ], [ "OLLIE HOPNOODLE'S HAVEN OF BLISS", "has_genre", "COMEDY" ], [ "OLLIE HOPNOODLE'S HAVEN OF BLISS", "release_year", "1988" ], [ "OUT ON A LIMB", "has_genre", "COMEDY" ], [ "OUT ON A LIMB", "release_year", "1992" ], [ "PARENTI SERPENTI", "has_genre", "COMEDY" ], [ "PARENTI SERPENTI", "release_year", "1992" ], [ "PETER'S FRIENDS", "has_genre", "COMEDY" ], [ "PETER'S FRIENDS", "release_year", "1992" ], [ "PUNCHLINE", "has_genre", "COMEDY" ], [ "PUNCHLINE", "release_year", "1988" ], [ "RED HEAT", "has_genre", "COMEDY" ], [ "RED HEAT", "release_year", "1988" ], [ "SCREAM 2", "has_tags", "COMEDY" ], [ "SCREAM 2", "has_tags", "SEQUEL" ], [ "SCROOGED", "has_genre", "COMEDY" ], [ "SCROOGED", "has_tags", "COMEDY" ], [ "SCROOGED", "release_year", "1988" ], [ "SHE'S HAVING A BABY", "has_genre", "COMEDY" ], [ "SHE'S HAVING A BABY", "release_year", "1988" ], [ "SHORT CIRCUIT 2", "has_tags", "SEQUEL" ], [ "SHORT CIRCUIT 2", "release_year", "1988" ], [ "SHREK", "has_genre", "COMEDY" ], [ "SHREK", "has_tags", "COMEDY" ], [ "SHREK", "has_tags", "SEQUEL" ], [ "SHREK 2", "has_genre", "COMEDY" ], [ "SHREK 2", "has_tags", "COMEDY" ], [ "SHREK 2", "has_tags", "SEQUEL" ], [ "SINGLES", "has_genre", "COMEDY" ], [ "SINGLES", "release_year", "1992" ], [ "SISTER ACT", "has_genre", "COMEDY" ], [ "SISTER ACT", "release_year", "1992" ], [ "SON OF THE MASK", "has_genre", "COMEDY" ], [ "SON OF THE MASK", "has_tags", "SEQUEL" ], [ "STARS AND BARS", "has_genre", "COMEDY" ], [ "STARS AND BARS", "release_year", "1988" ], [ "STAY TUNED", "has_genre", "COMEDY" ], [ "STAY TUNED", "release_year", "1992" ], [ "STOP! OR MY MOM WILL SHOOT", "has_genre", "COMEDY" ], [ "STOP! OR MY MOM WILL SHOOT", "has_tags", "COMEDY" ], [ "STOP! OR MY MOM WILL SHOOT", "release_year", "1992" ], [ "STRAIGHT TALK", "has_genre", "COMEDY" ], [ "STRAIGHT TALK", "release_year", "1992" ], [ "STRICTLY BALLROOM", "has_genre", "COMEDY" ], [ "STRICTLY BALLROOM", "release_year", "1992" ], [ "SUNSET", "has_genre", "COMEDY" ], [ "SUNSET", "release_year", "1988" ], [ "SWITCHING CHANNELS", "has_genre", "COMEDY" ], [ "SWITCHING CHANNELS", "release_year", "1988" ], [ "TAPEHEADS", "has_genre", "COMEDY" ], [ "TAPEHEADS", "release_year", "1988" ], [ "THE ADVENTURES OF BARON MUNCHAUSEN", "has_genre", "COMEDY" ], [ "THE ADVENTURES OF BARON MUNCHAUSEN", "release_year", "1988" ], [ "THE APPOINTMENTS OF DENNIS JENNINGS", "has_genre", "COMEDY" ], [ "THE APPOINTMENTS OF DENNIS JENNINGS", "release_year", "1988" ], [ "THE BIKINI CARWASH COMPANY", "has_genre", "COMEDY" ], [ "THE BIKINI CARWASH COMPANY", "release_year", "1992" ], [ "THE COUCH TRIP", "has_genre", "COMEDY" ], [ "THE COUCH TRIP", "release_year", "1988" ], [ "THE DISTINGUISHED GENTLEMAN", "has_genre", "COMEDY" ], [ "THE DISTINGUISHED GENTLEMAN", "release_year", "1992" ], [ "THE GREAT OUTDOORS", "has_genre", "COMEDY" ], [ "THE GREAT OUTDOORS", "release_year", "1988" ], [ "THE GUN IN BETTY LOU'S HANDBAG", "has_genre", "COMEDY" ], [ "THE GUN IN BETTY LOU'S HANDBAG", "release_year", "1992" ], [ "THE JEWEL OF THE NILE", "has_genre", "COMEDY" ], [ "THE JEWEL OF THE NILE", "has_tags", "COMEDY" ], [ "THE JEWEL OF THE NILE", "has_tags", "SEQUEL" ], [ "THE MIGHTY DUCKS", "has_genre", "COMEDY" ], [ "THE MIGHTY DUCKS", "release_year", "1992" ], [ "THE MUPPET CHRISTMAS CAROL", "has_genre", "COMEDY" ], [ "THE MUPPET CHRISTMAS CAROL", "release_year", "1992" ], [ "THE NORTHERNERS", "has_genre", "COMEDY" ], [ "THE NORTHERNERS", "release_year", "1992" ], [ "THE TELEPHONE", "has_genre", "COMEDY" ], [ "THE TELEPHONE", "release_year", "1988" ], [ "THE WRONG GUYS", "has_genre", "COMEDY" ], [ "THE WRONG GUYS", "release_year", "1988" ], [ "THINGS CHANGE", "has_genre", "COMEDY" ], [ "THINGS CHANGE", "release_year", "1988" ], [ "THIS IS 40", "has_genre", "COMEDY" ], [ "THIS IS 40", "has_tags", "SEQUEL" ], [ "TORCH SONG TRILOGY", "has_genre", "COMEDY" ], [ "TORCH SONG TRILOGY", "release_year", "1988" ], [ "TOY STORY 2", "has_genre", "COMEDY" ], [ "TOY STORY 2", "has_tags", "SEQUEL" ], [ "TOYS", "has_genre", "COMEDY" ], [ "TOYS", "release_year", "1992" ], [ "TWIN DRAGONS", "has_genre", "COMEDY" ], [ "TWIN DRAGONS", "release_year", "1992" ], [ "TWINS", "has_genre", "COMEDY" ], [ "TWINS", "has_tags", "COMEDY" ], [ "TWINS", "release_year", "1988" ], [ "USED PEOPLE", "has_genre", "COMEDY" ], [ "USED PEOPLE", "release_year", "1992" ], [ "USED PEOPLE", "written_by", "TODD GRAFF" ], [ "VIBES", "has_genre", "COMEDY" ], [ "VIBES", "release_year", "1988" ], [ "VICE VERSA", "has_genre", "COMEDY" ], [ "VICE VERSA", "release_year", "1988" ], [ "WAXWORK", "has_genre", "COMEDY" ], [ "WAXWORK", "release_year", "1988" ], [ "WAYNE'S WORLD", "has_genre", "COMEDY" ], [ "WAYNE'S WORLD", "has_tags", "COMEDY" ], [ "WAYNE'S WORLD", "release_year", "1992" ], [ "WHITE MEN CAN'T JUMP", "has_genre", "COMEDY" ], [ "WHITE MEN CAN'T JUMP", "has_tags", "COMEDY" ], [ "WHITE MEN CAN'T JUMP", "release_year", "1992" ], [ "WHO FRAMED ROGER RABBIT", "has_genre", "COMEDY" ], [ "WHO FRAMED ROGER RABBIT", "has_tags", "COMEDY" ], [ "WHO FRAMED ROGER RABBIT", "release_year", "1988" ], [ "WITHOUT A CLUE", "has_genre", "COMEDY" ], [ "WITHOUT A CLUE", "release_year", "1988" ], [ "WOMEN ON THE VERGE OF A NERVOUS BREAKDOWN", "has_genre", "COMEDY" ], [ "WOMEN ON THE VERGE OF A NERVOUS BREAKDOWN", "release_year", "1988" ], [ "WORKING GIRL", "has_genre", "COMEDY" ], [ "WORKING GIRL", "release_year", "1988" ], [ "YOUNG EINSTEIN", "has_genre", "COMEDY" ], [ "YOUNG EINSTEIN", "release_year", "1988" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 10264, .45 39813, 1971 35845, 2006 27495, AFTER... 19293, ALL THE PRESIDENT'S MEN 30269, AMITYVILLE 3-D 694, ASSAULT ON PRECINCT 13 36430, BASIC INSTINCT 2 10045, BD-R 40074, BLACK BOOK 7635, BLACKMAIL 16664, BLOOD DIAMOND 34404, BREAKDOWN 21584, BUNNY LAKE IS MISSING 6283, CARGO 10377, CIVIC DUTY 38680, COMPULSION 31923, DARK RIDE 29300, DEAD RINGER 28094, DELIVERANCE 27143, DEMENTIA 13 8381, DETOUR 23396, DIAL M FOR MURDER 15961, DON 771, DRESSED TO KILL 33960, DUEL 8131, EMILY MORTIMER 1690, EYES OF LAURA MARS 14623, FADE TO BLACK 1831, FIREWALL 19500, FIRST SNOW 8294, FIVE FINGERS 15351, FOREIGN CORRESPONDENT 39565, FRIGHT 9003, FUNNY GAMES 19221, GASLIGHT 23299, GET CARTER 16365, GOOD NEIGHBORS 34771, GREEN FOR DANGER 39298, HARD LUCK 39972, HOLLOW MAN 7264, INSIDE MAN 10707, KATHLEEN QUINLAN 7415, KISS OF DEATH 21302, KLUTE 7743, LADY IN THE WATER 33950, LUCKY NUMBER SLEVIN 40127, MACABRE 22260, MEMORY 36083, MIRANDA 16462, MYSTERY OF THE WAX MUSEUM 25264, NOTES ON A SCANDAL 37989, OBSESSION 19017, PEEPING TOM 39493, PLAY MISTY FOR ME 6297, REBECCA 7368, RICHARD FLEISCHER 15605, RIGHT AT YOUR DOOR 30059, SEE NO EVIL 9936, SEVEN DAYS IN MAY 7060, SEVEN DAYS TO NOON 16921, SHADOW MAN 29005, SIN CITY 6119, SLEUTH 13, SNAKES ON A PLANE 24045, STRAIT-JACKET 40046, STRANGERS ON A TRAIN 16127, STRAW DOGS 35380, SUSPICION 37807, TELL NO ONE 35864, THE ABANDONED 32227, THE ANDROMEDA STRAIN 24057, THE BACKWOODS 1070, THE BUTTERFLY EFFECT 2 29799, THE CANYONS 12339, THE CHINA SYNDROME 1059, THE DA VINCI CODE 16732, THE END 24006, THE FIFTH CORD 35937, THE FIFTH ESTATE 22869, THE GHOST SHIP 11168, THE HUMAN FACTOR 4091, THE LADY VANISHES 30690, THE LADYKILLERS 20165, THE LAST WINTER 33948, THE LETTER 30903, THE MAN BETWEEN 29773, THE MANCHURIAN CANDIDATE 27599, THE NIGHT OF THE HUNTER 15196, THE NIGHT VISITOR 13933, THE PARALLAX VIEW 27098, THE PRESTIGE 18162, THE RAVEN 28919, THE RETURN 4300, THE SENTINEL 18785, THE SILENCE 23847, THE STEPFORD WIVES 25030, THE UNKNOWN WOMAN 17568, THE VANISHING 22751, THE WICKER MAN 34407, THE WRONG MAN 24811, THRILLER 8334, TRANSSIBERIAN 10133, UNKNOWN 35164, VANISHING ON 7TH STREET 499, WAIT UNTIL DARK 6190, WAKE IN FRIGHT 14868, WESTWORLD 28071, WHAT EVER HAPPENED TO BABY JANE? 31083, WRONG IS RIGHT 38760, Z src, edge_attr, dst 10264, has_genre, 24811 10264, release_year, 35845 27495, has_genre, 24811 27495, release_year, 35845 19293, has_genre, 24811 19293, has_tags, 10045 19293, has_tags, 24811 30269, directed_by, 7368 30269, has_genre, 24811 694, has_genre, 24811 694, has_tags, 10045 36430, has_genre, 24811 36430, release_year, 35845 40074, has_genre, 24811 40074, release_year, 35845 7635, has_genre, 24811 7635, has_tags, 10045 16664, has_genre, 24811 16664, release_year, 35845 34404, has_tags, 24811 34404, starred_actors, 10707 21584, has_genre, 24811 21584, has_tags, 10045 6283, has_genre, 24811 6283, release_year, 35845 10377, has_genre, 24811 10377, release_year, 35845 38680, directed_by, 7368 38680, has_genre, 24811 38680, has_tags, 10045 38680, has_tags, 7368 31923, has_genre, 24811 31923, release_year, 35845 29300, has_genre, 24811 29300, has_tags, 10045 28094, has_genre, 24811 28094, has_tags, 10045 28094, has_tags, 24811 27143, has_genre, 24811 27143, has_tags, 10045 8381, has_genre, 24811 8381, has_tags, 10045 23396, has_genre, 24811 23396, has_tags, 10045 15961, has_genre, 24811 15961, release_year, 35845 771, has_genre, 24811 771, has_tags, 10045 33960, has_genre, 24811 33960, has_tags, 24811 33960, release_year, 39813 1690, has_genre, 24811 1690, has_tags, 10045 14623, has_genre, 24811 14623, release_year, 35845 1831, has_genre, 24811 1831, release_year, 35845 19500, has_genre, 24811 19500, release_year, 35845 8294, has_genre, 24811 8294, release_year, 35845 15351, has_genre, 24811 15351, has_tags, 10045 39565, has_genre, 24811 39565, has_tags, 10045 39565, release_year, 39813 9003, has_genre, 24811 9003, has_tags, 10045 9003, has_tags, 24811 19221, has_genre, 24811 19221, has_tags, 10045 23299, has_genre, 24811 23299, has_tags, 10045 23299, release_year, 39813 16365, has_genre, 24811 16365, has_tags, 10045 34771, has_genre, 24811 34771, has_tags, 10045 39298, has_genre, 24811 39298, release_year, 35845 39972, has_genre, 24811 39972, has_tags, 10045 7264, has_genre, 24811 7264, release_year, 35845 7415, has_genre, 24811 7415, has_tags, 10045 21302, has_genre, 24811 21302, has_tags, 24811 21302, release_year, 39813 7743, has_genre, 24811 7743, release_year, 35845 33950, has_tags, 24811 33950, release_year, 35845 40127, has_genre, 24811 40127, has_tags, 10045 22260, has_genre, 24811 22260, release_year, 35845 36083, has_genre, 24811 36083, has_tags, 10045 16462, has_genre, 24811 16462, has_tags, 10045 25264, has_genre, 24811 25264, release_year, 35845 37989, has_genre, 24811 37989, has_tags, 10045 19017, has_genre, 24811 19017, has_tags, 10045 39493, has_genre, 24811 39493, release_year, 39813 6297, has_genre, 24811 6297, has_tags, 10045 15605, has_genre, 24811 15605, has_tags, 24811 15605, release_year, 35845 30059, directed_by, 7368 30059, has_genre, 24811 30059, has_tags, 10045 30059, release_year, 39813 30059, release_year, 35845 9936, has_genre, 24811 9936, has_tags, 10045 9936, has_tags, 24811 7060, has_genre, 24811 7060, has_tags, 10045 16921, has_genre, 24811 16921, release_year, 35845 29005, has_genre, 24811 29005, has_tags, 10045 6119, has_genre, 24811 6119, has_tags, 10045 13, has_genre, 24811 13, release_year, 35845 24045, has_genre, 24811 24045, has_tags, 10045 40046, has_genre, 24811 40046, has_tags, 10045 16127, has_genre, 24811 16127, release_year, 39813 35380, has_genre, 24811 35380, has_tags, 10045 37807, has_tags, 24811 37807, release_year, 35845 35864, has_genre, 24811 35864, release_year, 35845 32227, has_genre, 24811 32227, release_year, 39813 24057, has_genre, 24811 24057, release_year, 35845 1070, has_genre, 24811 1070, release_year, 35845 29799, has_genre, 24811 29799, has_tags, 10045 12339, has_genre, 24811 12339, has_tags, 10045 1059, has_genre, 24811 1059, release_year, 35845 16732, has_genre, 24811 16732, has_tags, 10045 24006, has_genre, 24811 24006, release_year, 39813 35937, has_genre, 24811 35937, has_tags, 10045 22869, has_genre, 24811 22869, has_tags, 10045 11168, has_genre, 24811 11168, has_tags, 10045 4091, has_genre, 24811 4091, has_tags, 10045 30690, has_genre, 24811 30690, has_tags, 10045 20165, has_genre, 24811 20165, release_year, 35845 33948, has_genre, 24811 33948, has_tags, 10045 30903, has_genre, 24811 30903, has_tags, 10045 29773, has_genre, 24811 29773, has_tags, 10045 29773, has_tags, 24811 27599, has_tags, 10045 27599, has_tags, 24811 15196, has_genre, 24811 15196, release_year, 39813 13933, has_genre, 24811 13933, has_tags, 10045 27098, has_genre, 24811 27098, has_tags, 24811 27098, release_year, 35845 18162, has_genre, 24811 18162, has_tags, 10045 18162, release_year, 35845 28919, has_genre, 24811 28919, release_year, 35845 4300, has_genre, 24811 4300, has_tags, 24811 4300, release_year, 35845 18785, has_genre, 24811 18785, has_tags, 10045 23847, has_genre, 24811 23847, has_tags, 10045 23847, has_tags, 24811 25030, has_genre, 24811 25030, release_year, 35845 17568, has_genre, 24811 17568, has_tags, 10045 22751, has_genre, 24811 22751, has_tags, 10045 22751, release_year, 35845 34407, has_genre, 24811 34407, has_tags, 10045 8334, has_tags, 8131 8334, has_tags, 24811 8334, starred_actors, 8131 10133, has_genre, 24811 10133, release_year, 35845 35164, has_genre, 24811 35164, has_tags, 10045 499, has_genre, 24811 499, has_tags, 10045 499, has_tags, 24811 6190, has_genre, 24811 6190, release_year, 39813 14868, has_genre, 24811 14868, has_tags, 10045 28071, has_genre, 24811 28071, has_tags, 10045 31083, has_genre, 24811 31083, has_tags, 10045 38760, has_tags, 10045 38760, has_tags, 24811 Question: For what reason are EMILY MORTIMER, KATHLEEN QUINLAN, and SEE NO EVIL associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "EMILY MORTIMER", "KATHLEEN QUINLAN", "SEE NO EVIL" ], "valid_edges": [ [ ".45", "has_genre", "THRILLER" ], [ ".45", "release_year", "2006" ], [ "AFTER...", "has_genre", "THRILLER" ], [ "AFTER...", "release_year", "2006" ], [ "ALL THE PRESIDENT'S MEN", "has_genre", "THRILLER" ], [ "ALL THE PRESIDENT'S MEN", "has_tags", "BD-R" ], [ "ALL THE PRESIDENT'S MEN", "has_tags", "THRILLER" ], [ "AMITYVILLE 3-D", "directed_by", "RICHARD FLEISCHER" ], [ "AMITYVILLE 3-D", "has_genre", "THRILLER" ], [ "ASSAULT ON PRECINCT 13", "has_genre", "THRILLER" ], [ "ASSAULT ON PRECINCT 13", "has_tags", "BD-R" ], [ "BASIC INSTINCT 2", "has_genre", "THRILLER" ], [ "BASIC INSTINCT 2", "release_year", "2006" ], [ "BLACK BOOK", "has_genre", "THRILLER" ], [ "BLACK BOOK", "release_year", "2006" ], [ "BLACKMAIL", "has_genre", "THRILLER" ], [ "BLACKMAIL", "has_tags", "BD-R" ], [ "BLOOD DIAMOND", "has_genre", "THRILLER" ], [ "BLOOD DIAMOND", "release_year", "2006" ], [ "BREAKDOWN", "has_tags", "THRILLER" ], [ "BREAKDOWN", "starred_actors", "KATHLEEN QUINLAN" ], [ "BUNNY LAKE IS MISSING", "has_genre", "THRILLER" ], [ "BUNNY LAKE IS MISSING", "has_tags", "BD-R" ], [ "CARGO", "has_genre", "THRILLER" ], [ "CARGO", "release_year", "2006" ], [ "CIVIC DUTY", "has_genre", "THRILLER" ], [ "CIVIC DUTY", "release_year", "2006" ], [ "COMPULSION", "directed_by", "RICHARD FLEISCHER" ], [ "COMPULSION", "has_genre", "THRILLER" ], [ "COMPULSION", "has_tags", "BD-R" ], [ "COMPULSION", "has_tags", "RICHARD FLEISCHER" ], [ "DARK RIDE", "has_genre", "THRILLER" ], [ "DARK RIDE", "release_year", "2006" ], [ "DEAD RINGER", "has_genre", "THRILLER" ], [ "DEAD RINGER", "has_tags", "BD-R" ], [ "DELIVERANCE", "has_genre", "THRILLER" ], [ "DELIVERANCE", "has_tags", "BD-R" ], [ "DELIVERANCE", "has_tags", "THRILLER" ], [ "DEMENTIA 13", "has_genre", "THRILLER" ], [ "DEMENTIA 13", "has_tags", "BD-R" ], [ "DETOUR", "has_genre", "THRILLER" ], [ "DETOUR", "has_tags", "BD-R" ], [ "DIAL M FOR MURDER", "has_genre", "THRILLER" ], [ "DIAL M FOR MURDER", "has_tags", "BD-R" ], [ "DON", "has_genre", "THRILLER" ], [ "DON", "release_year", "2006" ], [ "DRESSED TO KILL", "has_genre", "THRILLER" ], [ "DRESSED TO KILL", "has_tags", "BD-R" ], [ "DUEL", "has_genre", "THRILLER" ], [ "DUEL", "has_tags", "THRILLER" ], [ "DUEL", "release_year", "1971" ], [ "EYES OF LAURA MARS", "has_genre", "THRILLER" ], [ "EYES OF LAURA MARS", "has_tags", "BD-R" ], [ "FADE TO BLACK", "has_genre", "THRILLER" ], [ "FADE TO BLACK", "release_year", "2006" ], [ "FIREWALL", "has_genre", "THRILLER" ], [ "FIREWALL", "release_year", "2006" ], [ "FIRST SNOW", "has_genre", "THRILLER" ], [ "FIRST SNOW", "release_year", "2006" ], [ "FIVE FINGERS", "has_genre", "THRILLER" ], [ "FIVE FINGERS", "release_year", "2006" ], [ "FOREIGN CORRESPONDENT", "has_genre", "THRILLER" ], [ "FOREIGN CORRESPONDENT", "has_tags", "BD-R" ], [ "FRIGHT", "has_genre", "THRILLER" ], [ "FRIGHT", "has_tags", "BD-R" ], [ "FRIGHT", "release_year", "1971" ], [ "FUNNY GAMES", "has_genre", "THRILLER" ], [ "FUNNY GAMES", "has_tags", "BD-R" ], [ "FUNNY GAMES", "has_tags", "THRILLER" ], [ "GASLIGHT", "has_genre", "THRILLER" ], [ "GASLIGHT", "has_tags", "BD-R" ], [ "GET CARTER", "has_genre", "THRILLER" ], [ "GET CARTER", "has_tags", "BD-R" ], [ "GET CARTER", "release_year", "1971" ], [ "GOOD NEIGHBORS", "has_genre", "THRILLER" ], [ "GOOD NEIGHBORS", "has_tags", "BD-R" ], [ "GREEN FOR DANGER", "has_genre", "THRILLER" ], [ "GREEN FOR DANGER", "has_tags", "BD-R" ], [ "HARD LUCK", "has_genre", "THRILLER" ], [ "HARD LUCK", "release_year", "2006" ], [ "HOLLOW MAN", "has_genre", "THRILLER" ], [ "HOLLOW MAN", "has_tags", "BD-R" ], [ "INSIDE MAN", "has_genre", "THRILLER" ], [ "INSIDE MAN", "release_year", "2006" ], [ "KISS OF DEATH", "has_genre", "THRILLER" ], [ "KISS OF DEATH", "has_tags", "BD-R" ], [ "KLUTE", "has_genre", "THRILLER" ], [ "KLUTE", "has_tags", "THRILLER" ], [ "KLUTE", "release_year", "1971" ], [ "LADY IN THE WATER", "has_genre", "THRILLER" ], [ "LADY IN THE WATER", "release_year", "2006" ], [ "LUCKY NUMBER SLEVIN", "has_tags", "THRILLER" ], [ "LUCKY NUMBER SLEVIN", "release_year", "2006" ], [ "MACABRE", "has_genre", "THRILLER" ], [ "MACABRE", "has_tags", "BD-R" ], [ "MEMORY", "has_genre", "THRILLER" ], [ "MEMORY", "release_year", "2006" ], [ "MIRANDA", "has_genre", "THRILLER" ], [ "MIRANDA", "has_tags", "BD-R" ], [ "MYSTERY OF THE WAX MUSEUM", "has_genre", "THRILLER" ], [ "MYSTERY OF THE WAX MUSEUM", "has_tags", "BD-R" ], [ "NOTES ON A SCANDAL", "has_genre", "THRILLER" ], [ "NOTES ON A SCANDAL", "release_year", "2006" ], [ "OBSESSION", "has_genre", "THRILLER" ], [ "OBSESSION", "has_tags", "BD-R" ], [ "PEEPING TOM", "has_genre", "THRILLER" ], [ "PEEPING TOM", "has_tags", "BD-R" ], [ "PLAY MISTY FOR ME", "has_genre", "THRILLER" ], [ "PLAY MISTY FOR ME", "release_year", "1971" ], [ "REBECCA", "has_genre", "THRILLER" ], [ "REBECCA", "has_tags", "BD-R" ], [ "RIGHT AT YOUR DOOR", "has_genre", "THRILLER" ], [ "RIGHT AT YOUR DOOR", "has_tags", "THRILLER" ], [ "RIGHT AT YOUR DOOR", "release_year", "2006" ], [ "SEE NO EVIL", "directed_by", "RICHARD FLEISCHER" ], [ "SEE NO EVIL", "has_genre", "THRILLER" ], [ "SEE NO EVIL", "has_tags", "BD-R" ], [ "SEE NO EVIL", "release_year", "1971" ], [ "SEE NO EVIL", "release_year", "2006" ], [ "SEVEN DAYS IN MAY", "has_genre", "THRILLER" ], [ "SEVEN DAYS IN MAY", "has_tags", "BD-R" ], [ "SEVEN DAYS IN MAY", "has_tags", "THRILLER" ], [ "SEVEN DAYS TO NOON", "has_genre", "THRILLER" ], [ "SEVEN DAYS TO NOON", "has_tags", "BD-R" ], [ "SHADOW MAN", "has_genre", "THRILLER" ], [ "SHADOW MAN", "release_year", "2006" ], [ "SIN CITY", "has_genre", "THRILLER" ], [ "SIN CITY", "has_tags", "BD-R" ], [ "SLEUTH", "has_genre", "THRILLER" ], [ "SLEUTH", "has_tags", "BD-R" ], [ "SNAKES ON A PLANE", "has_genre", "THRILLER" ], [ "SNAKES ON A PLANE", "release_year", "2006" ], [ "STRAIT-JACKET", "has_genre", "THRILLER" ], [ "STRAIT-JACKET", "has_tags", "BD-R" ], [ "STRANGERS ON A TRAIN", "has_genre", "THRILLER" ], [ "STRANGERS ON A TRAIN", "has_tags", "BD-R" ], [ "STRAW DOGS", "has_genre", "THRILLER" ], [ "STRAW DOGS", "release_year", "1971" ], [ "SUSPICION", "has_genre", "THRILLER" ], [ "SUSPICION", "has_tags", "BD-R" ], [ "TELL NO ONE", "has_tags", "THRILLER" ], [ "TELL NO ONE", "release_year", "2006" ], [ "THE ABANDONED", "has_genre", "THRILLER" ], [ "THE ABANDONED", "release_year", "2006" ], [ "THE ANDROMEDA STRAIN", "has_genre", "THRILLER" ], [ "THE ANDROMEDA STRAIN", "release_year", "1971" ], [ "THE BACKWOODS", "has_genre", "THRILLER" ], [ "THE BACKWOODS", "release_year", "2006" ], [ "THE BUTTERFLY EFFECT 2", "has_genre", "THRILLER" ], [ "THE BUTTERFLY EFFECT 2", "release_year", "2006" ], [ "THE CANYONS", "has_genre", "THRILLER" ], [ "THE CANYONS", "has_tags", "BD-R" ], [ "THE CHINA SYNDROME", "has_genre", "THRILLER" ], [ "THE CHINA SYNDROME", "has_tags", "BD-R" ], [ "THE DA VINCI CODE", "has_genre", "THRILLER" ], [ "THE DA VINCI CODE", "release_year", "2006" ], [ "THE END", "has_genre", "THRILLER" ], [ "THE END", "has_tags", "BD-R" ], [ "THE FIFTH CORD", "has_genre", "THRILLER" ], [ "THE FIFTH CORD", "release_year", "1971" ], [ "THE FIFTH ESTATE", "has_genre", "THRILLER" ], [ "THE FIFTH ESTATE", "has_tags", "BD-R" ], [ "THE GHOST SHIP", "has_genre", "THRILLER" ], [ "THE GHOST SHIP", "has_tags", "BD-R" ], [ "THE HUMAN FACTOR", "has_genre", "THRILLER" ], [ "THE HUMAN FACTOR", "has_tags", "BD-R" ], [ "THE LADY VANISHES", "has_genre", "THRILLER" ], [ "THE LADY VANISHES", "has_tags", "BD-R" ], [ "THE LADYKILLERS", "has_genre", "THRILLER" ], [ "THE LADYKILLERS", "has_tags", "BD-R" ], [ "THE LAST WINTER", "has_genre", "THRILLER" ], [ "THE LAST WINTER", "release_year", "2006" ], [ "THE LETTER", "has_genre", "THRILLER" ], [ "THE LETTER", "has_tags", "BD-R" ], [ "THE MAN BETWEEN", "has_genre", "THRILLER" ], [ "THE MAN BETWEEN", "has_tags", "BD-R" ], [ "THE MANCHURIAN CANDIDATE", "has_genre", "THRILLER" ], [ "THE MANCHURIAN CANDIDATE", "has_tags", "BD-R" ], [ "THE MANCHURIAN CANDIDATE", "has_tags", "THRILLER" ], [ "THE NIGHT OF THE HUNTER", "has_tags", "BD-R" ], [ "THE NIGHT OF THE HUNTER", "has_tags", "THRILLER" ], [ "THE NIGHT VISITOR", "has_genre", "THRILLER" ], [ "THE NIGHT VISITOR", "release_year", "1971" ], [ "THE PARALLAX VIEW", "has_genre", "THRILLER" ], [ "THE PARALLAX VIEW", "has_tags", "BD-R" ], [ "THE PRESTIGE", "has_genre", "THRILLER" ], [ "THE PRESTIGE", "has_tags", "THRILLER" ], [ "THE PRESTIGE", "release_year", "2006" ], [ "THE RAVEN", "has_genre", "THRILLER" ], [ "THE RAVEN", "has_tags", "BD-R" ], [ "THE RAVEN", "release_year", "2006" ], [ "THE RETURN", "has_genre", "THRILLER" ], [ "THE RETURN", "release_year", "2006" ], [ "THE SENTINEL", "has_genre", "THRILLER" ], [ "THE SENTINEL", "has_tags", "THRILLER" ], [ "THE SENTINEL", "release_year", "2006" ], [ "THE SILENCE", "has_genre", "THRILLER" ], [ "THE SILENCE", "has_tags", "BD-R" ], [ "THE STEPFORD WIVES", "has_genre", "THRILLER" ], [ "THE STEPFORD WIVES", "has_tags", "BD-R" ], [ "THE STEPFORD WIVES", "has_tags", "THRILLER" ], [ "THE UNKNOWN WOMAN", "has_genre", "THRILLER" ], [ "THE UNKNOWN WOMAN", "release_year", "2006" ], [ "THE VANISHING", "has_genre", "THRILLER" ], [ "THE VANISHING", "has_tags", "BD-R" ], [ "THE WICKER MAN", "has_genre", "THRILLER" ], [ "THE WICKER MAN", "has_tags", "BD-R" ], [ "THE WICKER MAN", "release_year", "2006" ], [ "THE WRONG MAN", "has_genre", "THRILLER" ], [ "THE WRONG MAN", "has_tags", "BD-R" ], [ "TRANSSIBERIAN", "has_tags", "EMILY MORTIMER" ], [ "TRANSSIBERIAN", "has_tags", "THRILLER" ], [ "TRANSSIBERIAN", "starred_actors", "EMILY MORTIMER" ], [ "UNKNOWN", "has_genre", "THRILLER" ], [ "UNKNOWN", "release_year", "2006" ], [ "VANISHING ON 7TH STREET", "has_genre", "THRILLER" ], [ "VANISHING ON 7TH STREET", "has_tags", "BD-R" ], [ "WAIT UNTIL DARK", "has_genre", "THRILLER" ], [ "WAIT UNTIL DARK", "has_tags", "BD-R" ], [ "WAIT UNTIL DARK", "has_tags", "THRILLER" ], [ "WAKE IN FRIGHT", "has_genre", "THRILLER" ], [ "WAKE IN FRIGHT", "release_year", "1971" ], [ "WESTWORLD", "has_genre", "THRILLER" ], [ "WESTWORLD", "has_tags", "BD-R" ], [ "WHAT EVER HAPPENED TO BABY JANE?", "has_genre", "THRILLER" ], [ "WHAT EVER HAPPENED TO BABY JANE?", "has_tags", "BD-R" ], [ "WRONG IS RIGHT", "has_genre", "THRILLER" ], [ "WRONG IS RIGHT", "has_tags", "BD-R" ], [ "Z", "has_tags", "BD-R" ], [ "Z", "has_tags", "THRILLER" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 1006, 1996 2594, BASQUIAT 33410, BEFORE NIGHT FALLS 31783, ENGLISH 33240, JORGE BLANCO 35885, JULIAN SCHNABEL 19264, KISSED 7273, NECROPHILIA 8266, PLANET 51 src, edge_attr, dst 2594, directed_by, 35885 2594, has_tags, 35885 2594, release_year, 1006 2594, written_by, 35885 33410, directed_by, 35885 33410, has_tags, 35885 33410, in_language, 31783 33410, written_by, 35885 19264, has_tags, 7273 19264, release_year, 1006 8266, directed_by, 33240 8266, in_language, 31783 8266, written_by, 33240 Question: How are JORGE BLANCO, JULIAN SCHNABEL, and NECROPHILIA related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "JORGE BLANCO", "JULIAN SCHNABEL", "NECROPHILIA" ], "valid_edges": [ [ "BASQUIAT", "directed_by", "JULIAN SCHNABEL" ], [ "BASQUIAT", "has_tags", "JULIAN SCHNABEL" ], [ "BASQUIAT", "release_year", "1996" ], [ "BASQUIAT", "written_by", "JULIAN SCHNABEL" ], [ "BEFORE NIGHT FALLS", "directed_by", "JULIAN SCHNABEL" ], [ "BEFORE NIGHT FALLS", "has_tags", "JULIAN SCHNABEL" ], [ "BEFORE NIGHT FALLS", "in_language", "ENGLISH" ], [ "BEFORE NIGHT FALLS", "written_by", "JULIAN SCHNABEL" ], [ "KISSED", "has_tags", "NECROPHILIA" ], [ "KISSED", "release_year", "1996" ], [ "PLANET 51", "directed_by", "JORGE BLANCO" ], [ "PLANET 51", "in_language", "ENGLISH" ], [ "PLANET 51", "written_by", "JORGE BLANCO" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 21950, 'R XMAS 33823, 15 MINUTES 13408, 2001 13747, 25 WATTS 5478, 30 YEARS TO LIFE 26646, 3000 MILES TO GRACELAND 39540, A FINE PAIR 8200, ALL OVER THE GUY 32427, ALL THE QUEEN'S MEN 17687, AMERICA'S SWEETHEARTS 34899, AMERICAN PIE 2 12224, AMÉLIE 5593, BABY BOY 12144, BAD BOYS 23952, BANDITS 13418, BARTLEBY 38657, BEAT THE DEVIL 38736, BIG MOMMA'S HOUSE 2 5099, BIG NOTHING 19633, BIRTHDAY GIRL 9654, BLACK KNIGHT 35213, BLOW DRY 23128, BRIDGET JONES'S DIARY 19026, BUBBLE BOY 29342, BULLY 17892, CAMOUFLAGE 25632, CARO DIARIO 30463, COMEDY 2605, CORKY ROMANO 14724, CRIME 18980, CROCODILE DUNDEE IN LOS ANGELES 9986, DELITTO A PORTA ROMANA 1915, DIL CHAHTA HAI 33382, DOM HEMINGWAY 12217, DON'T TEMPT ME 7023, DOUBLE TAKE 19756, DOWN TO EARTH 8704, DR. DOLITTLE 2 36212, DRAMA 28808, ESCANABA IN DA MOONLIGHT 23470, EVOLUTION 28256, FILTH 18217, FIND ME GUILTY 34555, FLAWLESS 32047, FLYPAPER 6915, FOCUS 21322, FREDDY GOT FINGERED 27305, GANG TAPES 37360, GASOLINE 23511, GAUDI AFTERNOON 37949, GET OVER IT 12664, GHOST WORLD 18445, GOD IS GREAT AND I'M NOT 10113, GOOD ADVICE 30479, GRIDLOCK'D 17938, HANNIBAL 8648, HAPPY CAMPERS 29107, HARLEM NIGHTS 21060, HARVARD MAN 37229, HE DIED WITH A FELAFEL IN HIS HAND 11344, HEARTBREAKERS 1292, HEDWIG AND THE ANGRY INCH 31450, HEIST 38901, HIGH HEELS AND LOW LIFES 10703, HOW HIGH 35625, HUMAN NATURE 20430, IN THE BEDROOM 16200, ITALIAN 23526, JACKPOT 263, JAY AND SILENT BOB STRIKE BACK 32383, JOE DIRT 12610, JOE SOMEBODY 10109, JOSIE AND THE PUSSYCATS 30384, JUMP TOMORROW 16839, JUST VISITING 7699, KINGDOM COME 20428, KISSING JESSICA STEIN 17559, LEGALLY BLONDE 29734, LITTLE SECRETS 26731, LUCKY BREAK 34517, LUV 28660, MADE 10560, MAN BITES DOG 6068, MAX KEEBLE'S BIG MOVE 33714, MEAN MACHINE 33853, MONKEYBONE 20003, MONSTERS, INC. 24616, MOSTLY MARTHA 33535, MY KINGDOM 12944, MY LIFE WITHOUT ME 36451, NANCI KINCAID 36577, NANNI MORETTI 26151, NOBODY'S BABY 5731, NOT ANOTHER TEEN MOVIE 29029, NOVOCAINE 21875, OCEAN'S ELEVEN 6959, ON THE LINE 32186, ONE MAN UP 8935, ONE NIGHT AT MCCOOL'S 11056, PAULETTE 28044, PAULINE AND PAULETTE 31445, PONTEROSA 13381, POOTIE TANG 28182, RARE BIRDS 32180, RAT RACE 38381, ROCK STAR 33108, RUNNING SCARED 9530, RUSH HOUR 2 1789, SAVING SILVERMAN 37244, SAY IT ISN'T SO 5880, SERENDIPITY 35100, SHALLOW HAL 7519, SHAOLIN SOCCER 36159, SHREK 30089, SIDEWALKS OF NEW YORK 2407, SON OF THE BRIDE 24221, SPEAKING OF SEX 35843, SPUN 7949, STORYTELLING 2235, SUMMER CATCH 4783, SUPER TROOPERS 27762, SWEET NOVEMBER 30932, SWORDFISH 345, TANGUY 23280, THE ANIMAL 15795, THE ANNIVERSARY PARTY 25674, THE BROTHERS 36932, THE CAIMAN 30164, THE CLOSET 4927, THE CURSE OF THE JADE SCORPION 38918, THE FAMILY 24493, THE FUNERAL 17778, THE HAPPINESS OF THE KATAKURIS 28107, THE LAST KISS 24108, THE MAN 10353, THE MAN WHO SUED GOD 27713, THE MEXICAN 23086, THE PRINCESS DIARIES 7206, THE QUICKIE 20728, THE ROYAL TENENBAUMS 14886, THE SCORE 36231, THE SHRINK IS IN 26296, THE SON'S ROOM 26678, THE SWINDLE 37184, THE TRIUMPH OF LOVE 33449, THE WEDDING PLANNER 37331, TO DIE FOR 11027, TOMCATS 35988, TORTILLA SOUP 36468, TOUGH GUYS DON'T DANCE 17169, TRAINING DAY 19451, TWO CAN PLAY THAT GAME 21790, VERY ANNIE MARY 3137, VISITOR Q 35443, VIZONTELE 29077, WASABI 25414, WATERBOYS 35511, WE HAVE A POPE 27083, WET HOT AMERICAN SUMMER 37358, WHAT'S THE WORST THAT COULD HAPPEN? 23844, WHO IS CLETIS TOUT? 4063, ZOOLANDER src, edge_attr, dst 21950, has_genre, 14724 21950, release_year, 13408 33823, has_genre, 14724 33823, release_year, 13408 13747, has_genre, 30463 13747, release_year, 13408 5478, has_genre, 30463 5478, release_year, 13408 26646, has_genre, 14724 26646, release_year, 13408 39540, has_genre, 30463 39540, has_genre, 14724 8200, has_genre, 30463 8200, release_year, 13408 32427, has_genre, 30463 32427, release_year, 13408 17687, has_genre, 30463 17687, release_year, 13408 34899, has_genre, 30463 34899, has_tags, 30463 34899, release_year, 13408 12224, has_genre, 30463 12224, has_tags, 30463 12224, release_year, 13408 5593, has_genre, 30463 5593, release_year, 13408 12144, has_genre, 30463 12144, has_genre, 14724 12144, has_tags, 30463 23952, has_genre, 30463 23952, has_genre, 14724 23952, release_year, 13408 13418, has_genre, 30463 13418, release_year, 13408 38657, has_genre, 30463 38657, has_tags, 14724 38736, has_genre, 30463 38736, has_genre, 14724 5099, has_genre, 30463 5099, has_genre, 14724 5099, has_tags, 30463 5099, has_tags, 14724 19633, has_genre, 14724 19633, release_year, 13408 9654, has_genre, 30463 9654, has_tags, 30463 9654, release_year, 13408 35213, has_genre, 30463 35213, release_year, 13408 23128, has_genre, 30463 23128, has_tags, 30463 23128, release_year, 13408 19026, has_genre, 30463 19026, release_year, 13408 29342, has_genre, 14724 29342, release_year, 13408 17892, has_genre, 30463 17892, release_year, 13408 25632, directed_by, 36577 25632, has_tags, 36577 25632, in_language, 16200 25632, starred_actors, 36577 25632, written_by, 36577 2605, has_genre, 30463 2605, release_year, 13408 18980, has_genre, 30463 18980, release_year, 13408 9986, has_genre, 30463 9986, has_genre, 14724 1915, has_genre, 30463 1915, has_tags, 30463 1915, release_year, 13408 33382, has_genre, 30463 33382, has_genre, 14724 12217, has_genre, 30463 12217, release_year, 13408 7023, has_genre, 30463 7023, release_year, 13408 19756, has_genre, 30463 19756, release_year, 13408 8704, has_genre, 30463 8704, release_year, 13408 28808, has_genre, 30463 28808, release_year, 13408 23470, has_genre, 30463 23470, has_tags, 30463 23470, release_year, 13408 28256, has_genre, 30463 28256, has_genre, 14724 18217, has_genre, 30463 18217, has_genre, 14724 34555, has_genre, 30463 34555, has_genre, 14724 32047, has_genre, 30463 32047, has_genre, 14724 6915, has_genre, 30463 6915, release_year, 13408 21322, has_genre, 30463 21322, release_year, 13408 27305, has_genre, 14724 27305, release_year, 13408 37360, has_genre, 14724 37360, release_year, 13408 23511, has_genre, 30463 23511, release_year, 13408 37949, has_genre, 30463 37949, has_tags, 30463 37949, release_year, 13408 12664, has_genre, 30463 12664, release_year, 13408 18445, has_genre, 30463 18445, release_year, 13408 10113, has_genre, 30463 10113, release_year, 13408 30479, has_genre, 30463 30479, has_genre, 14724 17938, has_genre, 14724 17938, release_year, 13408 8648, has_genre, 30463 8648, release_year, 13408 29107, has_genre, 30463 29107, has_genre, 14724 21060, has_genre, 30463 21060, has_genre, 14724 21060, release_year, 13408 37229, has_genre, 30463 37229, release_year, 13408 11344, has_genre, 30463 11344, release_year, 13408 1292, has_genre, 30463 1292, release_year, 13408 31450, has_genre, 14724 31450, release_year, 13408 38901, has_genre, 30463 38901, release_year, 13408 10703, has_genre, 30463 10703, release_year, 13408 35625, has_genre, 30463 35625, release_year, 13408 20430, has_genre, 14724 20430, release_year, 13408 23526, has_genre, 30463 23526, release_year, 13408 263, has_genre, 30463 263, has_tags, 30463 263, release_year, 13408 32383, has_genre, 30463 32383, release_year, 13408 12610, has_genre, 30463 12610, release_year, 13408 10109, has_genre, 30463 10109, release_year, 13408 30384, has_genre, 30463 30384, release_year, 13408 16839, has_genre, 30463 16839, release_year, 13408 7699, has_genre, 30463 7699, release_year, 13408 20428, has_genre, 30463 20428, release_year, 13408 17559, has_genre, 30463 17559, has_tags, 30463 17559, release_year, 13408 29734, has_genre, 30463 29734, release_year, 13408 26731, has_genre, 30463 26731, release_year, 13408 34517, has_genre, 30463 34517, has_genre, 14724 28660, has_genre, 30463 28660, has_genre, 14724 28660, release_year, 13408 10560, has_genre, 30463 10560, has_genre, 14724 6068, has_genre, 30463 6068, release_year, 13408 33714, has_genre, 30463 33714, release_year, 13408 33853, has_genre, 30463 33853, release_year, 13408 20003, has_genre, 30463 20003, has_tags, 30463 20003, release_year, 13408 24616, has_genre, 30463 24616, release_year, 13408 33535, has_genre, 14724 33535, release_year, 13408 12944, has_genre, 36212 12944, written_by, 36451 26151, has_genre, 30463 26151, release_year, 13408 5731, has_genre, 30463 5731, release_year, 13408 29029, has_genre, 30463 29029, release_year, 13408 21875, has_tags, 30463 21875, release_year, 13408 6959, has_genre, 30463 6959, release_year, 13408 32186, has_genre, 30463 32186, release_year, 13408 8935, has_genre, 30463 8935, has_genre, 14724 8935, release_year, 13408 11056, has_genre, 30463 11056, has_genre, 14724 28044, has_genre, 30463 28044, release_year, 13408 31445, has_genre, 30463 31445, has_tags, 30463 31445, release_year, 13408 13381, has_genre, 30463 13381, release_year, 13408 28182, has_genre, 30463 28182, release_year, 13408 32180, has_genre, 30463 32180, has_tags, 30463 32180, release_year, 13408 38381, has_genre, 30463 38381, release_year, 13408 33108, has_genre, 30463 33108, has_genre, 14724 9530, has_genre, 30463 9530, has_tags, 30463 9530, release_year, 13408 1789, has_genre, 30463 1789, has_tags, 30463 1789, release_year, 13408 37244, has_genre, 30463 37244, release_year, 13408 5880, has_genre, 30463 5880, release_year, 13408 35100, has_genre, 30463 35100, release_year, 13408 7519, has_genre, 30463 7519, release_year, 13408 36159, has_genre, 30463 36159, has_tags, 30463 36159, release_year, 13408 30089, has_genre, 30463 30089, release_year, 13408 2407, has_genre, 30463 2407, release_year, 13408 24221, has_genre, 30463 24221, release_year, 13408 35843, has_genre, 30463 35843, has_genre, 14724 7949, has_genre, 30463 7949, release_year, 13408 2235, has_genre, 30463 2235, release_year, 13408 4783, has_genre, 30463 4783, has_tags, 30463 4783, release_year, 13408 27762, has_genre, 30463 27762, release_year, 13408 30932, has_genre, 14724 30932, release_year, 13408 345, has_genre, 30463 345, release_year, 13408 23280, has_genre, 30463 23280, release_year, 13408 15795, has_genre, 30463 15795, release_year, 13408 25674, has_genre, 30463 25674, release_year, 13408 36932, directed_by, 36577 36932, has_genre, 30463 36932, has_genre, 36212 36932, in_language, 16200 36932, written_by, 36577 30164, has_genre, 30463 30164, has_tags, 30463 30164, release_year, 13408 4927, has_genre, 30463 4927, has_genre, 14724 4927, release_year, 13408 38918, has_genre, 30463 38918, has_genre, 14724 24493, has_genre, 30463 24493, has_genre, 14724 17778, has_genre, 30463 17778, release_year, 13408 28107, has_genre, 30463 28107, release_year, 13408 24108, has_genre, 30463 24108, has_genre, 14724 24108, has_tags, 30463 10353, has_genre, 30463 10353, release_year, 13408 27713, has_genre, 30463 27713, has_tags, 30463 27713, release_year, 13408 23086, has_genre, 30463 23086, has_tags, 30463 23086, release_year, 13408 7206, has_genre, 14724 7206, release_year, 13408 20728, has_genre, 30463 20728, has_tags, 30463 20728, release_year, 13408 14886, has_genre, 14724 14886, release_year, 13408 36231, has_genre, 30463 36231, release_year, 13408 26296, directed_by, 36577 26296, has_tags, 36577 26296, in_language, 16200 26296, release_year, 13408 26296, starred_actors, 36577 26296, written_by, 36577 26678, has_genre, 30463 26678, has_genre, 14724 37184, has_genre, 30463 37184, release_year, 13408 33449, has_genre, 30463 33449, release_year, 13408 37331, has_genre, 30463 37331, has_genre, 14724 11027, has_genre, 30463 11027, release_year, 13408 35988, has_genre, 30463 35988, release_year, 13408 36468, has_genre, 30463 36468, has_genre, 14724 17169, has_genre, 14724 17169, release_year, 13408 19451, has_genre, 30463 19451, release_year, 13408 21790, has_genre, 30463 21790, release_year, 13408 3137, has_genre, 30463 3137, release_year, 13408 35443, has_genre, 30463 35443, has_tags, 30463 35443, release_year, 13408 29077, has_genre, 30463 29077, has_tags, 30463 29077, release_year, 13408 25414, has_genre, 30463 25414, release_year, 13408 35511, directed_by, 36577 35511, has_genre, 30463 35511, has_genre, 36212 35511, has_tags, 30463 35511, has_tags, 16200 35511, in_language, 16200 35511, written_by, 36577 27083, has_genre, 30463 27083, release_year, 13408 37358, has_genre, 30463 37358, release_year, 13408 23844, has_genre, 30463 23844, has_genre, 14724 23844, release_year, 13408 4063, has_genre, 30463 4063, has_tags, 30463 4063, release_year, 13408 Question: In what context are NANCI KINCAID, NANNI MORETTI, and THE CURSE OF THE JADE SCORPION connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "NANCI KINCAID", "NANNI MORETTI", "THE CURSE OF THE JADE SCORPION" ], "valid_edges": [ [ "'R XMAS", "has_genre", "CRIME" ], [ "'R XMAS", "release_year", "2001" ], [ "15 MINUTES", "has_genre", "CRIME" ], [ "15 MINUTES", "release_year", "2001" ], [ "25 WATTS", "has_genre", "COMEDY" ], [ "25 WATTS", "release_year", "2001" ], [ "30 YEARS TO LIFE", "has_genre", "COMEDY" ], [ "30 YEARS TO LIFE", "release_year", "2001" ], [ "3000 MILES TO GRACELAND", "has_genre", "CRIME" ], [ "3000 MILES TO GRACELAND", "release_year", "2001" ], [ "A FINE PAIR", "has_genre", "COMEDY" ], [ "A FINE PAIR", "has_genre", "CRIME" ], [ "ALL OVER THE GUY", "has_genre", "COMEDY" ], [ "ALL OVER THE GUY", "release_year", "2001" ], [ "ALL THE QUEEN'S MEN", "has_genre", "COMEDY" ], [ "ALL THE QUEEN'S MEN", "release_year", "2001" ], [ "AMERICA'S SWEETHEARTS", "has_genre", "COMEDY" ], [ "AMERICA'S SWEETHEARTS", "release_year", "2001" ], [ "AMERICAN PIE 2", "has_genre", "COMEDY" ], [ "AMERICAN PIE 2", "has_tags", "COMEDY" ], [ "AMERICAN PIE 2", "release_year", "2001" ], [ "AMÉLIE", "has_genre", "COMEDY" ], [ "AMÉLIE", "has_tags", "COMEDY" ], [ "AMÉLIE", "release_year", "2001" ], [ "BABY BOY", "has_genre", "COMEDY" ], [ "BABY BOY", "release_year", "2001" ], [ "BAD BOYS", "has_genre", "COMEDY" ], [ "BAD BOYS", "has_genre", "CRIME" ], [ "BAD BOYS", "has_tags", "COMEDY" ], [ "BANDITS", "has_genre", "COMEDY" ], [ "BANDITS", "has_genre", "CRIME" ], [ "BANDITS", "release_year", "2001" ], [ "BARTLEBY", "has_genre", "COMEDY" ], [ "BARTLEBY", "release_year", "2001" ], [ "BEAT THE DEVIL", "has_genre", "COMEDY" ], [ "BEAT THE DEVIL", "has_tags", "CRIME" ], [ "BIG MOMMA'S HOUSE 2", "has_genre", "COMEDY" ], [ "BIG MOMMA'S HOUSE 2", "has_genre", "CRIME" ], [ "BIG NOTHING", "has_genre", "COMEDY" ], [ "BIG NOTHING", "has_genre", "CRIME" ], [ "BIG NOTHING", "has_tags", "COMEDY" ], [ "BIG NOTHING", "has_tags", "CRIME" ], [ "BIRTHDAY GIRL", "has_genre", "CRIME" ], [ "BIRTHDAY GIRL", "release_year", "2001" ], [ "BLACK KNIGHT", "has_genre", "COMEDY" ], [ "BLACK KNIGHT", "has_tags", "COMEDY" ], [ "BLACK KNIGHT", "release_year", "2001" ], [ "BLOW DRY", "has_genre", "COMEDY" ], [ "BLOW DRY", "release_year", "2001" ], [ "BRIDGET JONES'S DIARY", "has_genre", "COMEDY" ], [ "BRIDGET JONES'S DIARY", "has_tags", "COMEDY" ], [ "BRIDGET JONES'S DIARY", "release_year", "2001" ], [ "BUBBLE BOY", "has_genre", "COMEDY" ], [ "BUBBLE BOY", "release_year", "2001" ], [ "BULLY", "has_genre", "CRIME" ], [ "BULLY", "release_year", "2001" ], [ "CAMOUFLAGE", "has_genre", "COMEDY" ], [ "CAMOUFLAGE", "release_year", "2001" ], [ "CARO DIARIO", "directed_by", "NANNI MORETTI" ], [ "CARO DIARIO", "has_tags", "NANNI MORETTI" ], [ "CARO DIARIO", "in_language", "ITALIAN" ], [ "CARO DIARIO", "starred_actors", "NANNI MORETTI" ], [ "CARO DIARIO", "written_by", "NANNI MORETTI" ], [ "CORKY ROMANO", "has_genre", "COMEDY" ], [ "CORKY ROMANO", "release_year", "2001" ], [ "CROCODILE DUNDEE IN LOS ANGELES", "has_genre", "COMEDY" ], [ "CROCODILE DUNDEE IN LOS ANGELES", "release_year", "2001" ], [ "DELITTO A PORTA ROMANA", "has_genre", "COMEDY" ], [ "DELITTO A PORTA ROMANA", "has_genre", "CRIME" ], [ "DIL CHAHTA HAI", "has_genre", "COMEDY" ], [ "DIL CHAHTA HAI", "has_tags", "COMEDY" ], [ "DIL CHAHTA HAI", "release_year", "2001" ], [ "DOM HEMINGWAY", "has_genre", "COMEDY" ], [ "DOM HEMINGWAY", "has_genre", "CRIME" ], [ "DON'T TEMPT ME", "has_genre", "COMEDY" ], [ "DON'T TEMPT ME", "release_year", "2001" ], [ "DOUBLE TAKE", "has_genre", "COMEDY" ], [ "DOUBLE TAKE", "release_year", "2001" ], [ "DOWN TO EARTH", "has_genre", "COMEDY" ], [ "DOWN TO EARTH", "release_year", "2001" ], [ "DR. DOLITTLE 2", "has_genre", "COMEDY" ], [ "DR. DOLITTLE 2", "release_year", "2001" ], [ "ESCANABA IN DA MOONLIGHT", "has_genre", "COMEDY" ], [ "ESCANABA IN DA MOONLIGHT", "release_year", "2001" ], [ "EVOLUTION", "has_genre", "COMEDY" ], [ "EVOLUTION", "has_tags", "COMEDY" ], [ "EVOLUTION", "release_year", "2001" ], [ "FILTH", "has_genre", "COMEDY" ], [ "FILTH", "has_genre", "CRIME" ], [ "FIND ME GUILTY", "has_genre", "COMEDY" ], [ "FIND ME GUILTY", "has_genre", "CRIME" ], [ "FLAWLESS", "has_genre", "COMEDY" ], [ "FLAWLESS", "has_genre", "CRIME" ], [ "FLYPAPER", "has_genre", "COMEDY" ], [ "FLYPAPER", "has_genre", "CRIME" ], [ "FOCUS", "has_genre", "COMEDY" ], [ "FOCUS", "release_year", "2001" ], [ "FREDDY GOT FINGERED", "has_genre", "COMEDY" ], [ "FREDDY GOT FINGERED", "release_year", "2001" ], [ "GANG TAPES", "has_genre", "CRIME" ], [ "GANG TAPES", "release_year", "2001" ], [ "GASOLINE", "has_genre", "CRIME" ], [ "GASOLINE", "release_year", "2001" ], [ "GAUDI AFTERNOON", "has_genre", "COMEDY" ], [ "GAUDI AFTERNOON", "release_year", "2001" ], [ "GET OVER IT", "has_genre", "COMEDY" ], [ "GET OVER IT", "has_tags", "COMEDY" ], [ "GET OVER IT", "release_year", "2001" ], [ "GHOST WORLD", "has_genre", "COMEDY" ], [ "GHOST WORLD", "release_year", "2001" ], [ "GOD IS GREAT AND I'M NOT", "has_genre", "COMEDY" ], [ "GOD IS GREAT AND I'M NOT", "release_year", "2001" ], [ "GOOD ADVICE", "has_genre", "COMEDY" ], [ "GOOD ADVICE", "release_year", "2001" ], [ "GRIDLOCK'D", "has_genre", "COMEDY" ], [ "GRIDLOCK'D", "has_genre", "CRIME" ], [ "HANNIBAL", "has_genre", "CRIME" ], [ "HANNIBAL", "release_year", "2001" ], [ "HAPPY CAMPERS", "has_genre", "COMEDY" ], [ "HAPPY CAMPERS", "release_year", "2001" ], [ "HARLEM NIGHTS", "has_genre", "COMEDY" ], [ "HARLEM NIGHTS", "has_genre", "CRIME" ], [ "HARVARD MAN", "has_genre", "COMEDY" ], [ "HARVARD MAN", "has_genre", "CRIME" ], [ "HARVARD MAN", "release_year", "2001" ], [ "HE DIED WITH A FELAFEL IN HIS HAND", "has_genre", "COMEDY" ], [ "HE DIED WITH A FELAFEL IN HIS HAND", "release_year", "2001" ], [ "HEARTBREAKERS", "has_genre", "COMEDY" ], [ "HEARTBREAKERS", "release_year", "2001" ], [ "HEDWIG AND THE ANGRY INCH", "has_genre", "COMEDY" ], [ "HEDWIG AND THE ANGRY INCH", "release_year", "2001" ], [ "HEIST", "has_genre", "CRIME" ], [ "HEIST", "release_year", "2001" ], [ "HIGH HEELS AND LOW LIFES", "has_genre", "COMEDY" ], [ "HIGH HEELS AND LOW LIFES", "release_year", "2001" ], [ "HOW HIGH", "has_genre", "COMEDY" ], [ "HOW HIGH", "release_year", "2001" ], [ "HUMAN NATURE", "has_genre", "COMEDY" ], [ "HUMAN NATURE", "release_year", "2001" ], [ "IN THE BEDROOM", "has_genre", "CRIME" ], [ "IN THE BEDROOM", "release_year", "2001" ], [ "JACKPOT", "has_genre", "COMEDY" ], [ "JACKPOT", "release_year", "2001" ], [ "JAY AND SILENT BOB STRIKE BACK", "has_genre", "COMEDY" ], [ "JAY AND SILENT BOB STRIKE BACK", "has_tags", "COMEDY" ], [ "JAY AND SILENT BOB STRIKE BACK", "release_year", "2001" ], [ "JOE DIRT", "has_genre", "COMEDY" ], [ "JOE DIRT", "release_year", "2001" ], [ "JOE SOMEBODY", "has_genre", "COMEDY" ], [ "JOE SOMEBODY", "release_year", "2001" ], [ "JOSIE AND THE PUSSYCATS", "has_genre", "COMEDY" ], [ "JOSIE AND THE PUSSYCATS", "release_year", "2001" ], [ "JUMP TOMORROW", "has_genre", "COMEDY" ], [ "JUMP TOMORROW", "release_year", "2001" ], [ "JUST VISITING", "has_genre", "COMEDY" ], [ "JUST VISITING", "release_year", "2001" ], [ "KINGDOM COME", "has_genre", "COMEDY" ], [ "KINGDOM COME", "release_year", "2001" ], [ "KISSING JESSICA STEIN", "has_genre", "COMEDY" ], [ "KISSING JESSICA STEIN", "release_year", "2001" ], [ "LEGALLY BLONDE", "has_genre", "COMEDY" ], [ "LEGALLY BLONDE", "has_tags", "COMEDY" ], [ "LEGALLY BLONDE", "release_year", "2001" ], [ "LITTLE SECRETS", "has_genre", "COMEDY" ], [ "LITTLE SECRETS", "release_year", "2001" ], [ "LUCKY BREAK", "has_genre", "COMEDY" ], [ "LUCKY BREAK", "release_year", "2001" ], [ "LUV", "has_genre", "COMEDY" ], [ "LUV", "has_genre", "CRIME" ], [ "MADE", "has_genre", "COMEDY" ], [ "MADE", "has_genre", "CRIME" ], [ "MADE", "release_year", "2001" ], [ "MAN BITES DOG", "has_genre", "COMEDY" ], [ "MAN BITES DOG", "has_genre", "CRIME" ], [ "MAX KEEBLE'S BIG MOVE", "has_genre", "COMEDY" ], [ "MAX KEEBLE'S BIG MOVE", "release_year", "2001" ], [ "MEAN MACHINE", "has_genre", "COMEDY" ], [ "MEAN MACHINE", "release_year", "2001" ], [ "MONKEYBONE", "has_genre", "COMEDY" ], [ "MONKEYBONE", "release_year", "2001" ], [ "MONSTERS, INC.", "has_genre", "COMEDY" ], [ "MONSTERS, INC.", "has_tags", "COMEDY" ], [ "MONSTERS, INC.", "release_year", "2001" ], [ "MOSTLY MARTHA", "has_genre", "COMEDY" ], [ "MOSTLY MARTHA", "release_year", "2001" ], [ "MY KINGDOM", "has_genre", "CRIME" ], [ "MY KINGDOM", "release_year", "2001" ], [ "MY LIFE WITHOUT ME", "has_genre", "DRAMA" ], [ "MY LIFE WITHOUT ME", "written_by", "NANCI KINCAID" ], [ "NOBODY'S BABY", "has_genre", "COMEDY" ], [ "NOBODY'S BABY", "release_year", "2001" ], [ "NOT ANOTHER TEEN MOVIE", "has_genre", "COMEDY" ], [ "NOT ANOTHER TEEN MOVIE", "release_year", "2001" ], [ "NOVOCAINE", "has_genre", "COMEDY" ], [ "NOVOCAINE", "release_year", "2001" ], [ "OCEAN'S ELEVEN", "has_tags", "COMEDY" ], [ "OCEAN'S ELEVEN", "release_year", "2001" ], [ "ON THE LINE", "has_genre", "COMEDY" ], [ "ON THE LINE", "release_year", "2001" ], [ "ONE MAN UP", "has_genre", "COMEDY" ], [ "ONE MAN UP", "release_year", "2001" ], [ "ONE NIGHT AT MCCOOL'S", "has_genre", "COMEDY" ], [ "ONE NIGHT AT MCCOOL'S", "has_genre", "CRIME" ], [ "ONE NIGHT AT MCCOOL'S", "release_year", "2001" ], [ "PAULETTE", "has_genre", "COMEDY" ], [ "PAULETTE", "has_genre", "CRIME" ], [ "PAULINE AND PAULETTE", "has_genre", "COMEDY" ], [ "PAULINE AND PAULETTE", "release_year", "2001" ], [ "PONTEROSA", "has_genre", "COMEDY" ], [ "PONTEROSA", "has_tags", "COMEDY" ], [ "PONTEROSA", "release_year", "2001" ], [ "POOTIE TANG", "has_genre", "COMEDY" ], [ "POOTIE TANG", "release_year", "2001" ], [ "RARE BIRDS", "has_genre", "COMEDY" ], [ "RARE BIRDS", "release_year", "2001" ], [ "RAT RACE", "has_genre", "COMEDY" ], [ "RAT RACE", "has_tags", "COMEDY" ], [ "RAT RACE", "release_year", "2001" ], [ "ROCK STAR", "has_genre", "COMEDY" ], [ "ROCK STAR", "release_year", "2001" ], [ "RUNNING SCARED", "has_genre", "COMEDY" ], [ "RUNNING SCARED", "has_genre", "CRIME" ], [ "RUSH HOUR 2", "has_genre", "COMEDY" ], [ "RUSH HOUR 2", "has_tags", "COMEDY" ], [ "RUSH HOUR 2", "release_year", "2001" ], [ "SAVING SILVERMAN", "has_genre", "COMEDY" ], [ "SAVING SILVERMAN", "has_tags", "COMEDY" ], [ "SAVING SILVERMAN", "release_year", "2001" ], [ "SAY IT ISN'T SO", "has_genre", "COMEDY" ], [ "SAY IT ISN'T SO", "release_year", "2001" ], [ "SERENDIPITY", "has_genre", "COMEDY" ], [ "SERENDIPITY", "release_year", "2001" ], [ "SHALLOW HAL", "has_genre", "COMEDY" ], [ "SHALLOW HAL", "release_year", "2001" ], [ "SHAOLIN SOCCER", "has_genre", "COMEDY" ], [ "SHAOLIN SOCCER", "release_year", "2001" ], [ "SHREK", "has_genre", "COMEDY" ], [ "SHREK", "has_tags", "COMEDY" ], [ "SHREK", "release_year", "2001" ], [ "SIDEWALKS OF NEW YORK", "has_genre", "COMEDY" ], [ "SIDEWALKS OF NEW YORK", "release_year", "2001" ], [ "SON OF THE BRIDE", "has_genre", "COMEDY" ], [ "SON OF THE BRIDE", "release_year", "2001" ], [ "SPEAKING OF SEX", "has_genre", "COMEDY" ], [ "SPEAKING OF SEX", "release_year", "2001" ], [ "SPUN", "has_genre", "COMEDY" ], [ "SPUN", "has_genre", "CRIME" ], [ "STORYTELLING", "has_genre", "COMEDY" ], [ "STORYTELLING", "release_year", "2001" ], [ "SUMMER CATCH", "has_genre", "COMEDY" ], [ "SUMMER CATCH", "release_year", "2001" ], [ "SUPER TROOPERS", "has_genre", "COMEDY" ], [ "SUPER TROOPERS", "has_tags", "COMEDY" ], [ "SUPER TROOPERS", "release_year", "2001" ], [ "SWEET NOVEMBER", "has_genre", "COMEDY" ], [ "SWEET NOVEMBER", "release_year", "2001" ], [ "SWORDFISH", "has_genre", "CRIME" ], [ "SWORDFISH", "release_year", "2001" ], [ "TANGUY", "has_genre", "COMEDY" ], [ "TANGUY", "release_year", "2001" ], [ "THE ANIMAL", "has_genre", "COMEDY" ], [ "THE ANIMAL", "release_year", "2001" ], [ "THE ANNIVERSARY PARTY", "has_genre", "COMEDY" ], [ "THE ANNIVERSARY PARTY", "release_year", "2001" ], [ "THE BROTHERS", "has_genre", "COMEDY" ], [ "THE BROTHERS", "release_year", "2001" ], [ "THE CAIMAN", "directed_by", "NANNI MORETTI" ], [ "THE CAIMAN", "has_genre", "COMEDY" ], [ "THE CAIMAN", "has_genre", "DRAMA" ], [ "THE CAIMAN", "in_language", "ITALIAN" ], [ "THE CAIMAN", "written_by", "NANNI MORETTI" ], [ "THE CLOSET", "has_genre", "COMEDY" ], [ "THE CLOSET", "has_tags", "COMEDY" ], [ "THE CLOSET", "release_year", "2001" ], [ "THE CURSE OF THE JADE SCORPION", "has_genre", "COMEDY" ], [ "THE CURSE OF THE JADE SCORPION", "has_genre", "CRIME" ], [ "THE CURSE OF THE JADE SCORPION", "release_year", "2001" ], [ "THE FAMILY", "has_genre", "COMEDY" ], [ "THE FAMILY", "has_genre", "CRIME" ], [ "THE FUNERAL", "has_genre", "COMEDY" ], [ "THE FUNERAL", "has_genre", "CRIME" ], [ "THE HAPPINESS OF THE KATAKURIS", "has_genre", "COMEDY" ], [ "THE HAPPINESS OF THE KATAKURIS", "release_year", "2001" ], [ "THE LAST KISS", "has_genre", "COMEDY" ], [ "THE LAST KISS", "release_year", "2001" ], [ "THE MAN", "has_genre", "COMEDY" ], [ "THE MAN", "has_genre", "CRIME" ], [ "THE MAN", "has_tags", "COMEDY" ], [ "THE MAN WHO SUED GOD", "has_genre", "COMEDY" ], [ "THE MAN WHO SUED GOD", "release_year", "2001" ], [ "THE MEXICAN", "has_genre", "COMEDY" ], [ "THE MEXICAN", "has_tags", "COMEDY" ], [ "THE MEXICAN", "release_year", "2001" ], [ "THE PRINCESS DIARIES", "has_genre", "COMEDY" ], [ "THE PRINCESS DIARIES", "has_tags", "COMEDY" ], [ "THE PRINCESS DIARIES", "release_year", "2001" ], [ "THE QUICKIE", "has_genre", "CRIME" ], [ "THE QUICKIE", "release_year", "2001" ], [ "THE ROYAL TENENBAUMS", "has_genre", "COMEDY" ], [ "THE ROYAL TENENBAUMS", "has_tags", "COMEDY" ], [ "THE ROYAL TENENBAUMS", "release_year", "2001" ], [ "THE SCORE", "has_genre", "CRIME" ], [ "THE SCORE", "release_year", "2001" ], [ "THE SHRINK IS IN", "has_genre", "COMEDY" ], [ "THE SHRINK IS IN", "release_year", "2001" ], [ "THE SON'S ROOM", "directed_by", "NANNI MORETTI" ], [ "THE SON'S ROOM", "has_tags", "NANNI MORETTI" ], [ "THE SON'S ROOM", "in_language", "ITALIAN" ], [ "THE SON'S ROOM", "release_year", "2001" ], [ "THE SON'S ROOM", "starred_actors", "NANNI MORETTI" ], [ "THE SON'S ROOM", "written_by", "NANNI MORETTI" ], [ "THE SWINDLE", "has_genre", "COMEDY" ], [ "THE SWINDLE", "has_genre", "CRIME" ], [ "THE TRIUMPH OF LOVE", "has_genre", "COMEDY" ], [ "THE TRIUMPH OF LOVE", "release_year", "2001" ], [ "THE WEDDING PLANNER", "has_genre", "COMEDY" ], [ "THE WEDDING PLANNER", "release_year", "2001" ], [ "TO DIE FOR", "has_genre", "COMEDY" ], [ "TO DIE FOR", "has_genre", "CRIME" ], [ "TOMCATS", "has_genre", "COMEDY" ], [ "TOMCATS", "release_year", "2001" ], [ "TORTILLA SOUP", "has_genre", "COMEDY" ], [ "TORTILLA SOUP", "release_year", "2001" ], [ "TOUGH GUYS DON'T DANCE", "has_genre", "COMEDY" ], [ "TOUGH GUYS DON'T DANCE", "has_genre", "CRIME" ], [ "TRAINING DAY", "has_genre", "CRIME" ], [ "TRAINING DAY", "release_year", "2001" ], [ "TWO CAN PLAY THAT GAME", "has_genre", "COMEDY" ], [ "TWO CAN PLAY THAT GAME", "release_year", "2001" ], [ "VERY ANNIE MARY", "has_genre", "COMEDY" ], [ "VERY ANNIE MARY", "release_year", "2001" ], [ "VISITOR Q", "has_genre", "COMEDY" ], [ "VISITOR Q", "release_year", "2001" ], [ "VIZONTELE", "has_genre", "COMEDY" ], [ "VIZONTELE", "has_tags", "COMEDY" ], [ "VIZONTELE", "release_year", "2001" ], [ "WASABI", "has_genre", "COMEDY" ], [ "WASABI", "has_tags", "COMEDY" ], [ "WASABI", "release_year", "2001" ], [ "WATERBOYS", "has_genre", "COMEDY" ], [ "WATERBOYS", "release_year", "2001" ], [ "WE HAVE A POPE", "directed_by", "NANNI MORETTI" ], [ "WE HAVE A POPE", "has_genre", "COMEDY" ], [ "WE HAVE A POPE", "has_genre", "DRAMA" ], [ "WE HAVE A POPE", "has_tags", "COMEDY" ], [ "WE HAVE A POPE", "has_tags", "ITALIAN" ], [ "WE HAVE A POPE", "in_language", "ITALIAN" ], [ "WE HAVE A POPE", "written_by", "NANNI MORETTI" ], [ "WET HOT AMERICAN SUMMER", "has_genre", "COMEDY" ], [ "WET HOT AMERICAN SUMMER", "release_year", "2001" ], [ "WHAT'S THE WORST THAT COULD HAPPEN?", "has_genre", "COMEDY" ], [ "WHAT'S THE WORST THAT COULD HAPPEN?", "release_year", "2001" ], [ "WHO IS CLETIS TOUT?", "has_genre", "COMEDY" ], [ "WHO IS CLETIS TOUT?", "has_genre", "CRIME" ], [ "WHO IS CLETIS TOUT?", "release_year", "2001" ], [ "ZOOLANDER", "has_genre", "COMEDY" ], [ "ZOOLANDER", "has_tags", "COMEDY" ], [ "ZOOLANDER", "release_year", "2001" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 17480, 1988 27261, 2009 30146, A CHRISTMAS CAROL 23490, ADRIAN MITCHELL 4763, ADVENTURE 16054, ADVENTURES IN BABYSITTING 10341, ADVENTURES OF DON JUAN 16831, ALADIN 38021, ALICE 29638, ALICE IN WONDERLAND 17157, ARABIAN NIGHTS 4017, ARIEL 10045, BD-R 38657, BEAT THE DEVIL 15771, BENGAZI 11779, BIG TOP PEE-WEE 18599, BILOXI BLUES 1040, CAPTAIN BLOOD 7646, D.O.A. 21286, DAVID COPPERFIELD 8381, DETOUR 5881, ELEPHANT BOY 26308, FLIPPER 34657, FROM TIME TO TIME 31198, GIALLO 17384, GUNGA DIN 4830, HALLOWEEN 20941, HAMLET 12087, HOWL'S MOVING CASTLE 36299, IT'S THE GREAT PUMPKIN, CHARLIE BROWN 7539, IVANHOE 847, JACK THE GIANT KILLER 20567, JOHN CARTER 35705, JOURNEY TO THE CENTER OF THE EARTH 38986, JUNGLE BOOK 19098, KING KONG 14156, KING SOLOMON'S MINES 37100, KNIGHTS OF THE ROUND TABLE 36940, LABYRINTH 25097, LAND OF THE LOST 30029, LAWRENCE OF ARABIA 33160, LITTLE DORRIT 37435, MAC AND ME 20579, MARAT/SADE 17189, NIGHT OF THE DEMONS 32358, NORTH 1994, NOTORIOUS 14797, O BROTHER, WHERE ART THOU? 27496, ONE MILLION YEARS B.C. 15651, PREHISTORIC WOMEN 24066, REEL INJUN 15873, ROBIN AND MARIAN 35586, SAHARA 5629, SCOOBY-DOO! THE MYSTERY BEGINS 27626, SHEENA 31316, SHERLOCK HOLMES AND THE SECRET WEAPON 11262, SHOOT TO KILL 4314, SOLOMON KANE 34989, STAR TREK 15194, STORY OF WOMEN 21003, TANNER HALL 20121, TAPEHEADS 11699, TARZAN THE APE MAN 18715, TARZAN'S NEW YORK ADVENTURE 2584, THE ADVENTURES OF BARON MUNCHAUSEN 21608, THE ADVENTURES OF HUCKLEBERRY FINN 3354, THE BROTHERS GRIMM 7639, THE CHARGE OF THE LIGHT BRIGADE 21330, THE CRIMSON PIRATE 16800, THE DECEIVERS 38631, THE FLAME AND THE ARROW 11635, THE FOUR FEATHERS 9166, THE GUNS OF NAVARONE 15754, THE LAND BEFORE TIME 32231, THE LAND THAT TIME FORGOT 29109, THE LODGER 4182, THE MAN IN THE IRON MASK 13295, THE MARK OF ZORRO 4029, THE MASK OF FU MANCHU 2432, THE MASTER OF BALLANTRAE 26820, THE MUMMY 26460, THE NEW ADVENTURES OF PIPPI LONGSTOCKING 5575, THE PEOPLE THAT TIME FORGOT 24512, THE PHANTOM TOLLBOOTH 22486, THE PRINCE AND THE PAUPER 31851, THE PRISONER OF ZENDA 8477, THE SCARLET PIMPERNEL 30746, THE SECRET LIFE OF WALTER MITTY 31647, THE SON OF THE SHEIK 7816, THE THREE MUSKETEERS 983, THE TREASURE OF THE SIERRA MADRE 17568, THE VANISHING 12308, THE VIKINGS 27609, THE WIND AND THE LION 27963, THEY LIVE 24789, TO HAVE AND HAVE NOT 25443, TOM JONES 6724, TOM SAWYER 37876, TROMA'S WAR 2902, TRUE HEART 5574, UP 38723, VIBES 11659, VIVA MARIA! src, edge_attr, dst 30146, has_tags, 10045 30146, release_year, 27261 16054, has_genre, 4763 16054, has_tags, 4763 16054, has_tags, 10045 10341, has_genre, 4763 10341, has_tags, 10045 16831, has_genre, 4763 16831, release_year, 27261 38021, has_genre, 4763 38021, release_year, 17480 29638, has_genre, 4763 29638, has_tags, 10045 17157, has_genre, 4763 17157, has_tags, 10045 4017, has_tags, 10045 4017, release_year, 17480 38657, has_genre, 4763 38657, has_tags, 10045 15771, has_genre, 4763 15771, has_tags, 10045 11779, has_genre, 4763 11779, release_year, 17480 18599, has_tags, 10045 18599, release_year, 17480 1040, has_genre, 4763 1040, has_tags, 4763 1040, has_tags, 10045 7646, has_tags, 10045 7646, release_year, 17480 21286, has_genre, 4763 21286, has_tags, 10045 8381, has_tags, 10045 8381, release_year, 27261 5881, has_genre, 4763 5881, has_tags, 10045 26308, has_genre, 4763 26308, has_tags, 10045 34657, has_genre, 4763 34657, release_year, 27261 31198, has_tags, 10045 31198, release_year, 27261 17384, has_genre, 4763 17384, has_tags, 10045 4830, has_tags, 4830 20941, has_tags, 10045 20941, release_year, 27261 12087, has_genre, 4763 12087, has_tags, 4763 12087, has_tags, 10045 36299, has_tags, 10045 36299, has_tags, 4830 7539, has_genre, 4763 7539, has_tags, 10045 847, has_genre, 4763 847, has_tags, 10045 20567, has_genre, 4763 20567, has_tags, 10045 35705, has_genre, 4763 35705, has_tags, 4763 35705, has_tags, 10045 38986, has_genre, 4763 38986, has_tags, 10045 19098, has_genre, 4763 19098, has_tags, 4763 19098, has_tags, 10045 14156, has_genre, 4763 14156, has_tags, 4763 14156, has_tags, 10045 37100, has_genre, 4763 37100, has_tags, 10045 36940, has_genre, 4763 36940, has_tags, 4763 36940, has_tags, 10045 25097, has_genre, 4763 25097, release_year, 27261 30029, has_genre, 4763 30029, has_tags, 10045 33160, has_tags, 10045 33160, release_year, 17480 37435, has_genre, 4763 37435, release_year, 17480 20579, has_tags, 10045 20579, written_by, 23490 17189, has_tags, 10045 17189, has_tags, 4830 17189, release_year, 17480 17189, release_year, 27261 32358, has_genre, 4763 32358, release_year, 27261 1994, has_tags, 10045 1994, release_year, 27261 14797, has_genre, 4763 14797, has_tags, 4763 14797, has_tags, 10045 27496, has_genre, 4763 27496, has_tags, 10045 15651, has_genre, 4763 15651, has_tags, 10045 24066, has_tags, 10045 24066, release_year, 27261 15873, has_genre, 4763 15873, has_tags, 10045 35586, has_genre, 4763 35586, has_tags, 10045 5629, has_genre, 4763 5629, release_year, 27261 27626, has_genre, 4763 27626, has_tags, 10045 31316, has_genre, 4763 31316, has_tags, 10045 11262, has_genre, 4763 11262, release_year, 17480 4314, has_genre, 4763 4314, release_year, 27261 34989, has_genre, 4763 34989, has_tags, 4763 34989, release_year, 27261 15194, has_tags, 10045 15194, release_year, 17480 21003, has_tags, 10045 21003, release_year, 27261 20121, has_tags, 10045 20121, release_year, 17480 11699, has_genre, 4763 11699, has_tags, 10045 18715, has_genre, 4763 18715, has_tags, 10045 2584, has_genre, 4763 2584, release_year, 17480 21608, has_genre, 4763 21608, has_tags, 10045 3354, has_genre, 4763 3354, has_tags, 4763 3354, has_tags, 10045 7639, has_genre, 4763 7639, has_tags, 10045 21330, has_genre, 4763 21330, has_tags, 10045 16800, has_genre, 4763 16800, has_tags, 10045 16800, release_year, 17480 38631, has_genre, 4763 38631, has_tags, 10045 11635, has_genre, 4763 11635, has_tags, 10045 9166, has_genre, 4763 9166, has_tags, 10045 15754, has_genre, 4763 15754, release_year, 17480 32231, has_genre, 4763 32231, has_tags, 4763 32231, has_tags, 10045 29109, has_tags, 10045 29109, release_year, 27261 4182, has_genre, 4763 4182, has_tags, 4763 4182, has_tags, 10045 13295, has_genre, 4763 13295, has_tags, 10045 4029, has_genre, 4763 4029, has_tags, 10045 2432, has_genre, 4763 2432, has_tags, 10045 26820, has_genre, 4763 26820, has_tags, 4763 26820, has_tags, 10045 26460, has_genre, 4763 26460, release_year, 17480 5575, has_genre, 4763 5575, has_tags, 10045 24512, has_genre, 4763 24512, has_tags, 10045 22486, has_genre, 4763 22486, has_tags, 10045 31851, has_genre, 4763 31851, has_tags, 10045 8477, has_genre, 4763 8477, has_tags, 10045 30746, has_genre, 4763 30746, has_tags, 10045 31647, has_genre, 4763 31647, has_tags, 10045 7816, has_genre, 4763 7816, has_tags, 10045 983, has_genre, 4763 983, has_tags, 10045 17568, has_tags, 10045 17568, release_year, 17480 12308, has_genre, 4763 12308, has_tags, 10045 27609, has_genre, 4763 27609, has_tags, 10045 27963, has_tags, 10045 27963, release_year, 17480 24789, has_genre, 4763 24789, has_tags, 10045 25443, has_genre, 4763 25443, has_tags, 10045 6724, has_genre, 4763 6724, has_tags, 10045 37876, has_genre, 4763 37876, release_year, 17480 2902, has_genre, 4763 5574, has_genre, 4763 5574, has_tags, 4763 5574, release_year, 27261 38723, has_genre, 4763 38723, release_year, 17480 11659, has_genre, 4763 11659, has_tags, 10045 Question: In what context are ADRIAN MITCHELL, NIGHT OF THE DEMONS, and TRUE HEART connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "ADRIAN MITCHELL", "NIGHT OF THE DEMONS", "TRUE HEART" ], "valid_edges": [ [ "A CHRISTMAS CAROL", "has_tags", "BD-R" ], [ "A CHRISTMAS CAROL", "release_year", "2009" ], [ "ADVENTURES IN BABYSITTING", "has_genre", "ADVENTURE" ], [ "ADVENTURES IN BABYSITTING", "has_tags", "ADVENTURE" ], [ "ADVENTURES IN BABYSITTING", "has_tags", "BD-R" ], [ "ADVENTURES OF DON JUAN", "has_genre", "ADVENTURE" ], [ "ADVENTURES OF DON JUAN", "has_tags", "BD-R" ], [ "ALADIN", "has_genre", "ADVENTURE" ], [ "ALADIN", "release_year", "2009" ], [ "ALICE", "has_genre", "ADVENTURE" ], [ "ALICE", "release_year", "1988" ], [ "ALICE IN WONDERLAND", "has_genre", "ADVENTURE" ], [ "ALICE IN WONDERLAND", "has_tags", "BD-R" ], [ "ARABIAN NIGHTS", "has_genre", "ADVENTURE" ], [ "ARABIAN NIGHTS", "has_tags", "BD-R" ], [ "ARIEL", "has_tags", "BD-R" ], [ "ARIEL", "release_year", "1988" ], [ "BEAT THE DEVIL", "has_genre", "ADVENTURE" ], [ "BEAT THE DEVIL", "has_tags", "BD-R" ], [ "BENGAZI", "has_genre", "ADVENTURE" ], [ "BENGAZI", "has_tags", "BD-R" ], [ "BIG TOP PEE-WEE", "has_genre", "ADVENTURE" ], [ "BIG TOP PEE-WEE", "release_year", "1988" ], [ "BILOXI BLUES", "has_tags", "BD-R" ], [ "BILOXI BLUES", "release_year", "1988" ], [ "CAPTAIN BLOOD", "has_genre", "ADVENTURE" ], [ "CAPTAIN BLOOD", "has_tags", "ADVENTURE" ], [ "CAPTAIN BLOOD", "has_tags", "BD-R" ], [ "D.O.A.", "has_tags", "BD-R" ], [ "D.O.A.", "release_year", "1988" ], [ "DAVID COPPERFIELD", "has_genre", "ADVENTURE" ], [ "DAVID COPPERFIELD", "has_tags", "BD-R" ], [ "DETOUR", "has_tags", "BD-R" ], [ "DETOUR", "release_year", "2009" ], [ "ELEPHANT BOY", "has_genre", "ADVENTURE" ], [ "ELEPHANT BOY", "has_tags", "BD-R" ], [ "FLIPPER", "has_genre", "ADVENTURE" ], [ "FLIPPER", "has_tags", "BD-R" ], [ "FROM TIME TO TIME", "has_genre", "ADVENTURE" ], [ "FROM TIME TO TIME", "release_year", "2009" ], [ "GIALLO", "has_tags", "BD-R" ], [ "GIALLO", "release_year", "2009" ], [ "GUNGA DIN", "has_genre", "ADVENTURE" ], [ "GUNGA DIN", "has_tags", "BD-R" ], [ "HALLOWEEN", "has_tags", "HALLOWEEN" ], [ "HAMLET", "has_tags", "BD-R" ], [ "HAMLET", "release_year", "2009" ], [ "HOWL'S MOVING CASTLE", "has_genre", "ADVENTURE" ], [ "HOWL'S MOVING CASTLE", "has_tags", "ADVENTURE" ], [ "HOWL'S MOVING CASTLE", "has_tags", "BD-R" ], [ "IT'S THE GREAT PUMPKIN, CHARLIE BROWN", "has_tags", "BD-R" ], [ "IT'S THE GREAT PUMPKIN, CHARLIE BROWN", "has_tags", "HALLOWEEN" ], [ "IVANHOE", "has_genre", "ADVENTURE" ], [ "IVANHOE", "has_tags", "BD-R" ], [ "JACK THE GIANT KILLER", "has_genre", "ADVENTURE" ], [ "JACK THE GIANT KILLER", "has_tags", "BD-R" ], [ "JOHN CARTER", "has_genre", "ADVENTURE" ], [ "JOHN CARTER", "has_tags", "BD-R" ], [ "JOURNEY TO THE CENTER OF THE EARTH", "has_genre", "ADVENTURE" ], [ "JOURNEY TO THE CENTER OF THE EARTH", "has_tags", "ADVENTURE" ], [ "JOURNEY TO THE CENTER OF THE EARTH", "has_tags", "BD-R" ], [ "JUNGLE BOOK", "has_genre", "ADVENTURE" ], [ "JUNGLE BOOK", "has_tags", "BD-R" ], [ "KING KONG", "has_genre", "ADVENTURE" ], [ "KING KONG", "has_tags", "ADVENTURE" ], [ "KING KONG", "has_tags", "BD-R" ], [ "KING SOLOMON'S MINES", "has_genre", "ADVENTURE" ], [ "KING SOLOMON'S MINES", "has_tags", "ADVENTURE" ], [ "KING SOLOMON'S MINES", "has_tags", "BD-R" ], [ "KNIGHTS OF THE ROUND TABLE", "has_genre", "ADVENTURE" ], [ "KNIGHTS OF THE ROUND TABLE", "has_tags", "BD-R" ], [ "LABYRINTH", "has_genre", "ADVENTURE" ], [ "LABYRINTH", "has_tags", "ADVENTURE" ], [ "LABYRINTH", "has_tags", "BD-R" ], [ "LAND OF THE LOST", "has_genre", "ADVENTURE" ], [ "LAND OF THE LOST", "release_year", "2009" ], [ "LAWRENCE OF ARABIA", "has_genre", "ADVENTURE" ], [ "LAWRENCE OF ARABIA", "has_tags", "BD-R" ], [ "LITTLE DORRIT", "has_tags", "BD-R" ], [ "LITTLE DORRIT", "release_year", "1988" ], [ "MAC AND ME", "has_genre", "ADVENTURE" ], [ "MAC AND ME", "release_year", "1988" ], [ "MARAT/SADE", "has_tags", "BD-R" ], [ "MARAT/SADE", "written_by", "ADRIAN MITCHELL" ], [ "NIGHT OF THE DEMONS", "has_tags", "BD-R" ], [ "NIGHT OF THE DEMONS", "has_tags", "HALLOWEEN" ], [ "NIGHT OF THE DEMONS", "release_year", "1988" ], [ "NIGHT OF THE DEMONS", "release_year", "2009" ], [ "NORTH", "has_genre", "ADVENTURE" ], [ "NORTH", "release_year", "2009" ], [ "NOTORIOUS", "has_tags", "BD-R" ], [ "NOTORIOUS", "release_year", "2009" ], [ "O BROTHER, WHERE ART THOU?", "has_genre", "ADVENTURE" ], [ "O BROTHER, WHERE ART THOU?", "has_tags", "ADVENTURE" ], [ "O BROTHER, WHERE ART THOU?", "has_tags", "BD-R" ], [ "ONE MILLION YEARS B.C.", "has_genre", "ADVENTURE" ], [ "ONE MILLION YEARS B.C.", "has_tags", "BD-R" ], [ "PREHISTORIC WOMEN", "has_genre", "ADVENTURE" ], [ "PREHISTORIC WOMEN", "has_tags", "BD-R" ], [ "REEL INJUN", "has_tags", "BD-R" ], [ "REEL INJUN", "release_year", "2009" ], [ "ROBIN AND MARIAN", "has_genre", "ADVENTURE" ], [ "ROBIN AND MARIAN", "has_tags", "BD-R" ], [ "SAHARA", "has_genre", "ADVENTURE" ], [ "SAHARA", "has_tags", "BD-R" ], [ "SCOOBY-DOO! THE MYSTERY BEGINS", "has_genre", "ADVENTURE" ], [ "SCOOBY-DOO! THE MYSTERY BEGINS", "release_year", "2009" ], [ "SHEENA", "has_genre", "ADVENTURE" ], [ "SHEENA", "has_tags", "BD-R" ], [ "SHERLOCK HOLMES AND THE SECRET WEAPON", "has_genre", "ADVENTURE" ], [ "SHERLOCK HOLMES AND THE SECRET WEAPON", "has_tags", "BD-R" ], [ "SHOOT TO KILL", "has_genre", "ADVENTURE" ], [ "SHOOT TO KILL", "release_year", "1988" ], [ "SOLOMON KANE", "has_genre", "ADVENTURE" ], [ "SOLOMON KANE", "release_year", "2009" ], [ "STAR TREK", "has_genre", "ADVENTURE" ], [ "STAR TREK", "has_tags", "ADVENTURE" ], [ "STAR TREK", "release_year", "2009" ], [ "STORY OF WOMEN", "has_tags", "BD-R" ], [ "STORY OF WOMEN", "release_year", "1988" ], [ "TANNER HALL", "has_tags", "BD-R" ], [ "TANNER HALL", "release_year", "2009" ], [ "TAPEHEADS", "has_tags", "BD-R" ], [ "TAPEHEADS", "release_year", "1988" ], [ "TARZAN THE APE MAN", "has_genre", "ADVENTURE" ], [ "TARZAN THE APE MAN", "has_tags", "BD-R" ], [ "TARZAN'S NEW YORK ADVENTURE", "has_genre", "ADVENTURE" ], [ "TARZAN'S NEW YORK ADVENTURE", "has_tags", "BD-R" ], [ "THE ADVENTURES OF BARON MUNCHAUSEN", "has_genre", "ADVENTURE" ], [ "THE ADVENTURES OF BARON MUNCHAUSEN", "release_year", "1988" ], [ "THE ADVENTURES OF HUCKLEBERRY FINN", "has_genre", "ADVENTURE" ], [ "THE ADVENTURES OF HUCKLEBERRY FINN", "has_tags", "BD-R" ], [ "THE BROTHERS GRIMM", "has_genre", "ADVENTURE" ], [ "THE BROTHERS GRIMM", "has_tags", "ADVENTURE" ], [ "THE BROTHERS GRIMM", "has_tags", "BD-R" ], [ "THE CHARGE OF THE LIGHT BRIGADE", "has_genre", "ADVENTURE" ], [ "THE CHARGE OF THE LIGHT BRIGADE", "has_tags", "BD-R" ], [ "THE CRIMSON PIRATE", "has_genre", "ADVENTURE" ], [ "THE CRIMSON PIRATE", "has_tags", "BD-R" ], [ "THE DECEIVERS", "has_genre", "ADVENTURE" ], [ "THE DECEIVERS", "has_tags", "BD-R" ], [ "THE DECEIVERS", "release_year", "1988" ], [ "THE FLAME AND THE ARROW", "has_genre", "ADVENTURE" ], [ "THE FLAME AND THE ARROW", "has_tags", "BD-R" ], [ "THE FOUR FEATHERS", "has_genre", "ADVENTURE" ], [ "THE FOUR FEATHERS", "has_tags", "BD-R" ], [ "THE GUNS OF NAVARONE", "has_genre", "ADVENTURE" ], [ "THE GUNS OF NAVARONE", "has_tags", "BD-R" ], [ "THE LAND BEFORE TIME", "has_genre", "ADVENTURE" ], [ "THE LAND BEFORE TIME", "release_year", "1988" ], [ "THE LAND THAT TIME FORGOT", "has_genre", "ADVENTURE" ], [ "THE LAND THAT TIME FORGOT", "has_tags", "ADVENTURE" ], [ "THE LAND THAT TIME FORGOT", "has_tags", "BD-R" ], [ "THE LODGER", "has_tags", "BD-R" ], [ "THE LODGER", "release_year", "2009" ], [ "THE MAN IN THE IRON MASK", "has_genre", "ADVENTURE" ], [ "THE MAN IN THE IRON MASK", "has_tags", "ADVENTURE" ], [ "THE MAN IN THE IRON MASK", "has_tags", "BD-R" ], [ "THE MARK OF ZORRO", "has_genre", "ADVENTURE" ], [ "THE MARK OF ZORRO", "has_tags", "BD-R" ], [ "THE MASK OF FU MANCHU", "has_genre", "ADVENTURE" ], [ "THE MASK OF FU MANCHU", "has_tags", "BD-R" ], [ "THE MASTER OF BALLANTRAE", "has_genre", "ADVENTURE" ], [ "THE MASTER OF BALLANTRAE", "has_tags", "BD-R" ], [ "THE MUMMY", "has_genre", "ADVENTURE" ], [ "THE MUMMY", "has_tags", "ADVENTURE" ], [ "THE MUMMY", "has_tags", "BD-R" ], [ "THE NEW ADVENTURES OF PIPPI LONGSTOCKING", "has_genre", "ADVENTURE" ], [ "THE NEW ADVENTURES OF PIPPI LONGSTOCKING", "release_year", "1988" ], [ "THE PEOPLE THAT TIME FORGOT", "has_genre", "ADVENTURE" ], [ "THE PEOPLE THAT TIME FORGOT", "has_tags", "BD-R" ], [ "THE PHANTOM TOLLBOOTH", "has_genre", "ADVENTURE" ], [ "THE PHANTOM TOLLBOOTH", "has_tags", "BD-R" ], [ "THE PRINCE AND THE PAUPER", "has_genre", "ADVENTURE" ], [ "THE PRINCE AND THE PAUPER", "has_tags", "BD-R" ], [ "THE PRISONER OF ZENDA", "has_genre", "ADVENTURE" ], [ "THE PRISONER OF ZENDA", "has_tags", "BD-R" ], [ "THE SCARLET PIMPERNEL", "has_genre", "ADVENTURE" ], [ "THE SCARLET PIMPERNEL", "has_tags", "BD-R" ], [ "THE SECRET LIFE OF WALTER MITTY", "has_genre", "ADVENTURE" ], [ "THE SECRET LIFE OF WALTER MITTY", "has_tags", "BD-R" ], [ "THE SON OF THE SHEIK", "has_genre", "ADVENTURE" ], [ "THE SON OF THE SHEIK", "has_tags", "BD-R" ], [ "THE THREE MUSKETEERS", "has_genre", "ADVENTURE" ], [ "THE THREE MUSKETEERS", "has_tags", "BD-R" ], [ "THE TREASURE OF THE SIERRA MADRE", "has_genre", "ADVENTURE" ], [ "THE TREASURE OF THE SIERRA MADRE", "has_tags", "BD-R" ], [ "THE VANISHING", "has_tags", "BD-R" ], [ "THE VANISHING", "release_year", "1988" ], [ "THE VIKINGS", "has_genre", "ADVENTURE" ], [ "THE VIKINGS", "has_tags", "BD-R" ], [ "THE WIND AND THE LION", "has_genre", "ADVENTURE" ], [ "THE WIND AND THE LION", "has_tags", "BD-R" ], [ "THEY LIVE", "has_tags", "BD-R" ], [ "THEY LIVE", "release_year", "1988" ], [ "TO HAVE AND HAVE NOT", "has_genre", "ADVENTURE" ], [ "TO HAVE AND HAVE NOT", "has_tags", "BD-R" ], [ "TOM JONES", "has_genre", "ADVENTURE" ], [ "TOM JONES", "has_tags", "BD-R" ], [ "TOM SAWYER", "has_genre", "ADVENTURE" ], [ "TOM SAWYER", "has_tags", "BD-R" ], [ "TROMA'S WAR", "has_genre", "ADVENTURE" ], [ "TROMA'S WAR", "release_year", "1988" ], [ "TRUE HEART", "has_genre", "ADVENTURE" ], [ "UP", "has_genre", "ADVENTURE" ], [ "UP", "has_tags", "ADVENTURE" ], [ "UP", "release_year", "2009" ], [ "VIBES", "has_genre", "ADVENTURE" ], [ "VIBES", "release_year", "1988" ], [ "VIVA MARIA!", "has_genre", "ADVENTURE" ], [ "VIVA MARIA!", "has_tags", "BD-R" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 35935, 2002 37484, 2004 39289, ACTION 39085, BILLY ELLIOT 27411, BRIAN COX 12474, DESPERATE MEASURES 2664, GARY LEWIS 7614, JOHN PINETTE 25451, JOSEPH FIENNES 37052, MANHUNTER 13081, R 5766, RUNNING WITH SCISSORS 801, SIMON SEZ 29403, THE BOURNE SUPREMACY 9522, THE ESCAPIST 34842, THE GLIMMER MAN 39950, THE TRIALS OF HENRY KISSINGER 24811, THRILLER 5729, TROY 22214, WAR src, edge_attr, dst 39085, starred_actors, 2664 12474, has_genre, 39289 12474, starred_actors, 27411 37052, has_genre, 24811 37052, starred_actors, 27411 5766, has_tags, 13081 5766, starred_actors, 27411 5766, starred_actors, 25451 801, has_genre, 39289 801, has_tags, 39289 801, starred_actors, 7614 29403, has_genre, 39289 29403, has_tags, 39289 29403, release_year, 37484 29403, starred_actors, 27411 9522, has_genre, 24811 9522, has_tags, 27411 9522, has_tags, 25451 9522, release_year, 35935 9522, starred_actors, 27411 9522, starred_actors, 2664 9522, starred_actors, 25451 34842, has_genre, 39289 34842, starred_actors, 27411 39950, has_tags, 22214 39950, release_year, 35935 39950, starred_actors, 27411 5729, has_tags, 39289 5729, has_tags, 13081 5729, has_tags, 22214 5729, release_year, 37484 5729, starred_actors, 27411 Question: In what context are BILLY ELLIOT, BRIAN COX, and JOHN PINETTE connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "BILLY ELLIOT", "BRIAN COX", "JOHN PINETTE" ], "valid_edges": [ [ "BILLY ELLIOT", "starred_actors", "GARY LEWIS" ], [ "DESPERATE MEASURES", "has_genre", "ACTION" ], [ "DESPERATE MEASURES", "starred_actors", "BRIAN COX" ], [ "MANHUNTER", "has_genre", "THRILLER" ], [ "MANHUNTER", "starred_actors", "BRIAN COX" ], [ "RUNNING WITH SCISSORS", "has_tags", "R" ], [ "RUNNING WITH SCISSORS", "starred_actors", "BRIAN COX" ], [ "RUNNING WITH SCISSORS", "starred_actors", "JOSEPH FIENNES" ], [ "SIMON SEZ", "has_genre", "ACTION" ], [ "SIMON SEZ", "has_tags", "ACTION" ], [ "SIMON SEZ", "starred_actors", "JOHN PINETTE" ], [ "THE BOURNE SUPREMACY", "has_genre", "ACTION" ], [ "THE BOURNE SUPREMACY", "has_tags", "ACTION" ], [ "THE BOURNE SUPREMACY", "release_year", "2004" ], [ "THE BOURNE SUPREMACY", "starred_actors", "BRIAN COX" ], [ "THE ESCAPIST", "has_genre", "THRILLER" ], [ "THE ESCAPIST", "has_tags", "BRIAN COX" ], [ "THE ESCAPIST", "has_tags", "JOSEPH FIENNES" ], [ "THE ESCAPIST", "release_year", "2002" ], [ "THE ESCAPIST", "starred_actors", "BRIAN COX" ], [ "THE ESCAPIST", "starred_actors", "GARY LEWIS" ], [ "THE ESCAPIST", "starred_actors", "JOSEPH FIENNES" ], [ "THE GLIMMER MAN", "has_genre", "ACTION" ], [ "THE GLIMMER MAN", "starred_actors", "BRIAN COX" ], [ "THE TRIALS OF HENRY KISSINGER", "has_tags", "WAR" ], [ "THE TRIALS OF HENRY KISSINGER", "release_year", "2002" ], [ "THE TRIALS OF HENRY KISSINGER", "starred_actors", "BRIAN COX" ], [ "TROY", "has_tags", "ACTION" ], [ "TROY", "has_tags", "R" ], [ "TROY", "has_tags", "WAR" ], [ "TROY", "release_year", "2004" ], [ "TROY", "starred_actors", "BRIAN COX" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 17315, 2007 7918, BROKEDOWN PALACE 18016, CLICK 32863, COLD COMFORT FARM 30463, COMEDY 36212, DRAMA 25109, EMMA 23387, EVERYBODY'S FINE 16427, KATE BECKINSALE 29840, LAUREL CANYON 31377, MUCH ADO ABOUT NOTHING 16867, NORA'S WILL 234, PEARL HARBOR 8379, ROMANCE 30377, SAM ROCKWELL 5880, SERENDIPITY 3826, SNOW ANGELS 6439, THE AVIATOR 9059, THE LAST DAYS OF DISCO 13703, THE LAW OF ENCLOSURES 36860, THE TRIALS OF CATE MCCALL 10238, UNDERWORLD 30621, VACANCY src, edge_attr, dst 7918, has_genre, 36212 7918, starred_actors, 16427 18016, has_genre, 30463 18016, has_genre, 36212 18016, has_tags, 30463 18016, has_tags, 16427 18016, starred_actors, 16427 32863, has_genre, 30463 32863, starred_actors, 16427 25109, has_genre, 30463 25109, has_genre, 36212 25109, starred_actors, 16427 23387, has_genre, 36212 23387, starred_actors, 16427 23387, starred_actors, 30377 29840, has_genre, 36212 29840, has_tags, 16427 29840, starred_actors, 16427 31377, has_genre, 30463 31377, has_tags, 30463 31377, has_tags, 16427 31377, starred_actors, 16427 16867, has_genre, 36212 234, has_genre, 36212 234, has_genre, 8379 234, has_tags, 36212 234, has_tags, 16427 234, has_tags, 8379 234, starred_actors, 16427 8379, has_genre, 36212 5880, has_genre, 30463 5880, has_tags, 16427 5880, has_tags, 5880 5880, starred_actors, 16427 3826, has_genre, 36212 3826, has_tags, 16427 3826, has_tags, 30377 3826, release_year, 17315 3826, starred_actors, 16427 3826, starred_actors, 30377 6439, has_genre, 36212 6439, has_tags, 36212 6439, has_tags, 16427 6439, starred_actors, 16427 9059, has_genre, 30463 9059, has_genre, 36212 9059, starred_actors, 16427 13703, has_genre, 36212 36860, has_genre, 36212 36860, starred_actors, 16427 10238, has_genre, 30463 10238, has_tags, 16427 10238, starred_actors, 16427 30621, release_year, 17315 30621, starred_actors, 16427 Question: In what context are KATE BECKINSALE, NORA'S WILL, and THE LAW OF ENCLOSURES connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "KATE BECKINSALE", "NORA'S WILL", "THE LAW OF ENCLOSURES" ], "valid_edges": [ [ "BROKEDOWN PALACE", "has_genre", "DRAMA" ], [ "BROKEDOWN PALACE", "starred_actors", "KATE BECKINSALE" ], [ "CLICK", "has_genre", "COMEDY" ], [ "CLICK", "has_genre", "DRAMA" ], [ "CLICK", "has_tags", "COMEDY" ], [ "CLICK", "has_tags", "KATE BECKINSALE" ], [ "CLICK", "starred_actors", "KATE BECKINSALE" ], [ "COLD COMFORT FARM", "has_genre", "COMEDY" ], [ "COLD COMFORT FARM", "starred_actors", "KATE BECKINSALE" ], [ "EMMA", "has_genre", "COMEDY" ], [ "EMMA", "has_genre", "DRAMA" ], [ "EMMA", "starred_actors", "KATE BECKINSALE" ], [ "EVERYBODY'S FINE", "has_genre", "DRAMA" ], [ "EVERYBODY'S FINE", "starred_actors", "KATE BECKINSALE" ], [ "EVERYBODY'S FINE", "starred_actors", "SAM ROCKWELL" ], [ "LAUREL CANYON", "has_genre", "DRAMA" ], [ "LAUREL CANYON", "has_tags", "KATE BECKINSALE" ], [ "LAUREL CANYON", "starred_actors", "KATE BECKINSALE" ], [ "MUCH ADO ABOUT NOTHING", "has_genre", "COMEDY" ], [ "MUCH ADO ABOUT NOTHING", "has_tags", "COMEDY" ], [ "MUCH ADO ABOUT NOTHING", "has_tags", "KATE BECKINSALE" ], [ "MUCH ADO ABOUT NOTHING", "starred_actors", "KATE BECKINSALE" ], [ "NORA'S WILL", "has_genre", "DRAMA" ], [ "PEARL HARBOR", "has_genre", "DRAMA" ], [ "PEARL HARBOR", "has_genre", "ROMANCE" ], [ "PEARL HARBOR", "has_tags", "DRAMA" ], [ "PEARL HARBOR", "has_tags", "KATE BECKINSALE" ], [ "PEARL HARBOR", "has_tags", "ROMANCE" ], [ "PEARL HARBOR", "starred_actors", "KATE BECKINSALE" ], [ "ROMANCE", "has_genre", "DRAMA" ], [ "SERENDIPITY", "has_genre", "COMEDY" ], [ "SERENDIPITY", "has_tags", "KATE BECKINSALE" ], [ "SERENDIPITY", "has_tags", "SERENDIPITY" ], [ "SERENDIPITY", "starred_actors", "KATE BECKINSALE" ], [ "SNOW ANGELS", "has_genre", "DRAMA" ], [ "SNOW ANGELS", "has_tags", "KATE BECKINSALE" ], [ "SNOW ANGELS", "has_tags", "SAM ROCKWELL" ], [ "SNOW ANGELS", "release_year", "2007" ], [ "SNOW ANGELS", "starred_actors", "KATE BECKINSALE" ], [ "SNOW ANGELS", "starred_actors", "SAM ROCKWELL" ], [ "THE AVIATOR", "has_genre", "DRAMA" ], [ "THE AVIATOR", "has_tags", "DRAMA" ], [ "THE AVIATOR", "has_tags", "KATE BECKINSALE" ], [ "THE AVIATOR", "starred_actors", "KATE BECKINSALE" ], [ "THE LAST DAYS OF DISCO", "has_genre", "COMEDY" ], [ "THE LAST DAYS OF DISCO", "has_genre", "DRAMA" ], [ "THE LAST DAYS OF DISCO", "starred_actors", "KATE BECKINSALE" ], [ "THE LAW OF ENCLOSURES", "has_genre", "DRAMA" ], [ "THE TRIALS OF CATE MCCALL", "has_genre", "DRAMA" ], [ "THE TRIALS OF CATE MCCALL", "starred_actors", "KATE BECKINSALE" ], [ "UNDERWORLD", "has_genre", "COMEDY" ], [ "UNDERWORLD", "has_tags", "KATE BECKINSALE" ], [ "UNDERWORLD", "starred_actors", "KATE BECKINSALE" ], [ "VACANCY", "release_year", "2007" ], [ "VACANCY", "starred_actors", "KATE BECKINSALE" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 24818, 1992 29838, A SIMPLE TWIST OF FATE 37043, CHRIS MENGES 2408, CRISSCROSS 35734, DAVID COOK 3439, GEORGE ELIOT 20098, GILLIES MACKINNON 22496, SECOND BEST 19717, THE PLAYBOYS src, edge_attr, dst 29838, directed_by, 20098 29838, written_by, 3439 2408, directed_by, 37043 2408, release_year, 24818 22496, directed_by, 37043 22496, written_by, 35734 19717, directed_by, 20098 19717, release_year, 24818 Question: How are 1992, DAVID COOK, and GEORGE ELIOT related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "1992", "DAVID COOK", "GEORGE ELIOT" ], "valid_edges": [ [ "A SIMPLE TWIST OF FATE", "directed_by", "GILLIES MACKINNON" ], [ "A SIMPLE TWIST OF FATE", "written_by", "GEORGE ELIOT" ], [ "CRISSCROSS", "directed_by", "CHRIS MENGES" ], [ "CRISSCROSS", "release_year", "1992" ], [ "SECOND BEST", "directed_by", "CHRIS MENGES" ], [ "SECOND BEST", "written_by", "DAVID COOK" ], [ "THE PLAYBOYS", "directed_by", "GILLIES MACKINNON" ], [ "THE PLAYBOYS", "release_year", "1992" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 1266, 100 WAYS TO MURDER YOUR WIFE 4981, 1965 28171, 1986 10419, A FINE MESS 18169, APRIL FOOL'S DAY 12952, ARMED AND DANGEROUS 35779, ARMOUR OF GOD 29060, BACK TO SCHOOL 39908, BEVERLY HILLS COP 24579, BEVERLY HILLS COP II 8732, BIG TROUBLE 9860, BRIGHTON BEACH MEMOIRS 14884, CLASS OF NUKE 'EM HIGH 30330, CLEAVANT DERRICKS 5984, CLOCKWISE 32393, CLUB PARADISE 30463, COMEDY 37018, CRIMES OF THE HEART 6743, CRITTERS 30019, CROSSROADS 30433, DELUSIONS OF GRANDEUR 20998, DOWN AND OUT IN BEVERLY HILLS 6715, FAST TIMES AT RIDGEMONT HIGH 3890, FERRIS BUELLER'S DAY OFF 2191, FLODDER 6012, FRENCH 15135, GINGER AND FRED 1889, GUNG HO 17767, GÉRARD OURY 1937, HANNAH AND HER SISTERS 21720, HAUNTED HONEYMOON 24557, HEAD OFFICE 10147, HOUSE 358, HOWARD THE DUCK 22258, JUDGE REINHOLD 2938, JUMPIN' JACK FLASH 39615, KIN-DZA-DZA! 191, LEAVING NORMAL 8851, LITTLE SHOP OF HORRORS 32181, LUCAS 28081, MEG TILLY 36992, MICHAEL DINNER 7848, MIRACLES 20500, MONSTER IN THE CLOSET 38118, MOSCOW ON THE HUDSON 15395, MY CHAUFFEUR 4398, NOBODY'S FOOL 2654, NOTHING IN COMMON 9271, OFF BEAT 24854, ONE CRAZY SUMMER 20473, PEGGY SUE GOT MARRIED 2391, PIRATES 2388, PLAYING FOR KEEPS 31652, PRETTY IN PINK 23115, RENATO MORETTI 36548, ROSALIE GOES SHOPPING 33108, RUNNING SCARED 1871, RUTHLESS PEOPLE 37803, SHADOWS IN PARADISE 2808, SHE'S GOTTA HAVE IT 1374, SLEEP WITH ME 34888, SOMETHING WILD 2446, SOUL MAN 5570, SWEET LIBERTY 5932, TERRORVISION 5469, THE BEST OF TIMES 14643, THE BRAIN 39489, THE CREW 13316, THE DECLINE OF THE AMERICAN EMPIRE 31439, THE GOLDEN CHILD 17527, THE MIRROR HAS TWO FACES 26338, THE MONEY PIT 15930, THE SUCKER 9715, THE TEXAS CHAINSAW MASSACRE 2 11639, TOUGH GUYS 832, TRUE STORIES 21967, VICE VERSA 19918, WILD, WILD PLANET 21709, WISE GUYS 1731, ZEISTERS 33462, ¡THREE AMIGOS! src, edge_attr, dst 1266, has_genre, 30463 1266, release_year, 28171 10419, has_genre, 30463 10419, release_year, 28171 18169, has_genre, 30463 18169, release_year, 28171 12952, has_genre, 30463 12952, release_year, 28171 35779, has_genre, 30463 35779, release_year, 28171 29060, has_genre, 30463 29060, release_year, 28171 39908, has_genre, 30463 39908, has_tags, 30463 39908, has_tags, 22258 39908, starred_actors, 22258 24579, has_genre, 30463 24579, starred_actors, 22258 8732, has_genre, 30463 8732, release_year, 28171 9860, has_genre, 30463 9860, has_tags, 30463 9860, release_year, 28171 14884, has_genre, 30463 14884, release_year, 28171 5984, has_genre, 30463 5984, release_year, 28171 32393, has_genre, 30463 32393, release_year, 28171 37018, has_genre, 30463 37018, release_year, 28171 6743, has_genre, 30463 6743, release_year, 28171 30019, has_genre, 30463 30019, release_year, 28171 30433, directed_by, 17767 30433, has_genre, 30463 30433, has_tags, 17767 30433, in_language, 6012 30433, written_by, 17767 20998, has_genre, 30463 20998, release_year, 28171 6715, has_genre, 30463 6715, has_tags, 22258 6715, starred_actors, 22258 3890, has_genre, 30463 3890, has_tags, 30463 3890, release_year, 28171 2191, has_genre, 30463 2191, release_year, 28171 15135, has_genre, 30463 15135, release_year, 28171 1889, has_genre, 30463 1889, release_year, 28171 1937, has_genre, 30463 1937, has_tags, 30463 1937, release_year, 28171 21720, has_genre, 30463 21720, release_year, 28171 24557, has_genre, 30463 24557, starred_actors, 22258 10147, has_genre, 30463 10147, release_year, 28171 358, has_genre, 30463 358, release_year, 28171 2938, has_genre, 30463 2938, release_year, 28171 39615, has_genre, 30463 39615, release_year, 28171 191, has_genre, 30463 191, starred_actors, 28081 8851, has_genre, 30463 8851, release_year, 28171 32181, has_genre, 30463 32181, release_year, 28171 7848, has_genre, 30463 7848, release_year, 28171 20500, has_genre, 30463 20500, release_year, 28171 38118, has_genre, 30463 38118, starred_actors, 30330 15395, has_genre, 30463 15395, release_year, 28171 4398, has_genre, 30463 4398, release_year, 28171 2654, has_genre, 30463 2654, release_year, 28171 9271, directed_by, 36992 9271, has_genre, 30463 9271, release_year, 28171 9271, starred_actors, 30330 9271, starred_actors, 22258 9271, starred_actors, 28081 24854, has_genre, 30463 24854, release_year, 28171 20473, has_genre, 30463 20473, release_year, 28171 2391, has_genre, 30463 2391, release_year, 28171 2388, has_genre, 30463 2388, release_year, 28171 31652, has_genre, 30463 31652, has_tags, 30463 31652, release_year, 28171 36548, has_genre, 30463 36548, starred_actors, 22258 33108, has_genre, 30463 33108, release_year, 28171 33108, starred_actors, 22258 1871, has_genre, 30463 1871, has_tags, 30463 1871, release_year, 28171 1871, starred_actors, 22258 37803, has_genre, 30463 37803, release_year, 28171 2808, has_genre, 30463 2808, release_year, 28171 1374, has_genre, 30463 1374, starred_actors, 28081 34888, has_genre, 30463 34888, release_year, 28171 2446, has_genre, 30463 2446, release_year, 28171 5570, has_genre, 30463 5570, release_year, 28171 5932, has_genre, 30463 5932, release_year, 28171 5469, has_genre, 30463 5469, release_year, 28171 14643, directed_by, 17767 14643, has_genre, 30463 14643, in_language, 6012 14643, written_by, 17767 39489, directed_by, 36992 39489, has_genre, 30463 13316, has_genre, 30463 13316, release_year, 28171 31439, has_genre, 30463 31439, release_year, 28171 17527, has_genre, 30463 17527, written_by, 17767 26338, has_genre, 30463 26338, has_tags, 30463 26338, release_year, 28171 15930, directed_by, 17767 15930, has_genre, 30463 15930, has_tags, 17767 15930, in_language, 6012 15930, release_year, 4981 15930, written_by, 17767 9715, has_genre, 30463 9715, release_year, 28171 11639, has_genre, 30463 11639, release_year, 28171 832, has_genre, 30463 832, release_year, 28171 21967, has_genre, 30463 21967, starred_actors, 22258 19918, release_year, 4981 19918, written_by, 23115 21709, has_genre, 30463 21709, release_year, 28171 1731, has_genre, 30463 1731, release_year, 28171 33462, has_genre, 30463 33462, has_tags, 30463 33462, release_year, 28171 Question: How are GÉRARD OURY, OFF BEAT, and RENATO MORETTI related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "GÉRARD OURY", "OFF BEAT", "RENATO MORETTI" ], "valid_edges": [ [ "100 WAYS TO MURDER YOUR WIFE", "has_genre", "COMEDY" ], [ "100 WAYS TO MURDER YOUR WIFE", "release_year", "1986" ], [ "A FINE MESS", "has_genre", "COMEDY" ], [ "A FINE MESS", "release_year", "1986" ], [ "APRIL FOOL'S DAY", "has_genre", "COMEDY" ], [ "APRIL FOOL'S DAY", "release_year", "1986" ], [ "ARMED AND DANGEROUS", "has_genre", "COMEDY" ], [ "ARMED AND DANGEROUS", "release_year", "1986" ], [ "ARMOUR OF GOD", "has_genre", "COMEDY" ], [ "ARMOUR OF GOD", "release_year", "1986" ], [ "BACK TO SCHOOL", "has_genre", "COMEDY" ], [ "BACK TO SCHOOL", "release_year", "1986" ], [ "BEVERLY HILLS COP", "has_genre", "COMEDY" ], [ "BEVERLY HILLS COP", "has_tags", "COMEDY" ], [ "BEVERLY HILLS COP", "has_tags", "JUDGE REINHOLD" ], [ "BEVERLY HILLS COP", "starred_actors", "JUDGE REINHOLD" ], [ "BEVERLY HILLS COP II", "has_genre", "COMEDY" ], [ "BEVERLY HILLS COP II", "starred_actors", "JUDGE REINHOLD" ], [ "BIG TROUBLE", "has_genre", "COMEDY" ], [ "BIG TROUBLE", "release_year", "1986" ], [ "BRIGHTON BEACH MEMOIRS", "has_genre", "COMEDY" ], [ "BRIGHTON BEACH MEMOIRS", "has_tags", "COMEDY" ], [ "BRIGHTON BEACH MEMOIRS", "release_year", "1986" ], [ "CLASS OF NUKE 'EM HIGH", "has_genre", "COMEDY" ], [ "CLASS OF NUKE 'EM HIGH", "release_year", "1986" ], [ "CLOCKWISE", "has_genre", "COMEDY" ], [ "CLOCKWISE", "release_year", "1986" ], [ "CLUB PARADISE", "has_genre", "COMEDY" ], [ "CLUB PARADISE", "release_year", "1986" ], [ "CRIMES OF THE HEART", "has_genre", "COMEDY" ], [ "CRIMES OF THE HEART", "release_year", "1986" ], [ "CRITTERS", "has_genre", "COMEDY" ], [ "CRITTERS", "release_year", "1986" ], [ "CROSSROADS", "has_genre", "COMEDY" ], [ "CROSSROADS", "release_year", "1986" ], [ "DELUSIONS OF GRANDEUR", "directed_by", "GÉRARD OURY" ], [ "DELUSIONS OF GRANDEUR", "has_genre", "COMEDY" ], [ "DELUSIONS OF GRANDEUR", "has_tags", "GÉRARD OURY" ], [ "DELUSIONS OF GRANDEUR", "in_language", "FRENCH" ], [ "DELUSIONS OF GRANDEUR", "written_by", "GÉRARD OURY" ], [ "DOWN AND OUT IN BEVERLY HILLS", "has_genre", "COMEDY" ], [ "DOWN AND OUT IN BEVERLY HILLS", "release_year", "1986" ], [ "FAST TIMES AT RIDGEMONT HIGH", "has_genre", "COMEDY" ], [ "FAST TIMES AT RIDGEMONT HIGH", "has_tags", "JUDGE REINHOLD" ], [ "FAST TIMES AT RIDGEMONT HIGH", "starred_actors", "JUDGE REINHOLD" ], [ "FERRIS BUELLER'S DAY OFF", "has_genre", "COMEDY" ], [ "FERRIS BUELLER'S DAY OFF", "has_tags", "COMEDY" ], [ "FERRIS BUELLER'S DAY OFF", "release_year", "1986" ], [ "FLODDER", "has_genre", "COMEDY" ], [ "FLODDER", "release_year", "1986" ], [ "GINGER AND FRED", "has_genre", "COMEDY" ], [ "GINGER AND FRED", "release_year", "1986" ], [ "GUNG HO", "has_genre", "COMEDY" ], [ "GUNG HO", "release_year", "1986" ], [ "HANNAH AND HER SISTERS", "has_genre", "COMEDY" ], [ "HANNAH AND HER SISTERS", "has_tags", "COMEDY" ], [ "HANNAH AND HER SISTERS", "release_year", "1986" ], [ "HAUNTED HONEYMOON", "has_genre", "COMEDY" ], [ "HAUNTED HONEYMOON", "release_year", "1986" ], [ "HEAD OFFICE", "has_genre", "COMEDY" ], [ "HEAD OFFICE", "starred_actors", "JUDGE REINHOLD" ], [ "HOUSE", "has_genre", "COMEDY" ], [ "HOUSE", "release_year", "1986" ], [ "HOWARD THE DUCK", "has_genre", "COMEDY" ], [ "HOWARD THE DUCK", "release_year", "1986" ], [ "JUMPIN' JACK FLASH", "has_genre", "COMEDY" ], [ "JUMPIN' JACK FLASH", "release_year", "1986" ], [ "KIN-DZA-DZA!", "has_genre", "COMEDY" ], [ "KIN-DZA-DZA!", "release_year", "1986" ], [ "LEAVING NORMAL", "has_genre", "COMEDY" ], [ "LEAVING NORMAL", "starred_actors", "MEG TILLY" ], [ "LITTLE SHOP OF HORRORS", "has_genre", "COMEDY" ], [ "LITTLE SHOP OF HORRORS", "release_year", "1986" ], [ "LUCAS", "has_genre", "COMEDY" ], [ "LUCAS", "release_year", "1986" ], [ "MIRACLES", "has_genre", "COMEDY" ], [ "MIRACLES", "release_year", "1986" ], [ "MONSTER IN THE CLOSET", "has_genre", "COMEDY" ], [ "MONSTER IN THE CLOSET", "release_year", "1986" ], [ "MOSCOW ON THE HUDSON", "has_genre", "COMEDY" ], [ "MOSCOW ON THE HUDSON", "starred_actors", "CLEAVANT DERRICKS" ], [ "MY CHAUFFEUR", "has_genre", "COMEDY" ], [ "MY CHAUFFEUR", "release_year", "1986" ], [ "NOBODY'S FOOL", "has_genre", "COMEDY" ], [ "NOBODY'S FOOL", "release_year", "1986" ], [ "NOTHING IN COMMON", "has_genre", "COMEDY" ], [ "NOTHING IN COMMON", "release_year", "1986" ], [ "OFF BEAT", "directed_by", "MICHAEL DINNER" ], [ "OFF BEAT", "has_genre", "COMEDY" ], [ "OFF BEAT", "release_year", "1986" ], [ "OFF BEAT", "starred_actors", "CLEAVANT DERRICKS" ], [ "OFF BEAT", "starred_actors", "JUDGE REINHOLD" ], [ "OFF BEAT", "starred_actors", "MEG TILLY" ], [ "ONE CRAZY SUMMER", "has_genre", "COMEDY" ], [ "ONE CRAZY SUMMER", "release_year", "1986" ], [ "PEGGY SUE GOT MARRIED", "has_genre", "COMEDY" ], [ "PEGGY SUE GOT MARRIED", "release_year", "1986" ], [ "PIRATES", "has_genre", "COMEDY" ], [ "PIRATES", "release_year", "1986" ], [ "PLAYING FOR KEEPS", "has_genre", "COMEDY" ], [ "PLAYING FOR KEEPS", "release_year", "1986" ], [ "PRETTY IN PINK", "has_genre", "COMEDY" ], [ "PRETTY IN PINK", "has_tags", "COMEDY" ], [ "PRETTY IN PINK", "release_year", "1986" ], [ "ROSALIE GOES SHOPPING", "has_genre", "COMEDY" ], [ "ROSALIE GOES SHOPPING", "starred_actors", "JUDGE REINHOLD" ], [ "RUNNING SCARED", "has_genre", "COMEDY" ], [ "RUNNING SCARED", "release_year", "1986" ], [ "RUNNING SCARED", "starred_actors", "JUDGE REINHOLD" ], [ "RUTHLESS PEOPLE", "has_genre", "COMEDY" ], [ "RUTHLESS PEOPLE", "has_tags", "COMEDY" ], [ "RUTHLESS PEOPLE", "release_year", "1986" ], [ "RUTHLESS PEOPLE", "starred_actors", "JUDGE REINHOLD" ], [ "SHADOWS IN PARADISE", "has_genre", "COMEDY" ], [ "SHADOWS IN PARADISE", "release_year", "1986" ], [ "SHE'S GOTTA HAVE IT", "has_genre", "COMEDY" ], [ "SHE'S GOTTA HAVE IT", "release_year", "1986" ], [ "SLEEP WITH ME", "has_genre", "COMEDY" ], [ "SLEEP WITH ME", "starred_actors", "MEG TILLY" ], [ "SOMETHING WILD", "has_genre", "COMEDY" ], [ "SOMETHING WILD", "release_year", "1986" ], [ "SOUL MAN", "has_genre", "COMEDY" ], [ "SOUL MAN", "release_year", "1986" ], [ "SWEET LIBERTY", "has_genre", "COMEDY" ], [ "SWEET LIBERTY", "release_year", "1986" ], [ "TERRORVISION", "has_genre", "COMEDY" ], [ "TERRORVISION", "release_year", "1986" ], [ "THE BEST OF TIMES", "has_genre", "COMEDY" ], [ "THE BEST OF TIMES", "release_year", "1986" ], [ "THE BRAIN", "directed_by", "GÉRARD OURY" ], [ "THE BRAIN", "has_genre", "COMEDY" ], [ "THE BRAIN", "in_language", "FRENCH" ], [ "THE BRAIN", "written_by", "GÉRARD OURY" ], [ "THE CREW", "directed_by", "MICHAEL DINNER" ], [ "THE CREW", "has_genre", "COMEDY" ], [ "THE DECLINE OF THE AMERICAN EMPIRE", "has_genre", "COMEDY" ], [ "THE DECLINE OF THE AMERICAN EMPIRE", "release_year", "1986" ], [ "THE GOLDEN CHILD", "has_genre", "COMEDY" ], [ "THE GOLDEN CHILD", "release_year", "1986" ], [ "THE MIRROR HAS TWO FACES", "has_genre", "COMEDY" ], [ "THE MIRROR HAS TWO FACES", "written_by", "GÉRARD OURY" ], [ "THE MONEY PIT", "has_genre", "COMEDY" ], [ "THE MONEY PIT", "has_tags", "COMEDY" ], [ "THE MONEY PIT", "release_year", "1986" ], [ "THE SUCKER", "directed_by", "GÉRARD OURY" ], [ "THE SUCKER", "has_genre", "COMEDY" ], [ "THE SUCKER", "has_tags", "GÉRARD OURY" ], [ "THE SUCKER", "in_language", "FRENCH" ], [ "THE SUCKER", "release_year", "1965" ], [ "THE SUCKER", "written_by", "GÉRARD OURY" ], [ "THE TEXAS CHAINSAW MASSACRE 2", "has_genre", "COMEDY" ], [ "THE TEXAS CHAINSAW MASSACRE 2", "release_year", "1986" ], [ "TOUGH GUYS", "has_genre", "COMEDY" ], [ "TOUGH GUYS", "release_year", "1986" ], [ "TRUE STORIES", "has_genre", "COMEDY" ], [ "TRUE STORIES", "release_year", "1986" ], [ "VICE VERSA", "has_genre", "COMEDY" ], [ "VICE VERSA", "starred_actors", "JUDGE REINHOLD" ], [ "WILD, WILD PLANET", "release_year", "1965" ], [ "WILD, WILD PLANET", "written_by", "RENATO MORETTI" ], [ "WISE GUYS", "has_genre", "COMEDY" ], [ "WISE GUYS", "release_year", "1986" ], [ "ZEISTERS", "has_genre", "COMEDY" ], [ "ZEISTERS", "release_year", "1986" ], [ "¡THREE AMIGOS!", "has_genre", "COMEDY" ], [ "¡THREE AMIGOS!", "has_tags", "COMEDY" ], [ "¡THREE AMIGOS!", "release_year", "1986" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 39624, 1957 28340, 20 MILLION MILES TO EARTH 26646, 3000 MILES TO GRACELAND 2439, CHARLES LAUGHTON 24717, ELVIS 5829, FIRE DOWN BELOW 28397, KEVIN COSTNER 11333, KURT RUSSELL 21772, MR. BROOKS 39935, ROBERT MITCHUM 10981, SERIAL KILLER 33115, SHELLEY WINTERS 828, THE ENEMY BELOW 27599, THE NIGHT OF THE HUNTER 3001, WITNESS FOR THE PROSECUTION src, edge_attr, dst 28340, release_year, 39624 26646, has_tags, 28397 26646, has_tags, 11333 26646, starred_actors, 28397 26646, starred_actors, 11333 24717, starred_actors, 11333 24717, starred_actors, 33115 5829, release_year, 39624 5829, starred_actors, 39935 21772, has_tags, 28397 21772, has_tags, 10981 21772, starred_actors, 28397 828, release_year, 39624 828, starred_actors, 39935 27599, directed_by, 2439 27599, directed_by, 39935 27599, has_tags, 2439 27599, has_tags, 39935 27599, has_tags, 10981 27599, has_tags, 33115 27599, starred_actors, 39935 27599, starred_actors, 33115 3001, has_tags, 2439 3001, release_year, 39624 3001, starred_actors, 2439 Question: In what context are 20 MILLION MILES TO EARTH, 3000 MILES TO GRACELAND, and THE NIGHT OF THE HUNTER connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "20 MILLION MILES TO EARTH", "3000 MILES TO GRACELAND", "THE NIGHT OF THE HUNTER" ], "valid_edges": [ [ "20 MILLION MILES TO EARTH", "release_year", "1957" ], [ "3000 MILES TO GRACELAND", "has_tags", "KEVIN COSTNER" ], [ "3000 MILES TO GRACELAND", "has_tags", "KURT RUSSELL" ], [ "3000 MILES TO GRACELAND", "starred_actors", "KEVIN COSTNER" ], [ "3000 MILES TO GRACELAND", "starred_actors", "KURT RUSSELL" ], [ "ELVIS", "starred_actors", "KURT RUSSELL" ], [ "ELVIS", "starred_actors", "SHELLEY WINTERS" ], [ "FIRE DOWN BELOW", "release_year", "1957" ], [ "FIRE DOWN BELOW", "starred_actors", "ROBERT MITCHUM" ], [ "MR. BROOKS", "has_tags", "KEVIN COSTNER" ], [ "MR. BROOKS", "has_tags", "SERIAL KILLER" ], [ "MR. BROOKS", "starred_actors", "KEVIN COSTNER" ], [ "THE ENEMY BELOW", "release_year", "1957" ], [ "THE ENEMY BELOW", "starred_actors", "ROBERT MITCHUM" ], [ "THE NIGHT OF THE HUNTER", "directed_by", "CHARLES LAUGHTON" ], [ "THE NIGHT OF THE HUNTER", "directed_by", "ROBERT MITCHUM" ], [ "THE NIGHT OF THE HUNTER", "has_tags", "CHARLES LAUGHTON" ], [ "THE NIGHT OF THE HUNTER", "has_tags", "ROBERT MITCHUM" ], [ "THE NIGHT OF THE HUNTER", "has_tags", "SERIAL KILLER" ], [ "THE NIGHT OF THE HUNTER", "has_tags", "SHELLEY WINTERS" ], [ "THE NIGHT OF THE HUNTER", "starred_actors", "ROBERT MITCHUM" ], [ "THE NIGHT OF THE HUNTER", "starred_actors", "SHELLEY WINTERS" ], [ "WITNESS FOR THE PROSECUTION", "has_tags", "CHARLES LAUGHTON" ], [ "WITNESS FOR THE PROSECUTION", "release_year", "1957" ], [ "WITNESS FOR THE PROSECUTION", "starred_actors", "CHARLES LAUGHTON" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 4559, ALEX CORD 14724, CRIME 3425, DARRAGH BYRNE 36212, DRAMA 7679, PARKED 22275, THE BROTHERHOOD 34862, THE POPE OF GREENWICH VILLAGE 12659, VINCENT PATRICK src, edge_attr, dst 7679, directed_by, 3425 7679, has_genre, 36212 22275, has_genre, 14724 22275, has_genre, 36212 22275, starred_actors, 4559 34862, has_genre, 14724 34862, written_by, 12659 Question: In what context are ALEX CORD, DARRAGH BYRNE, and VINCENT PATRICK connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "ALEX CORD", "DARRAGH BYRNE", "VINCENT PATRICK" ], "valid_edges": [ [ "PARKED", "directed_by", "DARRAGH BYRNE" ], [ "PARKED", "has_genre", "DRAMA" ], [ "THE BROTHERHOOD", "has_genre", "CRIME" ], [ "THE BROTHERHOOD", "has_genre", "DRAMA" ], [ "THE BROTHERHOOD", "starred_actors", "ALEX CORD" ], [ "THE POPE OF GREENWICH VILLAGE", "has_genre", "CRIME" ], [ "THE POPE OF GREENWICH VILLAGE", "written_by", "VINCENT PATRICK" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 13408, 2001 10293, CONSPIRACY 14724, CRIME 27446, IN TOO DEEP 33950, LUCKY NUMBER SLEVIN 15787, MONEY FOR NOTHING 16476, MÍA MAESTRO 13081, R 5573, RAMÓN MENÉNDEZ 30131, STANLEY TUCCI 15340, THE SPEED OF THOUGHT 24811, THRILLER 21455, TOM MUSCA 35988, TORTILLA SOUP src, edge_attr, dst 10293, has_tags, 10293 10293, has_tags, 13081 10293, release_year, 13408 10293, starred_actors, 30131 27446, has_genre, 14724 27446, has_genre, 24811 27446, starred_actors, 30131 33950, has_genre, 14724 33950, has_tags, 14724 33950, has_tags, 13081 33950, has_tags, 30131 33950, has_tags, 24811 15787, directed_by, 5573 15787, has_genre, 14724 15787, written_by, 5573 15787, written_by, 21455 15340, has_genre, 24811 15340, starred_actors, 16476 35988, release_year, 13408 35988, written_by, 5573 35988, written_by, 21455 Question: In what context are MÍA MAESTRO, STANLEY TUCCI, and TOM MUSCA connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "MÍA MAESTRO", "STANLEY TUCCI", "TOM MUSCA" ], "valid_edges": [ [ "CONSPIRACY", "has_tags", "CONSPIRACY" ], [ "CONSPIRACY", "has_tags", "R" ], [ "CONSPIRACY", "release_year", "2001" ], [ "CONSPIRACY", "starred_actors", "STANLEY TUCCI" ], [ "IN TOO DEEP", "has_genre", "CRIME" ], [ "IN TOO DEEP", "has_genre", "THRILLER" ], [ "IN TOO DEEP", "starred_actors", "STANLEY TUCCI" ], [ "LUCKY NUMBER SLEVIN", "has_genre", "CRIME" ], [ "LUCKY NUMBER SLEVIN", "has_tags", "CRIME" ], [ "LUCKY NUMBER SLEVIN", "has_tags", "R" ], [ "LUCKY NUMBER SLEVIN", "has_tags", "STANLEY TUCCI" ], [ "LUCKY NUMBER SLEVIN", "has_tags", "THRILLER" ], [ "MONEY FOR NOTHING", "directed_by", "RAMÓN MENÉNDEZ" ], [ "MONEY FOR NOTHING", "has_genre", "CRIME" ], [ "MONEY FOR NOTHING", "written_by", "RAMÓN MENÉNDEZ" ], [ "MONEY FOR NOTHING", "written_by", "TOM MUSCA" ], [ "THE SPEED OF THOUGHT", "has_genre", "THRILLER" ], [ "THE SPEED OF THOUGHT", "starred_actors", "MÍA MAESTRO" ], [ "TORTILLA SOUP", "release_year", "2001" ], [ "TORTILLA SOUP", "written_by", "RAMÓN MENÉNDEZ" ], [ "TORTILLA SOUP", "written_by", "TOM MUSCA" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 33637, 1959 39289, ACTION 32014, BALLAD OF A SOLDIER 7417, BILLY CONNOLLY 25274, BLACK ORPHEUS 27958, FIRES ON THE PLAIN 24086, FLYING LEATHERNECKS 12435, JOHN WAYNE 33687, MARCEL CAMUS 32058, MUPPET TREASURE ISLAND 33297, OPERATION PETTICOAT 23515, PORK CHOP HILL 36102, RIO BRAVO 30840, SHAKE HANDS WITH THE DEVIL 19998, THE GREAT WAR 5663, THE HORSE SOLDIERS 38032, THE LAST BLITZKRIEG 27237, THE LONGEST DAY 19813, VERBOTEN! 22214, WAR 26524, YESTERDAY'S ENEMY src, edge_attr, dst 32014, has_genre, 22214 32014, release_year, 33637 25274, directed_by, 33687 25274, release_year, 33637 25274, starred_actors, 33687 25274, written_by, 33687 27958, has_genre, 22214 27958, release_year, 33637 24086, has_genre, 22214 24086, starred_actors, 12435 32058, has_genre, 39289 32058, has_tags, 7417 32058, starred_actors, 7417 33297, has_genre, 22214 33297, release_year, 33637 23515, has_genre, 22214 23515, release_year, 33637 36102, has_tags, 12435 36102, release_year, 33637 36102, starred_actors, 12435 30840, has_genre, 22214 30840, release_year, 33637 19998, has_genre, 22214 19998, has_tags, 22214 19998, release_year, 33637 5663, has_genre, 22214 5663, has_tags, 12435 5663, release_year, 33637 5663, starred_actors, 12435 38032, has_genre, 22214 38032, release_year, 33637 27237, has_tags, 12435 27237, has_tags, 22214 19813, has_genre, 22214 19813, release_year, 33637 22214, has_genre, 39289 26524, has_genre, 22214 26524, release_year, 33637 Question: How are BILLY CONNOLLY, MARCEL CAMUS, and THE HORSE SOLDIERS related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "BILLY CONNOLLY", "MARCEL CAMUS", "THE HORSE SOLDIERS" ], "valid_edges": [ [ "BALLAD OF A SOLDIER", "has_genre", "WAR" ], [ "BALLAD OF A SOLDIER", "release_year", "1959" ], [ "BLACK ORPHEUS", "directed_by", "MARCEL CAMUS" ], [ "BLACK ORPHEUS", "release_year", "1959" ], [ "BLACK ORPHEUS", "starred_actors", "MARCEL CAMUS" ], [ "BLACK ORPHEUS", "written_by", "MARCEL CAMUS" ], [ "FIRES ON THE PLAIN", "has_genre", "WAR" ], [ "FIRES ON THE PLAIN", "release_year", "1959" ], [ "FLYING LEATHERNECKS", "has_genre", "WAR" ], [ "FLYING LEATHERNECKS", "starred_actors", "JOHN WAYNE" ], [ "MUPPET TREASURE ISLAND", "has_genre", "ACTION" ], [ "MUPPET TREASURE ISLAND", "has_tags", "BILLY CONNOLLY" ], [ "MUPPET TREASURE ISLAND", "starred_actors", "BILLY CONNOLLY" ], [ "OPERATION PETTICOAT", "has_genre", "WAR" ], [ "OPERATION PETTICOAT", "release_year", "1959" ], [ "PORK CHOP HILL", "has_genre", "WAR" ], [ "PORK CHOP HILL", "release_year", "1959" ], [ "RIO BRAVO", "has_tags", "JOHN WAYNE" ], [ "RIO BRAVO", "release_year", "1959" ], [ "RIO BRAVO", "starred_actors", "JOHN WAYNE" ], [ "SHAKE HANDS WITH THE DEVIL", "has_genre", "WAR" ], [ "SHAKE HANDS WITH THE DEVIL", "release_year", "1959" ], [ "THE GREAT WAR", "has_genre", "WAR" ], [ "THE GREAT WAR", "has_tags", "WAR" ], [ "THE GREAT WAR", "release_year", "1959" ], [ "THE HORSE SOLDIERS", "has_genre", "WAR" ], [ "THE HORSE SOLDIERS", "has_tags", "JOHN WAYNE" ], [ "THE HORSE SOLDIERS", "release_year", "1959" ], [ "THE HORSE SOLDIERS", "starred_actors", "JOHN WAYNE" ], [ "THE LAST BLITZKRIEG", "has_genre", "WAR" ], [ "THE LAST BLITZKRIEG", "release_year", "1959" ], [ "THE LONGEST DAY", "has_tags", "JOHN WAYNE" ], [ "THE LONGEST DAY", "has_tags", "WAR" ], [ "VERBOTEN!", "has_genre", "WAR" ], [ "VERBOTEN!", "release_year", "1959" ], [ "WAR", "has_genre", "ACTION" ], [ "YESTERDAY'S ENEMY", "has_genre", "WAR" ], [ "YESTERDAY'S ENEMY", "release_year", "1959" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 20774, 127 HOURS 10702, 1991 35845, 2006 29424, 2011 15407, 29TH STREET 39705, A LITTLE STIFF 23683, ALL I WANT FOR CHRISTMAS 9846, ANNAPOLIS 30578, ANOTHER YOU 27426, AS I LAY DYING 9414, BINGO 38486, CALENDAR GIRLS 14746, CAMILLE 28295, CAREER OPPORTUNITIES 13901, CHARLIE WILSON'S WAR 3493, CHILD OF GOD 15585, CITY SLICKERS 30463, COMEDY 29148, CRAZY SAFARI 14724, CRIME 8100, CURLY SUE 39523, DANNY MCBRIDE 306, DAVID GORDON GREEN 31214, DEFENDING YOUR LIFE 29485, DELIRIOUS 37395, DEN OFRIVILLIGE GOLFAREN 3160, DOC HOLLYWOOD 16978, DON'T TELL MOM THE BABYSITTER'S DEAD 36212, DRAMA 20846, DROP DEAD FRED 31008, DUTCH 36202, ERNEST SCARED STUPID 36066, FANTASY 38250, FATHER OF THE BRIDE 18217, FIND ME GUILTY 1273, FLYBOYS 35150, FRIED GREEN TOMATOES 397, GOOD TIME MAX 18119, HE SAID, SHE SAID 34320, HEAR MY SONG 25610, HIGH STRUNG 6546, HOT SHOTS! 39726, HUDSON HAWK 16960, I LOVE YOU PHILLIP MORRIS 3909, IF LOOKS COULD KILL 24010, JAMES FRANCO 528, JOHNNY STECCHINO 30015, KING RALPH 7439, L.A. STORY 29323, LIFE STINKS 32627, MYSTERY DATE 25620, NECESSARY ROUGHNESS 40059, ONCE AROUND 23735, ONLY THE LONELY 30662, OSCAR 17667, OTHER PEOPLE'S MONEY 15521, OZ THE GREAT AND POWERFUL 14253, PALO ALTO 25824, PARADISE 32423, PERFECTLY NORMAL 1697, PINEAPPLE EXPRESS 23297, PROBLEM CHILD 2 39, PURE LUCK 25772, PYRATES 29601, QUEENS LOGIC 16685, RISE OF THE PLANET OF THE APES 31600, RUBIN AND ED 33607, SEX AND ZEN 8932, SLACKER 11883, SOAPDISH 7083, SONNY 38762, SPEAKING OF THE DEVIL 19149, SPRING BREAK 17346, SPRING BREAKERS 29906, SUBURBAN COMMANDO 35064, SWITCH 8210, THE BUTCHER'S WIFE 4345, THE COMMITMENTS 252, THE DARK BACKWARD 20229, THE FISHER KING 31393, THE GREAT RAID 32102, THE HARD WAY 4223, THE INTERVIEW 37565, THE LAST BOY SCOUT 12947, THE MARRYING MAN 2739, THE SAPPHIRES 1545, THE SUPER 21715, THIS IS THE END 13384, TOTO THE HERO 16292, TRUE STORY 22214, WAR 7593, WHAT ABOUT BOB? 10935, WHO'S YOUR DADDY? 21510, YOUR HIGHNESS src, edge_attr, dst 20774, has_genre, 36212 20774, has_tags, 36212 20774, has_tags, 24010 20774, starred_actors, 24010 15407, has_genre, 30463 15407, release_year, 10702 39705, has_genre, 30463 39705, release_year, 10702 23683, has_genre, 30463 23683, release_year, 10702 9846, has_genre, 36212 9846, has_tags, 24010 9846, release_year, 35845 9846, starred_actors, 24010 30578, has_genre, 30463 30578, release_year, 10702 27426, directed_by, 24010 27426, has_genre, 36212 27426, starred_actors, 24010 27426, written_by, 24010 9414, has_genre, 30463 9414, release_year, 10702 38486, has_genre, 30463 38486, has_tags, 16292 14746, has_genre, 36212 14746, starred_actors, 24010 28295, has_genre, 30463 28295, release_year, 10702 13901, has_genre, 30463 13901, has_tags, 16292 3493, directed_by, 24010 3493, has_genre, 36212 3493, starred_actors, 24010 3493, written_by, 24010 15585, has_genre, 30463 15585, release_year, 10702 29148, has_genre, 30463 29148, release_year, 10702 8100, has_genre, 30463 8100, release_year, 10702 31214, has_genre, 30463 31214, release_year, 10702 29485, has_genre, 30463 29485, release_year, 10702 37395, has_genre, 30463 37395, release_year, 10702 3160, has_genre, 30463 3160, has_tags, 30463 3160, release_year, 10702 16978, has_genre, 30463 16978, release_year, 10702 20846, has_genre, 30463 20846, release_year, 10702 31008, has_genre, 30463 31008, release_year, 10702 36202, has_genre, 30463 36202, release_year, 10702 38250, has_genre, 30463 38250, has_tags, 30463 38250, release_year, 10702 18217, has_genre, 30463 18217, has_tags, 16292 1273, has_genre, 36212 1273, has_tags, 24010 1273, has_tags, 22214 1273, release_year, 35845 1273, starred_actors, 24010 35150, has_genre, 30463 35150, release_year, 10702 397, directed_by, 24010 397, has_genre, 36212 397, starred_actors, 24010 397, written_by, 24010 18119, has_genre, 30463 18119, release_year, 10702 34320, has_genre, 30463 34320, release_year, 10702 25610, has_genre, 30463 25610, release_year, 10702 6546, has_genre, 30463 6546, has_tags, 30463 6546, release_year, 10702 39726, has_genre, 30463 39726, has_tags, 30463 39726, release_year, 10702 16960, has_genre, 30463 16960, has_tags, 30463 16960, has_tags, 16292 3909, has_genre, 30463 3909, release_year, 10702 528, has_genre, 30463 528, release_year, 10702 30015, has_genre, 30463 30015, has_tags, 30463 30015, release_year, 10702 7439, has_genre, 30463 7439, release_year, 10702 29323, has_genre, 30463 29323, release_year, 10702 32627, has_genre, 30463 32627, release_year, 10702 25620, has_genre, 30463 25620, release_year, 10702 40059, has_genre, 30463 40059, release_year, 10702 23735, has_genre, 30463 23735, release_year, 10702 30662, has_genre, 30463 30662, release_year, 10702 17667, has_genre, 30463 17667, release_year, 10702 15521, has_genre, 36066 15521, has_tags, 36066 15521, has_tags, 24010 15521, starred_actors, 24010 14253, has_genre, 36212 14253, written_by, 24010 25824, has_genre, 30463 25824, release_year, 10702 32423, has_genre, 30463 32423, release_year, 10702 1697, directed_by, 306 1697, has_genre, 30463 1697, has_tags, 30463 1697, has_tags, 306 1697, has_tags, 24010 1697, starred_actors, 24010 23297, has_genre, 30463 23297, release_year, 10702 39, has_genre, 30463 39, release_year, 10702 25772, has_genre, 30463 25772, release_year, 10702 29601, has_genre, 30463 29601, release_year, 10702 16685, has_tags, 24010 16685, release_year, 29424 31600, has_genre, 30463 31600, release_year, 10702 33607, has_genre, 30463 33607, release_year, 10702 8932, has_genre, 30463 8932, release_year, 10702 11883, has_genre, 30463 11883, has_tags, 30463 11883, release_year, 10702 7083, has_genre, 14724 7083, has_genre, 36212 7083, has_tags, 24010 7083, starred_actors, 24010 38762, has_genre, 30463 38762, release_year, 10702 19149, has_genre, 30463 17346, has_genre, 14724 17346, has_genre, 36212 17346, has_tags, 24010 17346, has_tags, 19149 17346, starred_actors, 24010 29906, has_genre, 30463 29906, release_year, 10702 35064, has_genre, 30463 35064, release_year, 10702 8210, has_genre, 30463 8210, release_year, 10702 4345, has_genre, 30463 4345, release_year, 10702 252, has_genre, 30463 252, release_year, 10702 20229, has_genre, 30463 20229, release_year, 10702 31393, has_genre, 22214 31393, starred_actors, 24010 32102, has_genre, 30463 32102, release_year, 10702 4223, has_genre, 30463 4223, has_tags, 30463 4223, has_tags, 24010 4223, starred_actors, 24010 37565, has_genre, 30463 37565, release_year, 10702 12947, has_genre, 30463 12947, release_year, 10702 2739, has_genre, 30463 2739, has_tags, 16292 1545, has_genre, 30463 1545, release_year, 10702 21715, has_genre, 30463 21715, has_tags, 39523 21715, has_tags, 24010 21715, starred_actors, 24010 13384, release_year, 10702 16292, has_genre, 36212 16292, has_tags, 36212 16292, starred_actors, 24010 7593, has_genre, 30463 7593, release_year, 10702 10935, has_genre, 30463 21510, directed_by, 306 21510, has_genre, 30463 21510, has_genre, 36066 21510, has_tags, 24010 21510, release_year, 29424 21510, starred_actors, 39523 21510, starred_actors, 24010 21510, written_by, 39523 Question: In what context are JAMES FRANCO, TOTO THE HERO, and WHO'S YOUR DADDY? connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "JAMES FRANCO", "TOTO THE HERO", "WHO'S YOUR DADDY?" ], "valid_edges": [ [ "127 HOURS", "has_genre", "DRAMA" ], [ "127 HOURS", "has_tags", "DRAMA" ], [ "127 HOURS", "has_tags", "JAMES FRANCO" ], [ "127 HOURS", "starred_actors", "JAMES FRANCO" ], [ "29TH STREET", "has_genre", "COMEDY" ], [ "29TH STREET", "release_year", "1991" ], [ "A LITTLE STIFF", "has_genre", "COMEDY" ], [ "A LITTLE STIFF", "release_year", "1991" ], [ "ALL I WANT FOR CHRISTMAS", "has_genre", "COMEDY" ], [ "ALL I WANT FOR CHRISTMAS", "release_year", "1991" ], [ "ANNAPOLIS", "has_genre", "DRAMA" ], [ "ANNAPOLIS", "has_tags", "JAMES FRANCO" ], [ "ANNAPOLIS", "release_year", "2006" ], [ "ANNAPOLIS", "starred_actors", "JAMES FRANCO" ], [ "ANOTHER YOU", "has_genre", "COMEDY" ], [ "ANOTHER YOU", "release_year", "1991" ], [ "AS I LAY DYING", "directed_by", "JAMES FRANCO" ], [ "AS I LAY DYING", "has_genre", "DRAMA" ], [ "AS I LAY DYING", "starred_actors", "JAMES FRANCO" ], [ "AS I LAY DYING", "written_by", "JAMES FRANCO" ], [ "BINGO", "has_genre", "COMEDY" ], [ "BINGO", "release_year", "1991" ], [ "CALENDAR GIRLS", "has_genre", "COMEDY" ], [ "CALENDAR GIRLS", "has_tags", "TRUE STORY" ], [ "CAMILLE", "has_genre", "DRAMA" ], [ "CAMILLE", "starred_actors", "JAMES FRANCO" ], [ "CAREER OPPORTUNITIES", "has_genre", "COMEDY" ], [ "CAREER OPPORTUNITIES", "release_year", "1991" ], [ "CHARLIE WILSON'S WAR", "has_genre", "COMEDY" ], [ "CHARLIE WILSON'S WAR", "has_tags", "TRUE STORY" ], [ "CHILD OF GOD", "directed_by", "JAMES FRANCO" ], [ "CHILD OF GOD", "has_genre", "DRAMA" ], [ "CHILD OF GOD", "starred_actors", "JAMES FRANCO" ], [ "CHILD OF GOD", "written_by", "JAMES FRANCO" ], [ "CITY SLICKERS", "has_genre", "COMEDY" ], [ "CITY SLICKERS", "release_year", "1991" ], [ "CRAZY SAFARI", "has_genre", "COMEDY" ], [ "CRAZY SAFARI", "release_year", "1991" ], [ "CURLY SUE", "has_genre", "COMEDY" ], [ "CURLY SUE", "release_year", "1991" ], [ "DEFENDING YOUR LIFE", "has_genre", "COMEDY" ], [ "DEFENDING YOUR LIFE", "release_year", "1991" ], [ "DELIRIOUS", "has_genre", "COMEDY" ], [ "DELIRIOUS", "release_year", "1991" ], [ "DEN OFRIVILLIGE GOLFAREN", "has_genre", "COMEDY" ], [ "DEN OFRIVILLIGE GOLFAREN", "release_year", "1991" ], [ "DOC HOLLYWOOD", "has_genre", "COMEDY" ], [ "DOC HOLLYWOOD", "has_tags", "COMEDY" ], [ "DOC HOLLYWOOD", "release_year", "1991" ], [ "DON'T TELL MOM THE BABYSITTER'S DEAD", "has_genre", "COMEDY" ], [ "DON'T TELL MOM THE BABYSITTER'S DEAD", "release_year", "1991" ], [ "DROP DEAD FRED", "has_genre", "COMEDY" ], [ "DROP DEAD FRED", "release_year", "1991" ], [ "DUTCH", "has_genre", "COMEDY" ], [ "DUTCH", "release_year", "1991" ], [ "ERNEST SCARED STUPID", "has_genre", "COMEDY" ], [ "ERNEST SCARED STUPID", "release_year", "1991" ], [ "FATHER OF THE BRIDE", "has_genre", "COMEDY" ], [ "FATHER OF THE BRIDE", "has_tags", "COMEDY" ], [ "FATHER OF THE BRIDE", "release_year", "1991" ], [ "FIND ME GUILTY", "has_genre", "COMEDY" ], [ "FIND ME GUILTY", "has_tags", "TRUE STORY" ], [ "FLYBOYS", "has_genre", "DRAMA" ], [ "FLYBOYS", "has_tags", "JAMES FRANCO" ], [ "FLYBOYS", "has_tags", "WAR" ], [ "FLYBOYS", "release_year", "2006" ], [ "FLYBOYS", "starred_actors", "JAMES FRANCO" ], [ "FRIED GREEN TOMATOES", "has_genre", "COMEDY" ], [ "FRIED GREEN TOMATOES", "release_year", "1991" ], [ "GOOD TIME MAX", "directed_by", "JAMES FRANCO" ], [ "GOOD TIME MAX", "has_genre", "DRAMA" ], [ "GOOD TIME MAX", "starred_actors", "JAMES FRANCO" ], [ "GOOD TIME MAX", "written_by", "JAMES FRANCO" ], [ "HE SAID, SHE SAID", "has_genre", "COMEDY" ], [ "HE SAID, SHE SAID", "release_year", "1991" ], [ "HEAR MY SONG", "has_genre", "COMEDY" ], [ "HEAR MY SONG", "release_year", "1991" ], [ "HIGH STRUNG", "has_genre", "COMEDY" ], [ "HIGH STRUNG", "release_year", "1991" ], [ "HOT SHOTS!", "has_genre", "COMEDY" ], [ "HOT SHOTS!", "has_tags", "COMEDY" ], [ "HOT SHOTS!", "release_year", "1991" ], [ "HUDSON HAWK", "has_genre", "COMEDY" ], [ "HUDSON HAWK", "has_tags", "COMEDY" ], [ "HUDSON HAWK", "release_year", "1991" ], [ "I LOVE YOU PHILLIP MORRIS", "has_genre", "COMEDY" ], [ "I LOVE YOU PHILLIP MORRIS", "has_tags", "COMEDY" ], [ "I LOVE YOU PHILLIP MORRIS", "has_tags", "TRUE STORY" ], [ "IF LOOKS COULD KILL", "has_genre", "COMEDY" ], [ "IF LOOKS COULD KILL", "release_year", "1991" ], [ "JOHNNY STECCHINO", "has_genre", "COMEDY" ], [ "JOHNNY STECCHINO", "release_year", "1991" ], [ "KING RALPH", "has_genre", "COMEDY" ], [ "KING RALPH", "has_tags", "COMEDY" ], [ "KING RALPH", "release_year", "1991" ], [ "L.A. STORY", "has_genre", "COMEDY" ], [ "L.A. STORY", "release_year", "1991" ], [ "LIFE STINKS", "has_genre", "COMEDY" ], [ "LIFE STINKS", "release_year", "1991" ], [ "MYSTERY DATE", "has_genre", "COMEDY" ], [ "MYSTERY DATE", "release_year", "1991" ], [ "NECESSARY ROUGHNESS", "has_genre", "COMEDY" ], [ "NECESSARY ROUGHNESS", "release_year", "1991" ], [ "ONCE AROUND", "has_genre", "COMEDY" ], [ "ONCE AROUND", "release_year", "1991" ], [ "ONLY THE LONELY", "has_genre", "COMEDY" ], [ "ONLY THE LONELY", "release_year", "1991" ], [ "OSCAR", "has_genre", "COMEDY" ], [ "OSCAR", "release_year", "1991" ], [ "OTHER PEOPLE'S MONEY", "has_genre", "COMEDY" ], [ "OTHER PEOPLE'S MONEY", "release_year", "1991" ], [ "OZ THE GREAT AND POWERFUL", "has_genre", "FANTASY" ], [ "OZ THE GREAT AND POWERFUL", "has_tags", "FANTASY" ], [ "OZ THE GREAT AND POWERFUL", "has_tags", "JAMES FRANCO" ], [ "OZ THE GREAT AND POWERFUL", "starred_actors", "JAMES FRANCO" ], [ "PALO ALTO", "has_genre", "DRAMA" ], [ "PALO ALTO", "written_by", "JAMES FRANCO" ], [ "PARADISE", "has_genre", "COMEDY" ], [ "PARADISE", "release_year", "1991" ], [ "PERFECTLY NORMAL", "has_genre", "COMEDY" ], [ "PERFECTLY NORMAL", "release_year", "1991" ], [ "PINEAPPLE EXPRESS", "directed_by", "DAVID GORDON GREEN" ], [ "PINEAPPLE EXPRESS", "has_genre", "COMEDY" ], [ "PINEAPPLE EXPRESS", "has_tags", "COMEDY" ], [ "PINEAPPLE EXPRESS", "has_tags", "DAVID GORDON GREEN" ], [ "PINEAPPLE EXPRESS", "has_tags", "JAMES FRANCO" ], [ "PINEAPPLE EXPRESS", "starred_actors", "JAMES FRANCO" ], [ "PROBLEM CHILD 2", "has_genre", "COMEDY" ], [ "PROBLEM CHILD 2", "release_year", "1991" ], [ "PURE LUCK", "has_genre", "COMEDY" ], [ "PURE LUCK", "release_year", "1991" ], [ "PYRATES", "has_genre", "COMEDY" ], [ "PYRATES", "release_year", "1991" ], [ "QUEENS LOGIC", "has_genre", "COMEDY" ], [ "QUEENS LOGIC", "release_year", "1991" ], [ "RISE OF THE PLANET OF THE APES", "has_tags", "JAMES FRANCO" ], [ "RISE OF THE PLANET OF THE APES", "release_year", "2011" ], [ "RUBIN AND ED", "has_genre", "COMEDY" ], [ "RUBIN AND ED", "release_year", "1991" ], [ "SEX AND ZEN", "has_genre", "COMEDY" ], [ "SEX AND ZEN", "release_year", "1991" ], [ "SLACKER", "has_genre", "COMEDY" ], [ "SLACKER", "release_year", "1991" ], [ "SOAPDISH", "has_genre", "COMEDY" ], [ "SOAPDISH", "has_tags", "COMEDY" ], [ "SOAPDISH", "release_year", "1991" ], [ "SONNY", "has_genre", "CRIME" ], [ "SONNY", "has_genre", "DRAMA" ], [ "SONNY", "has_tags", "JAMES FRANCO" ], [ "SONNY", "starred_actors", "JAMES FRANCO" ], [ "SPEAKING OF THE DEVIL", "has_genre", "COMEDY" ], [ "SPEAKING OF THE DEVIL", "release_year", "1991" ], [ "SPRING BREAK", "has_genre", "COMEDY" ], [ "SPRING BREAKERS", "has_genre", "CRIME" ], [ "SPRING BREAKERS", "has_genre", "DRAMA" ], [ "SPRING BREAKERS", "has_tags", "JAMES FRANCO" ], [ "SPRING BREAKERS", "has_tags", "SPRING BREAK" ], [ "SPRING BREAKERS", "starred_actors", "JAMES FRANCO" ], [ "SUBURBAN COMMANDO", "has_genre", "COMEDY" ], [ "SUBURBAN COMMANDO", "release_year", "1991" ], [ "SWITCH", "has_genre", "COMEDY" ], [ "SWITCH", "release_year", "1991" ], [ "THE BUTCHER'S WIFE", "has_genre", "COMEDY" ], [ "THE BUTCHER'S WIFE", "release_year", "1991" ], [ "THE COMMITMENTS", "has_genre", "COMEDY" ], [ "THE COMMITMENTS", "release_year", "1991" ], [ "THE DARK BACKWARD", "has_genre", "COMEDY" ], [ "THE DARK BACKWARD", "release_year", "1991" ], [ "THE FISHER KING", "has_genre", "COMEDY" ], [ "THE FISHER KING", "release_year", "1991" ], [ "THE GREAT RAID", "has_genre", "WAR" ], [ "THE GREAT RAID", "starred_actors", "JAMES FRANCO" ], [ "THE HARD WAY", "has_genre", "COMEDY" ], [ "THE HARD WAY", "release_year", "1991" ], [ "THE INTERVIEW", "has_genre", "COMEDY" ], [ "THE INTERVIEW", "has_tags", "COMEDY" ], [ "THE INTERVIEW", "has_tags", "JAMES FRANCO" ], [ "THE INTERVIEW", "starred_actors", "JAMES FRANCO" ], [ "THE LAST BOY SCOUT", "has_genre", "COMEDY" ], [ "THE LAST BOY SCOUT", "release_year", "1991" ], [ "THE MARRYING MAN", "has_genre", "COMEDY" ], [ "THE MARRYING MAN", "release_year", "1991" ], [ "THE SAPPHIRES", "has_genre", "COMEDY" ], [ "THE SAPPHIRES", "has_tags", "TRUE STORY" ], [ "THE SUPER", "has_genre", "COMEDY" ], [ "THE SUPER", "release_year", "1991" ], [ "THIS IS THE END", "has_genre", "COMEDY" ], [ "THIS IS THE END", "has_tags", "DANNY MCBRIDE" ], [ "THIS IS THE END", "has_tags", "JAMES FRANCO" ], [ "THIS IS THE END", "starred_actors", "JAMES FRANCO" ], [ "TOTO THE HERO", "release_year", "1991" ], [ "TRUE STORY", "has_genre", "DRAMA" ], [ "TRUE STORY", "has_tags", "DRAMA" ], [ "TRUE STORY", "starred_actors", "JAMES FRANCO" ], [ "WHAT ABOUT BOB?", "has_genre", "COMEDY" ], [ "WHAT ABOUT BOB?", "release_year", "1991" ], [ "WHO'S YOUR DADDY?", "has_genre", "COMEDY" ], [ "YOUR HIGHNESS", "directed_by", "DAVID GORDON GREEN" ], [ "YOUR HIGHNESS", "has_genre", "COMEDY" ], [ "YOUR HIGHNESS", "has_genre", "FANTASY" ], [ "YOUR HIGHNESS", "has_tags", "JAMES FRANCO" ], [ "YOUR HIGHNESS", "release_year", "2011" ], [ "YOUR HIGHNESS", "starred_actors", "DANNY MCBRIDE" ], [ "YOUR HIGHNESS", "starred_actors", "JAMES FRANCO" ], [ "YOUR HIGHNESS", "written_by", "DANNY MCBRIDE" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 13504, 1963 14259, 1997 24626, A CHILD IS WAITING 13192, ABBY MANN 14310, BARAN BO ODAR 38776, BURT LANCASTER 611, DERRICK SANDERS 6480, GERMAN 3713, IT'S IN THE WATER 22600, JUDGMENT AT NUREMBERG 22194, THE LEOPARD 16072, THE RAINMAKER 18785, THE SILENCE 38808, THE TRAIN src, edge_attr, dst 24626, release_year, 13504 24626, starred_actors, 38776 24626, written_by, 13192 3713, release_year, 14259 3713, starred_actors, 611 22600, in_language, 6480 22600, starred_actors, 38776 22600, written_by, 13192 22194, release_year, 13504 22194, starred_actors, 38776 16072, release_year, 14259 16072, starred_actors, 38776 18785, directed_by, 14310 18785, in_language, 6480 18785, release_year, 13504 18785, written_by, 14310 38808, in_language, 6480 38808, starred_actors, 38776 Question: In what context are BARAN BO ODAR, BURT LANCASTER, and DERRICK SANDERS connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "BARAN BO ODAR", "BURT LANCASTER", "DERRICK SANDERS" ], "valid_edges": [ [ "A CHILD IS WAITING", "release_year", "1963" ], [ "A CHILD IS WAITING", "starred_actors", "BURT LANCASTER" ], [ "A CHILD IS WAITING", "written_by", "ABBY MANN" ], [ "IT'S IN THE WATER", "release_year", "1997" ], [ "IT'S IN THE WATER", "starred_actors", "DERRICK SANDERS" ], [ "JUDGMENT AT NUREMBERG", "in_language", "GERMAN" ], [ "JUDGMENT AT NUREMBERG", "starred_actors", "BURT LANCASTER" ], [ "JUDGMENT AT NUREMBERG", "written_by", "ABBY MANN" ], [ "THE LEOPARD", "release_year", "1963" ], [ "THE LEOPARD", "starred_actors", "BURT LANCASTER" ], [ "THE RAINMAKER", "release_year", "1997" ], [ "THE RAINMAKER", "starred_actors", "BURT LANCASTER" ], [ "THE SILENCE", "directed_by", "BARAN BO ODAR" ], [ "THE SILENCE", "in_language", "GERMAN" ], [ "THE SILENCE", "release_year", "1963" ], [ "THE SILENCE", "written_by", "BARAN BO ODAR" ], [ "THE TRAIN", "in_language", "GERMAN" ], [ "THE TRAIN", "starred_actors", "BURT LANCASTER" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 21136, 10 MINUTES 37484, 2004 27261, 2009 739, 2081 673, 9 22088, A BRIDGE TOO FAR 25987, A GUY NAMED JOE 23445, A MIDNIGHT CLEAR 30750, A VERY LONG ENGAGEMENT 7663, ACTION IN THE NORTH ATLANTIC 29884, ALEXANDER 22726, ANNE FRANK REMEMBERED 36876, ATTACK 32621, AVATAR 32014, BALLAD OF A SOLDIER 34734, BATTLE OF THE BULGE 12185, BATTLEGROUND 1912, BEYOND ALL BOUNDARIES 40074, BLACK BOOK 2856, BROTHERS 24318, CASHBACK 25285, COME AND SEE 10293, CONSPIRACY 4615, DARK BLUE WORLD 18972, DAS BOOT 11363, DEFIANCE 17714, DOWNFALL 16353, EDGES OF THE LORD 22028, EMPIRE OF THE SUN 16930, ENEMY AT THE GATES 1329, ENVY 30411, FAHRENHEIT 9/11 27958, FIRES ON THE PLAIN 10315, FLAGS OF OUR FATHERS 13834, FLYING TIGERS 39145, FURY 30162, GUADALCANAL DIARY 15765, HAMSUN 33545, HART'S WAR 34055, HARVIE KRUMPET 1044, HOTEL RWANDA 22885, HOUSE OF FLYING DAGGERS 12087, HOWL'S MOVING CASTLE 15343, IN DARKNESS 28360, IN ENEMY HANDS 35518, IN HARM'S WAY 16560, INGLOURIOUS BASTERDS 6780, INTO THE STORM 38574, IT HAPPENED HERE 22012, IVAN'S CHILDHOOD 22167, KING RAT 33720, LEBANON 20200, LOGORAMA 6134, LOS BANDOLEROS 37365, MARCELLO PAGLIERO 9595, MEMPHIS BELLE 5127, MOTHER NIGHT 38294, MRS. MINIVER 20581, OPERATION PACIFIC 19562, PAPERMAN 16806, PATTON 35167, PRIVATE 7284, PULL MY DAISY 29931, ROME, OPEN CITY 33164, RUNAWAY 35586, SAHARA 23006, SANDS OF IWO JIMA 24365, SAVING PRIVATE RYAN 36899, SHORT 18869, SHORT FILM 9619, SIX SHOOTER 796, SOME FOLKS CALL IT A SLING BLADE 21196, STALAG 17 11124, STALINGRAD 7547, TAKING CHANCE 37855, TEA WITH MUSSOLINI 28461, THE ALAMO 27210, THE BEST YEARS OF OUR LIVES 7710, THE BIG RED ONE 29788, THE BRIDGE AT REMAGEN 14436, THE BURMESE HARP 36692, THE CAINE MUTINY 828, THE ENEMY BELOW 778, THE FALLEN 30507, THE FIGHTING SEABEES 6424, THE GREAT ESCAPE 31393, THE GREAT RAID 24882, THE GRUFFALO 405, THE HIDING PLACE 20299, THE HILL 5567, THE KEEPER 27237, THE LONGEST DAY 28024, THE MEN WHO STARE AT GOATS 28292, THE MESSENGER 30294, THE NIGHT OF THE GENERALS 11555, THE NOTEBOOK 12614, THE PIANIST 32618, THE RAPE OF EUROPA 4962, THE SORROW AND THE PITY 21548, THE SUN 30136, THE THIN RED LINE 35911, THE TUSKEGEE AIRMEN 3123, THEY WERE EXPENDABLE 23247, TRIAGE 5729, TROY 29947, TURTLES CAN FLY 38352, TWELVE O'CLOCK HIGH 38730, TWO MEN WENT TO WAR 37253, U-571 39558, UNDERGROUND 33011, VALKYRIE 32733, VANITY FAIR 2175, VON RYAN'S EXPRESS 22214, WAR 9159, WAR COMES TO AMERICA 5949, WHEN TRUMPETS FADE 23537, WHERE EAGLES DARE 24155, WORLD WAR II 15904, YANKS src, edge_attr, dst 21136, has_genre, 36899 21136, has_genre, 22214 739, has_genre, 36899 739, release_year, 27261 673, has_tags, 22214 673, release_year, 27261 22088, has_genre, 22214 22088, has_tags, 22214 22088, has_tags, 24155 25987, has_genre, 22214 25987, has_tags, 24155 23445, has_genre, 22214 23445, has_tags, 22214 23445, has_tags, 24155 30750, has_tags, 22214 30750, release_year, 37484 7663, has_genre, 22214 7663, has_tags, 24155 29884, has_tags, 22214 29884, release_year, 37484 22726, has_genre, 22214 22726, has_tags, 24155 36876, has_genre, 22214 36876, has_tags, 24155 32621, has_tags, 22214 32621, release_year, 27261 32014, has_genre, 22214 32014, has_tags, 24155 34734, has_genre, 22214 34734, has_tags, 24155 12185, has_genre, 22214 12185, has_tags, 22214 12185, has_tags, 24155 1912, has_genre, 36899 1912, has_genre, 22214 1912, has_tags, 18869 1912, has_tags, 24155 1912, release_year, 27261 40074, has_genre, 22214 40074, has_tags, 24155 2856, release_year, 37484 2856, release_year, 27261 24318, has_genre, 36899 24318, has_tags, 36899 24318, release_year, 37484 25285, has_genre, 22214 25285, has_tags, 24155 10293, has_genre, 22214 10293, has_tags, 24155 4615, has_genre, 22214 4615, has_tags, 24155 18972, has_genre, 22214 18972, has_tags, 22214 18972, has_tags, 24155 11363, has_tags, 22214 11363, has_tags, 24155 17714, has_tags, 22214 17714, release_year, 37484 16353, has_genre, 22214 16353, has_tags, 24155 22028, has_genre, 22214 22028, has_tags, 22214 22028, has_tags, 24155 16930, has_tags, 22214 16930, has_tags, 24155 1329, release_year, 37484 1329, release_year, 27261 30411, has_tags, 22214 30411, release_year, 37484 27958, has_genre, 22214 27958, has_tags, 24155 10315, has_genre, 22214 10315, has_tags, 22214 10315, has_tags, 24155 13834, has_genre, 22214 13834, has_tags, 24155 39145, has_genre, 22214 39145, has_tags, 22214 39145, has_tags, 24155 30162, has_genre, 22214 30162, has_tags, 24155 15765, has_genre, 22214 15765, has_tags, 24155 33545, has_genre, 22214 33545, has_tags, 24155 34055, has_genre, 36899 34055, has_tags, 36899 34055, has_tags, 18869 1044, has_genre, 22214 1044, has_tags, 22214 1044, release_year, 37484 22885, has_tags, 22214 22885, release_year, 37484 12087, has_tags, 22214 12087, release_year, 37484 15343, has_genre, 22214 15343, has_tags, 22214 15343, has_tags, 24155 28360, has_genre, 22214 28360, release_year, 37484 35518, has_genre, 22214 35518, has_tags, 24155 16560, has_genre, 22214 16560, has_tags, 22214 16560, release_year, 27261 6780, has_tags, 24155 6780, release_year, 27261 38574, has_genre, 22214 38574, has_tags, 24155 22012, has_genre, 22214 22012, has_tags, 22214 22012, has_tags, 24155 22167, has_genre, 22214 22167, has_tags, 24155 33720, has_genre, 22214 33720, has_tags, 22214 33720, release_year, 27261 20200, has_genre, 36899 20200, release_year, 27261 6134, has_genre, 36899 6134, release_year, 27261 9595, has_genre, 22214 9595, has_tags, 24155 5127, has_genre, 22214 5127, has_tags, 24155 38294, has_genre, 22214 38294, has_tags, 24155 20581, has_genre, 22214 20581, has_tags, 24155 19562, has_genre, 36899 19562, has_tags, 36899 19562, has_tags, 18869 16806, has_genre, 22214 16806, has_tags, 22214 16806, has_tags, 24155 35167, has_genre, 22214 35167, release_year, 37484 7284, has_genre, 36899 7284, has_tags, 36899 7284, has_tags, 18869 29931, has_genre, 22214 29931, starred_actors, 37365 33164, has_genre, 36899 33164, has_tags, 36899 33164, release_year, 27261 35586, has_genre, 22214 35586, has_tags, 24155 23006, has_genre, 22214 23006, has_tags, 24155 24365, has_genre, 22214 24365, has_tags, 22214 24365, has_tags, 24155 9619, has_genre, 36899 9619, has_tags, 36899 9619, has_tags, 18869 9619, release_year, 37484 796, has_genre, 36899 796, has_tags, 36899 796, has_tags, 18869 21196, has_genre, 22214 21196, has_tags, 24155 11124, has_genre, 22214 11124, has_tags, 24155 7547, has_genre, 22214 7547, release_year, 27261 37855, has_genre, 22214 37855, has_tags, 24155 28461, has_genre, 22214 28461, has_tags, 22214 28461, release_year, 37484 27210, has_genre, 22214 27210, has_tags, 24155 7710, has_genre, 22214 7710, has_tags, 24155 29788, has_genre, 22214 29788, has_tags, 24155 14436, has_genre, 22214 14436, has_tags, 24155 36692, has_genre, 22214 36692, has_tags, 24155 828, has_tags, 22214 828, has_tags, 24155 778, has_genre, 22214 778, release_year, 37484 30507, has_genre, 22214 30507, has_tags, 24155 6424, has_tags, 22214 6424, has_tags, 24155 31393, has_genre, 22214 31393, has_tags, 24155 24882, has_genre, 36899 24882, release_year, 27261 405, has_genre, 22214 405, has_tags, 24155 20299, has_genre, 22214 20299, has_tags, 24155 5567, release_year, 37484 5567, release_year, 27261 27237, has_tags, 22214 27237, has_tags, 24155 28024, has_genre, 22214 28024, release_year, 27261 28292, has_genre, 22214 28292, release_year, 27261 30294, has_tags, 22214 30294, has_tags, 24155 11555, has_genre, 22214 11555, release_year, 37484 12614, has_genre, 22214 12614, has_tags, 22214 12614, has_tags, 24155 32618, has_genre, 22214 32618, has_tags, 24155 4962, has_genre, 22214 4962, has_tags, 24155 21548, has_tags, 22214 21548, has_tags, 24155 30136, has_genre, 22214 30136, has_tags, 22214 30136, has_tags, 24155 35911, has_genre, 22214 35911, has_tags, 24155 3123, has_genre, 22214 3123, has_tags, 24155 23247, has_genre, 22214 23247, release_year, 27261 5729, has_tags, 22214 5729, release_year, 37484 29947, has_genre, 22214 29947, release_year, 37484 38352, has_genre, 22214 38352, has_tags, 24155 38730, has_genre, 22214 38730, has_tags, 24155 37253, has_genre, 22214 37253, has_tags, 22214 37253, has_tags, 24155 39558, has_genre, 22214 39558, has_tags, 24155 33011, has_genre, 22214 33011, has_tags, 24155 32733, release_year, 37484 2175, has_genre, 22214 2175, has_tags, 24155 9159, has_genre, 22214 9159, has_tags, 24155 5949, has_genre, 22214 5949, has_tags, 24155 23537, has_genre, 22214 23537, has_tags, 24155 15904, has_genre, 22214 15904, has_tags, 24155 Question: In what context are BEYOND ALL BOUNDARIES, MARCELLO PAGLIERO, and VANITY FAIR connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "BEYOND ALL BOUNDARIES", "MARCELLO PAGLIERO", "VANITY FAIR" ], "valid_edges": [ [ "10 MINUTES", "has_genre", "SHORT" ], [ "10 MINUTES", "has_genre", "WAR" ], [ "2081", "has_genre", "SHORT" ], [ "2081", "release_year", "2009" ], [ "9", "has_tags", "WAR" ], [ "9", "release_year", "2009" ], [ "A BRIDGE TOO FAR", "has_genre", "WAR" ], [ "A BRIDGE TOO FAR", "has_tags", "WAR" ], [ "A BRIDGE TOO FAR", "has_tags", "WORLD WAR II" ], [ "A GUY NAMED JOE", "has_genre", "WAR" ], [ "A GUY NAMED JOE", "has_tags", "WORLD WAR II" ], [ "A MIDNIGHT CLEAR", "has_genre", "WAR" ], [ "A MIDNIGHT CLEAR", "has_tags", "WAR" ], [ "A MIDNIGHT CLEAR", "has_tags", "WORLD WAR II" ], [ "A VERY LONG ENGAGEMENT", "has_tags", "WAR" ], [ "A VERY LONG ENGAGEMENT", "release_year", "2004" ], [ "ACTION IN THE NORTH ATLANTIC", "has_genre", "WAR" ], [ "ACTION IN THE NORTH ATLANTIC", "has_tags", "WORLD WAR II" ], [ "ALEXANDER", "has_tags", "WAR" ], [ "ALEXANDER", "release_year", "2004" ], [ "ANNE FRANK REMEMBERED", "has_genre", "WAR" ], [ "ANNE FRANK REMEMBERED", "has_tags", "WORLD WAR II" ], [ "ATTACK", "has_genre", "WAR" ], [ "ATTACK", "has_tags", "WORLD WAR II" ], [ "AVATAR", "has_tags", "WAR" ], [ "AVATAR", "release_year", "2009" ], [ "BALLAD OF A SOLDIER", "has_genre", "WAR" ], [ "BALLAD OF A SOLDIER", "has_tags", "WORLD WAR II" ], [ "BATTLE OF THE BULGE", "has_genre", "WAR" ], [ "BATTLE OF THE BULGE", "has_tags", "WORLD WAR II" ], [ "BATTLEGROUND", "has_genre", "WAR" ], [ "BATTLEGROUND", "has_tags", "WAR" ], [ "BATTLEGROUND", "has_tags", "WORLD WAR II" ], [ "BEYOND ALL BOUNDARIES", "has_genre", "SHORT" ], [ "BEYOND ALL BOUNDARIES", "has_genre", "WAR" ], [ "BEYOND ALL BOUNDARIES", "has_tags", "SHORT FILM" ], [ "BEYOND ALL BOUNDARIES", "has_tags", "WORLD WAR II" ], [ "BEYOND ALL BOUNDARIES", "release_year", "2009" ], [ "BLACK BOOK", "has_genre", "WAR" ], [ "BLACK BOOK", "has_tags", "WORLD WAR II" ], [ "BROTHERS", "release_year", "2004" ], [ "BROTHERS", "release_year", "2009" ], [ "CASHBACK", "has_genre", "SHORT" ], [ "CASHBACK", "has_tags", "SHORT" ], [ "CASHBACK", "release_year", "2004" ], [ "COME AND SEE", "has_genre", "WAR" ], [ "COME AND SEE", "has_tags", "WORLD WAR II" ], [ "CONSPIRACY", "has_genre", "WAR" ], [ "CONSPIRACY", "has_tags", "WORLD WAR II" ], [ "DARK BLUE WORLD", "has_genre", "WAR" ], [ "DARK BLUE WORLD", "has_tags", "WORLD WAR II" ], [ "DAS BOOT", "has_genre", "WAR" ], [ "DAS BOOT", "has_tags", "WAR" ], [ "DAS BOOT", "has_tags", "WORLD WAR II" ], [ "DEFIANCE", "has_tags", "WAR" ], [ "DEFIANCE", "has_tags", "WORLD WAR II" ], [ "DOWNFALL", "has_tags", "WAR" ], [ "DOWNFALL", "release_year", "2004" ], [ "EDGES OF THE LORD", "has_genre", "WAR" ], [ "EDGES OF THE LORD", "has_tags", "WORLD WAR II" ], [ "EMPIRE OF THE SUN", "has_genre", "WAR" ], [ "EMPIRE OF THE SUN", "has_tags", "WAR" ], [ "EMPIRE OF THE SUN", "has_tags", "WORLD WAR II" ], [ "ENEMY AT THE GATES", "has_tags", "WAR" ], [ "ENEMY AT THE GATES", "has_tags", "WORLD WAR II" ], [ "ENVY", "release_year", "2004" ], [ "ENVY", "release_year", "2009" ], [ "FAHRENHEIT 9/11", "has_tags", "WAR" ], [ "FAHRENHEIT 9/11", "release_year", "2004" ], [ "FIRES ON THE PLAIN", "has_genre", "WAR" ], [ "FIRES ON THE PLAIN", "has_tags", "WORLD WAR II" ], [ "FLAGS OF OUR FATHERS", "has_genre", "WAR" ], [ "FLAGS OF OUR FATHERS", "has_tags", "WAR" ], [ "FLAGS OF OUR FATHERS", "has_tags", "WORLD WAR II" ], [ "FLYING TIGERS", "has_genre", "WAR" ], [ "FLYING TIGERS", "has_tags", "WORLD WAR II" ], [ "FURY", "has_genre", "WAR" ], [ "FURY", "has_tags", "WAR" ], [ "FURY", "has_tags", "WORLD WAR II" ], [ "GUADALCANAL DIARY", "has_genre", "WAR" ], [ "GUADALCANAL DIARY", "has_tags", "WORLD WAR II" ], [ "HAMSUN", "has_genre", "WAR" ], [ "HAMSUN", "has_tags", "WORLD WAR II" ], [ "HART'S WAR", "has_genre", "WAR" ], [ "HART'S WAR", "has_tags", "WORLD WAR II" ], [ "HARVIE KRUMPET", "has_genre", "SHORT" ], [ "HARVIE KRUMPET", "has_tags", "SHORT" ], [ "HARVIE KRUMPET", "has_tags", "SHORT FILM" ], [ "HOTEL RWANDA", "has_genre", "WAR" ], [ "HOTEL RWANDA", "has_tags", "WAR" ], [ "HOTEL RWANDA", "release_year", "2004" ], [ "HOUSE OF FLYING DAGGERS", "has_tags", "WAR" ], [ "HOUSE OF FLYING DAGGERS", "release_year", "2004" ], [ "HOWL'S MOVING CASTLE", "has_tags", "WAR" ], [ "HOWL'S MOVING CASTLE", "release_year", "2004" ], [ "IN DARKNESS", "has_genre", "WAR" ], [ "IN DARKNESS", "has_tags", "WAR" ], [ "IN DARKNESS", "has_tags", "WORLD WAR II" ], [ "IN ENEMY HANDS", "has_genre", "WAR" ], [ "IN ENEMY HANDS", "release_year", "2004" ], [ "IN HARM'S WAY", "has_genre", "WAR" ], [ "IN HARM'S WAY", "has_tags", "WORLD WAR II" ], [ "INGLOURIOUS BASTERDS", "has_genre", "WAR" ], [ "INGLOURIOUS BASTERDS", "has_tags", "WAR" ], [ "INGLOURIOUS BASTERDS", "release_year", "2009" ], [ "INTO THE STORM", "has_tags", "WORLD WAR II" ], [ "INTO THE STORM", "release_year", "2009" ], [ "IT HAPPENED HERE", "has_genre", "WAR" ], [ "IT HAPPENED HERE", "has_tags", "WORLD WAR II" ], [ "IVAN'S CHILDHOOD", "has_genre", "WAR" ], [ "IVAN'S CHILDHOOD", "has_tags", "WAR" ], [ "IVAN'S CHILDHOOD", "has_tags", "WORLD WAR II" ], [ "KING RAT", "has_genre", "WAR" ], [ "KING RAT", "has_tags", "WORLD WAR II" ], [ "LEBANON", "has_genre", "WAR" ], [ "LEBANON", "has_tags", "WAR" ], [ "LEBANON", "release_year", "2009" ], [ "LOGORAMA", "has_genre", "SHORT" ], [ "LOGORAMA", "release_year", "2009" ], [ "LOS BANDOLEROS", "has_genre", "SHORT" ], [ "LOS BANDOLEROS", "release_year", "2009" ], [ "MEMPHIS BELLE", "has_genre", "WAR" ], [ "MEMPHIS BELLE", "has_tags", "WORLD WAR II" ], [ "MOTHER NIGHT", "has_genre", "WAR" ], [ "MOTHER NIGHT", "has_tags", "WORLD WAR II" ], [ "MRS. MINIVER", "has_genre", "WAR" ], [ "MRS. MINIVER", "has_tags", "WORLD WAR II" ], [ "OPERATION PACIFIC", "has_genre", "WAR" ], [ "OPERATION PACIFIC", "has_tags", "WORLD WAR II" ], [ "PAPERMAN", "has_genre", "SHORT" ], [ "PAPERMAN", "has_tags", "SHORT" ], [ "PAPERMAN", "has_tags", "SHORT FILM" ], [ "PATTON", "has_genre", "WAR" ], [ "PATTON", "has_tags", "WAR" ], [ "PATTON", "has_tags", "WORLD WAR II" ], [ "PRIVATE", "has_genre", "WAR" ], [ "PRIVATE", "release_year", "2004" ], [ "PULL MY DAISY", "has_genre", "SHORT" ], [ "PULL MY DAISY", "has_tags", "SHORT" ], [ "PULL MY DAISY", "has_tags", "SHORT FILM" ], [ "ROME, OPEN CITY", "has_genre", "WAR" ], [ "ROME, OPEN CITY", "starred_actors", "MARCELLO PAGLIERO" ], [ "RUNAWAY", "has_genre", "SHORT" ], [ "RUNAWAY", "has_tags", "SHORT" ], [ "RUNAWAY", "release_year", "2009" ], [ "SAHARA", "has_genre", "WAR" ], [ "SAHARA", "has_tags", "WORLD WAR II" ], [ "SANDS OF IWO JIMA", "has_genre", "WAR" ], [ "SANDS OF IWO JIMA", "has_tags", "WORLD WAR II" ], [ "SAVING PRIVATE RYAN", "has_genre", "WAR" ], [ "SAVING PRIVATE RYAN", "has_tags", "WAR" ], [ "SAVING PRIVATE RYAN", "has_tags", "WORLD WAR II" ], [ "SIX SHOOTER", "has_genre", "SHORT" ], [ "SIX SHOOTER", "has_tags", "SHORT" ], [ "SIX SHOOTER", "has_tags", "SHORT FILM" ], [ "SIX SHOOTER", "release_year", "2004" ], [ "SOME FOLKS CALL IT A SLING BLADE", "has_genre", "SHORT" ], [ "SOME FOLKS CALL IT A SLING BLADE", "has_tags", "SHORT" ], [ "SOME FOLKS CALL IT A SLING BLADE", "has_tags", "SHORT FILM" ], [ "STALAG 17", "has_genre", "WAR" ], [ "STALAG 17", "has_tags", "WORLD WAR II" ], [ "STALINGRAD", "has_genre", "WAR" ], [ "STALINGRAD", "has_tags", "WORLD WAR II" ], [ "TAKING CHANCE", "has_genre", "WAR" ], [ "TAKING CHANCE", "release_year", "2009" ], [ "TEA WITH MUSSOLINI", "has_genre", "WAR" ], [ "TEA WITH MUSSOLINI", "has_tags", "WORLD WAR II" ], [ "THE ALAMO", "has_genre", "WAR" ], [ "THE ALAMO", "has_tags", "WAR" ], [ "THE ALAMO", "release_year", "2004" ], [ "THE BEST YEARS OF OUR LIVES", "has_genre", "WAR" ], [ "THE BEST YEARS OF OUR LIVES", "has_tags", "WORLD WAR II" ], [ "THE BIG RED ONE", "has_genre", "WAR" ], [ "THE BIG RED ONE", "has_tags", "WORLD WAR II" ], [ "THE BRIDGE AT REMAGEN", "has_genre", "WAR" ], [ "THE BRIDGE AT REMAGEN", "has_tags", "WORLD WAR II" ], [ "THE BURMESE HARP", "has_genre", "WAR" ], [ "THE BURMESE HARP", "has_tags", "WORLD WAR II" ], [ "THE CAINE MUTINY", "has_genre", "WAR" ], [ "THE CAINE MUTINY", "has_tags", "WORLD WAR II" ], [ "THE ENEMY BELOW", "has_tags", "WAR" ], [ "THE ENEMY BELOW", "has_tags", "WORLD WAR II" ], [ "THE FALLEN", "has_genre", "WAR" ], [ "THE FALLEN", "release_year", "2004" ], [ "THE FIGHTING SEABEES", "has_genre", "WAR" ], [ "THE FIGHTING SEABEES", "has_tags", "WORLD WAR II" ], [ "THE GREAT ESCAPE", "has_tags", "WAR" ], [ "THE GREAT ESCAPE", "has_tags", "WORLD WAR II" ], [ "THE GREAT RAID", "has_genre", "WAR" ], [ "THE GREAT RAID", "has_tags", "WORLD WAR II" ], [ "THE GRUFFALO", "has_genre", "SHORT" ], [ "THE GRUFFALO", "release_year", "2009" ], [ "THE HIDING PLACE", "has_genre", "WAR" ], [ "THE HIDING PLACE", "has_tags", "WORLD WAR II" ], [ "THE HILL", "has_genre", "WAR" ], [ "THE HILL", "has_tags", "WORLD WAR II" ], [ "THE KEEPER", "release_year", "2004" ], [ "THE KEEPER", "release_year", "2009" ], [ "THE LONGEST DAY", "has_tags", "WAR" ], [ "THE LONGEST DAY", "has_tags", "WORLD WAR II" ], [ "THE MEN WHO STARE AT GOATS", "has_genre", "WAR" ], [ "THE MEN WHO STARE AT GOATS", "release_year", "2009" ], [ "THE MESSENGER", "has_genre", "WAR" ], [ "THE MESSENGER", "release_year", "2009" ], [ "THE NIGHT OF THE GENERALS", "has_tags", "WAR" ], [ "THE NIGHT OF THE GENERALS", "has_tags", "WORLD WAR II" ], [ "THE NOTEBOOK", "has_genre", "WAR" ], [ "THE NOTEBOOK", "release_year", "2004" ], [ "THE PIANIST", "has_genre", "WAR" ], [ "THE PIANIST", "has_tags", "WAR" ], [ "THE PIANIST", "has_tags", "WORLD WAR II" ], [ "THE RAPE OF EUROPA", "has_genre", "WAR" ], [ "THE RAPE OF EUROPA", "has_tags", "WORLD WAR II" ], [ "THE SORROW AND THE PITY", "has_genre", "WAR" ], [ "THE SORROW AND THE PITY", "has_tags", "WORLD WAR II" ], [ "THE SUN", "has_tags", "WAR" ], [ "THE SUN", "has_tags", "WORLD WAR II" ], [ "THE THIN RED LINE", "has_genre", "WAR" ], [ "THE THIN RED LINE", "has_tags", "WAR" ], [ "THE THIN RED LINE", "has_tags", "WORLD WAR II" ], [ "THE TUSKEGEE AIRMEN", "has_genre", "WAR" ], [ "THE TUSKEGEE AIRMEN", "has_tags", "WORLD WAR II" ], [ "THEY WERE EXPENDABLE", "has_genre", "WAR" ], [ "THEY WERE EXPENDABLE", "has_tags", "WORLD WAR II" ], [ "TRIAGE", "has_genre", "WAR" ], [ "TRIAGE", "release_year", "2009" ], [ "TROY", "has_tags", "WAR" ], [ "TROY", "release_year", "2004" ], [ "TURTLES CAN FLY", "has_genre", "WAR" ], [ "TURTLES CAN FLY", "release_year", "2004" ], [ "TWELVE O'CLOCK HIGH", "has_genre", "WAR" ], [ "TWELVE O'CLOCK HIGH", "has_tags", "WORLD WAR II" ], [ "TWO MEN WENT TO WAR", "has_genre", "WAR" ], [ "TWO MEN WENT TO WAR", "has_tags", "WORLD WAR II" ], [ "U-571", "has_genre", "WAR" ], [ "U-571", "has_tags", "WAR" ], [ "U-571", "has_tags", "WORLD WAR II" ], [ "UNDERGROUND", "has_genre", "WAR" ], [ "UNDERGROUND", "has_tags", "WORLD WAR II" ], [ "VALKYRIE", "has_genre", "WAR" ], [ "VALKYRIE", "has_tags", "WORLD WAR II" ], [ "VANITY FAIR", "release_year", "2004" ], [ "VON RYAN'S EXPRESS", "has_genre", "WAR" ], [ "VON RYAN'S EXPRESS", "has_tags", "WORLD WAR II" ], [ "WAR COMES TO AMERICA", "has_genre", "WAR" ], [ "WAR COMES TO AMERICA", "has_tags", "WORLD WAR II" ], [ "WHEN TRUMPETS FADE", "has_genre", "WAR" ], [ "WHEN TRUMPETS FADE", "has_tags", "WORLD WAR II" ], [ "WHERE EAGLES DARE", "has_genre", "WAR" ], [ "WHERE EAGLES DARE", "has_tags", "WORLD WAR II" ], [ "YANKS", "has_genre", "WAR" ], [ "YANKS", "has_tags", "WORLD WAR II" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 3458, 1951 26762, 2008 37608, AUSTRALIA 33109, CARLA BALENDA 21862, COLLEGE ROAD TRIP 3457, JAMES VANCE MARSHALL 30533, SANTA FE 23345, THE WHIP HAND 23155, WALKABOUT src, edge_attr, dst 37608, release_year, 26762 21862, release_year, 26762 30533, release_year, 3458 30533, written_by, 3457 23345, release_year, 3458 23345, starred_actors, 33109 23155, has_tags, 37608 23155, written_by, 3457 Question: How are CARLA BALENDA, COLLEGE ROAD TRIP, and JAMES VANCE MARSHALL related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "CARLA BALENDA", "COLLEGE ROAD TRIP", "JAMES VANCE MARSHALL" ], "valid_edges": [ [ "AUSTRALIA", "release_year", "2008" ], [ "COLLEGE ROAD TRIP", "release_year", "2008" ], [ "SANTA FE", "release_year", "1951" ], [ "SANTA FE", "written_by", "JAMES VANCE MARSHALL" ], [ "THE WHIP HAND", "release_year", "1951" ], [ "THE WHIP HAND", "starred_actors", "CARLA BALENDA" ], [ "WALKABOUT", "has_tags", "AUSTRALIA" ], [ "WALKABOUT", "written_by", "JAMES VANCE MARSHALL" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 4981, 1965 30721, A BEAUTIFUL MIND 2566, A BETTER PLACE 21004, A CRY IN THE NIGHT 10997, A HIGH WIND IN JAMAICA 4390, A PATCH OF BLUE 9317, A RIVER RUNS THROUGH IT 2888, AN UNFINISHED LIFE 24409, ARARAT 1730, BABY THE RAIN MUST FALL 34734, BATTLE OF THE BULGE 20491, BRAINSTORM 25849, BRUBAKER 8709, CHRISTOPHER PLUMMER 21365, CLARA'S HEART 23205, DARLING 25805, DOCTOR ZHIVAGO 9894, DOWNHILL RACER 36212, DRAMA 5806, EION BAILEY 13912, FEAR STRIKES OUT 33571, HAVANA 10400, INDECENT PROPOSAL 36005, INSIDE DAISY CLOVER 17999, INTIMATE LIGHTING 18699, JULIET OF THE SPIRITS 31499, LE BONHEUR 24224, LIONS FOR LAMBS 7383, LITTLE FAUSS AND BIG HALSY 5885, LOVE WITH THE PROPER STRANGER 5461, MARJORIE KINNAN RAWLINGS 40131, MARJORIE MORNINGSTAR 8253, MICKEY ONE 35813, NATALIE WOOD 3656, ORDINARY PEOPLE 33056, OTHELLO 34938, OUT OF AFRICA 11072, QUIZ SHOW 26953, ROBERT MULLIGAN 34758, ROBERT REDFORD 10638, RUTH GORDON 30622, SALTO 25567, SAME TIME, NEXT YEAR 5754, SHIP OF FOOLS 8753, SPLENDOR IN THE GRASS 29113, SUMMER OF '42 22407, THE ACTRESS 9426, THE ASHES 1174, THE CANDIDATE 13685, THE CHASE 11536, THE CINCINNATI KID 32040, THE CONSPIRATOR 757, THE FLIGHT OF THE PHOENIX 2872, THE GREAT GATSBY 8847, THE GREAT WALDO PEPPER 31736, THE HORSE WHISPERER 12439, THE INSIDER 36917, THE LAKE HOUSE 4143, THE LAST CASTLE 29682, THE LAST STATION 35557, THE MAN IN THE MOON 7386, THE MILAGRO BEANFIELD WAR 18105, THE MOMENT OF TRUTH 8022, THE NEW WORLD 12657, THE PURSUIT OF HAPPINESS 34959, THE RAT RACE 25794, THE WAR GAME 32709, THE WAY WE WERE 27519, THE YEARLING 31876, THIS PROPERTY IS CONDEMNED 12764, TO KILL A MOCKINGBIRD 8595, UP THE DOWN STAIRCASE 4552, WEST SIDE STORY 4265, YOUNG CASSIDY src, edge_attr, dst 30721, has_genre, 36212 30721, has_tags, 36212 30721, starred_actors, 8709 2566, has_genre, 36212 2566, starred_actors, 5806 21004, has_genre, 36212 21004, starred_actors, 35813 10997, has_genre, 36212 10997, release_year, 4981 4390, has_genre, 36212 4390, release_year, 4981 9317, directed_by, 34758 9317, has_genre, 36212 9317, has_tags, 34758 2888, has_genre, 36212 2888, has_tags, 34758 2888, starred_actors, 34758 24409, has_genre, 36212 24409, starred_actors, 8709 1730, directed_by, 26953 1730, has_genre, 36212 1730, release_year, 4981 34734, has_genre, 36212 34734, release_year, 4981 20491, has_genre, 36212 20491, release_year, 4981 20491, starred_actors, 35813 25849, has_genre, 36212 25849, starred_actors, 34758 21365, directed_by, 26953 21365, has_genre, 36212 23205, has_genre, 36212 23205, release_year, 4981 25805, has_genre, 36212 25805, release_year, 4981 9894, has_genre, 36212 9894, starred_actors, 34758 13912, directed_by, 26953 13912, has_genre, 36212 33571, has_genre, 36212 33571, starred_actors, 34758 10400, has_genre, 36212 10400, has_tags, 34758 10400, starred_actors, 34758 36005, directed_by, 26953 36005, has_genre, 36212 36005, release_year, 4981 36005, starred_actors, 8709 36005, starred_actors, 35813 36005, starred_actors, 34758 36005, starred_actors, 10638 17999, has_genre, 36212 17999, release_year, 4981 18699, has_genre, 36212 18699, release_year, 4981 31499, has_genre, 36212 31499, release_year, 4981 24224, directed_by, 34758 24224, has_genre, 36212 24224, has_tags, 34758 24224, starred_actors, 34758 7383, has_genre, 36212 7383, starred_actors, 34758 5885, directed_by, 26953 5885, has_genre, 36212 5885, starred_actors, 35813 40131, has_genre, 36212 40131, starred_actors, 35813 8253, has_genre, 36212 8253, release_year, 4981 3656, directed_by, 34758 3656, has_genre, 36212 3656, has_tags, 34758 33056, has_genre, 36212 33056, release_year, 4981 34938, has_genre, 36212 34938, has_tags, 36212 34938, has_tags, 34758 34938, starred_actors, 34758 11072, directed_by, 34758 11072, has_genre, 36212 11072, has_tags, 34758 30622, has_genre, 36212 30622, release_year, 4981 25567, directed_by, 26953 25567, has_genre, 36212 25567, has_tags, 26953 5754, has_genre, 36212 5754, release_year, 4981 8753, has_genre, 36212 8753, has_tags, 35813 8753, starred_actors, 35813 29113, directed_by, 26953 29113, has_genre, 36212 29113, has_tags, 26953 22407, has_genre, 36212 22407, written_by, 10638 9426, has_genre, 36212 9426, release_year, 4981 1174, has_genre, 36212 1174, has_tags, 34758 1174, starred_actors, 34758 13685, has_genre, 36212 13685, has_tags, 34758 13685, starred_actors, 34758 11536, has_genre, 36212 11536, release_year, 4981 32040, directed_by, 34758 32040, has_genre, 36212 32040, has_tags, 34758 757, has_genre, 36212 757, release_year, 4981 2872, has_genre, 36212 2872, has_tags, 34758 2872, starred_actors, 34758 8847, has_genre, 36212 8847, starred_actors, 34758 31736, directed_by, 34758 31736, has_genre, 36212 31736, has_tags, 34758 31736, starred_actors, 34758 12439, has_genre, 36212 12439, has_tags, 36212 12439, starred_actors, 8709 36917, has_genre, 36212 36917, starred_actors, 8709 4143, has_genre, 36212 4143, has_tags, 34758 4143, starred_actors, 34758 29682, has_genre, 36212 29682, starred_actors, 8709 35557, directed_by, 26953 35557, has_genre, 36212 35557, has_tags, 26953 7386, directed_by, 34758 7386, has_genre, 36212 7386, has_tags, 34758 18105, has_genre, 36212 18105, release_year, 4981 8022, has_genre, 36212 8022, has_tags, 8709 8022, starred_actors, 8709 12657, directed_by, 26953 12657, has_genre, 36212 34959, directed_by, 26953 34959, has_genre, 36212 25794, has_genre, 36212 25794, release_year, 4981 32709, has_genre, 36212 32709, starred_actors, 34758 27519, has_genre, 36212 27519, written_by, 5461 31876, has_genre, 36212 31876, starred_actors, 35813 31876, starred_actors, 34758 12764, directed_by, 26953 12764, has_genre, 36212 12764, has_tags, 36212 12764, has_tags, 26953 8595, directed_by, 26953 8595, has_genre, 36212 4552, has_genre, 36212 4552, has_tags, 35813 4552, starred_actors, 35813 4265, has_genre, 36212 4265, release_year, 4981 Question: In what context are EION BAILEY, INSIDE DAISY CLOVER, and MARJORIE KINNAN RAWLINGS connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "EION BAILEY", "INSIDE DAISY CLOVER", "MARJORIE KINNAN RAWLINGS" ], "valid_edges": [ [ "A BEAUTIFUL MIND", "has_genre", "DRAMA" ], [ "A BEAUTIFUL MIND", "has_tags", "DRAMA" ], [ "A BEAUTIFUL MIND", "starred_actors", "CHRISTOPHER PLUMMER" ], [ "A BETTER PLACE", "has_genre", "DRAMA" ], [ "A BETTER PLACE", "starred_actors", "EION BAILEY" ], [ "A CRY IN THE NIGHT", "has_genre", "DRAMA" ], [ "A CRY IN THE NIGHT", "starred_actors", "NATALIE WOOD" ], [ "A HIGH WIND IN JAMAICA", "has_genre", "DRAMA" ], [ "A HIGH WIND IN JAMAICA", "release_year", "1965" ], [ "A PATCH OF BLUE", "has_genre", "DRAMA" ], [ "A PATCH OF BLUE", "release_year", "1965" ], [ "A RIVER RUNS THROUGH IT", "directed_by", "ROBERT REDFORD" ], [ "A RIVER RUNS THROUGH IT", "has_genre", "DRAMA" ], [ "A RIVER RUNS THROUGH IT", "has_tags", "ROBERT REDFORD" ], [ "AN UNFINISHED LIFE", "has_genre", "DRAMA" ], [ "AN UNFINISHED LIFE", "has_tags", "ROBERT REDFORD" ], [ "AN UNFINISHED LIFE", "starred_actors", "ROBERT REDFORD" ], [ "ARARAT", "has_genre", "DRAMA" ], [ "ARARAT", "starred_actors", "CHRISTOPHER PLUMMER" ], [ "BABY THE RAIN MUST FALL", "directed_by", "ROBERT MULLIGAN" ], [ "BABY THE RAIN MUST FALL", "has_genre", "DRAMA" ], [ "BABY THE RAIN MUST FALL", "release_year", "1965" ], [ "BATTLE OF THE BULGE", "has_genre", "DRAMA" ], [ "BATTLE OF THE BULGE", "release_year", "1965" ], [ "BRAINSTORM", "has_genre", "DRAMA" ], [ "BRAINSTORM", "release_year", "1965" ], [ "BRAINSTORM", "starred_actors", "NATALIE WOOD" ], [ "BRUBAKER", "has_genre", "DRAMA" ], [ "BRUBAKER", "starred_actors", "ROBERT REDFORD" ], [ "CLARA'S HEART", "directed_by", "ROBERT MULLIGAN" ], [ "CLARA'S HEART", "has_genre", "DRAMA" ], [ "DARLING", "has_genre", "DRAMA" ], [ "DARLING", "release_year", "1965" ], [ "DOCTOR ZHIVAGO", "has_genre", "DRAMA" ], [ "DOCTOR ZHIVAGO", "release_year", "1965" ], [ "DOWNHILL RACER", "has_genre", "DRAMA" ], [ "DOWNHILL RACER", "starred_actors", "ROBERT REDFORD" ], [ "FEAR STRIKES OUT", "directed_by", "ROBERT MULLIGAN" ], [ "FEAR STRIKES OUT", "has_genre", "DRAMA" ], [ "HAVANA", "has_genre", "DRAMA" ], [ "HAVANA", "starred_actors", "ROBERT REDFORD" ], [ "INDECENT PROPOSAL", "has_genre", "DRAMA" ], [ "INDECENT PROPOSAL", "has_tags", "ROBERT REDFORD" ], [ "INDECENT PROPOSAL", "starred_actors", "ROBERT REDFORD" ], [ "INSIDE DAISY CLOVER", "directed_by", "ROBERT MULLIGAN" ], [ "INSIDE DAISY CLOVER", "has_genre", "DRAMA" ], [ "INSIDE DAISY CLOVER", "release_year", "1965" ], [ "INSIDE DAISY CLOVER", "starred_actors", "CHRISTOPHER PLUMMER" ], [ "INSIDE DAISY CLOVER", "starred_actors", "NATALIE WOOD" ], [ "INSIDE DAISY CLOVER", "starred_actors", "ROBERT REDFORD" ], [ "INSIDE DAISY CLOVER", "starred_actors", "RUTH GORDON" ], [ "INTIMATE LIGHTING", "has_genre", "DRAMA" ], [ "INTIMATE LIGHTING", "release_year", "1965" ], [ "JULIET OF THE SPIRITS", "has_genre", "DRAMA" ], [ "JULIET OF THE SPIRITS", "release_year", "1965" ], [ "LE BONHEUR", "has_genre", "DRAMA" ], [ "LE BONHEUR", "release_year", "1965" ], [ "LIONS FOR LAMBS", "directed_by", "ROBERT REDFORD" ], [ "LIONS FOR LAMBS", "has_genre", "DRAMA" ], [ "LIONS FOR LAMBS", "has_tags", "ROBERT REDFORD" ], [ "LIONS FOR LAMBS", "starred_actors", "ROBERT REDFORD" ], [ "LITTLE FAUSS AND BIG HALSY", "has_genre", "DRAMA" ], [ "LITTLE FAUSS AND BIG HALSY", "starred_actors", "ROBERT REDFORD" ], [ "LOVE WITH THE PROPER STRANGER", "directed_by", "ROBERT MULLIGAN" ], [ "LOVE WITH THE PROPER STRANGER", "has_genre", "DRAMA" ], [ "LOVE WITH THE PROPER STRANGER", "starred_actors", "NATALIE WOOD" ], [ "MARJORIE MORNINGSTAR", "has_genre", "DRAMA" ], [ "MARJORIE MORNINGSTAR", "starred_actors", "NATALIE WOOD" ], [ "MICKEY ONE", "has_genre", "DRAMA" ], [ "MICKEY ONE", "release_year", "1965" ], [ "ORDINARY PEOPLE", "directed_by", "ROBERT REDFORD" ], [ "ORDINARY PEOPLE", "has_genre", "DRAMA" ], [ "ORDINARY PEOPLE", "has_tags", "ROBERT REDFORD" ], [ "OTHELLO", "has_genre", "DRAMA" ], [ "OTHELLO", "release_year", "1965" ], [ "OUT OF AFRICA", "has_genre", "DRAMA" ], [ "OUT OF AFRICA", "has_tags", "DRAMA" ], [ "OUT OF AFRICA", "has_tags", "ROBERT REDFORD" ], [ "OUT OF AFRICA", "starred_actors", "ROBERT REDFORD" ], [ "QUIZ SHOW", "directed_by", "ROBERT REDFORD" ], [ "QUIZ SHOW", "has_genre", "DRAMA" ], [ "QUIZ SHOW", "has_tags", "ROBERT REDFORD" ], [ "SALTO", "has_genre", "DRAMA" ], [ "SALTO", "release_year", "1965" ], [ "SAME TIME, NEXT YEAR", "directed_by", "ROBERT MULLIGAN" ], [ "SAME TIME, NEXT YEAR", "has_genre", "DRAMA" ], [ "SAME TIME, NEXT YEAR", "has_tags", "ROBERT MULLIGAN" ], [ "SHIP OF FOOLS", "has_genre", "DRAMA" ], [ "SHIP OF FOOLS", "release_year", "1965" ], [ "SPLENDOR IN THE GRASS", "has_genre", "DRAMA" ], [ "SPLENDOR IN THE GRASS", "has_tags", "NATALIE WOOD" ], [ "SPLENDOR IN THE GRASS", "starred_actors", "NATALIE WOOD" ], [ "SUMMER OF '42", "directed_by", "ROBERT MULLIGAN" ], [ "SUMMER OF '42", "has_genre", "DRAMA" ], [ "SUMMER OF '42", "has_tags", "ROBERT MULLIGAN" ], [ "THE ACTRESS", "has_genre", "DRAMA" ], [ "THE ACTRESS", "written_by", "RUTH GORDON" ], [ "THE ASHES", "has_genre", "DRAMA" ], [ "THE ASHES", "release_year", "1965" ], [ "THE CANDIDATE", "has_genre", "DRAMA" ], [ "THE CANDIDATE", "has_tags", "ROBERT REDFORD" ], [ "THE CANDIDATE", "starred_actors", "ROBERT REDFORD" ], [ "THE CHASE", "has_genre", "DRAMA" ], [ "THE CHASE", "has_tags", "ROBERT REDFORD" ], [ "THE CHASE", "starred_actors", "ROBERT REDFORD" ], [ "THE CINCINNATI KID", "has_genre", "DRAMA" ], [ "THE CINCINNATI KID", "release_year", "1965" ], [ "THE CONSPIRATOR", "directed_by", "ROBERT REDFORD" ], [ "THE CONSPIRATOR", "has_genre", "DRAMA" ], [ "THE CONSPIRATOR", "has_tags", "ROBERT REDFORD" ], [ "THE FLIGHT OF THE PHOENIX", "has_genre", "DRAMA" ], [ "THE FLIGHT OF THE PHOENIX", "release_year", "1965" ], [ "THE GREAT GATSBY", "has_genre", "DRAMA" ], [ "THE GREAT GATSBY", "has_tags", "ROBERT REDFORD" ], [ "THE GREAT GATSBY", "starred_actors", "ROBERT REDFORD" ], [ "THE GREAT WALDO PEPPER", "has_genre", "DRAMA" ], [ "THE GREAT WALDO PEPPER", "starred_actors", "ROBERT REDFORD" ], [ "THE HORSE WHISPERER", "directed_by", "ROBERT REDFORD" ], [ "THE HORSE WHISPERER", "has_genre", "DRAMA" ], [ "THE HORSE WHISPERER", "has_tags", "ROBERT REDFORD" ], [ "THE HORSE WHISPERER", "starred_actors", "ROBERT REDFORD" ], [ "THE INSIDER", "has_genre", "DRAMA" ], [ "THE INSIDER", "has_tags", "DRAMA" ], [ "THE INSIDER", "starred_actors", "CHRISTOPHER PLUMMER" ], [ "THE LAKE HOUSE", "has_genre", "DRAMA" ], [ "THE LAKE HOUSE", "starred_actors", "CHRISTOPHER PLUMMER" ], [ "THE LAST CASTLE", "has_genre", "DRAMA" ], [ "THE LAST CASTLE", "has_tags", "ROBERT REDFORD" ], [ "THE LAST CASTLE", "starred_actors", "ROBERT REDFORD" ], [ "THE LAST STATION", "has_genre", "DRAMA" ], [ "THE LAST STATION", "starred_actors", "CHRISTOPHER PLUMMER" ], [ "THE MAN IN THE MOON", "directed_by", "ROBERT MULLIGAN" ], [ "THE MAN IN THE MOON", "has_genre", "DRAMA" ], [ "THE MAN IN THE MOON", "has_tags", "ROBERT MULLIGAN" ], [ "THE MILAGRO BEANFIELD WAR", "directed_by", "ROBERT REDFORD" ], [ "THE MILAGRO BEANFIELD WAR", "has_genre", "DRAMA" ], [ "THE MILAGRO BEANFIELD WAR", "has_tags", "ROBERT REDFORD" ], [ "THE MOMENT OF TRUTH", "has_genre", "DRAMA" ], [ "THE MOMENT OF TRUTH", "release_year", "1965" ], [ "THE NEW WORLD", "has_genre", "DRAMA" ], [ "THE NEW WORLD", "has_tags", "CHRISTOPHER PLUMMER" ], [ "THE NEW WORLD", "starred_actors", "CHRISTOPHER PLUMMER" ], [ "THE PURSUIT OF HAPPINESS", "directed_by", "ROBERT MULLIGAN" ], [ "THE PURSUIT OF HAPPINESS", "has_genre", "DRAMA" ], [ "THE RAT RACE", "directed_by", "ROBERT MULLIGAN" ], [ "THE RAT RACE", "has_genre", "DRAMA" ], [ "THE WAR GAME", "has_genre", "DRAMA" ], [ "THE WAR GAME", "release_year", "1965" ], [ "THE WAY WE WERE", "has_genre", "DRAMA" ], [ "THE WAY WE WERE", "starred_actors", "ROBERT REDFORD" ], [ "THE YEARLING", "has_genre", "DRAMA" ], [ "THE YEARLING", "written_by", "MARJORIE KINNAN RAWLINGS" ], [ "THIS PROPERTY IS CONDEMNED", "has_genre", "DRAMA" ], [ "THIS PROPERTY IS CONDEMNED", "starred_actors", "NATALIE WOOD" ], [ "THIS PROPERTY IS CONDEMNED", "starred_actors", "ROBERT REDFORD" ], [ "TO KILL A MOCKINGBIRD", "directed_by", "ROBERT MULLIGAN" ], [ "TO KILL A MOCKINGBIRD", "has_genre", "DRAMA" ], [ "TO KILL A MOCKINGBIRD", "has_tags", "DRAMA" ], [ "TO KILL A MOCKINGBIRD", "has_tags", "ROBERT MULLIGAN" ], [ "UP THE DOWN STAIRCASE", "directed_by", "ROBERT MULLIGAN" ], [ "UP THE DOWN STAIRCASE", "has_genre", "DRAMA" ], [ "WEST SIDE STORY", "has_genre", "DRAMA" ], [ "WEST SIDE STORY", "has_tags", "NATALIE WOOD" ], [ "WEST SIDE STORY", "starred_actors", "NATALIE WOOD" ], [ "YOUNG CASSIDY", "has_genre", "DRAMA" ], [ "YOUNG CASSIDY", "release_year", "1965" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 2133, 1998 16654, BRITISH 25595, EDEN LAKE 6583, ELIZABETH 23434, HISTORICAL 23749, JODHAA AKBAR 14601, LES MISÉRABLES 38721, LOCK, STOCK AND TWO SMOKING BARRELS 3657, SHAKESPEARE IN LOVE 28065, SLIDING DOORS 12691, THE PATRIOT 33585, THURSDAY src, edge_attr, dst 25595, has_tags, 16654 6583, has_tags, 16654 6583, release_year, 2133 23749, has_tags, 23434 14601, has_tags, 23434 14601, release_year, 2133 38721, has_tags, 16654 38721, release_year, 2133 3657, has_tags, 16654 3657, release_year, 2133 28065, has_tags, 16654 28065, release_year, 2133 12691, has_tags, 23434 12691, release_year, 2133 33585, release_year, 2133 Question: In what context are EDEN LAKE, JODHAA AKBAR, and THURSDAY connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "EDEN LAKE", "JODHAA AKBAR", "THURSDAY" ], "valid_edges": [ [ "EDEN LAKE", "has_tags", "BRITISH" ], [ "ELIZABETH", "has_tags", "BRITISH" ], [ "ELIZABETH", "release_year", "1998" ], [ "JODHAA AKBAR", "has_tags", "HISTORICAL" ], [ "LES MISÉRABLES", "has_tags", "HISTORICAL" ], [ "LES MISÉRABLES", "release_year", "1998" ], [ "LOCK, STOCK AND TWO SMOKING BARRELS", "has_tags", "BRITISH" ], [ "LOCK, STOCK AND TWO SMOKING BARRELS", "release_year", "1998" ], [ "SHAKESPEARE IN LOVE", "has_tags", "BRITISH" ], [ "SHAKESPEARE IN LOVE", "release_year", "1998" ], [ "SLIDING DOORS", "has_tags", "BRITISH" ], [ "SLIDING DOORS", "release_year", "1998" ], [ "THE PATRIOT", "has_tags", "HISTORICAL" ], [ "THE PATRIOT", "release_year", "1998" ], [ "THURSDAY", "release_year", "1998" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 36212, DRAMA 7356, JULIA WHELAN 21197, LIGHT IT UP 29869, PASCALI'S ISLAND 38139, THE SECRET LIFE OF ZOEY src, edge_attr, dst 21197, has_genre, 36212 29869, has_genre, 36212 38139, has_genre, 36212 38139, starred_actors, 7356 Question: In what context are JULIA WHELAN, LIGHT IT UP, and PASCALI'S ISLAND connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "JULIA WHELAN", "LIGHT IT UP", "PASCALI'S ISLAND" ], "valid_edges": [ [ "LIGHT IT UP", "has_genre", "DRAMA" ], [ "PASCALI'S ISLAND", "has_genre", "DRAMA" ], [ "THE SECRET LIFE OF ZOEY", "has_genre", "DRAMA" ], [ "THE SECRET LIFE OF ZOEY", "starred_actors", "JULIA WHELAN" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 27513, ALL MINE TO GIVE 16359, CAMERON MITCHELL 32880, COME BACK, LITTLE SHEBA 36212, DRAMA 25775, HOLD BACK THE DAWN 36738, KETTI FRINGS 103, LOVE ME OR LEAVE ME 31011, LYMELIFE 20283, MEAN CREEK 28273, RORY CULKIN 3578, SMALL TOWN 12162, YOU CAN COUNT ON ME src, edge_attr, dst 27513, has_genre, 36212 27513, starred_actors, 16359 32880, has_genre, 36212 32880, written_by, 36738 25775, has_genre, 36212 25775, written_by, 36738 103, has_genre, 36212 103, starred_actors, 16359 31011, has_genre, 36212 31011, starred_actors, 28273 20283, has_genre, 36212 20283, has_tags, 36212 20283, has_tags, 28273 20283, has_tags, 3578 20283, starred_actors, 28273 12162, has_genre, 36212 12162, has_tags, 3578 12162, starred_actors, 28273 Question: How are CAMERON MITCHELL, KETTI FRINGS, and RORY CULKIN related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "CAMERON MITCHELL", "KETTI FRINGS", "RORY CULKIN" ], "valid_edges": [ [ "ALL MINE TO GIVE", "has_genre", "DRAMA" ], [ "ALL MINE TO GIVE", "starred_actors", "CAMERON MITCHELL" ], [ "COME BACK, LITTLE SHEBA", "has_genre", "DRAMA" ], [ "COME BACK, LITTLE SHEBA", "written_by", "KETTI FRINGS" ], [ "HOLD BACK THE DAWN", "has_genre", "DRAMA" ], [ "HOLD BACK THE DAWN", "written_by", "KETTI FRINGS" ], [ "LOVE ME OR LEAVE ME", "has_genre", "DRAMA" ], [ "LOVE ME OR LEAVE ME", "starred_actors", "CAMERON MITCHELL" ], [ "LYMELIFE", "has_genre", "DRAMA" ], [ "LYMELIFE", "starred_actors", "RORY CULKIN" ], [ "MEAN CREEK", "has_genre", "DRAMA" ], [ "MEAN CREEK", "has_tags", "DRAMA" ], [ "MEAN CREEK", "has_tags", "RORY CULKIN" ], [ "MEAN CREEK", "has_tags", "SMALL TOWN" ], [ "MEAN CREEK", "starred_actors", "RORY CULKIN" ], [ "YOU CAN COUNT ON ME", "has_genre", "DRAMA" ], [ "YOU CAN COUNT ON ME", "has_tags", "SMALL TOWN" ], [ "YOU CAN COUNT ON ME", "starred_actors", "RORY CULKIN" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 8539, 1982 8473, ADAPTATION 5314, CHAN IS MISSING 5994, ISAAC CRONIN 7539, IVANHOE 34266, KEN POGUE 11255, THE GREY FOX src, edge_attr, dst 5314, release_year, 8539 5314, written_by, 5994 7539, has_tags, 8473 7539, release_year, 8539 11255, release_year, 8539 11255, starred_actors, 34266 Question: In what context are ADAPTATION, ISAAC CRONIN, and KEN POGUE connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "ADAPTATION", "ISAAC CRONIN", "KEN POGUE" ], "valid_edges": [ [ "CHAN IS MISSING", "release_year", "1982" ], [ "CHAN IS MISSING", "written_by", "ISAAC CRONIN" ], [ "IVANHOE", "has_tags", "ADAPTATION" ], [ "IVANHOE", "release_year", "1982" ], [ "THE GREY FOX", "release_year", "1982" ], [ "THE GREY FOX", "starred_actors", "KEN POGUE" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 28171, 1986 7841, 1987 4713, A RETURN TO SALEM'S LOT 39750, ALIENS 25905, ANGEL HEART 6748, ANGUISH 18169, APRIL FOOL'S DAY 34587, BAD TASTE 36535, CHOPPING MALL 14884, CLASS OF NUKE 'EM HIGH 22349, CRAWLSPACE 19984, CREEPSHOW 2 6743, CRITTERS 21213, DEADLY FRIEND 31980, DEMONS 2 23612, DOLLS 16661, EVIL DEAD II 3270, FROM BEYOND 30778, GOTHIC 1889, GUNG HO 12498, HELLRAISER 5870, HORROR 10147, HOUSE 13070, INVADERS FROM MARS 24952, LINK 8851, LITTLE SHOP OF HORRORS 3129, MAXIMUM OVERDRIVE 20500, MONSTER IN THE CLOSET 18402, MOUNTAINTOP MOTEL MASSACRE 36631, MUNCHIES 14237, NEAR DARK 15661, NEKROMANTIK 11181, NIGHT OF THE CREEPS 39105, NOMADS 38962, OPERA 24051, PARASOMNIA 4323, PRINCE OF DARKNESS 17526, PSYCHO III 31164, RAWHEAD REX 9184, RETURN TO HORROR HIGH 18856, ROCK 'N' ROLL NIGHTMARE 11041, SILENT NIGHT, DEADLY NIGHT PART 2 5932, TERRORVISION 28739, THE BELIEVERS 8063, THE CURSE 16105, THE DEAD 32392, THE FLY 38230, THE GATE 3318, THE LOST BOYS 33993, THE MONSTER SQUAD 35993, THE STEPFATHER 9715, THE TEXAS CHAINSAW MASSACRE 2 17409, TRICK OR TREAT 8589, WICKED CITY 6981, WISH YOU WERE HERE 36013, WITCHBOARD src, edge_attr, dst 4713, has_genre, 5870 4713, release_year, 7841 39750, has_tags, 5870 39750, release_year, 28171 25905, has_genre, 5870 25905, release_year, 7841 6748, has_genre, 5870 6748, release_year, 7841 18169, has_genre, 5870 18169, release_year, 28171 34587, has_genre, 5870 34587, release_year, 7841 36535, has_genre, 5870 36535, release_year, 28171 14884, has_genre, 5870 14884, release_year, 28171 22349, has_genre, 5870 22349, release_year, 28171 19984, has_genre, 5870 19984, release_year, 7841 6743, has_genre, 5870 6743, release_year, 28171 21213, has_genre, 5870 21213, release_year, 28171 31980, has_genre, 5870 31980, release_year, 28171 23612, has_genre, 5870 23612, release_year, 7841 16661, has_genre, 5870 16661, has_tags, 5870 16661, release_year, 7841 3270, has_genre, 5870 3270, release_year, 28171 30778, has_genre, 5870 30778, release_year, 28171 1889, release_year, 28171 12498, has_genre, 5870 12498, has_tags, 5870 12498, release_year, 7841 10147, has_genre, 5870 10147, release_year, 28171 13070, has_genre, 5870 13070, release_year, 28171 24952, has_genre, 5870 24952, release_year, 28171 8851, has_genre, 5870 8851, release_year, 28171 3129, has_genre, 5870 3129, release_year, 28171 20500, has_genre, 5870 20500, release_year, 28171 18402, has_genre, 5870 18402, release_year, 28171 36631, has_genre, 5870 36631, release_year, 7841 14237, has_genre, 5870 14237, release_year, 7841 15661, has_genre, 5870 15661, release_year, 7841 11181, has_genre, 5870 11181, release_year, 28171 39105, has_genre, 5870 39105, release_year, 28171 38962, has_genre, 5870 38962, release_year, 7841 24051, has_genre, 5870 4323, has_genre, 5870 4323, release_year, 7841 17526, has_genre, 5870 17526, release_year, 28171 31164, has_genre, 5870 31164, release_year, 28171 9184, has_genre, 5870 9184, release_year, 7841 18856, has_genre, 5870 18856, release_year, 7841 11041, has_genre, 5870 11041, release_year, 7841 5932, has_genre, 5870 5932, release_year, 28171 28739, has_genre, 5870 28739, release_year, 7841 8063, has_genre, 5870 8063, release_year, 7841 16105, has_genre, 5870 16105, release_year, 7841 32392, has_genre, 5870 32392, has_tags, 5870 32392, release_year, 28171 38230, has_genre, 5870 38230, release_year, 7841 3318, has_genre, 5870 3318, has_tags, 5870 3318, release_year, 7841 33993, has_tags, 5870 33993, release_year, 7841 35993, has_genre, 5870 35993, release_year, 7841 9715, has_genre, 5870 9715, has_tags, 5870 9715, release_year, 28171 17409, has_genre, 5870 17409, release_year, 28171 8589, has_genre, 5870 8589, release_year, 7841 6981, release_year, 7841 36013, has_genre, 5870 36013, release_year, 28171 Question: In what context are GUNG HO, PARASOMNIA, and WISH YOU WERE HERE connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "GUNG HO", "PARASOMNIA", "WISH YOU WERE HERE" ], "valid_edges": [ [ "A RETURN TO SALEM'S LOT", "has_genre", "HORROR" ], [ "A RETURN TO SALEM'S LOT", "release_year", "1987" ], [ "ALIENS", "has_tags", "HORROR" ], [ "ALIENS", "release_year", "1986" ], [ "ANGEL HEART", "has_genre", "HORROR" ], [ "ANGEL HEART", "release_year", "1987" ], [ "ANGUISH", "has_genre", "HORROR" ], [ "ANGUISH", "release_year", "1987" ], [ "APRIL FOOL'S DAY", "has_genre", "HORROR" ], [ "APRIL FOOL'S DAY", "release_year", "1986" ], [ "BAD TASTE", "has_genre", "HORROR" ], [ "BAD TASTE", "release_year", "1987" ], [ "CHOPPING MALL", "has_genre", "HORROR" ], [ "CHOPPING MALL", "release_year", "1986" ], [ "CLASS OF NUKE 'EM HIGH", "has_genre", "HORROR" ], [ "CLASS OF NUKE 'EM HIGH", "release_year", "1986" ], [ "CRAWLSPACE", "has_genre", "HORROR" ], [ "CRAWLSPACE", "release_year", "1986" ], [ "CREEPSHOW 2", "has_genre", "HORROR" ], [ "CREEPSHOW 2", "release_year", "1987" ], [ "CRITTERS", "has_genre", "HORROR" ], [ "CRITTERS", "release_year", "1986" ], [ "DEADLY FRIEND", "has_genre", "HORROR" ], [ "DEADLY FRIEND", "release_year", "1986" ], [ "DEMONS 2", "has_genre", "HORROR" ], [ "DEMONS 2", "release_year", "1986" ], [ "DOLLS", "has_genre", "HORROR" ], [ "DOLLS", "release_year", "1987" ], [ "EVIL DEAD II", "has_genre", "HORROR" ], [ "EVIL DEAD II", "has_tags", "HORROR" ], [ "EVIL DEAD II", "release_year", "1987" ], [ "FROM BEYOND", "has_genre", "HORROR" ], [ "FROM BEYOND", "release_year", "1986" ], [ "GOTHIC", "has_genre", "HORROR" ], [ "GOTHIC", "release_year", "1986" ], [ "GUNG HO", "release_year", "1986" ], [ "HELLRAISER", "has_genre", "HORROR" ], [ "HELLRAISER", "has_tags", "HORROR" ], [ "HELLRAISER", "release_year", "1987" ], [ "HOUSE", "has_genre", "HORROR" ], [ "HOUSE", "release_year", "1986" ], [ "INVADERS FROM MARS", "has_genre", "HORROR" ], [ "INVADERS FROM MARS", "release_year", "1986" ], [ "LINK", "has_genre", "HORROR" ], [ "LINK", "release_year", "1986" ], [ "LITTLE SHOP OF HORRORS", "has_genre", "HORROR" ], [ "LITTLE SHOP OF HORRORS", "release_year", "1986" ], [ "MAXIMUM OVERDRIVE", "has_genre", "HORROR" ], [ "MAXIMUM OVERDRIVE", "release_year", "1986" ], [ "MONSTER IN THE CLOSET", "has_genre", "HORROR" ], [ "MONSTER IN THE CLOSET", "release_year", "1986" ], [ "MOUNTAINTOP MOTEL MASSACRE", "has_genre", "HORROR" ], [ "MOUNTAINTOP MOTEL MASSACRE", "release_year", "1986" ], [ "MUNCHIES", "has_genre", "HORROR" ], [ "MUNCHIES", "release_year", "1987" ], [ "NEAR DARK", "has_genre", "HORROR" ], [ "NEAR DARK", "release_year", "1987" ], [ "NEKROMANTIK", "has_genre", "HORROR" ], [ "NEKROMANTIK", "release_year", "1987" ], [ "NIGHT OF THE CREEPS", "has_genre", "HORROR" ], [ "NIGHT OF THE CREEPS", "release_year", "1986" ], [ "NOMADS", "has_genre", "HORROR" ], [ "NOMADS", "release_year", "1986" ], [ "OPERA", "has_genre", "HORROR" ], [ "OPERA", "release_year", "1987" ], [ "PARASOMNIA", "has_genre", "HORROR" ], [ "PRINCE OF DARKNESS", "has_genre", "HORROR" ], [ "PRINCE OF DARKNESS", "release_year", "1987" ], [ "PSYCHO III", "has_genre", "HORROR" ], [ "PSYCHO III", "release_year", "1986" ], [ "RAWHEAD REX", "has_genre", "HORROR" ], [ "RAWHEAD REX", "release_year", "1986" ], [ "RETURN TO HORROR HIGH", "has_genre", "HORROR" ], [ "RETURN TO HORROR HIGH", "release_year", "1987" ], [ "ROCK 'N' ROLL NIGHTMARE", "has_genre", "HORROR" ], [ "ROCK 'N' ROLL NIGHTMARE", "release_year", "1987" ], [ "SILENT NIGHT, DEADLY NIGHT PART 2", "has_genre", "HORROR" ], [ "SILENT NIGHT, DEADLY NIGHT PART 2", "release_year", "1987" ], [ "TERRORVISION", "has_genre", "HORROR" ], [ "TERRORVISION", "release_year", "1986" ], [ "THE BELIEVERS", "has_genre", "HORROR" ], [ "THE BELIEVERS", "release_year", "1987" ], [ "THE CURSE", "has_genre", "HORROR" ], [ "THE CURSE", "release_year", "1987" ], [ "THE DEAD", "has_genre", "HORROR" ], [ "THE DEAD", "release_year", "1987" ], [ "THE FLY", "has_genre", "HORROR" ], [ "THE FLY", "has_tags", "HORROR" ], [ "THE FLY", "release_year", "1986" ], [ "THE GATE", "has_genre", "HORROR" ], [ "THE GATE", "release_year", "1987" ], [ "THE LOST BOYS", "has_genre", "HORROR" ], [ "THE LOST BOYS", "has_tags", "HORROR" ], [ "THE LOST BOYS", "release_year", "1987" ], [ "THE MONSTER SQUAD", "has_tags", "HORROR" ], [ "THE MONSTER SQUAD", "release_year", "1987" ], [ "THE STEPFATHER", "has_genre", "HORROR" ], [ "THE STEPFATHER", "release_year", "1987" ], [ "THE TEXAS CHAINSAW MASSACRE 2", "has_genre", "HORROR" ], [ "THE TEXAS CHAINSAW MASSACRE 2", "has_tags", "HORROR" ], [ "THE TEXAS CHAINSAW MASSACRE 2", "release_year", "1986" ], [ "TRICK OR TREAT", "has_genre", "HORROR" ], [ "TRICK OR TREAT", "release_year", "1986" ], [ "WICKED CITY", "has_genre", "HORROR" ], [ "WICKED CITY", "release_year", "1987" ], [ "WISH YOU WERE HERE", "release_year", "1987" ], [ "WITCHBOARD", "has_genre", "HORROR" ], [ "WITCHBOARD", "release_year", "1986" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 11, 1940 31486, 1970 7627, A MAN CALLED HORSE 39604, A MAN CALLED SLEDGE 35381, A SWEDISH LOVE STORY 24629, AIRPORT 10018, ALEX IN WONDERLAND 4617, ALL THIS, AND HEAVEN TOO 10251, ARIZONA 25642, BLIND HUSBANDS 28626, BLOODY MAMA 16749, BROKEN ARROW 21600, CASTLE ON THE HUDSON 6702, CHISUM 9167, CITY FOR CONQUEST 32819, CROMWELL 30624, DANCES WITH WOLVES 8663, DEEP END 3443, DIARY OF A MAD HOUSEWIFE 37896, DIRTY DINGUS MAGEE 30123, DORIAN GRAY 36212, DRAMA 17266, DUST 28377, EL TOPO 21933, ERICH VON STROHEIM 1872, ESCAPE 27432, EVEN DWARFS STARTED SMALL 26417, FIVE EASY PIECES 29776, FOOLISH WIVES 11672, FOREVER AMBER 24894, FOUR SONS 31804, GODS OF THE PLAGUE 19699, HEIDI 30299, I WAS AN ADVENTURESS 37110, INVESTIGATION OF A CITIZEN ABOVE SUSPICION 21922, JANE EYRE 35629, JOE 6774, JOHANNA SPYRI 33417, JOHNNY GUITAR 1025, LEO THE LAST 33575, LITTLE BIG MAN 7383, LITTLE FAUSS AND BIG HALSY 6180, LOVE STORY 6932, M 39818, MACHIBUSE 17728, MAD LOVE 24611, MY LITTLE CHICKADEE 23166, NO TIME FOR COMEDY 23553, OUR TOWN 31056, PERFORMANCE 7760, PETER LORRE 23220, REMEMBER THE NIGHT 19539, RICHARD GREENE 667, RIO LOBO 4635, SERENITY 20390, SOLDIER BLUE 32850, SOMETIMES A GREAT NOTION 38027, SUNFLOWER 16069, THE APE 13664, THE ASSASSINATION OF JESSE JAMES BY THE COWARD ROBERT FORD 8125, THE BOYS IN THE BAND 7763, THE CHEYENNE SOCIAL CLUB 6150, THE CONFESSION 2356, THE CONFORMIST 28711, THE FACE BEHIND THE MASK 1748, THE GRAPES OF WRATH 3602, THE GREAT GABBO 33180, THE GREAT WHITE HOPE 25238, THE HI-LO COUNTRY 14626, THE HOMESMAN 2887, THE HOUSE OF THE SEVEN GABLES 33948, THE LETTER 14149, THE LIBERATION OF L.B. JONES 29117, THE LONG VOYAGE HOME 15492, THE MASK OF DIMITRIOS 13288, THE MISFITS 15853, THE MOLLY MAGUIRES 1533, THE MORTAL STORM 22829, THE MUSIC LOVERS 27029, THE PROPOSITION 144, THE RAILWAY CHILDREN 11585, THE SEA OF GRASS 33389, THE SPOILERS 279, THE VERDICT 13003, THE WELL-DIGGER'S DAUGHTER 7342, THEY CALL ME TRINITY 38674, THREE STRANGERS 16940, TORA! TORA! TORA! 33147, UNION PACIFIC 13388, URBAN COWBOY 26135, WANDA 29665, WATERLOO BRIDGE 29856, WATERMELON MAN 36026, WESTERN 23471, WHY DOES HERR R. RUN AMOK? 17354, WITCHHAMMER 25840, WUSA 27708, WUTHERING HEIGHTS 3421, YOUNG PEOPLE 29857, ZATOICHI MEETS YOJIMBO src, edge_attr, dst 7627, has_genre, 36026 7627, release_year, 31486 39604, has_genre, 36026 39604, release_year, 31486 35381, has_genre, 36212 35381, release_year, 31486 24629, has_genre, 36212 24629, release_year, 31486 10018, has_genre, 36212 10018, release_year, 31486 4617, has_genre, 36212 4617, release_year, 11 10251, has_genre, 36026 10251, release_year, 11 25642, directed_by, 21933 25642, has_genre, 36212 25642, starred_actors, 21933 25642, written_by, 21933 28626, has_genre, 36212 28626, release_year, 31486 16749, has_genre, 36212 16749, has_genre, 36026 21600, has_genre, 36212 21600, release_year, 11 6702, has_genre, 36026 6702, release_year, 31486 9167, has_genre, 36212 9167, release_year, 11 32819, has_genre, 36212 32819, release_year, 31486 30624, has_genre, 36212 30624, has_genre, 36026 30624, has_tags, 36212 30624, has_tags, 36026 8663, has_genre, 36212 8663, release_year, 31486 3443, has_genre, 36212 3443, release_year, 31486 37896, has_genre, 36026 37896, release_year, 31486 30123, has_genre, 36212 30123, release_year, 31486 17266, has_genre, 36212 17266, has_genre, 36026 28377, has_genre, 36026 28377, has_tags, 36026 28377, release_year, 31486 1872, has_genre, 36212 1872, release_year, 11 27432, has_genre, 36212 27432, release_year, 31486 26417, has_genre, 36212 26417, release_year, 31486 29776, directed_by, 21933 29776, has_genre, 36212 29776, has_tags, 21933 29776, written_by, 21933 11672, has_genre, 36212 11672, starred_actors, 19539 24894, has_genre, 36212 24894, release_year, 11 31804, has_genre, 36212 31804, release_year, 31486 19699, has_genre, 36212 19699, written_by, 6774 30299, has_genre, 36212 30299, release_year, 11 30299, starred_actors, 21933 30299, starred_actors, 7760 30299, starred_actors, 19539 37110, has_genre, 36212 37110, release_year, 31486 21922, has_genre, 36212 21922, release_year, 31486 35629, has_genre, 36212 35629, release_year, 31486 33417, has_genre, 36212 33417, has_genre, 36026 33417, has_tags, 36026 1025, has_genre, 36212 1025, release_year, 31486 33575, has_genre, 36026 33575, release_year, 31486 7383, has_genre, 36212 7383, release_year, 31486 6180, has_genre, 36212 6180, release_year, 31486 6932, has_genre, 36212 6932, has_tags, 7760 6932, starred_actors, 7760 39818, has_genre, 36212 39818, release_year, 31486 17728, has_genre, 36212 17728, has_tags, 7760 17728, starred_actors, 7760 24611, has_genre, 36026 24611, release_year, 11 23166, has_genre, 36212 23166, release_year, 11 23553, has_genre, 36212 23553, release_year, 11 31056, has_genre, 36212 31056, release_year, 31486 23220, has_genre, 36212 23220, release_year, 11 667, has_genre, 36026 667, release_year, 31486 4635, has_tags, 36212 4635, has_tags, 36026 20390, has_genre, 36026 20390, release_year, 31486 32850, has_genre, 36212 32850, release_year, 31486 38027, has_genre, 36212 38027, release_year, 31486 16069, has_genre, 36212 16069, release_year, 11 13664, has_genre, 36212 13664, has_tags, 36026 8125, has_genre, 36212 8125, release_year, 31486 7763, has_genre, 36026 7763, release_year, 31486 6150, has_genre, 36212 6150, release_year, 31486 2356, has_genre, 36212 2356, release_year, 31486 28711, has_genre, 36212 28711, starred_actors, 7760 1748, has_genre, 36212 1748, release_year, 11 3602, directed_by, 21933 3602, has_genre, 36212 3602, starred_actors, 21933 33180, has_genre, 36212 33180, release_year, 31486 25238, has_genre, 36212 25238, has_genre, 36026 14626, has_genre, 36212 14626, has_genre, 36026 2887, has_genre, 36212 2887, release_year, 11 33948, has_genre, 36212 33948, release_year, 11 14149, has_genre, 36212 14149, release_year, 31486 29117, has_genre, 36212 29117, release_year, 11 15492, has_genre, 36212 15492, starred_actors, 7760 13288, has_genre, 36212 13288, has_genre, 36026 15853, has_genre, 36212 15853, release_year, 31486 1533, has_genre, 36212 1533, release_year, 11 22829, has_genre, 36212 22829, release_year, 31486 27029, has_genre, 36212 27029, has_genre, 36026 144, has_genre, 36212 144, release_year, 31486 11585, has_genre, 36212 11585, has_genre, 36026 33389, has_genre, 36212 33389, has_genre, 36026 279, has_genre, 36212 279, starred_actors, 7760 13003, has_genre, 36212 13003, release_year, 11 7342, has_genre, 36026 7342, release_year, 31486 38674, has_genre, 36212 38674, starred_actors, 7760 16940, has_genre, 36212 16940, release_year, 31486 33147, has_genre, 36212 33147, has_genre, 36026 13388, has_genre, 36212 13388, has_genre, 36026 26135, has_genre, 36212 26135, release_year, 31486 29665, has_genre, 36212 29665, release_year, 11 29856, has_genre, 36212 29856, release_year, 31486 23471, has_genre, 36212 23471, release_year, 31486 17354, has_genre, 36212 17354, release_year, 31486 25840, has_genre, 36212 25840, release_year, 31486 27708, has_genre, 36212 27708, release_year, 31486 3421, has_genre, 36212 3421, release_year, 11 29857, has_genre, 36212 29857, release_year, 31486 Question: In what context are EL TOPO, I WAS AN ADVENTURESS, and JOHANNA SPYRI connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "EL TOPO", "I WAS AN ADVENTURESS", "JOHANNA SPYRI" ], "valid_edges": [ [ "A MAN CALLED HORSE", "has_genre", "WESTERN" ], [ "A MAN CALLED HORSE", "release_year", "1970" ], [ "A MAN CALLED SLEDGE", "has_genre", "WESTERN" ], [ "A MAN CALLED SLEDGE", "release_year", "1970" ], [ "A SWEDISH LOVE STORY", "has_genre", "DRAMA" ], [ "A SWEDISH LOVE STORY", "release_year", "1970" ], [ "AIRPORT", "has_genre", "DRAMA" ], [ "AIRPORT", "release_year", "1970" ], [ "ALEX IN WONDERLAND", "has_genre", "DRAMA" ], [ "ALEX IN WONDERLAND", "release_year", "1970" ], [ "ALL THIS, AND HEAVEN TOO", "has_genre", "DRAMA" ], [ "ALL THIS, AND HEAVEN TOO", "release_year", "1940" ], [ "ARIZONA", "has_genre", "WESTERN" ], [ "ARIZONA", "release_year", "1940" ], [ "BLIND HUSBANDS", "directed_by", "ERICH VON STROHEIM" ], [ "BLIND HUSBANDS", "has_genre", "DRAMA" ], [ "BLIND HUSBANDS", "starred_actors", "ERICH VON STROHEIM" ], [ "BLIND HUSBANDS", "written_by", "ERICH VON STROHEIM" ], [ "BLOODY MAMA", "has_genre", "DRAMA" ], [ "BLOODY MAMA", "release_year", "1970" ], [ "BROKEN ARROW", "has_genre", "DRAMA" ], [ "BROKEN ARROW", "has_genre", "WESTERN" ], [ "CASTLE ON THE HUDSON", "has_genre", "DRAMA" ], [ "CASTLE ON THE HUDSON", "release_year", "1940" ], [ "CHISUM", "has_genre", "WESTERN" ], [ "CHISUM", "release_year", "1970" ], [ "CITY FOR CONQUEST", "has_genre", "DRAMA" ], [ "CITY FOR CONQUEST", "release_year", "1940" ], [ "CROMWELL", "has_genre", "DRAMA" ], [ "CROMWELL", "release_year", "1970" ], [ "DANCES WITH WOLVES", "has_genre", "DRAMA" ], [ "DANCES WITH WOLVES", "has_genre", "WESTERN" ], [ "DANCES WITH WOLVES", "has_tags", "DRAMA" ], [ "DANCES WITH WOLVES", "has_tags", "WESTERN" ], [ "DEEP END", "has_genre", "DRAMA" ], [ "DEEP END", "release_year", "1970" ], [ "DIARY OF A MAD HOUSEWIFE", "has_genre", "DRAMA" ], [ "DIARY OF A MAD HOUSEWIFE", "release_year", "1970" ], [ "DIRTY DINGUS MAGEE", "has_genre", "WESTERN" ], [ "DIRTY DINGUS MAGEE", "release_year", "1970" ], [ "DORIAN GRAY", "has_genre", "DRAMA" ], [ "DORIAN GRAY", "release_year", "1970" ], [ "DUST", "has_genre", "DRAMA" ], [ "DUST", "has_genre", "WESTERN" ], [ "EL TOPO", "has_genre", "WESTERN" ], [ "EL TOPO", "has_tags", "WESTERN" ], [ "EL TOPO", "release_year", "1970" ], [ "ESCAPE", "has_genre", "DRAMA" ], [ "ESCAPE", "release_year", "1940" ], [ "EVEN DWARFS STARTED SMALL", "has_genre", "DRAMA" ], [ "EVEN DWARFS STARTED SMALL", "release_year", "1970" ], [ "FIVE EASY PIECES", "has_genre", "DRAMA" ], [ "FIVE EASY PIECES", "release_year", "1970" ], [ "FOOLISH WIVES", "directed_by", "ERICH VON STROHEIM" ], [ "FOOLISH WIVES", "has_genre", "DRAMA" ], [ "FOOLISH WIVES", "has_tags", "ERICH VON STROHEIM" ], [ "FOOLISH WIVES", "written_by", "ERICH VON STROHEIM" ], [ "FOREVER AMBER", "has_genre", "DRAMA" ], [ "FOREVER AMBER", "starred_actors", "RICHARD GREENE" ], [ "FOUR SONS", "has_genre", "DRAMA" ], [ "FOUR SONS", "release_year", "1940" ], [ "GODS OF THE PLAGUE", "has_genre", "DRAMA" ], [ "GODS OF THE PLAGUE", "release_year", "1970" ], [ "HEIDI", "has_genre", "DRAMA" ], [ "HEIDI", "written_by", "JOHANNA SPYRI" ], [ "I WAS AN ADVENTURESS", "has_genre", "DRAMA" ], [ "I WAS AN ADVENTURESS", "release_year", "1940" ], [ "I WAS AN ADVENTURESS", "starred_actors", "ERICH VON STROHEIM" ], [ "I WAS AN ADVENTURESS", "starred_actors", "PETER LORRE" ], [ "I WAS AN ADVENTURESS", "starred_actors", "RICHARD GREENE" ], [ "INVESTIGATION OF A CITIZEN ABOVE SUSPICION", "has_genre", "DRAMA" ], [ "INVESTIGATION OF A CITIZEN ABOVE SUSPICION", "release_year", "1970" ], [ "JANE EYRE", "has_genre", "DRAMA" ], [ "JANE EYRE", "release_year", "1970" ], [ "JOE", "has_genre", "DRAMA" ], [ "JOE", "release_year", "1970" ], [ "JOHNNY GUITAR", "has_genre", "DRAMA" ], [ "JOHNNY GUITAR", "has_genre", "WESTERN" ], [ "JOHNNY GUITAR", "has_tags", "WESTERN" ], [ "LEO THE LAST", "has_genre", "DRAMA" ], [ "LEO THE LAST", "release_year", "1970" ], [ "LITTLE BIG MAN", "has_genre", "WESTERN" ], [ "LITTLE BIG MAN", "release_year", "1970" ], [ "LITTLE FAUSS AND BIG HALSY", "has_genre", "DRAMA" ], [ "LITTLE FAUSS AND BIG HALSY", "release_year", "1970" ], [ "LOVE STORY", "has_genre", "DRAMA" ], [ "LOVE STORY", "release_year", "1970" ], [ "M", "has_genre", "DRAMA" ], [ "M", "has_tags", "PETER LORRE" ], [ "M", "starred_actors", "PETER LORRE" ], [ "MACHIBUSE", "has_genre", "DRAMA" ], [ "MACHIBUSE", "release_year", "1970" ], [ "MAD LOVE", "has_genre", "DRAMA" ], [ "MAD LOVE", "has_tags", "PETER LORRE" ], [ "MAD LOVE", "starred_actors", "PETER LORRE" ], [ "MY LITTLE CHICKADEE", "has_genre", "WESTERN" ], [ "MY LITTLE CHICKADEE", "release_year", "1940" ], [ "NO TIME FOR COMEDY", "has_genre", "DRAMA" ], [ "NO TIME FOR COMEDY", "release_year", "1940" ], [ "OUR TOWN", "has_genre", "DRAMA" ], [ "OUR TOWN", "release_year", "1940" ], [ "PERFORMANCE", "has_genre", "DRAMA" ], [ "PERFORMANCE", "release_year", "1970" ], [ "REMEMBER THE NIGHT", "has_genre", "DRAMA" ], [ "REMEMBER THE NIGHT", "release_year", "1940" ], [ "RIO LOBO", "has_genre", "WESTERN" ], [ "RIO LOBO", "release_year", "1970" ], [ "SERENITY", "has_tags", "DRAMA" ], [ "SERENITY", "has_tags", "WESTERN" ], [ "SOLDIER BLUE", "has_genre", "WESTERN" ], [ "SOLDIER BLUE", "release_year", "1970" ], [ "SOMETIMES A GREAT NOTION", "has_genre", "DRAMA" ], [ "SOMETIMES A GREAT NOTION", "release_year", "1970" ], [ "SUNFLOWER", "has_genre", "DRAMA" ], [ "SUNFLOWER", "release_year", "1970" ], [ "THE APE", "has_genre", "DRAMA" ], [ "THE APE", "release_year", "1940" ], [ "THE ASSASSINATION OF JESSE JAMES BY THE COWARD ROBERT FORD", "has_genre", "DRAMA" ], [ "THE ASSASSINATION OF JESSE JAMES BY THE COWARD ROBERT FORD", "has_tags", "WESTERN" ], [ "THE BOYS IN THE BAND", "has_genre", "DRAMA" ], [ "THE BOYS IN THE BAND", "release_year", "1970" ], [ "THE CHEYENNE SOCIAL CLUB", "has_genre", "WESTERN" ], [ "THE CHEYENNE SOCIAL CLUB", "release_year", "1970" ], [ "THE CONFESSION", "has_genre", "DRAMA" ], [ "THE CONFESSION", "release_year", "1970" ], [ "THE CONFORMIST", "has_genre", "DRAMA" ], [ "THE CONFORMIST", "release_year", "1970" ], [ "THE FACE BEHIND THE MASK", "has_genre", "DRAMA" ], [ "THE FACE BEHIND THE MASK", "starred_actors", "PETER LORRE" ], [ "THE GRAPES OF WRATH", "has_genre", "DRAMA" ], [ "THE GRAPES OF WRATH", "release_year", "1940" ], [ "THE GREAT GABBO", "directed_by", "ERICH VON STROHEIM" ], [ "THE GREAT GABBO", "has_genre", "DRAMA" ], [ "THE GREAT GABBO", "starred_actors", "ERICH VON STROHEIM" ], [ "THE GREAT WHITE HOPE", "has_genre", "DRAMA" ], [ "THE GREAT WHITE HOPE", "release_year", "1970" ], [ "THE HI-LO COUNTRY", "has_genre", "DRAMA" ], [ "THE HI-LO COUNTRY", "has_genre", "WESTERN" ], [ "THE HOMESMAN", "has_genre", "DRAMA" ], [ "THE HOMESMAN", "has_genre", "WESTERN" ], [ "THE HOUSE OF THE SEVEN GABLES", "has_genre", "DRAMA" ], [ "THE HOUSE OF THE SEVEN GABLES", "release_year", "1940" ], [ "THE LETTER", "has_genre", "DRAMA" ], [ "THE LETTER", "release_year", "1940" ], [ "THE LIBERATION OF L.B. JONES", "has_genre", "DRAMA" ], [ "THE LIBERATION OF L.B. JONES", "release_year", "1970" ], [ "THE LONG VOYAGE HOME", "has_genre", "DRAMA" ], [ "THE LONG VOYAGE HOME", "release_year", "1940" ], [ "THE MASK OF DIMITRIOS", "has_genre", "DRAMA" ], [ "THE MASK OF DIMITRIOS", "starred_actors", "PETER LORRE" ], [ "THE MISFITS", "has_genre", "DRAMA" ], [ "THE MISFITS", "has_genre", "WESTERN" ], [ "THE MOLLY MAGUIRES", "has_genre", "DRAMA" ], [ "THE MOLLY MAGUIRES", "release_year", "1970" ], [ "THE MORTAL STORM", "has_genre", "DRAMA" ], [ "THE MORTAL STORM", "release_year", "1940" ], [ "THE MUSIC LOVERS", "has_genre", "DRAMA" ], [ "THE MUSIC LOVERS", "release_year", "1970" ], [ "THE PROPOSITION", "has_genre", "DRAMA" ], [ "THE PROPOSITION", "has_genre", "WESTERN" ], [ "THE RAILWAY CHILDREN", "has_genre", "DRAMA" ], [ "THE RAILWAY CHILDREN", "release_year", "1970" ], [ "THE SEA OF GRASS", "has_genre", "DRAMA" ], [ "THE SEA OF GRASS", "has_genre", "WESTERN" ], [ "THE SPOILERS", "has_genre", "DRAMA" ], [ "THE SPOILERS", "has_genre", "WESTERN" ], [ "THE VERDICT", "has_genre", "DRAMA" ], [ "THE VERDICT", "starred_actors", "PETER LORRE" ], [ "THE WELL-DIGGER'S DAUGHTER", "has_genre", "DRAMA" ], [ "THE WELL-DIGGER'S DAUGHTER", "release_year", "1940" ], [ "THEY CALL ME TRINITY", "has_genre", "WESTERN" ], [ "THEY CALL ME TRINITY", "release_year", "1970" ], [ "THREE STRANGERS", "has_genre", "DRAMA" ], [ "THREE STRANGERS", "starred_actors", "PETER LORRE" ], [ "TORA! TORA! TORA!", "has_genre", "DRAMA" ], [ "TORA! TORA! TORA!", "release_year", "1970" ], [ "UNION PACIFIC", "has_genre", "DRAMA" ], [ "UNION PACIFIC", "has_genre", "WESTERN" ], [ "URBAN COWBOY", "has_genre", "DRAMA" ], [ "URBAN COWBOY", "has_genre", "WESTERN" ], [ "WANDA", "has_genre", "DRAMA" ], [ "WANDA", "release_year", "1970" ], [ "WATERLOO BRIDGE", "has_genre", "DRAMA" ], [ "WATERLOO BRIDGE", "release_year", "1940" ], [ "WATERMELON MAN", "has_genre", "DRAMA" ], [ "WATERMELON MAN", "release_year", "1970" ], [ "WHY DOES HERR R. RUN AMOK?", "has_genre", "DRAMA" ], [ "WHY DOES HERR R. RUN AMOK?", "release_year", "1970" ], [ "WITCHHAMMER", "has_genre", "DRAMA" ], [ "WITCHHAMMER", "release_year", "1970" ], [ "WUSA", "has_genre", "DRAMA" ], [ "WUSA", "release_year", "1970" ], [ "WUTHERING HEIGHTS", "has_genre", "DRAMA" ], [ "WUTHERING HEIGHTS", "release_year", "1970" ], [ "YOUNG PEOPLE", "has_genre", "DRAMA" ], [ "YOUNG PEOPLE", "release_year", "1940" ], [ "ZATOICHI MEETS YOJIMBO", "has_genre", "DRAMA" ], [ "ZATOICHI MEETS YOJIMBO", "release_year", "1970" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 28545, ARCH HALL JR. 29831, CB4 30019, CROSSROADS 35838, GUNCRAZY 15677, INVASION OF THE BODY SNATCHERS 23570, KEVIN MCCARTHY 22845, MUSIC 28729, REMAKE 7300, TAMRA DAVIS 5673, WILD GUITAR src, edge_attr, dst 29831, directed_by, 7300 29831, has_genre, 22845 29831, has_tags, 7300 30019, directed_by, 7300 30019, has_genre, 22845 35838, directed_by, 7300 35838, has_tags, 28729 15677, has_tags, 28729 15677, starred_actors, 23570 5673, has_genre, 22845 5673, starred_actors, 28545 Question: For what reason are ARCH HALL JR., KEVIN MCCARTHY, and TAMRA DAVIS associated? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "ARCH HALL JR.", "KEVIN MCCARTHY", "TAMRA DAVIS" ], "valid_edges": [ [ "CB4", "directed_by", "TAMRA DAVIS" ], [ "CB4", "has_genre", "MUSIC" ], [ "CB4", "has_tags", "TAMRA DAVIS" ], [ "CROSSROADS", "directed_by", "TAMRA DAVIS" ], [ "CROSSROADS", "has_genre", "MUSIC" ], [ "GUNCRAZY", "directed_by", "TAMRA DAVIS" ], [ "GUNCRAZY", "has_tags", "REMAKE" ], [ "INVASION OF THE BODY SNATCHERS", "has_tags", "REMAKE" ], [ "INVASION OF THE BODY SNATCHERS", "starred_actors", "KEVIN MCCARTHY" ], [ "WILD GUITAR", "has_genre", "MUSIC" ], [ "WILD GUITAR", "starred_actors", "ARCH HALL JR." ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 7841, 1987 6252, A CHINESE GHOST STORY 36420, A TAXING WOMAN 16054, ADVENTURES IN BABYSITTING 3473, AMAZON WOMEN ON THE MOON 17761, BABY BOOM 2069, BACK TO THE BEACH 34587, BAD TASTE 24579, BEVERLY HILLS COP II 7462, BEYOND THERAPY 18646, BIG SHOTS 7101, BLIND DATE 8781, BORN IN EAST L.A. 15416, BOYFRIENDS AND GIRLFRIENDS 32043, BROADCAST NEWS 30182, BURGLAR 29437, CAN'T BUY ME LOVE 30463, COMEDY 19984, CREEPSHOW 2 5277, CRITICAL CONDITION 17866, CROSS MY HEART 12629, DATE WITH AN ANGEL 31407, DRAGNET 32705, ERNEST GOES TO CAMP 16661, EVIL DEAD II 12663, FULL METAL JACKET 21763, GOOD MORNING, VIETNAM 32384, HAMLET GOES BUSINESS 12085, HAPPY NEW YEAR 28307, HARRY AND THE HENDERSONS 36859, HELLO AGAIN 37602, HOLLYWOOD SHUFFLE 24940, HOPE AND GLORY 31686, HOT PURSUIT 23849, HOUSEKEEPING 9007, HUNK 16321, INNERSPACE 1166, ISHTAR 20866, LEIF 30420, LEONARD PART 6 39520, LETHAL WEAPON 28811, LIKE FATHER LIKE SON 7423, MAID TO ORDER 22842, MAKING MR. RIGHT 32481, MANNEQUIN 594, MITCHELL KAPNER 33763, MOONSTRUCK 16298, MORGAN STEWART'S COMING HOME 36631, MUNCHIES 20549, NADINE 29029, NOVOCAINE 36424, OUTRAGEOUS FORTUNE 253, OVERBOARD 12939, PROJECT X 15214, RADIO DAYS 21462, RAISING ARIZONA 2855, REAL MEN 10717, RENT-A-COP 9184, RETURN TO HORROR HIGH 39429, ROXANNE 11041, SILENT NIGHT, DEADLY NIGHT PART 2 16951, STAKEOUT 3563, SUMMER SCHOOL 4755, SURF NAZIS MUST DIE 32018, TEEN WOLF TOO 27730, THE ALLNIGHTER 10194, THE BRAVE LITTLE TOASTER 38918, THE FAMILY 33993, THE MONSTER SQUAD 17411, THE PICK-UP ARTIST 29641, THE PRINCESS BRIDE 27344, THE SQUEEZE 18065, THE WHOLE TEN YARDS 14621, THE WITCHES OF EASTWICK 32233, THREE O'CLOCK HIGH 26294, THROW MOMMA FROM THE TRAIN 22559, TIN MEN 36468, TOUGH GUYS DON'T DANCE 6124, WALK LIKE A MAN 16913, WHO'S THAT GIRL 6981, WISH YOU WERE HERE src, edge_attr, dst 6252, has_genre, 30463 6252, release_year, 7841 36420, has_genre, 30463 36420, release_year, 7841 16054, has_genre, 30463 16054, release_year, 7841 3473, has_genre, 30463 3473, release_year, 7841 17761, has_genre, 30463 17761, release_year, 7841 2069, has_genre, 30463 2069, release_year, 7841 34587, has_genre, 30463 34587, release_year, 7841 24579, has_genre, 30463 24579, release_year, 7841 7462, has_genre, 30463 7462, release_year, 7841 18646, has_genre, 30463 18646, release_year, 7841 7101, has_genre, 30463 7101, release_year, 7841 8781, has_genre, 30463 8781, release_year, 7841 15416, has_genre, 30463 15416, release_year, 7841 32043, has_genre, 30463 32043, release_year, 7841 30182, has_genre, 30463 30182, release_year, 7841 29437, has_genre, 30463 29437, release_year, 7841 19984, has_genre, 30463 19984, release_year, 7841 5277, has_genre, 30463 5277, release_year, 7841 17866, has_genre, 30463 17866, release_year, 7841 12629, has_genre, 30463 12629, release_year, 7841 31407, has_genre, 30463 31407, release_year, 7841 32705, has_genre, 30463 32705, release_year, 7841 16661, has_genre, 30463 16661, release_year, 7841 12663, release_year, 7841 21763, has_genre, 30463 21763, release_year, 7841 32384, has_genre, 30463 32384, has_tags, 30463 32384, release_year, 7841 12085, has_genre, 30463 12085, release_year, 7841 28307, has_genre, 30463 28307, has_tags, 30463 28307, release_year, 7841 36859, has_genre, 30463 36859, release_year, 7841 37602, has_genre, 30463 37602, release_year, 7841 24940, has_genre, 30463 24940, release_year, 7841 31686, has_genre, 30463 31686, release_year, 7841 23849, has_genre, 30463 23849, release_year, 7841 9007, has_genre, 30463 9007, release_year, 7841 16321, has_genre, 30463 16321, release_year, 7841 1166, has_genre, 30463 1166, release_year, 7841 20866, has_genre, 30463 20866, release_year, 7841 30420, has_genre, 30463 30420, release_year, 7841 39520, has_tags, 30463 39520, release_year, 7841 28811, has_genre, 30463 28811, release_year, 7841 7423, has_genre, 30463 7423, release_year, 7841 22842, has_genre, 30463 22842, release_year, 7841 32481, has_genre, 30463 32481, release_year, 7841 33763, has_genre, 30463 33763, release_year, 7841 16298, has_genre, 30463 16298, release_year, 7841 36631, has_genre, 30463 36631, release_year, 7841 20549, has_genre, 30463 20549, release_year, 7841 29029, has_genre, 30463 36424, has_genre, 30463 36424, release_year, 7841 253, has_genre, 30463 253, release_year, 7841 12939, has_genre, 30463 12939, release_year, 7841 15214, has_genre, 30463 15214, release_year, 7841 21462, has_genre, 30463 21462, has_tags, 30463 21462, release_year, 7841 2855, has_genre, 30463 2855, has_tags, 30463 2855, release_year, 7841 10717, has_genre, 30463 10717, release_year, 7841 9184, has_genre, 30463 9184, release_year, 7841 39429, has_genre, 30463 39429, release_year, 7841 11041, has_genre, 30463 11041, release_year, 7841 16951, has_genre, 30463 16951, release_year, 7841 3563, has_genre, 30463 3563, has_tags, 30463 3563, release_year, 7841 4755, has_genre, 30463 4755, release_year, 7841 32018, has_genre, 30463 32018, release_year, 7841 27730, has_genre, 30463 27730, release_year, 7841 10194, has_genre, 30463 10194, release_year, 7841 38918, has_genre, 30463 38918, release_year, 7841 33993, has_genre, 30463 33993, release_year, 7841 17411, has_genre, 30463 17411, release_year, 7841 29641, has_genre, 30463 29641, has_tags, 30463 29641, release_year, 7841 27344, has_genre, 30463 27344, release_year, 7841 18065, has_genre, 30463 18065, written_by, 594 14621, has_genre, 30463 14621, release_year, 7841 32233, has_genre, 30463 32233, release_year, 7841 26294, has_genre, 30463 26294, has_tags, 30463 26294, release_year, 7841 22559, has_genre, 30463 22559, release_year, 7841 36468, has_genre, 30463 36468, release_year, 7841 6124, has_genre, 30463 6124, release_year, 7841 16913, has_genre, 30463 16913, release_year, 7841 6981, has_genre, 30463 6981, release_year, 7841 Question: How are FULL METAL JACKET, MITCHELL KAPNER, and NOVOCAINE related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "FULL METAL JACKET", "MITCHELL KAPNER", "NOVOCAINE" ], "valid_edges": [ [ "A CHINESE GHOST STORY", "has_genre", "COMEDY" ], [ "A CHINESE GHOST STORY", "release_year", "1987" ], [ "A TAXING WOMAN", "has_genre", "COMEDY" ], [ "A TAXING WOMAN", "release_year", "1987" ], [ "ADVENTURES IN BABYSITTING", "has_genre", "COMEDY" ], [ "ADVENTURES IN BABYSITTING", "release_year", "1987" ], [ "AMAZON WOMEN ON THE MOON", "has_genre", "COMEDY" ], [ "AMAZON WOMEN ON THE MOON", "release_year", "1987" ], [ "BABY BOOM", "has_genre", "COMEDY" ], [ "BABY BOOM", "release_year", "1987" ], [ "BACK TO THE BEACH", "has_genre", "COMEDY" ], [ "BACK TO THE BEACH", "release_year", "1987" ], [ "BAD TASTE", "has_genre", "COMEDY" ], [ "BAD TASTE", "release_year", "1987" ], [ "BEVERLY HILLS COP II", "has_genre", "COMEDY" ], [ "BEVERLY HILLS COP II", "release_year", "1987" ], [ "BEYOND THERAPY", "has_genre", "COMEDY" ], [ "BEYOND THERAPY", "release_year", "1987" ], [ "BIG SHOTS", "has_genre", "COMEDY" ], [ "BIG SHOTS", "release_year", "1987" ], [ "BLIND DATE", "has_genre", "COMEDY" ], [ "BLIND DATE", "release_year", "1987" ], [ "BORN IN EAST L.A.", "has_genre", "COMEDY" ], [ "BORN IN EAST L.A.", "release_year", "1987" ], [ "BOYFRIENDS AND GIRLFRIENDS", "has_genre", "COMEDY" ], [ "BOYFRIENDS AND GIRLFRIENDS", "release_year", "1987" ], [ "BROADCAST NEWS", "has_genre", "COMEDY" ], [ "BROADCAST NEWS", "release_year", "1987" ], [ "BURGLAR", "has_genre", "COMEDY" ], [ "BURGLAR", "release_year", "1987" ], [ "CAN'T BUY ME LOVE", "has_genre", "COMEDY" ], [ "CAN'T BUY ME LOVE", "release_year", "1987" ], [ "CREEPSHOW 2", "has_genre", "COMEDY" ], [ "CREEPSHOW 2", "release_year", "1987" ], [ "CRITICAL CONDITION", "has_genre", "COMEDY" ], [ "CRITICAL CONDITION", "release_year", "1987" ], [ "CROSS MY HEART", "has_genre", "COMEDY" ], [ "CROSS MY HEART", "release_year", "1987" ], [ "DATE WITH AN ANGEL", "has_genre", "COMEDY" ], [ "DATE WITH AN ANGEL", "release_year", "1987" ], [ "DRAGNET", "has_genre", "COMEDY" ], [ "DRAGNET", "release_year", "1987" ], [ "ERNEST GOES TO CAMP", "has_genre", "COMEDY" ], [ "ERNEST GOES TO CAMP", "release_year", "1987" ], [ "EVIL DEAD II", "has_genre", "COMEDY" ], [ "EVIL DEAD II", "release_year", "1987" ], [ "FULL METAL JACKET", "release_year", "1987" ], [ "GOOD MORNING, VIETNAM", "has_genre", "COMEDY" ], [ "GOOD MORNING, VIETNAM", "release_year", "1987" ], [ "HAMLET GOES BUSINESS", "has_genre", "COMEDY" ], [ "HAMLET GOES BUSINESS", "has_tags", "COMEDY" ], [ "HAMLET GOES BUSINESS", "release_year", "1987" ], [ "HAPPY NEW YEAR", "has_genre", "COMEDY" ], [ "HAPPY NEW YEAR", "release_year", "1987" ], [ "HARRY AND THE HENDERSONS", "has_genre", "COMEDY" ], [ "HARRY AND THE HENDERSONS", "has_tags", "COMEDY" ], [ "HARRY AND THE HENDERSONS", "release_year", "1987" ], [ "HELLO AGAIN", "has_genre", "COMEDY" ], [ "HELLO AGAIN", "release_year", "1987" ], [ "HOLLYWOOD SHUFFLE", "has_genre", "COMEDY" ], [ "HOLLYWOOD SHUFFLE", "release_year", "1987" ], [ "HOPE AND GLORY", "has_genre", "COMEDY" ], [ "HOPE AND GLORY", "release_year", "1987" ], [ "HOT PURSUIT", "has_genre", "COMEDY" ], [ "HOT PURSUIT", "release_year", "1987" ], [ "HOUSEKEEPING", "has_genre", "COMEDY" ], [ "HOUSEKEEPING", "release_year", "1987" ], [ "HUNK", "has_genre", "COMEDY" ], [ "HUNK", "release_year", "1987" ], [ "INNERSPACE", "has_genre", "COMEDY" ], [ "INNERSPACE", "release_year", "1987" ], [ "ISHTAR", "has_genre", "COMEDY" ], [ "ISHTAR", "release_year", "1987" ], [ "LEIF", "has_genre", "COMEDY" ], [ "LEIF", "release_year", "1987" ], [ "LEONARD PART 6", "has_genre", "COMEDY" ], [ "LEONARD PART 6", "release_year", "1987" ], [ "LETHAL WEAPON", "has_tags", "COMEDY" ], [ "LETHAL WEAPON", "release_year", "1987" ], [ "LIKE FATHER LIKE SON", "has_genre", "COMEDY" ], [ "LIKE FATHER LIKE SON", "release_year", "1987" ], [ "MAID TO ORDER", "has_genre", "COMEDY" ], [ "MAID TO ORDER", "release_year", "1987" ], [ "MAKING MR. RIGHT", "has_genre", "COMEDY" ], [ "MAKING MR. RIGHT", "release_year", "1987" ], [ "MANNEQUIN", "has_genre", "COMEDY" ], [ "MANNEQUIN", "release_year", "1987" ], [ "MOONSTRUCK", "has_genre", "COMEDY" ], [ "MOONSTRUCK", "release_year", "1987" ], [ "MORGAN STEWART'S COMING HOME", "has_genre", "COMEDY" ], [ "MORGAN STEWART'S COMING HOME", "release_year", "1987" ], [ "MUNCHIES", "has_genre", "COMEDY" ], [ "MUNCHIES", "release_year", "1987" ], [ "NADINE", "has_genre", "COMEDY" ], [ "NADINE", "release_year", "1987" ], [ "NOVOCAINE", "has_genre", "COMEDY" ], [ "OUTRAGEOUS FORTUNE", "has_genre", "COMEDY" ], [ "OUTRAGEOUS FORTUNE", "release_year", "1987" ], [ "OVERBOARD", "has_genre", "COMEDY" ], [ "OVERBOARD", "release_year", "1987" ], [ "PROJECT X", "has_genre", "COMEDY" ], [ "PROJECT X", "release_year", "1987" ], [ "RADIO DAYS", "has_genre", "COMEDY" ], [ "RADIO DAYS", "release_year", "1987" ], [ "RAISING ARIZONA", "has_genre", "COMEDY" ], [ "RAISING ARIZONA", "has_tags", "COMEDY" ], [ "RAISING ARIZONA", "release_year", "1987" ], [ "REAL MEN", "has_genre", "COMEDY" ], [ "REAL MEN", "has_tags", "COMEDY" ], [ "REAL MEN", "release_year", "1987" ], [ "RENT-A-COP", "has_genre", "COMEDY" ], [ "RENT-A-COP", "release_year", "1987" ], [ "RETURN TO HORROR HIGH", "has_genre", "COMEDY" ], [ "RETURN TO HORROR HIGH", "release_year", "1987" ], [ "ROXANNE", "has_genre", "COMEDY" ], [ "ROXANNE", "release_year", "1987" ], [ "SILENT NIGHT, DEADLY NIGHT PART 2", "has_genre", "COMEDY" ], [ "SILENT NIGHT, DEADLY NIGHT PART 2", "release_year", "1987" ], [ "STAKEOUT", "has_genre", "COMEDY" ], [ "STAKEOUT", "release_year", "1987" ], [ "SUMMER SCHOOL", "has_genre", "COMEDY" ], [ "SUMMER SCHOOL", "has_tags", "COMEDY" ], [ "SUMMER SCHOOL", "release_year", "1987" ], [ "SURF NAZIS MUST DIE", "has_genre", "COMEDY" ], [ "SURF NAZIS MUST DIE", "release_year", "1987" ], [ "TEEN WOLF TOO", "has_genre", "COMEDY" ], [ "TEEN WOLF TOO", "release_year", "1987" ], [ "THE ALLNIGHTER", "has_genre", "COMEDY" ], [ "THE ALLNIGHTER", "release_year", "1987" ], [ "THE BRAVE LITTLE TOASTER", "has_genre", "COMEDY" ], [ "THE BRAVE LITTLE TOASTER", "release_year", "1987" ], [ "THE FAMILY", "has_genre", "COMEDY" ], [ "THE FAMILY", "release_year", "1987" ], [ "THE MONSTER SQUAD", "has_genre", "COMEDY" ], [ "THE MONSTER SQUAD", "release_year", "1987" ], [ "THE PICK-UP ARTIST", "has_genre", "COMEDY" ], [ "THE PICK-UP ARTIST", "release_year", "1987" ], [ "THE PRINCESS BRIDE", "has_genre", "COMEDY" ], [ "THE PRINCESS BRIDE", "has_tags", "COMEDY" ], [ "THE PRINCESS BRIDE", "release_year", "1987" ], [ "THE SQUEEZE", "has_genre", "COMEDY" ], [ "THE SQUEEZE", "release_year", "1987" ], [ "THE WHOLE TEN YARDS", "has_genre", "COMEDY" ], [ "THE WHOLE TEN YARDS", "written_by", "MITCHELL KAPNER" ], [ "THE WITCHES OF EASTWICK", "has_genre", "COMEDY" ], [ "THE WITCHES OF EASTWICK", "release_year", "1987" ], [ "THREE O'CLOCK HIGH", "has_genre", "COMEDY" ], [ "THREE O'CLOCK HIGH", "release_year", "1987" ], [ "THROW MOMMA FROM THE TRAIN", "has_genre", "COMEDY" ], [ "THROW MOMMA FROM THE TRAIN", "has_tags", "COMEDY" ], [ "THROW MOMMA FROM THE TRAIN", "release_year", "1987" ], [ "TIN MEN", "has_genre", "COMEDY" ], [ "TIN MEN", "release_year", "1987" ], [ "TOUGH GUYS DON'T DANCE", "has_genre", "COMEDY" ], [ "TOUGH GUYS DON'T DANCE", "release_year", "1987" ], [ "WALK LIKE A MAN", "has_genre", "COMEDY" ], [ "WALK LIKE A MAN", "release_year", "1987" ], [ "WHO'S THAT GIRL", "has_genre", "COMEDY" ], [ "WHO'S THAT GIRL", "release_year", "1987" ], [ "WISH YOU WERE HERE", "has_genre", "COMEDY" ], [ "WISH YOU WERE HERE", "release_year", "1987" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 15374, 2005 658, 2012 19567, ALL ABOUT ANNA 32797, DANGEROUS LIAISONS 24098, GRAVE ENCOUNTERS 2 32874, GRY BAY 28998, KEANU REEVES 31377, MUCH ADO ABOUT NOTHING 9389, SIDE BY SIDE 15752, SPEED 12392, THE WORLD'S FASTEST INDIAN src, edge_attr, dst 19567, release_year, 15374 19567, starred_actors, 32874 32797, has_tags, 28998 32797, release_year, 658 24098, release_year, 658 31377, has_tags, 28998 31377, release_year, 658 9389, has_tags, 28998 9389, release_year, 658 15752, has_tags, 28998 15752, has_tags, 15752 15752, starred_actors, 28998 12392, has_tags, 15752 12392, release_year, 15374 Question: In what context are GRAVE ENCOUNTERS 2, GRY BAY, and SPEED connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "GRAVE ENCOUNTERS 2", "GRY BAY", "SPEED" ], "valid_edges": [ [ "ALL ABOUT ANNA", "release_year", "2005" ], [ "ALL ABOUT ANNA", "starred_actors", "GRY BAY" ], [ "DANGEROUS LIAISONS", "has_tags", "KEANU REEVES" ], [ "DANGEROUS LIAISONS", "release_year", "2012" ], [ "GRAVE ENCOUNTERS 2", "release_year", "2012" ], [ "MUCH ADO ABOUT NOTHING", "has_tags", "KEANU REEVES" ], [ "MUCH ADO ABOUT NOTHING", "release_year", "2012" ], [ "SIDE BY SIDE", "has_tags", "KEANU REEVES" ], [ "SIDE BY SIDE", "release_year", "2012" ], [ "SPEED", "has_tags", "KEANU REEVES" ], [ "SPEED", "has_tags", "SPEED" ], [ "SPEED", "starred_actors", "KEANU REEVES" ], [ "THE WORLD'S FASTEST INDIAN", "has_tags", "SPEED" ], [ "THE WORLD'S FASTEST INDIAN", "release_year", "2005" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 36212, DRAMA 34244, EHUD YONAY 21323, KENNETH NELSON 17065, MADHUR MITTAL 35465, MILLION DOLLAR ARM 8125, THE BOYS IN THE BAND 30953, TOP GUN src, edge_attr, dst 35465, has_genre, 36212 35465, starred_actors, 17065 8125, has_genre, 36212 8125, starred_actors, 21323 30953, has_genre, 36212 30953, written_by, 34244 Question: In what context are EHUD YONAY, KENNETH NELSON, and MADHUR MITTAL connected? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "EHUD YONAY", "KENNETH NELSON", "MADHUR MITTAL" ], "valid_edges": [ [ "MILLION DOLLAR ARM", "has_genre", "DRAMA" ], [ "MILLION DOLLAR ARM", "starred_actors", "MADHUR MITTAL" ], [ "THE BOYS IN THE BAND", "has_genre", "DRAMA" ], [ "THE BOYS IN THE BAND", "starred_actors", "KENNETH NELSON" ], [ "TOP GUN", "has_genre", "DRAMA" ], [ "TOP GUN", "written_by", "EHUD YONAY" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 1430, 1949 8783, 1977 22088, A BRIDGE TOO FAR 39289, ACTION 12185, BATTLEGROUND 13715, HOME OF THE BRAVE 27285, I WAS A MALE WAR BRIDE 7629, KIERAN CULKIN 16827, NOWHERE TO RUN 23006, SANDS OF IWO JIMA 4162, THE ASCENT 20000, THE HASTY HEART 27164, THE WINDOW 38352, TWELVE O'CLOCK HIGH 22214, WAR src, edge_attr, dst 22088, has_genre, 22214 22088, has_tags, 22214 22088, release_year, 8783 12185, has_genre, 22214 12185, has_tags, 22214 12185, release_year, 1430 13715, has_genre, 22214 13715, release_year, 1430 27285, has_genre, 22214 27285, release_year, 1430 16827, has_genre, 39289 16827, starred_actors, 7629 23006, has_genre, 22214 23006, release_year, 1430 4162, has_genre, 22214 4162, release_year, 8783 20000, has_genre, 22214 20000, release_year, 1430 27164, release_year, 1430 38352, has_genre, 22214 38352, release_year, 1430 22214, has_genre, 39289 Question: How are KIERAN CULKIN, THE ASCENT, and THE WINDOW related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "KIERAN CULKIN", "THE ASCENT", "THE WINDOW" ], "valid_edges": [ [ "A BRIDGE TOO FAR", "has_genre", "WAR" ], [ "A BRIDGE TOO FAR", "has_tags", "WAR" ], [ "A BRIDGE TOO FAR", "release_year", "1977" ], [ "BATTLEGROUND", "has_genre", "WAR" ], [ "BATTLEGROUND", "has_tags", "WAR" ], [ "BATTLEGROUND", "release_year", "1949" ], [ "HOME OF THE BRAVE", "has_genre", "WAR" ], [ "HOME OF THE BRAVE", "release_year", "1949" ], [ "I WAS A MALE WAR BRIDE", "has_genre", "WAR" ], [ "I WAS A MALE WAR BRIDE", "release_year", "1949" ], [ "NOWHERE TO RUN", "has_genre", "ACTION" ], [ "NOWHERE TO RUN", "starred_actors", "KIERAN CULKIN" ], [ "SANDS OF IWO JIMA", "has_genre", "WAR" ], [ "SANDS OF IWO JIMA", "release_year", "1949" ], [ "THE ASCENT", "has_genre", "WAR" ], [ "THE ASCENT", "release_year", "1977" ], [ "THE HASTY HEART", "has_genre", "WAR" ], [ "THE HASTY HEART", "release_year", "1949" ], [ "THE WINDOW", "release_year", "1949" ], [ "TWELVE O'CLOCK HIGH", "has_genre", "WAR" ], [ "TWELVE O'CLOCK HIGH", "release_year", "1949" ], [ "WAR", "has_genre", "ACTION" ] ] }
metaqa
You are given a directed graph as two CSV-like sections in this order: 1) Node table (header included): node_id, node_attr 2) Edge table (header included): src, edge_attr, dst Task - Use ONLY edges from the Edge table to answer the question by outputting a path. - When printing each edge, replace IDs with the exact node_attr from the Node table. - Output MUST be text triples, not numeric IDs. Output format (STRICT — no extra text): PATH: ("subject"|predicate|"object") ... END Rules - Use only listed edges; do NOT invent edges. - Map IDs → node_attr; preserve node_attr exactly. - Output NOTHING outside the PATH block. - If no path exists, output exactly: PATH: END Graph: node_id, node_attr 31196, 1974 10045, BD-R 2835, BLACKBALL 35745, CLAUDINE 39747, HENRY JONES 23380, INVINCIBLE 6895, LESTER PINE 7050, MONEYBALL 37334, NATIONAL VELVET 32404, SPORT 3049, SPORTS 13151, THE BAD SEED 34736, THE ENDLESS SUMMER 20223, THE LONGEST YARD src, edge_attr, dst 2835, has_genre, 32404 2835, has_tags, 10045 2835, has_tags, 3049 35745, release_year, 31196 35745, written_by, 6895 23380, has_genre, 32404 23380, has_tags, 10045 23380, has_tags, 3049 7050, has_genre, 32404 7050, has_tags, 10045 7050, has_tags, 3049 37334, has_genre, 32404 37334, has_tags, 10045 13151, has_tags, 10045 13151, starred_actors, 39747 34736, has_genre, 32404 34736, has_tags, 10045 20223, has_genre, 32404 20223, has_tags, 3049 20223, release_year, 31196 Question: How are HENRY JONES, LESTER PINE, and SPORT related? Your output must be ONLY the PATH block.
graph_path
{ "style": "rule" }
{ "entities": [ "HENRY JONES", "LESTER PINE", "SPORT" ], "valid_edges": [ [ "BLACKBALL", "has_genre", "SPORT" ], [ "BLACKBALL", "has_tags", "BD-R" ], [ "BLACKBALL", "has_tags", "SPORTS" ], [ "CLAUDINE", "release_year", "1974" ], [ "CLAUDINE", "written_by", "LESTER PINE" ], [ "INVINCIBLE", "has_genre", "SPORT" ], [ "INVINCIBLE", "has_tags", "BD-R" ], [ "INVINCIBLE", "has_tags", "SPORTS" ], [ "MONEYBALL", "has_genre", "SPORT" ], [ "MONEYBALL", "has_tags", "BD-R" ], [ "MONEYBALL", "has_tags", "SPORTS" ], [ "NATIONAL VELVET", "has_genre", "SPORT" ], [ "NATIONAL VELVET", "has_tags", "BD-R" ], [ "THE BAD SEED", "has_tags", "BD-R" ], [ "THE BAD SEED", "starred_actors", "HENRY JONES" ], [ "THE ENDLESS SUMMER", "has_genre", "SPORT" ], [ "THE ENDLESS SUMMER", "has_tags", "BD-R" ], [ "THE LONGEST YARD", "has_genre", "SPORT" ], [ "THE LONGEST YARD", "has_tags", "SPORTS" ], [ "THE LONGEST YARD", "release_year", "1974" ] ] }