data_source
stringclasses 1
value | prompt
stringlengths 1.1k
13.9k
| ability
stringclasses 1
value | reward_model
dict | extra_info
dict |
|---|---|---|---|---|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
35798, 2010
37090, A LITTLE HELP
29713, A SOMEWHAT GENTLE MAN
11665, ABIGAIL CRUTTENDEN
19743, ALPHA AND OMEGA
5054, AN ALLIGATOR NAMED DAISY
29304, ANIMALS UNITED
9116, ARMLESS
12144, BAD BOYS
27714, BARNEY'S VERSION
22023, BARRY MUNDAY
28846, BEGINNERS
31957, BOY
8003, CALAMARI UNION
18996, CEMETERY JUNCTION
29794, CHARLOTTE GRAY
10091, CHERRY
30463, COMEDY
1439, COP OUT
6133, CRAZY ON THE OUTSIDE
16600, CYRUS
13575, DATE NIGHT
37059, DEATH AT A FUNERAL
11161, DESPICABLE ME
16564, DIARY OF A WIMPY KID
38915, DINNER FOR SCHMUCKS
3172, DIRTY GIRL
18136, DOCTOR AT LARGE
25258, DONALD SINDEN
36212, DRAMA
19072, DRONES
33512, DUE DATE
10417, EASY A
25445, EASY MONEY
1069, ELEKTRA LUXX
14240, EVERYTHING MUST GO
2969, FATHER OF INVENTION
6666, FINNISH
24880, FLIPPED
32830, FOUR LIONS
5287, FROZEN
7656, FURRY VENGEANCE
21888, GET HIM TO THE GREEK
24815, GOING THE DISTANCE
27638, GREENBERG
19912, GRIFF THE INVISIBLE
18974, GROWN UPS
17440, GULLIVER'S TRAVELS
28838, GUNLESS
32384, HAMLET GOES BUSINESS
20140, HAPPY, HAPPY
33701, HAPPYTHANKYOUMOREPLEASE
11783, HEARTBREAKER
19039, HESHER
37827, HIGH SCHOOL
5617, HOT TUB TIME MACHINE
4931, HOW DO YOU KNOW
3485, HOW TO MAKE LOVE TO A WOMAN
883, I LOVE YOU TOO
37419, IT'S A WONDERFUL AFTERLIFE
21788, IT'S KIND OF A FUNNY STORY
15800, JACK GOES BOATING
17668, JACKASS 3D
5271, JAMES ROBERTSON JUSTICE
35402, JUST WRIGHT
12359, KICK-ASS
26839, KILLERS
5227, KLOWN
31646, KNIGHT AND DAY
1261, KNUCKLEHEAD
27072, LAPLAND ODYSSEY
22957, LEAP YEAR
6624, LET THE BULLETS FLY
9452, LIFE AS WE KNOW IT
27960, LITTLE BIG SOLDIER
251, LITTLE FOCKERS
16814, LITTLE WHITE LIES
35654, LOOSE CANNONS
971, LOTTERY TICKET
38894, LOVE AND OTHER TROUBLES
17855, MACGRUBER
29319, MAN EXPOSED
22924, MEET MONICA VELOUR
15238, MEGAMIND
5180, MISSION LONDON
1954, MOGAMBO
16578, MOOMINS ON THE RIVIERA
16662, MORNING GLORY
19597, MY GIRLFRIEND'S BOYFRIEND
33865, NICE GUY JOHNNY
4003, NORWEGIAN NINJA
12152, NOTHING TO DECLARE
32901, ON TOUR
30781, OPEN SEASON 3
12743, OUR FAMILY WEDDING
11129, PEEP WORLD
21830, PIRANHA 3D
34247, PLEASE GIVE
31445, PONTEROSA
11213, POTICHE
35110, PYAAR IMPOSSIBLE!
23764, RIO SEX COMEDY
34137, RUBBER
30519, SCOTT PILGRIM VS. THE WORLD
9094, SEX AND THE CITY 2
37803, SHADOWS IN PARADISE
34093, SHE'S OUT OF MY LEAGUE
21512, SHERLOCK HOLMES
30155, SIMPLE SIMON
37133, SOMEWHERE
13437, SOUND OF NOISE
30733, SUBMARINE
5700, SUPER
12457, TAMARA DREWE
12755, TANGLED
35302, THE A-TEAM
9091, THE ADVENTURES OF PICASSO
37777, THE BACK-UP PLAN
32454, THE BIG PICTURE
871, THE BOUNTY HUNTER
32654, THE CHOSEN ONE
39773, THE CLINK OF ICE
11696, THE CUCKOO
16488, THE EXTRA MAN
36722, THE FOUR-FACED LIAR
32459, THE HAMMER
5080, THE HOUSE OF BRANCHING LOVE
9510, THE INFIDEL
2507, THE KIDS ARE ALL RIGHT
20669, THE LOSERS
2147, THE MAN WITHOUT A PAST
25623, THE MATRIARCH
27824, THE OTHER GUYS
38086, THE PERFECT HOST
13614, THE ROMANTICS
18537, THE SPY NEXT DOOR
20830, THE STORAGE
37431, THE SWITCH
26036, THE TEMPEST
20739, THE VIRGINITY HIT
1903, TINY FURNITURE
16818, TOOTH FAIRY
22777, TOY STORY 3
11987, TRUST
26275, TRUST ME
16636, UUNO TURHAPURO
31620, UUNO TURHAPURO ARMEIJAN LEIVISSÄ
30682, VALENTINE'S DAY
27019, VIOLET TENDENCIES
33258, WEST IS WEST
39802, WHEN IN ROME
29999, WHY DID I GET MARRIED TOO?
18499, WILD TARGET
367, WITH LOVE... FROM THE AGE OF REASON
30255, YOGI BEAR
1826, YOU AGAIN
6279, YOU WILL MEET A TALL DARK STRANGER
src, edge_attr, dst
37090, has_genre, 30463
37090, release_year, 35798
29713, has_genre, 30463
29713, release_year, 35798
19743, has_genre, 30463
19743, release_year, 35798
5054, has_genre, 30463
5054, starred_actors, 25258
5054, starred_actors, 5271
29304, has_genre, 30463
29304, release_year, 35798
9116, has_genre, 30463
9116, release_year, 35798
12144, has_genre, 30463
12144, has_tags, 30463
12144, in_language, 6666
27714, has_genre, 30463
27714, release_year, 35798
22023, has_genre, 30463
22023, release_year, 35798
28846, has_genre, 30463
28846, release_year, 35798
31957, has_genre, 30463
31957, release_year, 35798
8003, has_genre, 30463
8003, has_tags, 30463
8003, in_language, 6666
18996, has_genre, 30463
18996, has_tags, 30463
18996, release_year, 35798
29794, has_genre, 36212
29794, starred_actors, 11665
10091, has_genre, 30463
10091, release_year, 35798
1439, has_genre, 30463
1439, release_year, 35798
6133, has_genre, 30463
6133, release_year, 35798
16600, has_genre, 30463
16600, release_year, 35798
13575, has_genre, 30463
13575, has_tags, 30463
13575, release_year, 35798
37059, has_genre, 30463
37059, has_tags, 30463
37059, release_year, 35798
11161, has_genre, 30463
11161, release_year, 35798
16564, has_genre, 30463
16564, release_year, 35798
38915, has_genre, 30463
38915, release_year, 35798
3172, has_genre, 30463
3172, release_year, 35798
18136, has_genre, 30463
18136, starred_actors, 25258
18136, starred_actors, 5271
19072, has_genre, 30463
19072, release_year, 35798
33512, has_genre, 30463
33512, has_tags, 30463
33512, release_year, 35798
10417, has_genre, 30463
10417, has_tags, 30463
10417, release_year, 35798
25445, has_genre, 30463
25445, release_year, 35798
1069, has_genre, 30463
1069, release_year, 35798
14240, has_genre, 30463
14240, release_year, 35798
2969, has_genre, 30463
2969, release_year, 35798
24880, has_genre, 30463
24880, release_year, 35798
32830, has_genre, 30463
32830, release_year, 35798
5287, has_genre, 30463
5287, release_year, 35798
7656, has_genre, 30463
7656, release_year, 35798
21888, has_genre, 30463
21888, has_tags, 30463
21888, release_year, 35798
24815, has_genre, 30463
24815, has_tags, 30463
24815, release_year, 35798
27638, has_genre, 30463
27638, release_year, 35798
19912, has_genre, 30463
19912, release_year, 35798
18974, has_genre, 30463
18974, has_tags, 30463
18974, release_year, 35798
17440, has_genre, 30463
17440, has_tags, 30463
17440, release_year, 35798
28838, has_genre, 30463
28838, release_year, 35798
32384, has_genre, 30463
32384, has_tags, 30463
32384, in_language, 6666
20140, has_genre, 30463
20140, release_year, 35798
33701, has_genre, 30463
33701, release_year, 35798
11783, has_genre, 30463
11783, release_year, 35798
19039, has_genre, 30463
19039, release_year, 35798
37827, has_genre, 30463
37827, release_year, 35798
5617, has_genre, 30463
5617, has_tags, 30463
5617, release_year, 35798
4931, has_genre, 30463
4931, release_year, 35798
3485, has_genre, 30463
3485, release_year, 35798
883, has_genre, 30463
883, release_year, 35798
37419, has_genre, 30463
37419, release_year, 35798
21788, has_genre, 30463
21788, release_year, 35798
15800, has_genre, 30463
15800, release_year, 35798
17668, has_genre, 30463
17668, release_year, 35798
35402, has_genre, 30463
35402, release_year, 35798
12359, has_genre, 30463
12359, release_year, 35798
26839, has_genre, 30463
26839, release_year, 35798
5227, has_genre, 30463
5227, has_tags, 30463
5227, release_year, 35798
31646, has_genre, 30463
31646, has_tags, 30463
31646, release_year, 35798
1261, has_genre, 30463
1261, release_year, 35798
27072, has_genre, 30463
27072, has_tags, 30463
27072, has_tags, 6666
27072, in_language, 6666
27072, release_year, 35798
22957, has_genre, 30463
22957, release_year, 35798
6624, has_genre, 30463
6624, release_year, 35798
9452, has_genre, 30463
9452, has_tags, 30463
9452, release_year, 35798
27960, has_genre, 30463
27960, release_year, 35798
251, has_genre, 30463
251, has_tags, 30463
251, release_year, 35798
16814, has_genre, 30463
16814, release_year, 35798
35654, has_genre, 30463
35654, release_year, 35798
971, has_genre, 30463
971, release_year, 35798
38894, has_genre, 30463
38894, in_language, 6666
17855, has_genre, 30463
17855, has_tags, 30463
17855, release_year, 35798
29319, has_genre, 30463
29319, in_language, 6666
22924, has_genre, 30463
22924, release_year, 35798
15238, has_genre, 30463
15238, has_tags, 30463
15238, release_year, 35798
5180, has_genre, 30463
5180, release_year, 35798
1954, has_genre, 36212
1954, starred_actors, 25258
16578, has_genre, 30463
16578, in_language, 6666
16662, has_genre, 30463
16662, release_year, 35798
19597, has_genre, 30463
19597, release_year, 35798
33865, has_genre, 30463
33865, release_year, 35798
4003, has_genre, 30463
4003, release_year, 35798
12152, has_genre, 30463
12152, has_tags, 30463
12152, release_year, 35798
32901, has_genre, 30463
32901, release_year, 35798
30781, has_genre, 30463
30781, has_tags, 30463
30781, release_year, 35798
12743, has_genre, 30463
12743, release_year, 35798
11129, has_genre, 30463
11129, release_year, 35798
21830, has_genre, 30463
21830, release_year, 35798
34247, has_genre, 30463
34247, release_year, 35798
31445, has_genre, 30463
31445, has_tags, 30463
31445, has_tags, 6666
31445, in_language, 6666
11213, has_genre, 30463
11213, release_year, 35798
35110, has_genre, 30463
35110, release_year, 35798
23764, has_genre, 30463
23764, release_year, 35798
34137, has_genre, 30463
34137, release_year, 35798
30519, has_genre, 30463
30519, has_tags, 30463
30519, release_year, 35798
9094, has_genre, 30463
9094, release_year, 35798
37803, has_genre, 30463
37803, in_language, 6666
34093, has_genre, 30463
34093, release_year, 35798
21512, has_tags, 30463
21512, release_year, 35798
30155, has_genre, 30463
30155, release_year, 35798
37133, has_genre, 30463
37133, release_year, 35798
13437, has_genre, 30463
13437, release_year, 35798
30733, has_genre, 30463
30733, release_year, 35798
5700, has_genre, 30463
5700, release_year, 35798
12457, has_genre, 30463
12457, release_year, 35798
12755, has_genre, 30463
12755, release_year, 35798
35302, has_genre, 30463
35302, release_year, 35798
9091, has_genre, 30463
9091, in_language, 6666
37777, has_genre, 30463
37777, release_year, 35798
32454, has_genre, 30463
32454, release_year, 35798
871, has_genre, 30463
871, has_tags, 30463
871, release_year, 35798
32654, has_genre, 30463
32654, release_year, 35798
39773, has_genre, 30463
39773, release_year, 35798
11696, has_genre, 30463
11696, has_tags, 6666
11696, in_language, 6666
16488, has_genre, 30463
16488, release_year, 35798
36722, has_genre, 30463
36722, release_year, 35798
32459, has_genre, 30463
32459, release_year, 35798
5080, has_genre, 30463
5080, in_language, 6666
9510, has_genre, 30463
9510, release_year, 35798
2507, has_genre, 30463
2507, has_tags, 30463
2507, release_year, 35798
20669, has_tags, 30463
20669, release_year, 35798
2147, has_genre, 30463
2147, has_tags, 6666
2147, in_language, 6666
25623, has_genre, 30463
25623, has_tags, 6666
25623, in_language, 6666
27824, has_genre, 30463
27824, has_tags, 30463
27824, release_year, 35798
38086, has_genre, 30463
38086, release_year, 35798
13614, has_genre, 30463
13614, release_year, 35798
18537, has_genre, 30463
18537, release_year, 35798
20830, has_genre, 30463
20830, in_language, 6666
37431, has_genre, 30463
37431, has_tags, 30463
37431, release_year, 35798
26036, has_genre, 30463
26036, release_year, 35798
20739, has_genre, 30463
20739, release_year, 35798
1903, has_genre, 30463
1903, release_year, 35798
16818, has_genre, 30463
16818, release_year, 35798
22777, has_genre, 30463
22777, has_tags, 30463
22777, release_year, 35798
11987, has_genre, 30463
11987, release_year, 35798
26275, has_genre, 30463
26275, release_year, 35798
16636, has_genre, 30463
16636, in_language, 6666
31620, has_genre, 30463
31620, in_language, 6666
30682, has_genre, 30463
30682, has_tags, 30463
30682, release_year, 35798
27019, has_genre, 30463
27019, release_year, 35798
33258, has_genre, 30463
33258, release_year, 35798
39802, has_genre, 30463
39802, release_year, 35798
29999, has_genre, 30463
29999, release_year, 35798
18499, has_genre, 30463
18499, has_tags, 30463
18499, release_year, 35798
367, has_genre, 30463
367, release_year, 35798
30255, has_genre, 30463
30255, release_year, 35798
1826, has_genre, 30463
1826, release_year, 35798
6279, has_genre, 30463
6279, has_tags, 30463
6279, release_year, 35798
Question: How are ABIGAIL CRUTTENDEN, DONALD SINDEN, and LAPLAND ODYSSEY related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"ABIGAIL CRUTTENDEN",
"DONALD SINDEN",
"LAPLAND ODYSSEY"
],
"valid_edges": [
[
"A LITTLE HELP",
"has_genre",
"COMEDY"
],
[
"A LITTLE HELP",
"release_year",
"2010"
],
[
"A SOMEWHAT GENTLE MAN",
"has_genre",
"COMEDY"
],
[
"A SOMEWHAT GENTLE MAN",
"release_year",
"2010"
],
[
"ALPHA AND OMEGA",
"has_genre",
"COMEDY"
],
[
"ALPHA AND OMEGA",
"release_year",
"2010"
],
[
"AN ALLIGATOR NAMED DAISY",
"has_genre",
"COMEDY"
],
[
"AN ALLIGATOR NAMED DAISY",
"starred_actors",
"DONALD SINDEN"
],
[
"AN ALLIGATOR NAMED DAISY",
"starred_actors",
"JAMES ROBERTSON JUSTICE"
],
[
"ANIMALS UNITED",
"has_genre",
"COMEDY"
],
[
"ANIMALS UNITED",
"release_year",
"2010"
],
[
"ARMLESS",
"has_genre",
"COMEDY"
],
[
"ARMLESS",
"release_year",
"2010"
],
[
"BAD BOYS",
"has_genre",
"COMEDY"
],
[
"BAD BOYS",
"has_tags",
"COMEDY"
],
[
"BAD BOYS",
"in_language",
"FINNISH"
],
[
"BARNEY'S VERSION",
"has_genre",
"COMEDY"
],
[
"BARNEY'S VERSION",
"release_year",
"2010"
],
[
"BARRY MUNDAY",
"has_genre",
"COMEDY"
],
[
"BARRY MUNDAY",
"release_year",
"2010"
],
[
"BEGINNERS",
"has_genre",
"COMEDY"
],
[
"BEGINNERS",
"release_year",
"2010"
],
[
"BOY",
"has_genre",
"COMEDY"
],
[
"BOY",
"release_year",
"2010"
],
[
"CALAMARI UNION",
"has_genre",
"COMEDY"
],
[
"CALAMARI UNION",
"has_tags",
"COMEDY"
],
[
"CALAMARI UNION",
"in_language",
"FINNISH"
],
[
"CEMETERY JUNCTION",
"has_genre",
"COMEDY"
],
[
"CEMETERY JUNCTION",
"has_tags",
"COMEDY"
],
[
"CEMETERY JUNCTION",
"release_year",
"2010"
],
[
"CHARLOTTE GRAY",
"has_genre",
"DRAMA"
],
[
"CHARLOTTE GRAY",
"starred_actors",
"ABIGAIL CRUTTENDEN"
],
[
"CHERRY",
"has_genre",
"COMEDY"
],
[
"CHERRY",
"release_year",
"2010"
],
[
"COP OUT",
"has_genre",
"COMEDY"
],
[
"COP OUT",
"release_year",
"2010"
],
[
"CRAZY ON THE OUTSIDE",
"has_genre",
"COMEDY"
],
[
"CRAZY ON THE OUTSIDE",
"release_year",
"2010"
],
[
"CYRUS",
"has_genre",
"COMEDY"
],
[
"CYRUS",
"release_year",
"2010"
],
[
"DATE NIGHT",
"has_genre",
"COMEDY"
],
[
"DATE NIGHT",
"has_tags",
"COMEDY"
],
[
"DATE NIGHT",
"release_year",
"2010"
],
[
"DEATH AT A FUNERAL",
"has_genre",
"COMEDY"
],
[
"DEATH AT A FUNERAL",
"has_tags",
"COMEDY"
],
[
"DEATH AT A FUNERAL",
"release_year",
"2010"
],
[
"DESPICABLE ME",
"has_genre",
"COMEDY"
],
[
"DESPICABLE ME",
"release_year",
"2010"
],
[
"DIARY OF A WIMPY KID",
"has_genre",
"COMEDY"
],
[
"DIARY OF A WIMPY KID",
"release_year",
"2010"
],
[
"DINNER FOR SCHMUCKS",
"has_genre",
"COMEDY"
],
[
"DINNER FOR SCHMUCKS",
"release_year",
"2010"
],
[
"DIRTY GIRL",
"has_genre",
"COMEDY"
],
[
"DIRTY GIRL",
"release_year",
"2010"
],
[
"DOCTOR AT LARGE",
"has_genre",
"COMEDY"
],
[
"DOCTOR AT LARGE",
"starred_actors",
"DONALD SINDEN"
],
[
"DOCTOR AT LARGE",
"starred_actors",
"JAMES ROBERTSON JUSTICE"
],
[
"DRONES",
"has_genre",
"COMEDY"
],
[
"DRONES",
"release_year",
"2010"
],
[
"DUE DATE",
"has_genre",
"COMEDY"
],
[
"DUE DATE",
"has_tags",
"COMEDY"
],
[
"DUE DATE",
"release_year",
"2010"
],
[
"EASY A",
"has_genre",
"COMEDY"
],
[
"EASY A",
"has_tags",
"COMEDY"
],
[
"EASY A",
"release_year",
"2010"
],
[
"EASY MONEY",
"has_genre",
"COMEDY"
],
[
"EASY MONEY",
"release_year",
"2010"
],
[
"ELEKTRA LUXX",
"has_genre",
"COMEDY"
],
[
"ELEKTRA LUXX",
"release_year",
"2010"
],
[
"EVERYTHING MUST GO",
"has_genre",
"COMEDY"
],
[
"EVERYTHING MUST GO",
"release_year",
"2010"
],
[
"FATHER OF INVENTION",
"has_genre",
"COMEDY"
],
[
"FATHER OF INVENTION",
"release_year",
"2010"
],
[
"FLIPPED",
"has_genre",
"COMEDY"
],
[
"FLIPPED",
"release_year",
"2010"
],
[
"FOUR LIONS",
"has_genre",
"COMEDY"
],
[
"FOUR LIONS",
"release_year",
"2010"
],
[
"FROZEN",
"has_genre",
"COMEDY"
],
[
"FROZEN",
"release_year",
"2010"
],
[
"FURRY VENGEANCE",
"has_genre",
"COMEDY"
],
[
"FURRY VENGEANCE",
"release_year",
"2010"
],
[
"GET HIM TO THE GREEK",
"has_genre",
"COMEDY"
],
[
"GET HIM TO THE GREEK",
"has_tags",
"COMEDY"
],
[
"GET HIM TO THE GREEK",
"release_year",
"2010"
],
[
"GOING THE DISTANCE",
"has_genre",
"COMEDY"
],
[
"GOING THE DISTANCE",
"has_tags",
"COMEDY"
],
[
"GOING THE DISTANCE",
"release_year",
"2010"
],
[
"GREENBERG",
"has_genre",
"COMEDY"
],
[
"GREENBERG",
"release_year",
"2010"
],
[
"GRIFF THE INVISIBLE",
"has_genre",
"COMEDY"
],
[
"GRIFF THE INVISIBLE",
"release_year",
"2010"
],
[
"GROWN UPS",
"has_genre",
"COMEDY"
],
[
"GROWN UPS",
"has_tags",
"COMEDY"
],
[
"GROWN UPS",
"release_year",
"2010"
],
[
"GULLIVER'S TRAVELS",
"has_genre",
"COMEDY"
],
[
"GULLIVER'S TRAVELS",
"has_tags",
"COMEDY"
],
[
"GULLIVER'S TRAVELS",
"release_year",
"2010"
],
[
"GUNLESS",
"has_genre",
"COMEDY"
],
[
"GUNLESS",
"release_year",
"2010"
],
[
"HAMLET GOES BUSINESS",
"has_genre",
"COMEDY"
],
[
"HAMLET GOES BUSINESS",
"has_tags",
"COMEDY"
],
[
"HAMLET GOES BUSINESS",
"in_language",
"FINNISH"
],
[
"HAPPY, HAPPY",
"has_genre",
"COMEDY"
],
[
"HAPPY, HAPPY",
"release_year",
"2010"
],
[
"HAPPYTHANKYOUMOREPLEASE",
"has_genre",
"COMEDY"
],
[
"HAPPYTHANKYOUMOREPLEASE",
"release_year",
"2010"
],
[
"HEARTBREAKER",
"has_genre",
"COMEDY"
],
[
"HEARTBREAKER",
"release_year",
"2010"
],
[
"HESHER",
"has_genre",
"COMEDY"
],
[
"HESHER",
"release_year",
"2010"
],
[
"HIGH SCHOOL",
"has_genre",
"COMEDY"
],
[
"HIGH SCHOOL",
"release_year",
"2010"
],
[
"HOT TUB TIME MACHINE",
"has_genre",
"COMEDY"
],
[
"HOT TUB TIME MACHINE",
"has_tags",
"COMEDY"
],
[
"HOT TUB TIME MACHINE",
"release_year",
"2010"
],
[
"HOW DO YOU KNOW",
"has_genre",
"COMEDY"
],
[
"HOW DO YOU KNOW",
"release_year",
"2010"
],
[
"HOW TO MAKE LOVE TO A WOMAN",
"has_genre",
"COMEDY"
],
[
"HOW TO MAKE LOVE TO A WOMAN",
"release_year",
"2010"
],
[
"I LOVE YOU TOO",
"has_genre",
"COMEDY"
],
[
"I LOVE YOU TOO",
"release_year",
"2010"
],
[
"IT'S A WONDERFUL AFTERLIFE",
"has_genre",
"COMEDY"
],
[
"IT'S A WONDERFUL AFTERLIFE",
"release_year",
"2010"
],
[
"IT'S KIND OF A FUNNY STORY",
"has_genre",
"COMEDY"
],
[
"IT'S KIND OF A FUNNY STORY",
"release_year",
"2010"
],
[
"JACK GOES BOATING",
"has_genre",
"COMEDY"
],
[
"JACK GOES BOATING",
"release_year",
"2010"
],
[
"JACKASS 3D",
"has_genre",
"COMEDY"
],
[
"JACKASS 3D",
"release_year",
"2010"
],
[
"JUST WRIGHT",
"has_genre",
"COMEDY"
],
[
"JUST WRIGHT",
"release_year",
"2010"
],
[
"KICK-ASS",
"has_genre",
"COMEDY"
],
[
"KICK-ASS",
"release_year",
"2010"
],
[
"KILLERS",
"has_genre",
"COMEDY"
],
[
"KILLERS",
"release_year",
"2010"
],
[
"KLOWN",
"has_genre",
"COMEDY"
],
[
"KLOWN",
"has_tags",
"COMEDY"
],
[
"KLOWN",
"release_year",
"2010"
],
[
"KNIGHT AND DAY",
"has_genre",
"COMEDY"
],
[
"KNIGHT AND DAY",
"has_tags",
"COMEDY"
],
[
"KNIGHT AND DAY",
"release_year",
"2010"
],
[
"KNUCKLEHEAD",
"has_genre",
"COMEDY"
],
[
"KNUCKLEHEAD",
"release_year",
"2010"
],
[
"LAPLAND ODYSSEY",
"has_genre",
"COMEDY"
],
[
"LAPLAND ODYSSEY",
"has_tags",
"COMEDY"
],
[
"LAPLAND ODYSSEY",
"has_tags",
"FINNISH"
],
[
"LAPLAND ODYSSEY",
"in_language",
"FINNISH"
],
[
"LAPLAND ODYSSEY",
"release_year",
"2010"
],
[
"LEAP YEAR",
"has_genre",
"COMEDY"
],
[
"LEAP YEAR",
"release_year",
"2010"
],
[
"LET THE BULLETS FLY",
"has_genre",
"COMEDY"
],
[
"LET THE BULLETS FLY",
"release_year",
"2010"
],
[
"LIFE AS WE KNOW IT",
"has_genre",
"COMEDY"
],
[
"LIFE AS WE KNOW IT",
"has_tags",
"COMEDY"
],
[
"LIFE AS WE KNOW IT",
"release_year",
"2010"
],
[
"LITTLE BIG SOLDIER",
"has_genre",
"COMEDY"
],
[
"LITTLE BIG SOLDIER",
"release_year",
"2010"
],
[
"LITTLE FOCKERS",
"has_genre",
"COMEDY"
],
[
"LITTLE FOCKERS",
"has_tags",
"COMEDY"
],
[
"LITTLE FOCKERS",
"release_year",
"2010"
],
[
"LITTLE WHITE LIES",
"has_genre",
"COMEDY"
],
[
"LITTLE WHITE LIES",
"release_year",
"2010"
],
[
"LOOSE CANNONS",
"has_genre",
"COMEDY"
],
[
"LOOSE CANNONS",
"release_year",
"2010"
],
[
"LOTTERY TICKET",
"has_genre",
"COMEDY"
],
[
"LOTTERY TICKET",
"release_year",
"2010"
],
[
"LOVE AND OTHER TROUBLES",
"has_genre",
"COMEDY"
],
[
"LOVE AND OTHER TROUBLES",
"in_language",
"FINNISH"
],
[
"MACGRUBER",
"has_genre",
"COMEDY"
],
[
"MACGRUBER",
"has_tags",
"COMEDY"
],
[
"MACGRUBER",
"release_year",
"2010"
],
[
"MAN EXPOSED",
"has_genre",
"COMEDY"
],
[
"MAN EXPOSED",
"in_language",
"FINNISH"
],
[
"MEET MONICA VELOUR",
"has_genre",
"COMEDY"
],
[
"MEET MONICA VELOUR",
"release_year",
"2010"
],
[
"MEGAMIND",
"has_genre",
"COMEDY"
],
[
"MEGAMIND",
"has_tags",
"COMEDY"
],
[
"MEGAMIND",
"release_year",
"2010"
],
[
"MISSION LONDON",
"has_genre",
"COMEDY"
],
[
"MISSION LONDON",
"release_year",
"2010"
],
[
"MOGAMBO",
"has_genre",
"DRAMA"
],
[
"MOGAMBO",
"starred_actors",
"DONALD SINDEN"
],
[
"MOOMINS ON THE RIVIERA",
"has_genre",
"COMEDY"
],
[
"MOOMINS ON THE RIVIERA",
"in_language",
"FINNISH"
],
[
"MORNING GLORY",
"has_genre",
"COMEDY"
],
[
"MORNING GLORY",
"release_year",
"2010"
],
[
"MY GIRLFRIEND'S BOYFRIEND",
"has_genre",
"COMEDY"
],
[
"MY GIRLFRIEND'S BOYFRIEND",
"release_year",
"2010"
],
[
"NICE GUY JOHNNY",
"has_genre",
"COMEDY"
],
[
"NICE GUY JOHNNY",
"release_year",
"2010"
],
[
"NORWEGIAN NINJA",
"has_genre",
"COMEDY"
],
[
"NORWEGIAN NINJA",
"release_year",
"2010"
],
[
"NOTHING TO DECLARE",
"has_genre",
"COMEDY"
],
[
"NOTHING TO DECLARE",
"has_tags",
"COMEDY"
],
[
"NOTHING TO DECLARE",
"release_year",
"2010"
],
[
"ON TOUR",
"has_genre",
"COMEDY"
],
[
"ON TOUR",
"release_year",
"2010"
],
[
"OPEN SEASON 3",
"has_genre",
"COMEDY"
],
[
"OPEN SEASON 3",
"has_tags",
"COMEDY"
],
[
"OPEN SEASON 3",
"release_year",
"2010"
],
[
"OUR FAMILY WEDDING",
"has_genre",
"COMEDY"
],
[
"OUR FAMILY WEDDING",
"release_year",
"2010"
],
[
"PEEP WORLD",
"has_genre",
"COMEDY"
],
[
"PEEP WORLD",
"release_year",
"2010"
],
[
"PIRANHA 3D",
"has_genre",
"COMEDY"
],
[
"PIRANHA 3D",
"release_year",
"2010"
],
[
"PLEASE GIVE",
"has_genre",
"COMEDY"
],
[
"PLEASE GIVE",
"release_year",
"2010"
],
[
"PONTEROSA",
"has_genre",
"COMEDY"
],
[
"PONTEROSA",
"has_tags",
"COMEDY"
],
[
"PONTEROSA",
"has_tags",
"FINNISH"
],
[
"PONTEROSA",
"in_language",
"FINNISH"
],
[
"POTICHE",
"has_genre",
"COMEDY"
],
[
"POTICHE",
"release_year",
"2010"
],
[
"PYAAR IMPOSSIBLE!",
"has_genre",
"COMEDY"
],
[
"PYAAR IMPOSSIBLE!",
"release_year",
"2010"
],
[
"RIO SEX COMEDY",
"has_genre",
"COMEDY"
],
[
"RIO SEX COMEDY",
"release_year",
"2010"
],
[
"RUBBER",
"has_genre",
"COMEDY"
],
[
"RUBBER",
"release_year",
"2010"
],
[
"SCOTT PILGRIM VS. THE WORLD",
"has_genre",
"COMEDY"
],
[
"SCOTT PILGRIM VS. THE WORLD",
"has_tags",
"COMEDY"
],
[
"SCOTT PILGRIM VS. THE WORLD",
"release_year",
"2010"
],
[
"SEX AND THE CITY 2",
"has_genre",
"COMEDY"
],
[
"SEX AND THE CITY 2",
"release_year",
"2010"
],
[
"SHADOWS IN PARADISE",
"has_genre",
"COMEDY"
],
[
"SHADOWS IN PARADISE",
"in_language",
"FINNISH"
],
[
"SHE'S OUT OF MY LEAGUE",
"has_genre",
"COMEDY"
],
[
"SHE'S OUT OF MY LEAGUE",
"release_year",
"2010"
],
[
"SHERLOCK HOLMES",
"has_tags",
"COMEDY"
],
[
"SHERLOCK HOLMES",
"release_year",
"2010"
],
[
"SIMPLE SIMON",
"has_genre",
"COMEDY"
],
[
"SIMPLE SIMON",
"release_year",
"2010"
],
[
"SOMEWHERE",
"has_genre",
"COMEDY"
],
[
"SOMEWHERE",
"release_year",
"2010"
],
[
"SOUND OF NOISE",
"has_genre",
"COMEDY"
],
[
"SOUND OF NOISE",
"release_year",
"2010"
],
[
"SUBMARINE",
"has_genre",
"COMEDY"
],
[
"SUBMARINE",
"release_year",
"2010"
],
[
"SUPER",
"has_genre",
"COMEDY"
],
[
"SUPER",
"release_year",
"2010"
],
[
"TAMARA DREWE",
"has_genre",
"COMEDY"
],
[
"TAMARA DREWE",
"release_year",
"2010"
],
[
"TANGLED",
"has_genre",
"COMEDY"
],
[
"TANGLED",
"release_year",
"2010"
],
[
"THE A-TEAM",
"has_genre",
"COMEDY"
],
[
"THE A-TEAM",
"release_year",
"2010"
],
[
"THE ADVENTURES OF PICASSO",
"has_genre",
"COMEDY"
],
[
"THE ADVENTURES OF PICASSO",
"in_language",
"FINNISH"
],
[
"THE BACK-UP PLAN",
"has_genre",
"COMEDY"
],
[
"THE BACK-UP PLAN",
"release_year",
"2010"
],
[
"THE BIG PICTURE",
"has_genre",
"COMEDY"
],
[
"THE BIG PICTURE",
"release_year",
"2010"
],
[
"THE BOUNTY HUNTER",
"has_genre",
"COMEDY"
],
[
"THE BOUNTY HUNTER",
"has_tags",
"COMEDY"
],
[
"THE BOUNTY HUNTER",
"release_year",
"2010"
],
[
"THE CHOSEN ONE",
"has_genre",
"COMEDY"
],
[
"THE CHOSEN ONE",
"release_year",
"2010"
],
[
"THE CLINK OF ICE",
"has_genre",
"COMEDY"
],
[
"THE CLINK OF ICE",
"release_year",
"2010"
],
[
"THE CUCKOO",
"has_genre",
"COMEDY"
],
[
"THE CUCKOO",
"has_tags",
"FINNISH"
],
[
"THE CUCKOO",
"in_language",
"FINNISH"
],
[
"THE EXTRA MAN",
"has_genre",
"COMEDY"
],
[
"THE EXTRA MAN",
"release_year",
"2010"
],
[
"THE FOUR-FACED LIAR",
"has_genre",
"COMEDY"
],
[
"THE FOUR-FACED LIAR",
"release_year",
"2010"
],
[
"THE HAMMER",
"has_genre",
"COMEDY"
],
[
"THE HAMMER",
"release_year",
"2010"
],
[
"THE HOUSE OF BRANCHING LOVE",
"has_genre",
"COMEDY"
],
[
"THE HOUSE OF BRANCHING LOVE",
"in_language",
"FINNISH"
],
[
"THE INFIDEL",
"has_genre",
"COMEDY"
],
[
"THE INFIDEL",
"release_year",
"2010"
],
[
"THE KIDS ARE ALL RIGHT",
"has_genre",
"COMEDY"
],
[
"THE KIDS ARE ALL RIGHT",
"has_tags",
"COMEDY"
],
[
"THE KIDS ARE ALL RIGHT",
"release_year",
"2010"
],
[
"THE LOSERS",
"has_tags",
"COMEDY"
],
[
"THE LOSERS",
"release_year",
"2010"
],
[
"THE MAN WITHOUT A PAST",
"has_genre",
"COMEDY"
],
[
"THE MAN WITHOUT A PAST",
"has_tags",
"FINNISH"
],
[
"THE MAN WITHOUT A PAST",
"in_language",
"FINNISH"
],
[
"THE MATRIARCH",
"has_genre",
"COMEDY"
],
[
"THE MATRIARCH",
"has_tags",
"FINNISH"
],
[
"THE MATRIARCH",
"in_language",
"FINNISH"
],
[
"THE OTHER GUYS",
"has_genre",
"COMEDY"
],
[
"THE OTHER GUYS",
"has_tags",
"COMEDY"
],
[
"THE OTHER GUYS",
"release_year",
"2010"
],
[
"THE PERFECT HOST",
"has_genre",
"COMEDY"
],
[
"THE PERFECT HOST",
"release_year",
"2010"
],
[
"THE ROMANTICS",
"has_genre",
"COMEDY"
],
[
"THE ROMANTICS",
"release_year",
"2010"
],
[
"THE SPY NEXT DOOR",
"has_genre",
"COMEDY"
],
[
"THE SPY NEXT DOOR",
"release_year",
"2010"
],
[
"THE STORAGE",
"has_genre",
"COMEDY"
],
[
"THE STORAGE",
"in_language",
"FINNISH"
],
[
"THE SWITCH",
"has_genre",
"COMEDY"
],
[
"THE SWITCH",
"has_tags",
"COMEDY"
],
[
"THE SWITCH",
"release_year",
"2010"
],
[
"THE TEMPEST",
"has_genre",
"COMEDY"
],
[
"THE TEMPEST",
"release_year",
"2010"
],
[
"THE VIRGINITY HIT",
"has_genre",
"COMEDY"
],
[
"THE VIRGINITY HIT",
"release_year",
"2010"
],
[
"TINY FURNITURE",
"has_genre",
"COMEDY"
],
[
"TINY FURNITURE",
"release_year",
"2010"
],
[
"TOOTH FAIRY",
"has_genre",
"COMEDY"
],
[
"TOOTH FAIRY",
"release_year",
"2010"
],
[
"TOY STORY 3",
"has_genre",
"COMEDY"
],
[
"TOY STORY 3",
"has_tags",
"COMEDY"
],
[
"TOY STORY 3",
"release_year",
"2010"
],
[
"TRUST",
"has_genre",
"COMEDY"
],
[
"TRUST",
"release_year",
"2010"
],
[
"TRUST ME",
"has_genre",
"COMEDY"
],
[
"TRUST ME",
"release_year",
"2010"
],
[
"UUNO TURHAPURO",
"has_genre",
"COMEDY"
],
[
"UUNO TURHAPURO",
"in_language",
"FINNISH"
],
[
"UUNO TURHAPURO ARMEIJAN LEIVISSÄ",
"has_genre",
"COMEDY"
],
[
"UUNO TURHAPURO ARMEIJAN LEIVISSÄ",
"in_language",
"FINNISH"
],
[
"VALENTINE'S DAY",
"has_genre",
"COMEDY"
],
[
"VALENTINE'S DAY",
"has_tags",
"COMEDY"
],
[
"VALENTINE'S DAY",
"release_year",
"2010"
],
[
"VIOLET TENDENCIES",
"has_genre",
"COMEDY"
],
[
"VIOLET TENDENCIES",
"release_year",
"2010"
],
[
"WEST IS WEST",
"has_genre",
"COMEDY"
],
[
"WEST IS WEST",
"release_year",
"2010"
],
[
"WHEN IN ROME",
"has_genre",
"COMEDY"
],
[
"WHEN IN ROME",
"release_year",
"2010"
],
[
"WHY DID I GET MARRIED TOO?",
"has_genre",
"COMEDY"
],
[
"WHY DID I GET MARRIED TOO?",
"release_year",
"2010"
],
[
"WILD TARGET",
"has_genre",
"COMEDY"
],
[
"WILD TARGET",
"has_tags",
"COMEDY"
],
[
"WILD TARGET",
"release_year",
"2010"
],
[
"WITH LOVE... FROM THE AGE OF REASON",
"has_genre",
"COMEDY"
],
[
"WITH LOVE... FROM THE AGE OF REASON",
"release_year",
"2010"
],
[
"YOGI BEAR",
"has_genre",
"COMEDY"
],
[
"YOGI BEAR",
"release_year",
"2010"
],
[
"YOU AGAIN",
"has_genre",
"COMEDY"
],
[
"YOU AGAIN",
"release_year",
"2010"
],
[
"YOU WILL MEET A TALL DARK STRANGER",
"has_genre",
"COMEDY"
],
[
"YOU WILL MEET A TALL DARK STRANGER",
"has_tags",
"COMEDY"
],
[
"YOU WILL MEET A TALL DARK STRANGER",
"release_year",
"2010"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
24438, 1993
2133, 1998
319, A BUG'S LIFE
5076, EXTREME JUSTICE
483, FARAWAY, SO CLOSE!
35493, FIRESTORM
1313, JOHN LASSETER
19394, OTTO SANDER
9281, SCOTT GLENN
src, edge_attr, dst
319, directed_by, 1313
319, has_tags, 1313
319, release_year, 2133
319, written_by, 1313
5076, release_year, 24438
5076, starred_actors, 9281
483, release_year, 24438
483, starred_actors, 19394
35493, release_year, 2133
35493, starred_actors, 9281
Question: How are JOHN LASSETER, OTTO SANDER, and SCOTT GLENN related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"JOHN LASSETER",
"OTTO SANDER",
"SCOTT GLENN"
],
"valid_edges": [
[
"A BUG'S LIFE",
"directed_by",
"JOHN LASSETER"
],
[
"A BUG'S LIFE",
"has_tags",
"JOHN LASSETER"
],
[
"A BUG'S LIFE",
"release_year",
"1998"
],
[
"A BUG'S LIFE",
"written_by",
"JOHN LASSETER"
],
[
"EXTREME JUSTICE",
"release_year",
"1993"
],
[
"EXTREME JUSTICE",
"starred_actors",
"SCOTT GLENN"
],
[
"FARAWAY, SO CLOSE!",
"release_year",
"1993"
],
[
"FARAWAY, SO CLOSE!",
"starred_actors",
"OTTO SANDER"
],
[
"FIRESTORM",
"release_year",
"1998"
],
[
"FIRESTORM",
"starred_actors",
"SCOTT GLENN"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
8636, 1930
6718, A FAREWELL TO ARMS
7463, ALL QUIET ON THE WESTERN FRONT
6966, FORBIDDEN GAMES
3306, FRANÇOIS BOYER
39145, FURY
29757, GARY COOPER
20693, GONE WITH THE WIND
1422, MOROCCO
37497, NATIONAL FILM REGISTRY
8379, ROMANCE
3719, SERGEANT YORK
35043, SYLVIA SIDNEY
38627, TEN TALL MEN
22214, WAR
src, edge_attr, dst
6718, has_genre, 8379
6718, starred_actors, 29757
7463, has_tags, 37497
7463, release_year, 8636
6966, has_genre, 22214
6966, written_by, 3306
39145, has_genre, 22214
39145, has_tags, 22214
39145, starred_actors, 35043
20693, has_genre, 8379
20693, has_tags, 37497
20693, has_tags, 8379
1422, has_genre, 8379
1422, has_tags, 29757
1422, has_tags, 37497
1422, release_year, 8636
1422, starred_actors, 29757
3719, has_tags, 29757
3719, has_tags, 37497
3719, starred_actors, 29757
38627, has_genre, 22214
38627, has_tags, 1422
Question: For what reason are FRANÇOIS BOYER, MOROCCO, and SYLVIA SIDNEY associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"FRANÇOIS BOYER",
"MOROCCO",
"SYLVIA SIDNEY"
],
"valid_edges": [
[
"A FAREWELL TO ARMS",
"has_genre",
"ROMANCE"
],
[
"A FAREWELL TO ARMS",
"starred_actors",
"GARY COOPER"
],
[
"ALL QUIET ON THE WESTERN FRONT",
"has_tags",
"NATIONAL FILM REGISTRY"
],
[
"ALL QUIET ON THE WESTERN FRONT",
"release_year",
"1930"
],
[
"FORBIDDEN GAMES",
"has_genre",
"WAR"
],
[
"FORBIDDEN GAMES",
"written_by",
"FRANÇOIS BOYER"
],
[
"FURY",
"has_genre",
"WAR"
],
[
"FURY",
"has_tags",
"WAR"
],
[
"FURY",
"starred_actors",
"SYLVIA SIDNEY"
],
[
"GONE WITH THE WIND",
"has_genre",
"ROMANCE"
],
[
"GONE WITH THE WIND",
"has_tags",
"NATIONAL FILM REGISTRY"
],
[
"GONE WITH THE WIND",
"has_tags",
"ROMANCE"
],
[
"MOROCCO",
"has_genre",
"ROMANCE"
],
[
"MOROCCO",
"has_tags",
"GARY COOPER"
],
[
"MOROCCO",
"has_tags",
"NATIONAL FILM REGISTRY"
],
[
"MOROCCO",
"release_year",
"1930"
],
[
"MOROCCO",
"starred_actors",
"GARY COOPER"
],
[
"SERGEANT YORK",
"has_tags",
"GARY COOPER"
],
[
"SERGEANT YORK",
"has_tags",
"NATIONAL FILM REGISTRY"
],
[
"SERGEANT YORK",
"starred_actors",
"GARY COOPER"
],
[
"TEN TALL MEN",
"has_genre",
"WAR"
],
[
"TEN TALL MEN",
"has_tags",
"MOROCCO"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
8486, 1999
17315, 2007
17159, A MIGHTY HEART
3197, ANGELINA JOLIE
30501, BEOWULF
34555, FLAWLESS
3697, FLIGHT OF FURY
22532, GIRL, INTERRUPTED
8068, MALEFICENT
35249, RING 2
26125, SUNSHINE
451, THE BONE COLLECTOR
25509, THE DEBT
src, edge_attr, dst
17159, has_tags, 3197
17159, release_year, 17315
17159, starred_actors, 3197
30501, has_tags, 3197
30501, release_year, 8486
30501, release_year, 17315
34555, release_year, 8486
34555, release_year, 17315
3697, release_year, 17315
22532, has_tags, 3197
22532, release_year, 8486
22532, starred_actors, 3197
8068, has_tags, 3197
8068, starred_actors, 3197
35249, release_year, 8486
26125, release_year, 8486
26125, release_year, 17315
451, has_tags, 3197
451, release_year, 8486
451, starred_actors, 3197
25509, release_year, 8486
25509, release_year, 17315
Question: For what reason are FLIGHT OF FURY, MALEFICENT, and RING 2 associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"FLIGHT OF FURY",
"MALEFICENT",
"RING 2"
],
"valid_edges": [
[
"A MIGHTY HEART",
"has_tags",
"ANGELINA JOLIE"
],
[
"A MIGHTY HEART",
"release_year",
"2007"
],
[
"A MIGHTY HEART",
"starred_actors",
"ANGELINA JOLIE"
],
[
"BEOWULF",
"has_tags",
"ANGELINA JOLIE"
],
[
"BEOWULF",
"release_year",
"1999"
],
[
"BEOWULF",
"release_year",
"2007"
],
[
"FLAWLESS",
"release_year",
"1999"
],
[
"FLAWLESS",
"release_year",
"2007"
],
[
"FLIGHT OF FURY",
"release_year",
"2007"
],
[
"GIRL, INTERRUPTED",
"has_tags",
"ANGELINA JOLIE"
],
[
"GIRL, INTERRUPTED",
"release_year",
"1999"
],
[
"GIRL, INTERRUPTED",
"starred_actors",
"ANGELINA JOLIE"
],
[
"MALEFICENT",
"has_tags",
"ANGELINA JOLIE"
],
[
"MALEFICENT",
"starred_actors",
"ANGELINA JOLIE"
],
[
"RING 2",
"release_year",
"1999"
],
[
"SUNSHINE",
"release_year",
"1999"
],
[
"SUNSHINE",
"release_year",
"2007"
],
[
"THE BONE COLLECTOR",
"has_tags",
"ANGELINA JOLIE"
],
[
"THE BONE COLLECTOR",
"release_year",
"1999"
],
[
"THE BONE COLLECTOR",
"starred_actors",
"ANGELINA JOLIE"
],
[
"THE DEBT",
"release_year",
"1999"
],
[
"THE DEBT",
"release_year",
"2007"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
14004, 1955
12094, A LAWLESS STREET
2216, ALONG THE GREAT DIVIDE
20106, BATTLE CRY
30230, COLORADO TERRITORY
34347, COUNT THREE AND PRAY
10663, DARK COMMAND
28252, DISTANT DRUMS
12841, DOCUMENTARY
7649, MAN WITH THE GUN
12039, NIGHT AND FOG
10835, RAGE AT DAWN
33941, RAOUL WALSH
38516, REGENERATION
20243, RUN FOR COVER
31613, SAN ANTONIO
32417, SINS OF MY FATHER
7585, TEXAS
33304, THE FAR HORIZONS
34953, THE GUN THAT WON THE WEST
20896, THE LAST FRONTIER
15059, THE LAWLESS BREED
17394, THE MAN FROM LARAMIE
9409, THE TALL MEN
30942, THE VIOLENT MEN
36026, WESTERN
18860, WICHITA
src, edge_attr, dst
12094, has_genre, 36026
12094, release_year, 14004
2216, directed_by, 33941
2216, has_genre, 36026
20106, directed_by, 33941
20106, release_year, 14004
30230, directed_by, 33941
30230, has_genre, 36026
30230, has_tags, 33941
34347, has_genre, 36026
34347, release_year, 14004
10663, directed_by, 33941
10663, has_genre, 36026
28252, directed_by, 33941
28252, has_genre, 36026
7649, has_genre, 36026
7649, release_year, 14004
12039, has_genre, 12841
12039, has_tags, 12841
12039, release_year, 14004
10835, has_genre, 36026
10835, release_year, 14004
38516, directed_by, 33941
38516, has_genre, 12841
38516, written_by, 33941
20243, has_genre, 36026
20243, release_year, 14004
31613, directed_by, 33941
31613, has_genre, 36026
32417, has_genre, 12841
7585, has_genre, 36026
33304, has_genre, 36026
33304, release_year, 14004
34953, has_genre, 36026
34953, release_year, 14004
20896, has_genre, 36026
20896, release_year, 14004
15059, directed_by, 33941
15059, has_genre, 36026
17394, has_genre, 36026
17394, release_year, 14004
9409, directed_by, 33941
9409, release_year, 14004
30942, has_genre, 36026
30942, release_year, 14004
18860, has_genre, 36026
18860, release_year, 14004
Question: How are SINS OF MY FATHER, TEXAS, and THE TALL MEN related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"SINS OF MY FATHER",
"TEXAS",
"THE TALL MEN"
],
"valid_edges": [
[
"A LAWLESS STREET",
"has_genre",
"WESTERN"
],
[
"A LAWLESS STREET",
"release_year",
"1955"
],
[
"ALONG THE GREAT DIVIDE",
"directed_by",
"RAOUL WALSH"
],
[
"ALONG THE GREAT DIVIDE",
"has_genre",
"WESTERN"
],
[
"BATTLE CRY",
"directed_by",
"RAOUL WALSH"
],
[
"BATTLE CRY",
"release_year",
"1955"
],
[
"COLORADO TERRITORY",
"directed_by",
"RAOUL WALSH"
],
[
"COLORADO TERRITORY",
"has_genre",
"WESTERN"
],
[
"COLORADO TERRITORY",
"has_tags",
"RAOUL WALSH"
],
[
"COUNT THREE AND PRAY",
"has_genre",
"WESTERN"
],
[
"COUNT THREE AND PRAY",
"release_year",
"1955"
],
[
"DARK COMMAND",
"directed_by",
"RAOUL WALSH"
],
[
"DARK COMMAND",
"has_genre",
"WESTERN"
],
[
"DISTANT DRUMS",
"directed_by",
"RAOUL WALSH"
],
[
"DISTANT DRUMS",
"has_genre",
"WESTERN"
],
[
"MAN WITH THE GUN",
"has_genre",
"WESTERN"
],
[
"MAN WITH THE GUN",
"release_year",
"1955"
],
[
"NIGHT AND FOG",
"has_genre",
"DOCUMENTARY"
],
[
"NIGHT AND FOG",
"has_tags",
"DOCUMENTARY"
],
[
"NIGHT AND FOG",
"release_year",
"1955"
],
[
"RAGE AT DAWN",
"has_genre",
"WESTERN"
],
[
"RAGE AT DAWN",
"release_year",
"1955"
],
[
"REGENERATION",
"directed_by",
"RAOUL WALSH"
],
[
"REGENERATION",
"has_genre",
"DOCUMENTARY"
],
[
"REGENERATION",
"written_by",
"RAOUL WALSH"
],
[
"RUN FOR COVER",
"has_genre",
"WESTERN"
],
[
"RUN FOR COVER",
"release_year",
"1955"
],
[
"SAN ANTONIO",
"directed_by",
"RAOUL WALSH"
],
[
"SAN ANTONIO",
"has_genre",
"WESTERN"
],
[
"SINS OF MY FATHER",
"has_genre",
"DOCUMENTARY"
],
[
"TEXAS",
"has_genre",
"WESTERN"
],
[
"THE FAR HORIZONS",
"has_genre",
"WESTERN"
],
[
"THE FAR HORIZONS",
"release_year",
"1955"
],
[
"THE GUN THAT WON THE WEST",
"has_genre",
"WESTERN"
],
[
"THE GUN THAT WON THE WEST",
"release_year",
"1955"
],
[
"THE LAST FRONTIER",
"has_genre",
"WESTERN"
],
[
"THE LAST FRONTIER",
"release_year",
"1955"
],
[
"THE LAWLESS BREED",
"directed_by",
"RAOUL WALSH"
],
[
"THE LAWLESS BREED",
"has_genre",
"WESTERN"
],
[
"THE MAN FROM LARAMIE",
"has_genre",
"WESTERN"
],
[
"THE MAN FROM LARAMIE",
"release_year",
"1955"
],
[
"THE TALL MEN",
"directed_by",
"RAOUL WALSH"
],
[
"THE TALL MEN",
"release_year",
"1955"
],
[
"THE VIOLENT MEN",
"has_genre",
"WESTERN"
],
[
"THE VIOLENT MEN",
"release_year",
"1955"
],
[
"WICHITA",
"has_genre",
"WESTERN"
],
[
"WICHITA",
"release_year",
"1955"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
15506, 1933
7421, APART FROM YOU
27426, AS I LAY DYING
26475, BABY FACE
4731, BARBARY COAST
34812, BECKY SHARP
16273, BOMBSHELL
18018, CAVALCADE
30463, COMEDY
15047, COUNSELLOR AT LAW
15791, DINNER AT EIGHT
36212, DRAMA
17986, GABRIEL OVER THE WHITE HOUSE
33241, GUILLERMO DÍAZ
3745, INTRUDER IN THE DUST
36639, LADIES THEY TALK ABOUT
13476, LADY KILLER
19475, LAURA SAN GIACOMO
26784, LITTLE WOMEN
31195, LOOKING FORWARD
31323, MIRIAM HOPKINS
16662, MORNING GLORY
20443, NIGHT FLIGHT
18256, OLD ACQUAINTANCE
40059, ONCE AROUND
28686, S.O.S. EISBERG
39856, SHE DONE HIM WRONG
18733, STONEWALL
39071, THE BITTER TEA OF GENERAL YEN
15207, THE EMPEROR JONES
30083, THE HOUSE ON 56TH STREET
4700, THE STORY OF TEMPLE DRAKE
29621, THE STRANGER'S RETURN
27022, THE TARNISHED ANGELS
4442, WHERE THE DAY TAKES YOU
33943, WILLIAM FAULKNER
src, edge_attr, dst
7421, has_genre, 36212
7421, release_year, 15506
27426, has_genre, 36212
27426, has_tags, 33943
27426, written_by, 33943
26475, has_genre, 36212
26475, release_year, 15506
4731, has_genre, 36212
4731, starred_actors, 31323
34812, has_genre, 36212
34812, starred_actors, 31323
16273, has_genre, 36212
16273, release_year, 15506
18018, has_genre, 36212
18018, release_year, 15506
15047, has_genre, 36212
15047, release_year, 15506
15791, has_genre, 36212
15791, release_year, 15506
17986, has_genre, 36212
17986, release_year, 15506
3745, has_genre, 36212
3745, has_tags, 33943
3745, written_by, 33943
36639, has_genre, 36212
36639, release_year, 15506
13476, has_genre, 36212
13476, release_year, 15506
26784, has_genre, 36212
26784, has_tags, 36212
26784, release_year, 15506
31195, has_genre, 36212
31195, release_year, 15506
16662, has_genre, 36212
16662, release_year, 15506
20443, has_genre, 36212
20443, release_year, 15506
18256, has_genre, 36212
18256, starred_actors, 31323
40059, has_genre, 30463
40059, has_genre, 36212
40059, has_tags, 36212
40059, starred_actors, 19475
28686, has_genre, 36212
28686, release_year, 15506
39856, has_genre, 36212
39856, release_year, 15506
18733, has_genre, 30463
18733, has_genre, 36212
18733, starred_actors, 33241
39071, has_genre, 36212
39071, release_year, 15506
15207, has_genre, 36212
15207, release_year, 15506
30083, has_genre, 36212
30083, release_year, 15506
4700, has_genre, 36212
4700, has_tags, 33943
4700, release_year, 15506
4700, starred_actors, 31323
4700, written_by, 33943
29621, has_genre, 36212
29621, release_year, 15506
29621, starred_actors, 31323
27022, has_genre, 36212
27022, written_by, 33943
4442, has_genre, 36212
4442, starred_actors, 19475
Question: In what context are GUILLERMO DÍAZ, LAURA SAN GIACOMO, and THE STORY OF TEMPLE DRAKE connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"GUILLERMO DÍAZ",
"LAURA SAN GIACOMO",
"THE STORY OF TEMPLE DRAKE"
],
"valid_edges": [
[
"APART FROM YOU",
"has_genre",
"DRAMA"
],
[
"APART FROM YOU",
"release_year",
"1933"
],
[
"AS I LAY DYING",
"has_genre",
"DRAMA"
],
[
"AS I LAY DYING",
"has_tags",
"WILLIAM FAULKNER"
],
[
"AS I LAY DYING",
"written_by",
"WILLIAM FAULKNER"
],
[
"BABY FACE",
"has_genre",
"DRAMA"
],
[
"BABY FACE",
"release_year",
"1933"
],
[
"BARBARY COAST",
"has_genre",
"DRAMA"
],
[
"BARBARY COAST",
"starred_actors",
"MIRIAM HOPKINS"
],
[
"BECKY SHARP",
"has_genre",
"DRAMA"
],
[
"BECKY SHARP",
"starred_actors",
"MIRIAM HOPKINS"
],
[
"BOMBSHELL",
"has_genre",
"DRAMA"
],
[
"BOMBSHELL",
"release_year",
"1933"
],
[
"CAVALCADE",
"has_genre",
"DRAMA"
],
[
"CAVALCADE",
"release_year",
"1933"
],
[
"COUNSELLOR AT LAW",
"has_genre",
"DRAMA"
],
[
"COUNSELLOR AT LAW",
"release_year",
"1933"
],
[
"DINNER AT EIGHT",
"has_genre",
"DRAMA"
],
[
"DINNER AT EIGHT",
"release_year",
"1933"
],
[
"GABRIEL OVER THE WHITE HOUSE",
"has_genre",
"DRAMA"
],
[
"GABRIEL OVER THE WHITE HOUSE",
"release_year",
"1933"
],
[
"INTRUDER IN THE DUST",
"has_genre",
"DRAMA"
],
[
"INTRUDER IN THE DUST",
"has_tags",
"WILLIAM FAULKNER"
],
[
"INTRUDER IN THE DUST",
"written_by",
"WILLIAM FAULKNER"
],
[
"LADIES THEY TALK ABOUT",
"has_genre",
"DRAMA"
],
[
"LADIES THEY TALK ABOUT",
"release_year",
"1933"
],
[
"LADY KILLER",
"has_genre",
"DRAMA"
],
[
"LADY KILLER",
"release_year",
"1933"
],
[
"LITTLE WOMEN",
"has_genre",
"DRAMA"
],
[
"LITTLE WOMEN",
"has_tags",
"DRAMA"
],
[
"LITTLE WOMEN",
"release_year",
"1933"
],
[
"LOOKING FORWARD",
"has_genre",
"DRAMA"
],
[
"LOOKING FORWARD",
"release_year",
"1933"
],
[
"MORNING GLORY",
"has_genre",
"DRAMA"
],
[
"MORNING GLORY",
"release_year",
"1933"
],
[
"NIGHT FLIGHT",
"has_genre",
"DRAMA"
],
[
"NIGHT FLIGHT",
"release_year",
"1933"
],
[
"OLD ACQUAINTANCE",
"has_genre",
"DRAMA"
],
[
"OLD ACQUAINTANCE",
"starred_actors",
"MIRIAM HOPKINS"
],
[
"ONCE AROUND",
"has_genre",
"COMEDY"
],
[
"ONCE AROUND",
"has_genre",
"DRAMA"
],
[
"ONCE AROUND",
"has_tags",
"DRAMA"
],
[
"ONCE AROUND",
"starred_actors",
"LAURA SAN GIACOMO"
],
[
"S.O.S. EISBERG",
"has_genre",
"DRAMA"
],
[
"S.O.S. EISBERG",
"release_year",
"1933"
],
[
"SHE DONE HIM WRONG",
"has_genre",
"DRAMA"
],
[
"SHE DONE HIM WRONG",
"release_year",
"1933"
],
[
"STONEWALL",
"has_genre",
"COMEDY"
],
[
"STONEWALL",
"has_genre",
"DRAMA"
],
[
"STONEWALL",
"starred_actors",
"GUILLERMO DÍAZ"
],
[
"THE BITTER TEA OF GENERAL YEN",
"has_genre",
"DRAMA"
],
[
"THE BITTER TEA OF GENERAL YEN",
"release_year",
"1933"
],
[
"THE EMPEROR JONES",
"has_genre",
"DRAMA"
],
[
"THE EMPEROR JONES",
"release_year",
"1933"
],
[
"THE HOUSE ON 56TH STREET",
"has_genre",
"DRAMA"
],
[
"THE HOUSE ON 56TH STREET",
"release_year",
"1933"
],
[
"THE STORY OF TEMPLE DRAKE",
"has_genre",
"DRAMA"
],
[
"THE STORY OF TEMPLE DRAKE",
"has_tags",
"WILLIAM FAULKNER"
],
[
"THE STORY OF TEMPLE DRAKE",
"release_year",
"1933"
],
[
"THE STORY OF TEMPLE DRAKE",
"starred_actors",
"MIRIAM HOPKINS"
],
[
"THE STORY OF TEMPLE DRAKE",
"written_by",
"WILLIAM FAULKNER"
],
[
"THE STRANGER'S RETURN",
"has_genre",
"DRAMA"
],
[
"THE STRANGER'S RETURN",
"release_year",
"1933"
],
[
"THE STRANGER'S RETURN",
"starred_actors",
"MIRIAM HOPKINS"
],
[
"THE TARNISHED ANGELS",
"has_genre",
"DRAMA"
],
[
"THE TARNISHED ANGELS",
"written_by",
"WILLIAM FAULKNER"
],
[
"WHERE THE DAY TAKES YOU",
"has_genre",
"DRAMA"
],
[
"WHERE THE DAY TAKES YOU",
"starred_actors",
"LAURA SAN GIACOMO"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
11112, 1939
25717, 1953
21802, ABBOTT AND COSTELLO GO TO MARS
15922, ABBOTT AND COSTELLO MEET DR. JEKYLL AND MR. HYDE
21132, ANOTHER THIN MAN
5192, AT THE CIRCUS
38849, BACHELOR MOTHER
38657, BEAT THE DEVIL
29294, BREAD, LOVE AND DREAMS
24967, BROADWAY BILL
8430, CALL ME MADAM
30523, CHEAPER BY THE DOZEN
30463, COMEDY
27563, DOUBLE WEDDING
1480, DREAM WIFE
36249, GENEVIEVE
17440, GULLIVER'S TRAVELS
12557, HOW TO MARRY A MILLIONAIRE
12591, I LOVE YOU AGAIN
17344, I VITELLONI
38176, IDIOT'S DELIGHT
26280, IT'S A WONDERFUL WORLD
2563, LIBELED LADY
728, LOVE CRAZY
22032, LUCKY NIGHT
23421, MEET ME AT THE FAIR
38276, MIDNIGHT
7186, MR. BLANDINGS BUILDS HIS DREAM HOUSE
19619, MYRNA LOY
5338, NINOTCHKA
13096, ROMAN HOLIDAY
35507, SONG OF THE THIN MAN
22407, THE ACTRESS
23870, THE ANIMAL KINGDOM
8318, THE BACHELOR AND THE BOBBY-SOXER
32851, THE BAND WAGON
18855, THE CADDY
18055, THE CAPTAIN'S PARADISE
31239, THE CAT AND THE CANARY
31283, THE HOUND OF THE BASKERVILLES
17571, THE INTERNSHIP
33153, THE MIKADO
12672, THE MOON IS BLUE
9027, THE RAINS CAME
3848, THE RETURN OF DON CAMILLO
37461, THE RULES OF THE GAME
10991, THE SUN SHINES BRIGHT
15833, THE THIN MAN
7816, THE THREE MUSKETEERS
8289, THE TITFIELD THUNDERBOLT
15263, THE TWONKY
20210, THE WOMEN
584, THREE SMART GIRLS GROW UP
36409, WELCOME MR. MARSHALL!
14809, WIFE VS. SECRETARY
src, edge_attr, dst
21802, has_genre, 30463
21802, release_year, 25717
15922, has_genre, 30463
15922, release_year, 25717
21132, has_tags, 19619
21132, release_year, 11112
21132, starred_actors, 19619
5192, has_genre, 30463
5192, release_year, 11112
38849, has_genre, 30463
38849, release_year, 11112
38657, has_genre, 30463
38657, release_year, 25717
29294, has_genre, 30463
29294, release_year, 25717
24967, has_genre, 30463
24967, starred_actors, 19619
8430, has_genre, 30463
8430, release_year, 25717
30523, has_genre, 30463
30523, starred_actors, 19619
27563, has_genre, 30463
27563, has_tags, 19619
27563, starred_actors, 19619
1480, has_genre, 30463
1480, release_year, 25717
36249, has_genre, 30463
36249, release_year, 25717
17440, has_genre, 30463
17440, has_tags, 30463
17440, release_year, 11112
12557, has_genre, 30463
12557, release_year, 25717
12591, has_genre, 30463
12591, has_tags, 19619
12591, starred_actors, 19619
17344, has_genre, 30463
17344, release_year, 25717
38176, has_genre, 30463
38176, release_year, 11112
26280, has_genre, 30463
26280, release_year, 11112
2563, has_genre, 30463
2563, starred_actors, 19619
728, has_genre, 30463
728, has_tags, 19619
728, starred_actors, 19619
22032, has_genre, 30463
22032, release_year, 11112
22032, starred_actors, 19619
23421, release_year, 25717
38276, has_genre, 30463
38276, release_year, 11112
7186, has_genre, 30463
7186, starred_actors, 19619
5338, has_genre, 30463
5338, release_year, 11112
13096, has_genre, 30463
13096, has_tags, 30463
13096, release_year, 25717
35507, has_genre, 30463
35507, starred_actors, 19619
22407, has_genre, 30463
22407, release_year, 25717
23870, has_genre, 30463
23870, starred_actors, 19619
8318, has_genre, 30463
8318, starred_actors, 19619
32851, has_genre, 30463
32851, release_year, 25717
18855, has_genre, 30463
18855, release_year, 25717
18055, has_genre, 30463
18055, release_year, 25717
31239, has_genre, 30463
31239, release_year, 11112
31283, has_genre, 30463
31283, release_year, 11112
17571, has_genre, 30463
33153, has_genre, 30463
33153, release_year, 11112
12672, has_genre, 30463
12672, release_year, 25717
9027, release_year, 11112
9027, starred_actors, 19619
3848, has_genre, 30463
3848, release_year, 25717
37461, has_genre, 30463
37461, has_tags, 30463
37461, release_year, 11112
10991, has_genre, 30463
10991, release_year, 25717
15833, has_genre, 30463
15833, has_tags, 30463
15833, has_tags, 19619
15833, starred_actors, 19619
7816, has_genre, 30463
7816, release_year, 11112
8289, has_genre, 30463
8289, release_year, 25717
15263, has_genre, 30463
15263, release_year, 25717
20210, has_genre, 30463
20210, release_year, 11112
584, has_genre, 30463
584, release_year, 11112
36409, has_genre, 30463
36409, release_year, 25717
14809, has_genre, 30463
14809, has_tags, 19619
14809, starred_actors, 19619
Question: For what reason are MEET ME AT THE FAIR, THE INTERNSHIP, and THE RAINS CAME associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"MEET ME AT THE FAIR",
"THE INTERNSHIP",
"THE RAINS CAME"
],
"valid_edges": [
[
"ABBOTT AND COSTELLO GO TO MARS",
"has_genre",
"COMEDY"
],
[
"ABBOTT AND COSTELLO GO TO MARS",
"release_year",
"1953"
],
[
"ABBOTT AND COSTELLO MEET DR. JEKYLL AND MR. HYDE",
"has_genre",
"COMEDY"
],
[
"ABBOTT AND COSTELLO MEET DR. JEKYLL AND MR. HYDE",
"release_year",
"1953"
],
[
"ANOTHER THIN MAN",
"has_tags",
"MYRNA LOY"
],
[
"ANOTHER THIN MAN",
"release_year",
"1939"
],
[
"ANOTHER THIN MAN",
"starred_actors",
"MYRNA LOY"
],
[
"AT THE CIRCUS",
"has_genre",
"COMEDY"
],
[
"AT THE CIRCUS",
"release_year",
"1939"
],
[
"BACHELOR MOTHER",
"has_genre",
"COMEDY"
],
[
"BACHELOR MOTHER",
"release_year",
"1939"
],
[
"BEAT THE DEVIL",
"has_genre",
"COMEDY"
],
[
"BEAT THE DEVIL",
"release_year",
"1953"
],
[
"BREAD, LOVE AND DREAMS",
"has_genre",
"COMEDY"
],
[
"BREAD, LOVE AND DREAMS",
"release_year",
"1953"
],
[
"BROADWAY BILL",
"has_genre",
"COMEDY"
],
[
"BROADWAY BILL",
"starred_actors",
"MYRNA LOY"
],
[
"CALL ME MADAM",
"has_genre",
"COMEDY"
],
[
"CALL ME MADAM",
"release_year",
"1953"
],
[
"CHEAPER BY THE DOZEN",
"has_genre",
"COMEDY"
],
[
"CHEAPER BY THE DOZEN",
"starred_actors",
"MYRNA LOY"
],
[
"DOUBLE WEDDING",
"has_genre",
"COMEDY"
],
[
"DOUBLE WEDDING",
"has_tags",
"MYRNA LOY"
],
[
"DOUBLE WEDDING",
"starred_actors",
"MYRNA LOY"
],
[
"DREAM WIFE",
"has_genre",
"COMEDY"
],
[
"DREAM WIFE",
"release_year",
"1953"
],
[
"GENEVIEVE",
"has_genre",
"COMEDY"
],
[
"GENEVIEVE",
"release_year",
"1953"
],
[
"GULLIVER'S TRAVELS",
"has_genre",
"COMEDY"
],
[
"GULLIVER'S TRAVELS",
"has_tags",
"COMEDY"
],
[
"GULLIVER'S TRAVELS",
"release_year",
"1939"
],
[
"HOW TO MARRY A MILLIONAIRE",
"has_genre",
"COMEDY"
],
[
"HOW TO MARRY A MILLIONAIRE",
"release_year",
"1953"
],
[
"I LOVE YOU AGAIN",
"has_genre",
"COMEDY"
],
[
"I LOVE YOU AGAIN",
"has_tags",
"MYRNA LOY"
],
[
"I LOVE YOU AGAIN",
"starred_actors",
"MYRNA LOY"
],
[
"I VITELLONI",
"has_genre",
"COMEDY"
],
[
"I VITELLONI",
"release_year",
"1953"
],
[
"IDIOT'S DELIGHT",
"has_genre",
"COMEDY"
],
[
"IDIOT'S DELIGHT",
"release_year",
"1939"
],
[
"IT'S A WONDERFUL WORLD",
"has_genre",
"COMEDY"
],
[
"IT'S A WONDERFUL WORLD",
"release_year",
"1939"
],
[
"LIBELED LADY",
"has_genre",
"COMEDY"
],
[
"LIBELED LADY",
"starred_actors",
"MYRNA LOY"
],
[
"LOVE CRAZY",
"has_genre",
"COMEDY"
],
[
"LOVE CRAZY",
"has_tags",
"MYRNA LOY"
],
[
"LOVE CRAZY",
"starred_actors",
"MYRNA LOY"
],
[
"LUCKY NIGHT",
"has_genre",
"COMEDY"
],
[
"LUCKY NIGHT",
"release_year",
"1939"
],
[
"LUCKY NIGHT",
"starred_actors",
"MYRNA LOY"
],
[
"MEET ME AT THE FAIR",
"release_year",
"1953"
],
[
"MIDNIGHT",
"has_genre",
"COMEDY"
],
[
"MIDNIGHT",
"release_year",
"1939"
],
[
"MR. BLANDINGS BUILDS HIS DREAM HOUSE",
"has_genre",
"COMEDY"
],
[
"MR. BLANDINGS BUILDS HIS DREAM HOUSE",
"starred_actors",
"MYRNA LOY"
],
[
"NINOTCHKA",
"has_genre",
"COMEDY"
],
[
"NINOTCHKA",
"release_year",
"1939"
],
[
"ROMAN HOLIDAY",
"has_genre",
"COMEDY"
],
[
"ROMAN HOLIDAY",
"has_tags",
"COMEDY"
],
[
"ROMAN HOLIDAY",
"release_year",
"1953"
],
[
"SONG OF THE THIN MAN",
"has_genre",
"COMEDY"
],
[
"SONG OF THE THIN MAN",
"starred_actors",
"MYRNA LOY"
],
[
"THE ACTRESS",
"has_genre",
"COMEDY"
],
[
"THE ACTRESS",
"release_year",
"1953"
],
[
"THE ANIMAL KINGDOM",
"has_genre",
"COMEDY"
],
[
"THE ANIMAL KINGDOM",
"starred_actors",
"MYRNA LOY"
],
[
"THE BACHELOR AND THE BOBBY-SOXER",
"has_genre",
"COMEDY"
],
[
"THE BACHELOR AND THE BOBBY-SOXER",
"starred_actors",
"MYRNA LOY"
],
[
"THE BAND WAGON",
"has_genre",
"COMEDY"
],
[
"THE BAND WAGON",
"release_year",
"1953"
],
[
"THE CADDY",
"has_genre",
"COMEDY"
],
[
"THE CADDY",
"release_year",
"1953"
],
[
"THE CAPTAIN'S PARADISE",
"has_genre",
"COMEDY"
],
[
"THE CAPTAIN'S PARADISE",
"release_year",
"1953"
],
[
"THE CAT AND THE CANARY",
"has_genre",
"COMEDY"
],
[
"THE CAT AND THE CANARY",
"release_year",
"1939"
],
[
"THE HOUND OF THE BASKERVILLES",
"has_genre",
"COMEDY"
],
[
"THE HOUND OF THE BASKERVILLES",
"release_year",
"1939"
],
[
"THE INTERNSHIP",
"has_genre",
"COMEDY"
],
[
"THE MIKADO",
"has_genre",
"COMEDY"
],
[
"THE MIKADO",
"release_year",
"1939"
],
[
"THE MOON IS BLUE",
"has_genre",
"COMEDY"
],
[
"THE MOON IS BLUE",
"release_year",
"1953"
],
[
"THE RAINS CAME",
"release_year",
"1939"
],
[
"THE RAINS CAME",
"starred_actors",
"MYRNA LOY"
],
[
"THE RETURN OF DON CAMILLO",
"has_genre",
"COMEDY"
],
[
"THE RETURN OF DON CAMILLO",
"release_year",
"1953"
],
[
"THE RULES OF THE GAME",
"has_genre",
"COMEDY"
],
[
"THE RULES OF THE GAME",
"has_tags",
"COMEDY"
],
[
"THE RULES OF THE GAME",
"release_year",
"1939"
],
[
"THE SUN SHINES BRIGHT",
"has_genre",
"COMEDY"
],
[
"THE SUN SHINES BRIGHT",
"release_year",
"1953"
],
[
"THE THIN MAN",
"has_genre",
"COMEDY"
],
[
"THE THIN MAN",
"has_tags",
"COMEDY"
],
[
"THE THIN MAN",
"has_tags",
"MYRNA LOY"
],
[
"THE THIN MAN",
"starred_actors",
"MYRNA LOY"
],
[
"THE THREE MUSKETEERS",
"has_genre",
"COMEDY"
],
[
"THE THREE MUSKETEERS",
"release_year",
"1939"
],
[
"THE TITFIELD THUNDERBOLT",
"has_genre",
"COMEDY"
],
[
"THE TITFIELD THUNDERBOLT",
"release_year",
"1953"
],
[
"THE TWONKY",
"has_genre",
"COMEDY"
],
[
"THE TWONKY",
"release_year",
"1953"
],
[
"THE WOMEN",
"has_genre",
"COMEDY"
],
[
"THE WOMEN",
"release_year",
"1939"
],
[
"THREE SMART GIRLS GROW UP",
"has_genre",
"COMEDY"
],
[
"THREE SMART GIRLS GROW UP",
"release_year",
"1939"
],
[
"WELCOME MR. MARSHALL!",
"has_genre",
"COMEDY"
],
[
"WELCOME MR. MARSHALL!",
"release_year",
"1953"
],
[
"WIFE VS. SECRETARY",
"has_genre",
"COMEDY"
],
[
"WIFE VS. SECRETARY",
"has_tags",
"MYRNA LOY"
],
[
"WIFE VS. SECRETARY",
"starred_actors",
"MYRNA LOY"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
16681, ALAN PAO
9644, ANNE MEARA
904, ANOTHER HARVEST MOON
36212, DRAMA
10688, HENRY BEAN
16480, LOADED
33677, NOISE
267, THE BELIEVER
src, edge_attr, dst
904, has_genre, 36212
904, starred_actors, 9644
16480, directed_by, 16681
16480, has_genre, 36212
16480, written_by, 16681
33677, directed_by, 10688
33677, has_genre, 36212
33677, written_by, 10688
267, directed_by, 10688
267, has_genre, 36212
267, written_by, 10688
Question: In what context are ALAN PAO, ANNE MEARA, and HENRY BEAN connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"ALAN PAO",
"ANNE MEARA",
"HENRY BEAN"
],
"valid_edges": [
[
"ANOTHER HARVEST MOON",
"has_genre",
"DRAMA"
],
[
"ANOTHER HARVEST MOON",
"starred_actors",
"ANNE MEARA"
],
[
"LOADED",
"directed_by",
"ALAN PAO"
],
[
"LOADED",
"has_genre",
"DRAMA"
],
[
"LOADED",
"written_by",
"ALAN PAO"
],
[
"NOISE",
"directed_by",
"HENRY BEAN"
],
[
"NOISE",
"has_genre",
"DRAMA"
],
[
"NOISE",
"written_by",
"HENRY BEAN"
],
[
"THE BELIEVER",
"directed_by",
"HENRY BEAN"
],
[
"THE BELIEVER",
"has_genre",
"DRAMA"
],
[
"THE BELIEVER",
"written_by",
"HENRY BEAN"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
19293, ALL THE PRESIDENT'S MEN
6725, BLACK RAINBOW
30463, COMEDY
36212, DRAMA
25387, JOAN ALLEN
10985, NIXON
14096, NORMA RAE
14282, PLEASANTVILLE
15974, SEARCHING FOR BOBBY FISCHER
10041, SILKWOOD
15323, THE CONTENDER
5278, THE CRUCIBLE
15840, THE ICE STORM
7168, THE UPSIDE OF ANGER
24811, THRILLER
37678, TOBEY MAGUIRE
2078, UNION
src, edge_attr, dst
19293, has_genre, 24811
19293, has_tags, 10985
19293, has_tags, 24811
6725, has_genre, 24811
10985, starred_actors, 25387
14096, has_genre, 36212
14096, has_tags, 2078
14282, has_genre, 30463
14282, has_genre, 36212
14282, has_tags, 25387
14282, has_tags, 37678
14282, starred_actors, 25387
14282, starred_actors, 37678
15974, has_genre, 36212
15974, starred_actors, 25387
10041, has_genre, 36212
10041, has_tags, 2078
15323, has_genre, 36212
15323, has_tags, 25387
15323, starred_actors, 25387
5278, has_genre, 36212
5278, starred_actors, 25387
15840, has_genre, 36212
15840, has_tags, 36212
15840, has_tags, 37678
15840, starred_actors, 25387
7168, has_genre, 30463
7168, has_genre, 36212
7168, starred_actors, 25387
Question: How are BLACK RAINBOW, JOAN ALLEN, and UNION related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"BLACK RAINBOW",
"JOAN ALLEN",
"UNION"
],
"valid_edges": [
[
"ALL THE PRESIDENT'S MEN",
"has_genre",
"THRILLER"
],
[
"ALL THE PRESIDENT'S MEN",
"has_tags",
"NIXON"
],
[
"ALL THE PRESIDENT'S MEN",
"has_tags",
"THRILLER"
],
[
"BLACK RAINBOW",
"has_genre",
"THRILLER"
],
[
"NIXON",
"starred_actors",
"JOAN ALLEN"
],
[
"NORMA RAE",
"has_genre",
"DRAMA"
],
[
"NORMA RAE",
"has_tags",
"UNION"
],
[
"PLEASANTVILLE",
"has_genre",
"COMEDY"
],
[
"PLEASANTVILLE",
"has_genre",
"DRAMA"
],
[
"PLEASANTVILLE",
"has_tags",
"JOAN ALLEN"
],
[
"PLEASANTVILLE",
"has_tags",
"TOBEY MAGUIRE"
],
[
"PLEASANTVILLE",
"starred_actors",
"JOAN ALLEN"
],
[
"PLEASANTVILLE",
"starred_actors",
"TOBEY MAGUIRE"
],
[
"SEARCHING FOR BOBBY FISCHER",
"has_genre",
"DRAMA"
],
[
"SEARCHING FOR BOBBY FISCHER",
"starred_actors",
"JOAN ALLEN"
],
[
"SILKWOOD",
"has_genre",
"DRAMA"
],
[
"SILKWOOD",
"has_tags",
"UNION"
],
[
"THE CONTENDER",
"has_genre",
"DRAMA"
],
[
"THE CONTENDER",
"has_tags",
"JOAN ALLEN"
],
[
"THE CONTENDER",
"starred_actors",
"JOAN ALLEN"
],
[
"THE CRUCIBLE",
"has_genre",
"DRAMA"
],
[
"THE CRUCIBLE",
"starred_actors",
"JOAN ALLEN"
],
[
"THE ICE STORM",
"has_genre",
"DRAMA"
],
[
"THE ICE STORM",
"has_tags",
"DRAMA"
],
[
"THE ICE STORM",
"has_tags",
"TOBEY MAGUIRE"
],
[
"THE ICE STORM",
"starred_actors",
"JOAN ALLEN"
],
[
"THE UPSIDE OF ANGER",
"has_genre",
"COMEDY"
],
[
"THE UPSIDE OF ANGER",
"has_genre",
"DRAMA"
],
[
"THE UPSIDE OF ANGER",
"starred_actors",
"JOAN ALLEN"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
31486, 1970
10045, BD-R
10712, MICHAEL DORMAN
15262, NO WAY TO TREAT A LADY
34389, NORTON JUSTER
35865, ON THE WATERFRONT
5286, POOLHALL JUNKIES
14216, ROD STEIGER
18821, RUN OF THE ARROW
25850, THE PAWNBROKER
24512, THE PHANTOM TOLLBOOTH
24811, THRILLER
37099, TRIANGLE
558, WATERLOO
src, edge_attr, dst
15262, has_genre, 24811
15262, starred_actors, 14216
35865, has_tags, 10045
35865, starred_actors, 14216
5286, has_genre, 24811
5286, starred_actors, 14216
18821, has_tags, 10045
18821, starred_actors, 14216
25850, has_tags, 10045
25850, starred_actors, 14216
24512, has_tags, 10045
24512, release_year, 31486
24512, written_by, 34389
37099, has_genre, 24811
37099, starred_actors, 10712
558, has_tags, 14216
558, release_year, 31486
558, starred_actors, 14216
Question: How are MICHAEL DORMAN, NORTON JUSTER, and ROD STEIGER related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"MICHAEL DORMAN",
"NORTON JUSTER",
"ROD STEIGER"
],
"valid_edges": [
[
"NO WAY TO TREAT A LADY",
"has_genre",
"THRILLER"
],
[
"NO WAY TO TREAT A LADY",
"starred_actors",
"ROD STEIGER"
],
[
"ON THE WATERFRONT",
"has_tags",
"BD-R"
],
[
"ON THE WATERFRONT",
"starred_actors",
"ROD STEIGER"
],
[
"POOLHALL JUNKIES",
"has_genre",
"THRILLER"
],
[
"POOLHALL JUNKIES",
"starred_actors",
"ROD STEIGER"
],
[
"RUN OF THE ARROW",
"has_tags",
"BD-R"
],
[
"RUN OF THE ARROW",
"starred_actors",
"ROD STEIGER"
],
[
"THE PAWNBROKER",
"has_tags",
"BD-R"
],
[
"THE PAWNBROKER",
"starred_actors",
"ROD STEIGER"
],
[
"THE PHANTOM TOLLBOOTH",
"has_tags",
"BD-R"
],
[
"THE PHANTOM TOLLBOOTH",
"release_year",
"1970"
],
[
"THE PHANTOM TOLLBOOTH",
"written_by",
"NORTON JUSTER"
],
[
"TRIANGLE",
"has_genre",
"THRILLER"
],
[
"TRIANGLE",
"starred_actors",
"MICHAEL DORMAN"
],
[
"WATERLOO",
"has_tags",
"ROD STEIGER"
],
[
"WATERLOO",
"release_year",
"1970"
],
[
"WATERLOO",
"starred_actors",
"ROD STEIGER"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
36163, 1967
26762, 2008
33217, 35 SHOTS OF RUM
9698, A CHRISTMAS TALE
17521, ACES 'N' EIGHTS
36359, AFTERWARDS
36494, ANYTHING FOR HER
4131, ASTERIX AT THE OLYMPIC GAMES
31322, ASTERIX THE GAUL
16426, BELLE DE JOUR
10081, BOTTLE SHOCK
18400, CASE DÉPART
2246, CRITERION
38134, DANTE 01
9709, DE L'AUTRE CÔTÉ DU LIT
30696, DIARY OF A NYMPHOMANIAC
21405, DRAGON HUNTERS
34422, FEMALE AGENTS
6012, FRENCH
14669, FRONTIER OF THE DAWN
3586, I'VE LOVED YOU SO LONG
8150, JACQUES TATI
24305, JCVD
23661, LE SAMOURAÏ
8807, LET'S TALK ABOUT THE RAIN
14659, LOVE ME NO MORE
24257, MARK OF AN ANGEL
24399, MARTYRS
31657, MON ONCLE
12100, MOUCHETTE
5937, ORPHEUS
31134, PARIS
8740, PARIS 36
5311, PLAYTIME
21835, POINT BLANK
8764, STELLA
32587, SUMMER HOURS
5467, SÉRAPHINE
30003, TAKEN
38592, THE BEACHES OF AGNÈS
21712, THE CLASS
37721, THE FIRST DAY OF THE REST OF YOUR LIFE
25529, THE ILLUSIONIST
34283, THE LAST DEADLY MISSION
22166, THE LOWER DEPTHS
11654, THE THIEF OF PARIS
30481, THE TWO OF US
34585, THE YOUNG GIRLS OF ROCHEFORT
7251, THOMAS N'GIJOL
17536, TRAFIC
33483, WEEKEND
src, edge_attr, dst
33217, in_language, 6012
33217, release_year, 26762
9698, in_language, 6012
9698, release_year, 26762
17521, release_year, 26762
36359, in_language, 6012
36359, release_year, 26762
36494, in_language, 6012
36494, release_year, 26762
4131, has_tags, 6012
4131, in_language, 6012
4131, release_year, 26762
31322, in_language, 6012
31322, release_year, 36163
16426, in_language, 6012
16426, release_year, 36163
10081, in_language, 6012
10081, release_year, 26762
18400, directed_by, 7251
18400, has_tags, 6012
18400, in_language, 6012
18400, starred_actors, 7251
18400, written_by, 7251
38134, has_tags, 6012
38134, in_language, 6012
38134, release_year, 26762
9709, in_language, 6012
9709, release_year, 26762
30696, in_language, 6012
30696, release_year, 26762
21405, in_language, 6012
21405, release_year, 26762
34422, in_language, 6012
34422, release_year, 26762
14669, in_language, 6012
14669, release_year, 26762
3586, in_language, 6012
3586, release_year, 26762
24305, in_language, 6012
24305, release_year, 26762
23661, in_language, 6012
23661, release_year, 36163
8807, in_language, 6012
8807, release_year, 26762
14659, has_tags, 6012
14659, in_language, 6012
14659, release_year, 26762
24257, in_language, 6012
24257, release_year, 26762
24399, has_tags, 6012
24399, in_language, 6012
24399, release_year, 26762
31657, directed_by, 8150
31657, has_tags, 8150
31657, in_language, 6012
31657, written_by, 8150
12100, has_tags, 2246
12100, in_language, 6012
12100, release_year, 36163
5937, has_tags, 2246
5937, in_language, 6012
31134, in_language, 6012
31134, release_year, 26762
8740, in_language, 6012
8740, release_year, 26762
5311, directed_by, 8150
5311, has_tags, 2246
5311, has_tags, 8150
5311, in_language, 6012
5311, release_year, 36163
5311, starred_actors, 8150
5311, written_by, 8150
21835, in_language, 6012
21835, release_year, 36163
8764, in_language, 6012
8764, release_year, 26762
32587, has_tags, 2246
32587, in_language, 6012
32587, release_year, 26762
5467, in_language, 6012
5467, release_year, 26762
30003, in_language, 6012
30003, release_year, 26762
38592, in_language, 6012
38592, release_year, 26762
21712, has_tags, 6012
21712, in_language, 6012
21712, release_year, 26762
37721, in_language, 6012
37721, release_year, 26762
25529, in_language, 6012
25529, written_by, 8150
34283, in_language, 6012
34283, release_year, 26762
22166, has_tags, 2246
22166, in_language, 6012
11654, in_language, 6012
11654, release_year, 36163
30481, in_language, 6012
30481, release_year, 36163
34585, in_language, 6012
34585, release_year, 36163
17536, directed_by, 8150
17536, has_tags, 8150
17536, in_language, 6012
17536, starred_actors, 8150
17536, written_by, 8150
33483, has_tags, 6012
33483, in_language, 6012
33483, release_year, 36163
Question: For what reason are ACES 'N' EIGHTS, PLAYTIME, and THOMAS N'GIJOL associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"ACES 'N' EIGHTS",
"PLAYTIME",
"THOMAS N'GIJOL"
],
"valid_edges": [
[
"35 SHOTS OF RUM",
"in_language",
"FRENCH"
],
[
"35 SHOTS OF RUM",
"release_year",
"2008"
],
[
"A CHRISTMAS TALE",
"in_language",
"FRENCH"
],
[
"A CHRISTMAS TALE",
"release_year",
"2008"
],
[
"ACES 'N' EIGHTS",
"release_year",
"2008"
],
[
"AFTERWARDS",
"in_language",
"FRENCH"
],
[
"AFTERWARDS",
"release_year",
"2008"
],
[
"ANYTHING FOR HER",
"in_language",
"FRENCH"
],
[
"ANYTHING FOR HER",
"release_year",
"2008"
],
[
"ASTERIX AT THE OLYMPIC GAMES",
"has_tags",
"FRENCH"
],
[
"ASTERIX AT THE OLYMPIC GAMES",
"in_language",
"FRENCH"
],
[
"ASTERIX AT THE OLYMPIC GAMES",
"release_year",
"2008"
],
[
"ASTERIX THE GAUL",
"in_language",
"FRENCH"
],
[
"ASTERIX THE GAUL",
"release_year",
"1967"
],
[
"BELLE DE JOUR",
"in_language",
"FRENCH"
],
[
"BELLE DE JOUR",
"release_year",
"1967"
],
[
"BOTTLE SHOCK",
"in_language",
"FRENCH"
],
[
"BOTTLE SHOCK",
"release_year",
"2008"
],
[
"CASE DÉPART",
"directed_by",
"THOMAS N'GIJOL"
],
[
"CASE DÉPART",
"has_tags",
"FRENCH"
],
[
"CASE DÉPART",
"in_language",
"FRENCH"
],
[
"CASE DÉPART",
"starred_actors",
"THOMAS N'GIJOL"
],
[
"CASE DÉPART",
"written_by",
"THOMAS N'GIJOL"
],
[
"DANTE 01",
"has_tags",
"FRENCH"
],
[
"DANTE 01",
"in_language",
"FRENCH"
],
[
"DANTE 01",
"release_year",
"2008"
],
[
"DE L'AUTRE CÔTÉ DU LIT",
"in_language",
"FRENCH"
],
[
"DE L'AUTRE CÔTÉ DU LIT",
"release_year",
"2008"
],
[
"DIARY OF A NYMPHOMANIAC",
"in_language",
"FRENCH"
],
[
"DIARY OF A NYMPHOMANIAC",
"release_year",
"2008"
],
[
"DRAGON HUNTERS",
"in_language",
"FRENCH"
],
[
"DRAGON HUNTERS",
"release_year",
"2008"
],
[
"FEMALE AGENTS",
"in_language",
"FRENCH"
],
[
"FEMALE AGENTS",
"release_year",
"2008"
],
[
"FRONTIER OF THE DAWN",
"in_language",
"FRENCH"
],
[
"FRONTIER OF THE DAWN",
"release_year",
"2008"
],
[
"I'VE LOVED YOU SO LONG",
"in_language",
"FRENCH"
],
[
"I'VE LOVED YOU SO LONG",
"release_year",
"2008"
],
[
"JCVD",
"in_language",
"FRENCH"
],
[
"JCVD",
"release_year",
"2008"
],
[
"LE SAMOURAÏ",
"in_language",
"FRENCH"
],
[
"LE SAMOURAÏ",
"release_year",
"1967"
],
[
"LET'S TALK ABOUT THE RAIN",
"in_language",
"FRENCH"
],
[
"LET'S TALK ABOUT THE RAIN",
"release_year",
"2008"
],
[
"LOVE ME NO MORE",
"has_tags",
"FRENCH"
],
[
"LOVE ME NO MORE",
"in_language",
"FRENCH"
],
[
"LOVE ME NO MORE",
"release_year",
"2008"
],
[
"MARK OF AN ANGEL",
"in_language",
"FRENCH"
],
[
"MARK OF AN ANGEL",
"release_year",
"2008"
],
[
"MARTYRS",
"has_tags",
"FRENCH"
],
[
"MARTYRS",
"in_language",
"FRENCH"
],
[
"MARTYRS",
"release_year",
"2008"
],
[
"MON ONCLE",
"directed_by",
"JACQUES TATI"
],
[
"MON ONCLE",
"has_tags",
"JACQUES TATI"
],
[
"MON ONCLE",
"in_language",
"FRENCH"
],
[
"MON ONCLE",
"written_by",
"JACQUES TATI"
],
[
"MOUCHETTE",
"has_tags",
"CRITERION"
],
[
"MOUCHETTE",
"in_language",
"FRENCH"
],
[
"MOUCHETTE",
"release_year",
"1967"
],
[
"ORPHEUS",
"has_tags",
"CRITERION"
],
[
"ORPHEUS",
"in_language",
"FRENCH"
],
[
"PARIS",
"in_language",
"FRENCH"
],
[
"PARIS",
"release_year",
"2008"
],
[
"PARIS 36",
"in_language",
"FRENCH"
],
[
"PARIS 36",
"release_year",
"2008"
],
[
"PLAYTIME",
"directed_by",
"JACQUES TATI"
],
[
"PLAYTIME",
"has_tags",
"CRITERION"
],
[
"PLAYTIME",
"has_tags",
"JACQUES TATI"
],
[
"PLAYTIME",
"in_language",
"FRENCH"
],
[
"PLAYTIME",
"release_year",
"1967"
],
[
"PLAYTIME",
"starred_actors",
"JACQUES TATI"
],
[
"PLAYTIME",
"written_by",
"JACQUES TATI"
],
[
"POINT BLANK",
"in_language",
"FRENCH"
],
[
"POINT BLANK",
"release_year",
"1967"
],
[
"STELLA",
"in_language",
"FRENCH"
],
[
"STELLA",
"release_year",
"2008"
],
[
"SUMMER HOURS",
"has_tags",
"CRITERION"
],
[
"SUMMER HOURS",
"in_language",
"FRENCH"
],
[
"SUMMER HOURS",
"release_year",
"2008"
],
[
"SÉRAPHINE",
"in_language",
"FRENCH"
],
[
"SÉRAPHINE",
"release_year",
"2008"
],
[
"TAKEN",
"in_language",
"FRENCH"
],
[
"TAKEN",
"release_year",
"2008"
],
[
"THE BEACHES OF AGNÈS",
"in_language",
"FRENCH"
],
[
"THE BEACHES OF AGNÈS",
"release_year",
"2008"
],
[
"THE CLASS",
"has_tags",
"FRENCH"
],
[
"THE CLASS",
"in_language",
"FRENCH"
],
[
"THE CLASS",
"release_year",
"2008"
],
[
"THE FIRST DAY OF THE REST OF YOUR LIFE",
"in_language",
"FRENCH"
],
[
"THE FIRST DAY OF THE REST OF YOUR LIFE",
"release_year",
"2008"
],
[
"THE ILLUSIONIST",
"in_language",
"FRENCH"
],
[
"THE ILLUSIONIST",
"written_by",
"JACQUES TATI"
],
[
"THE LAST DEADLY MISSION",
"in_language",
"FRENCH"
],
[
"THE LAST DEADLY MISSION",
"release_year",
"2008"
],
[
"THE LOWER DEPTHS",
"has_tags",
"CRITERION"
],
[
"THE LOWER DEPTHS",
"in_language",
"FRENCH"
],
[
"THE THIEF OF PARIS",
"in_language",
"FRENCH"
],
[
"THE THIEF OF PARIS",
"release_year",
"1967"
],
[
"THE TWO OF US",
"in_language",
"FRENCH"
],
[
"THE TWO OF US",
"release_year",
"1967"
],
[
"THE YOUNG GIRLS OF ROCHEFORT",
"in_language",
"FRENCH"
],
[
"THE YOUNG GIRLS OF ROCHEFORT",
"release_year",
"1967"
],
[
"TRAFIC",
"directed_by",
"JACQUES TATI"
],
[
"TRAFIC",
"has_tags",
"JACQUES TATI"
],
[
"TRAFIC",
"in_language",
"FRENCH"
],
[
"TRAFIC",
"starred_actors",
"JACQUES TATI"
],
[
"TRAFIC",
"written_by",
"JACQUES TATI"
],
[
"WEEKEND",
"has_tags",
"FRENCH"
],
[
"WEEKEND",
"in_language",
"FRENCH"
],
[
"WEEKEND",
"release_year",
"1967"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
24525, 1984
35935, 2002
19509, A BREED APART
30146, A CHRISTMAS CAROL
37797, A CRUEL ROMANCE
24319, A PASSAGE TO INDIA
35695, A SOLDIER'S STORY
38344, A STREETCAR NAMED DESIRE
27196, ALPHABET CITY
20033, ANGEL
6091, ANOTHER COUNTRY
37608, AUSTRALIA
4765, BEAT STREET
33154, BIRDY
8655, BOY MEETS GIRL
9935, CAMILA
33088, CARMEN
31906, CATCH A FIRE
207, CHOOSE ME
36212, DRAMA
25651, DUMMY
28612, ELECTRIC DREAMS
1055, FALLING IN LOVE
36477, FIRSTBORN
17958, FLASHPOINT
2670, FOOTLOOSE
13111, GIVE MY REGARDS TO BROAD STREET
19773, GRANDVIEW, U.S.A.
6004, HARD TO HOLD
2941, ILLEANA DOUGLAS
37251, IRRECONCILABLE DIFFERENCES
38694, MARIA'S LOVERS
39880, MICHAEL REDGRAVE
38118, MOSCOW ON THE HUDSON
31250, MRS. SOFFEL
3910, NEWSFRONT
18680, NO SMALL AFFAIR
17528, ONCE UPON A TIME IN AMERICA
38335, PARIS, TEXAS
19877, PHILLIP NOYCE
13961, PLACES IN THE HEART
4005, PURPLE RAIN
24073, RABBIT-PROOF FENCE
26830, RACING WITH THE MOON
38232, STORIES OF LOST SOULS
11759, STREETS OF FIRE
10952, TANK
34308, TEACHERS
2212, THE BOUNTY
18176, THE COTTON CLUB
24493, THE FUNERAL
34673, THE GREEN
959, THE HIT
38956, THE HOTEL NEW HAMPSHIRE
13329, THE KARATE KID
35027, THE KILLING FIELDS
1306, THE PUBLIC WOMAN
20850, THE QUIET AMERICAN
19283, THE RAZOR'S EDGE
18649, THE RIVER
14415, THE WILD LIFE
28482, THIEF OF HEARTS
13100, THREADS
16292, TRUE STORY
21396, UNTIL SEPTEMBER
31772, WHAT HAVE I DONE TO DESERVE THIS?
src, edge_attr, dst
24525, starred_actors, 39880
19509, has_genre, 36212
19509, release_year, 24525
30146, has_genre, 36212
30146, release_year, 24525
37797, has_genre, 36212
37797, release_year, 24525
24319, has_genre, 36212
24319, release_year, 24525
35695, has_genre, 36212
35695, release_year, 24525
38344, has_genre, 36212
38344, release_year, 24525
27196, has_genre, 36212
27196, release_year, 24525
20033, has_genre, 36212
20033, release_year, 24525
6091, has_genre, 36212
6091, release_year, 24525
37608, has_genre, 36212
4765, has_genre, 36212
4765, release_year, 24525
33154, has_genre, 36212
33154, has_tags, 36212
33154, release_year, 24525
8655, has_genre, 36212
8655, release_year, 24525
9935, has_genre, 36212
9935, release_year, 24525
33088, has_genre, 36212
33088, release_year, 24525
31906, directed_by, 19877
31906, has_genre, 36212
207, has_genre, 36212
207, release_year, 24525
25651, has_genre, 36212
25651, starred_actors, 2941
28612, has_genre, 36212
28612, release_year, 24525
1055, has_genre, 36212
1055, release_year, 24525
36477, has_genre, 36212
36477, release_year, 24525
17958, has_genre, 36212
17958, release_year, 24525
2670, has_genre, 36212
2670, release_year, 24525
13111, has_genre, 36212
13111, release_year, 24525
19773, has_genre, 36212
19773, release_year, 24525
6004, has_genre, 36212
6004, release_year, 24525
37251, has_genre, 36212
37251, release_year, 24525
38694, has_genre, 36212
38694, release_year, 24525
38118, has_genre, 36212
38118, release_year, 24525
31250, has_genre, 36212
31250, release_year, 24525
3910, directed_by, 19877
3910, has_genre, 36212
3910, has_tags, 37608
3910, has_tags, 19877
3910, written_by, 19877
18680, has_genre, 36212
18680, release_year, 24525
17528, has_genre, 36212
17528, release_year, 24525
38335, has_genre, 36212
38335, release_year, 24525
13961, has_genre, 36212
13961, release_year, 24525
4005, has_genre, 36212
4005, release_year, 24525
24073, directed_by, 19877
24073, has_genre, 36212
24073, has_tags, 37608
24073, has_tags, 19877
24073, has_tags, 16292
24073, release_year, 35935
26830, has_genre, 36212
26830, release_year, 24525
38232, directed_by, 2941
38232, written_by, 2941
11759, has_genre, 36212
11759, release_year, 24525
10952, has_genre, 36212
10952, release_year, 24525
34308, has_genre, 36212
34308, release_year, 24525
2212, has_genre, 36212
2212, release_year, 24525
18176, has_genre, 36212
18176, release_year, 24525
24493, has_genre, 36212
24493, release_year, 24525
34673, has_genre, 36212
34673, starred_actors, 2941
959, has_genre, 36212
959, release_year, 24525
38956, has_genre, 36212
38956, release_year, 24525
13329, has_genre, 36212
13329, has_tags, 36212
13329, release_year, 24525
35027, has_genre, 36212
35027, release_year, 24525
1306, has_genre, 36212
1306, has_tags, 36212
1306, release_year, 24525
20850, directed_by, 19877
20850, has_tags, 19877
20850, release_year, 35935
20850, starred_actors, 39880
19283, has_genre, 36212
19283, release_year, 24525
18649, has_genre, 36212
18649, release_year, 24525
14415, has_genre, 36212
14415, release_year, 24525
28482, has_genre, 36212
28482, release_year, 24525
13100, has_genre, 36212
13100, release_year, 24525
16292, has_genre, 36212
16292, has_tags, 36212
21396, has_genre, 36212
21396, release_year, 24525
31772, has_genre, 36212
31772, release_year, 24525
Question: For what reason are PHILLIP NOYCE, STORIES OF LOST SOULS, and THIEF OF HEARTS associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"PHILLIP NOYCE",
"STORIES OF LOST SOULS",
"THIEF OF HEARTS"
],
"valid_edges": [
[
"1984",
"starred_actors",
"MICHAEL REDGRAVE"
],
[
"A BREED APART",
"has_genre",
"DRAMA"
],
[
"A BREED APART",
"release_year",
"1984"
],
[
"A CHRISTMAS CAROL",
"has_genre",
"DRAMA"
],
[
"A CHRISTMAS CAROL",
"release_year",
"1984"
],
[
"A CRUEL ROMANCE",
"has_genre",
"DRAMA"
],
[
"A CRUEL ROMANCE",
"release_year",
"1984"
],
[
"A PASSAGE TO INDIA",
"has_genre",
"DRAMA"
],
[
"A PASSAGE TO INDIA",
"release_year",
"1984"
],
[
"A SOLDIER'S STORY",
"has_genre",
"DRAMA"
],
[
"A SOLDIER'S STORY",
"release_year",
"1984"
],
[
"A STREETCAR NAMED DESIRE",
"has_genre",
"DRAMA"
],
[
"A STREETCAR NAMED DESIRE",
"release_year",
"1984"
],
[
"ALPHABET CITY",
"has_genre",
"DRAMA"
],
[
"ALPHABET CITY",
"release_year",
"1984"
],
[
"ANGEL",
"has_genre",
"DRAMA"
],
[
"ANGEL",
"release_year",
"1984"
],
[
"ANOTHER COUNTRY",
"has_genre",
"DRAMA"
],
[
"ANOTHER COUNTRY",
"release_year",
"1984"
],
[
"AUSTRALIA",
"has_genre",
"DRAMA"
],
[
"BEAT STREET",
"has_genre",
"DRAMA"
],
[
"BEAT STREET",
"release_year",
"1984"
],
[
"BIRDY",
"has_genre",
"DRAMA"
],
[
"BIRDY",
"has_tags",
"DRAMA"
],
[
"BIRDY",
"release_year",
"1984"
],
[
"BOY MEETS GIRL",
"has_genre",
"DRAMA"
],
[
"BOY MEETS GIRL",
"release_year",
"1984"
],
[
"CAMILA",
"has_genre",
"DRAMA"
],
[
"CAMILA",
"release_year",
"1984"
],
[
"CARMEN",
"has_genre",
"DRAMA"
],
[
"CARMEN",
"release_year",
"1984"
],
[
"CATCH A FIRE",
"directed_by",
"PHILLIP NOYCE"
],
[
"CATCH A FIRE",
"has_genre",
"DRAMA"
],
[
"CHOOSE ME",
"has_genre",
"DRAMA"
],
[
"CHOOSE ME",
"release_year",
"1984"
],
[
"DUMMY",
"has_genre",
"DRAMA"
],
[
"DUMMY",
"starred_actors",
"ILLEANA DOUGLAS"
],
[
"ELECTRIC DREAMS",
"has_genre",
"DRAMA"
],
[
"ELECTRIC DREAMS",
"release_year",
"1984"
],
[
"FALLING IN LOVE",
"has_genre",
"DRAMA"
],
[
"FALLING IN LOVE",
"release_year",
"1984"
],
[
"FIRSTBORN",
"has_genre",
"DRAMA"
],
[
"FIRSTBORN",
"release_year",
"1984"
],
[
"FLASHPOINT",
"has_genre",
"DRAMA"
],
[
"FLASHPOINT",
"release_year",
"1984"
],
[
"FOOTLOOSE",
"has_genre",
"DRAMA"
],
[
"FOOTLOOSE",
"release_year",
"1984"
],
[
"GIVE MY REGARDS TO BROAD STREET",
"has_genre",
"DRAMA"
],
[
"GIVE MY REGARDS TO BROAD STREET",
"release_year",
"1984"
],
[
"GRANDVIEW, U.S.A.",
"has_genre",
"DRAMA"
],
[
"GRANDVIEW, U.S.A.",
"release_year",
"1984"
],
[
"HARD TO HOLD",
"has_genre",
"DRAMA"
],
[
"HARD TO HOLD",
"release_year",
"1984"
],
[
"IRRECONCILABLE DIFFERENCES",
"has_genre",
"DRAMA"
],
[
"IRRECONCILABLE DIFFERENCES",
"release_year",
"1984"
],
[
"MARIA'S LOVERS",
"has_genre",
"DRAMA"
],
[
"MARIA'S LOVERS",
"release_year",
"1984"
],
[
"MOSCOW ON THE HUDSON",
"has_genre",
"DRAMA"
],
[
"MOSCOW ON THE HUDSON",
"release_year",
"1984"
],
[
"MRS. SOFFEL",
"has_genre",
"DRAMA"
],
[
"MRS. SOFFEL",
"release_year",
"1984"
],
[
"NEWSFRONT",
"directed_by",
"PHILLIP NOYCE"
],
[
"NEWSFRONT",
"has_genre",
"DRAMA"
],
[
"NEWSFRONT",
"has_tags",
"AUSTRALIA"
],
[
"NEWSFRONT",
"has_tags",
"PHILLIP NOYCE"
],
[
"NEWSFRONT",
"written_by",
"PHILLIP NOYCE"
],
[
"NO SMALL AFFAIR",
"has_genre",
"DRAMA"
],
[
"NO SMALL AFFAIR",
"release_year",
"1984"
],
[
"ONCE UPON A TIME IN AMERICA",
"has_genre",
"DRAMA"
],
[
"ONCE UPON A TIME IN AMERICA",
"release_year",
"1984"
],
[
"PARIS, TEXAS",
"has_genre",
"DRAMA"
],
[
"PARIS, TEXAS",
"release_year",
"1984"
],
[
"PLACES IN THE HEART",
"has_genre",
"DRAMA"
],
[
"PLACES IN THE HEART",
"release_year",
"1984"
],
[
"PURPLE RAIN",
"has_genre",
"DRAMA"
],
[
"PURPLE RAIN",
"release_year",
"1984"
],
[
"RABBIT-PROOF FENCE",
"directed_by",
"PHILLIP NOYCE"
],
[
"RABBIT-PROOF FENCE",
"has_genre",
"DRAMA"
],
[
"RABBIT-PROOF FENCE",
"has_tags",
"AUSTRALIA"
],
[
"RABBIT-PROOF FENCE",
"has_tags",
"PHILLIP NOYCE"
],
[
"RABBIT-PROOF FENCE",
"has_tags",
"TRUE STORY"
],
[
"RABBIT-PROOF FENCE",
"release_year",
"2002"
],
[
"RACING WITH THE MOON",
"has_genre",
"DRAMA"
],
[
"RACING WITH THE MOON",
"release_year",
"1984"
],
[
"STORIES OF LOST SOULS",
"directed_by",
"ILLEANA DOUGLAS"
],
[
"STORIES OF LOST SOULS",
"written_by",
"ILLEANA DOUGLAS"
],
[
"STREETS OF FIRE",
"has_genre",
"DRAMA"
],
[
"STREETS OF FIRE",
"release_year",
"1984"
],
[
"TANK",
"has_genre",
"DRAMA"
],
[
"TANK",
"release_year",
"1984"
],
[
"TEACHERS",
"has_genre",
"DRAMA"
],
[
"TEACHERS",
"release_year",
"1984"
],
[
"THE BOUNTY",
"has_genre",
"DRAMA"
],
[
"THE BOUNTY",
"release_year",
"1984"
],
[
"THE COTTON CLUB",
"has_genre",
"DRAMA"
],
[
"THE COTTON CLUB",
"release_year",
"1984"
],
[
"THE FUNERAL",
"has_genre",
"DRAMA"
],
[
"THE FUNERAL",
"release_year",
"1984"
],
[
"THE GREEN",
"has_genre",
"DRAMA"
],
[
"THE GREEN",
"starred_actors",
"ILLEANA DOUGLAS"
],
[
"THE HIT",
"has_genre",
"DRAMA"
],
[
"THE HIT",
"release_year",
"1984"
],
[
"THE HOTEL NEW HAMPSHIRE",
"has_genre",
"DRAMA"
],
[
"THE HOTEL NEW HAMPSHIRE",
"release_year",
"1984"
],
[
"THE KARATE KID",
"has_genre",
"DRAMA"
],
[
"THE KARATE KID",
"has_tags",
"DRAMA"
],
[
"THE KARATE KID",
"release_year",
"1984"
],
[
"THE KILLING FIELDS",
"has_genre",
"DRAMA"
],
[
"THE KILLING FIELDS",
"release_year",
"1984"
],
[
"THE PUBLIC WOMAN",
"has_genre",
"DRAMA"
],
[
"THE PUBLIC WOMAN",
"has_tags",
"DRAMA"
],
[
"THE PUBLIC WOMAN",
"release_year",
"1984"
],
[
"THE QUIET AMERICAN",
"directed_by",
"PHILLIP NOYCE"
],
[
"THE QUIET AMERICAN",
"has_tags",
"PHILLIP NOYCE"
],
[
"THE QUIET AMERICAN",
"release_year",
"2002"
],
[
"THE QUIET AMERICAN",
"starred_actors",
"MICHAEL REDGRAVE"
],
[
"THE RAZOR'S EDGE",
"has_genre",
"DRAMA"
],
[
"THE RAZOR'S EDGE",
"release_year",
"1984"
],
[
"THE RIVER",
"has_genre",
"DRAMA"
],
[
"THE RIVER",
"release_year",
"1984"
],
[
"THE WILD LIFE",
"has_genre",
"DRAMA"
],
[
"THE WILD LIFE",
"release_year",
"1984"
],
[
"THIEF OF HEARTS",
"has_genre",
"DRAMA"
],
[
"THIEF OF HEARTS",
"release_year",
"1984"
],
[
"THREADS",
"has_genre",
"DRAMA"
],
[
"THREADS",
"release_year",
"1984"
],
[
"TRUE STORY",
"has_genre",
"DRAMA"
],
[
"TRUE STORY",
"has_tags",
"DRAMA"
],
[
"UNTIL SEPTEMBER",
"has_genre",
"DRAMA"
],
[
"UNTIL SEPTEMBER",
"release_year",
"1984"
],
[
"WHAT HAVE I DONE TO DESERVE THIS?",
"has_genre",
"DRAMA"
],
[
"WHAT HAVE I DONE TO DESERVE THIS?",
"release_year",
"1984"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
24818, 1992
17588, AX 'EM
16654, BRITISH
25435, CANDYMAN
6743, CRITTERS
11807, CRITTERS 4
28873, DAVID J. SCHOW
37059, DEATH AT A FUNERAL
2228, DON KEITH OPPER
15064, EQUINOX
31630, EVIL TOONS
6215, FOUR WEDDINGS AND A FUNERAL
38663, FUNERAL
5870, HORROR
7315, HOUSE IV
38385, INNOCENT BLOOD
28729, REMAKE
37397, RICHARD JOHNSON
16247, SLEEPWALKERS
11787, THE HAUNTING
30271, THE HILLS RUN RED
10379, THE LAWNMOWER MAN
src, edge_attr, dst
17588, has_genre, 5870
17588, release_year, 24818
25435, has_genre, 5870
25435, has_tags, 5870
25435, release_year, 24818
6743, has_genre, 5870
6743, written_by, 2228
11807, has_genre, 5870
11807, release_year, 24818
11807, starred_actors, 2228
11807, written_by, 28873
37059, has_tags, 16654
37059, has_tags, 38663
37059, has_tags, 28729
15064, has_genre, 5870
15064, release_year, 24818
31630, has_genre, 5870
31630, release_year, 24818
6215, has_tags, 16654
6215, has_tags, 38663
7315, has_genre, 5870
7315, release_year, 24818
38385, has_genre, 5870
38385, release_year, 24818
16247, has_genre, 5870
16247, has_tags, 5870
16247, release_year, 24818
11787, has_genre, 5870
11787, has_tags, 16654
11787, has_tags, 5870
11787, has_tags, 28729
11787, starred_actors, 37397
30271, has_genre, 5870
30271, written_by, 28873
10379, has_genre, 5870
10379, release_year, 24818
Question: For what reason are CRITTERS 4, FUNERAL, and RICHARD JOHNSON associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"CRITTERS 4",
"FUNERAL",
"RICHARD JOHNSON"
],
"valid_edges": [
[
"AX 'EM",
"has_genre",
"HORROR"
],
[
"AX 'EM",
"release_year",
"1992"
],
[
"CANDYMAN",
"has_genre",
"HORROR"
],
[
"CANDYMAN",
"has_tags",
"HORROR"
],
[
"CANDYMAN",
"release_year",
"1992"
],
[
"CRITTERS",
"has_genre",
"HORROR"
],
[
"CRITTERS",
"written_by",
"DON KEITH OPPER"
],
[
"CRITTERS 4",
"has_genre",
"HORROR"
],
[
"CRITTERS 4",
"release_year",
"1992"
],
[
"CRITTERS 4",
"starred_actors",
"DON KEITH OPPER"
],
[
"CRITTERS 4",
"written_by",
"DAVID J. SCHOW"
],
[
"DEATH AT A FUNERAL",
"has_tags",
"BRITISH"
],
[
"DEATH AT A FUNERAL",
"has_tags",
"FUNERAL"
],
[
"DEATH AT A FUNERAL",
"has_tags",
"REMAKE"
],
[
"EQUINOX",
"has_genre",
"HORROR"
],
[
"EQUINOX",
"release_year",
"1992"
],
[
"EVIL TOONS",
"has_genre",
"HORROR"
],
[
"EVIL TOONS",
"release_year",
"1992"
],
[
"FOUR WEDDINGS AND A FUNERAL",
"has_tags",
"BRITISH"
],
[
"FOUR WEDDINGS AND A FUNERAL",
"has_tags",
"FUNERAL"
],
[
"HOUSE IV",
"has_genre",
"HORROR"
],
[
"HOUSE IV",
"release_year",
"1992"
],
[
"INNOCENT BLOOD",
"has_genre",
"HORROR"
],
[
"INNOCENT BLOOD",
"release_year",
"1992"
],
[
"SLEEPWALKERS",
"has_genre",
"HORROR"
],
[
"SLEEPWALKERS",
"has_tags",
"HORROR"
],
[
"SLEEPWALKERS",
"release_year",
"1992"
],
[
"THE HAUNTING",
"has_genre",
"HORROR"
],
[
"THE HAUNTING",
"has_tags",
"BRITISH"
],
[
"THE HAUNTING",
"has_tags",
"HORROR"
],
[
"THE HAUNTING",
"has_tags",
"REMAKE"
],
[
"THE HAUNTING",
"starred_actors",
"RICHARD JOHNSON"
],
[
"THE HILLS RUN RED",
"has_genre",
"HORROR"
],
[
"THE HILLS RUN RED",
"written_by",
"DAVID J. SCHOW"
],
[
"THE LAWNMOWER MAN",
"has_genre",
"HORROR"
],
[
"THE LAWNMOWER MAN",
"release_year",
"1992"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
13192, ABBY MANN
10045, BD-R
24416, CEREBRAL PALSY
6480, GERMAN
22600, JUDGMENT AT NUREMBERG
30, KURT VONNEGUT
5127, MOTHER NIGHT
17669, MY LEFT FOOT
22214, WAR
src, edge_attr, dst
22600, has_genre, 22214
22600, has_tags, 10045
22600, has_tags, 22214
22600, in_language, 6480
22600, written_by, 13192
5127, has_genre, 22214
5127, has_tags, 30
5127, in_language, 6480
17669, has_tags, 10045
17669, has_tags, 24416
Question: For what reason are ABBY MANN, CEREBRAL PALSY, and KURT VONNEGUT associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"ABBY MANN",
"CEREBRAL PALSY",
"KURT VONNEGUT"
],
"valid_edges": [
[
"JUDGMENT AT NUREMBERG",
"has_genre",
"WAR"
],
[
"JUDGMENT AT NUREMBERG",
"has_tags",
"BD-R"
],
[
"JUDGMENT AT NUREMBERG",
"has_tags",
"WAR"
],
[
"JUDGMENT AT NUREMBERG",
"in_language",
"GERMAN"
],
[
"JUDGMENT AT NUREMBERG",
"written_by",
"ABBY MANN"
],
[
"MOTHER NIGHT",
"has_genre",
"WAR"
],
[
"MOTHER NIGHT",
"has_tags",
"KURT VONNEGUT"
],
[
"MOTHER NIGHT",
"in_language",
"GERMAN"
],
[
"MY LEFT FOOT",
"has_tags",
"BD-R"
],
[
"MY LEFT FOOT",
"has_tags",
"CEREBRAL PALSY"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
6216, 1952
35935, 2002
4310, 24 HOUR PARTY PEOPLE
9408, 40 DAYS AND 40 NIGHTS
36647, 8 WOMEN
11957, 9 DEAD GAY GUYS
2847, ABBOTT AND COSTELLO MEET CAPTAIN KIDD
6008, ABOUT A BOY
37599, ABOUT SCHMIDT
34883, ADAM'S RIB
17111, ALI G INDAHOUSE
22569, ALL ABOUT THE BENJAMINS
16113, ANALYZE THAT
35314, AUSTIN POWERS IN GOLDMEMBER
29535, AVENGING ANGELO
38849, BACHELOR MOTHER
23899, BAD COMPANY
36819, BARBERSHOP
30771, BECAUSE YOU'RE MINE
15433, BEND IT LIKE BECKHAM
39619, BIG FAT LIAR
8732, BIG TROUBLE
27128, BOAT TRIP
37616, BORN YESTERDAY
235, BRINGING UP BABY
32620, BUBBA HO-TEP
14572, BUYING THE COW
27929, CABIN FEVER
23286, CARNAGE
20073, CHERISH
10349, CHICAGO
32644, CHINESE ODYSSEY 2002
30463, COMEDY
21391, CRACKERJACK
30019, CROSSROADS
36382, DANTE'S INFERNO
21730, DAY OF THE WACKO
19179, DEATH TO SMOOCHY
34250, DESK SET
15791, DINNER AT EIGHT
21079, DIRTY DEEDS
14249, DREAMBOAT
25651, DUMMY
26815, EIGHT CRAZY NIGHTS
38543, EIGHT LEGGED FREAKS
38250, FATHER OF THE BRIDE
8745, FATHER'S LITTLE DIVIDEND
27539, FRANK MCKLUSKY, C.I.
30712, FREEBIE AND THE BEAN
29241, FRIDAY AFTER NEXT
14466, GARSON KANIN
19932, GEORGE CUKOR
20995, GIRLS ABOUT TOWN
29563, GUESS WHO'S COMING TO DINNER
6388, HAROLD AND MAUDE
10990, HEARTLANDS
3829, HERO
7289, HOLIDAY
15629, HOME ALONE 4
22069, I SPY
27919, I'M WITH LUCY
16371, ICE AGE
17197, IGBY GOES DOWN
30470, IT SHOULD HAPPEN TO YOU
11295, IT'S A MAD, MAD, MAD, MAD WORLD
33001, JUST A KISS
2204, JUWANNA MANN
26838, KATHARINE HEPBURN
32010, KISS THE BRIDE
19966, LE PLAISIR
20863, LES GIRLS
10267, LET'S MAKE LOVE
2563, LIBELED LADY
12137, LIFE OR SOMETHING LIKE IT
28832, LIFE WITHOUT DICK
16155, LOVE LIZA
9812, MAID IN MANHATTAN
32481, MANNEQUIN
4270, MEN WITH BROOMS
36083, MIRANDA
13717, MONKEY BUSINESS
16662, MORNING GLORY
20803, MR. DEEDS
22064, MY BIG FAT GREEK WEDDING
32122, MY FAVORITE WIFE
4887, MY LEFT EYE SEES GHOSTS
35262, MY MOTHER LIKES WOMEN
25269, NINE LIVES
35794, NOVO
1493, NOW YOU KNOW
2721, OCCIDENT
4582, ONCE UPON A TIME IN THE MIDLANDS
24375, ONE HOUR WITH YOU
37178, ORANGE COUNTY
27117, PASSIONADA
36277, PAT AND MIKE
9976, PIPE DREAM
3688, PUMPKIN
34602, PUNCH-DRUNK LOVE
21890, R.S.V.P.
30422, RICHARD RUSH
3525, ROAD TO BALI
25769, ROGER DODGER
37522, ROOM FOR ONE MORE
10638, RUTH GORDON
12987, SCOOBY-DOO
19244, SERVING SARA
6603, SEX IS COMEDY
26261, SHOWTIME
28298, SINGIN' IN THE RAIN
15043, SLACKERS
25151, SNOW DOGS
16907, SON OF PALEFACE
24961, SORORITY BOYS
31563, SPENCER TRACY
35843, SPUN
5170, STEALING HARVARD
15100, SUPER SUCKER
9276, SWEET HOME ALABAMA
26790, SWEPT AWAY
11247, SYLVIA SCARLETT
22407, THE ACTRESS
36316, THE ADVENTURES OF PLUTO NASH
2316, THE ANARCHIST COOKBOOK
304, THE BANGER SISTERS
21330, THE CRIMSON PIRATE
11696, THE CUCKOO
3324, THE DANGEROUS LIVES OF ALTAR BOYS
914, THE GOOD GIRL
26531, THE GURU
24302, THE HOT CHICK
13534, THE IMPORTANCE OF BEING EARNEST
2147, THE MAN WITHOUT A PAST
6908, THE MASTER OF DISGUISE
32297, THE MERRY WIDOW
295, THE NEW GUY
1192, THE ONE AND ONLY
28172, THE PHILADELPHIA STORY
31851, THE PRISONER OF ZENDA
16199, THE QUIET MAN
31401, THE RULES OF ATTRACTION
7052, THE SWEETEST THING
34172, THE TUXEDO
34529, THE WHITE SHEIK
20210, THE WOMEN
488, TRAVELS WITH MY AUNT
10720, TRIGGERMEN
9612, TWO WEEKS NOTICE
13214, UNCONDITIONAL LOVE
16991, UNDERCOVER BROTHER
14438, UP THE RIVER
21576, WAKING UP IN RENO
31364, WE'RE NOT MARRIED!
37568, WELCOME TO COLLINWOOD
39802, WHEN IN ROME
28231, WHERE'S POPPA?
8249, WITHOUT LOVE
2659, WOMAN OF THE YEAR
src, edge_attr, dst
4310, has_genre, 30463
4310, release_year, 35935
9408, has_genre, 30463
9408, has_tags, 30463
9408, release_year, 35935
36647, has_genre, 30463
36647, release_year, 35935
11957, has_genre, 30463
11957, release_year, 35935
2847, has_genre, 30463
2847, release_year, 6216
6008, has_genre, 30463
6008, has_tags, 30463
6008, release_year, 35935
37599, has_genre, 30463
37599, has_tags, 30463
37599, release_year, 35935
34883, directed_by, 19932
34883, has_genre, 30463
34883, has_tags, 19932
34883, has_tags, 26838
34883, has_tags, 31563
34883, starred_actors, 26838
34883, starred_actors, 31563
34883, written_by, 14466
34883, written_by, 10638
17111, has_genre, 30463
17111, release_year, 35935
22569, has_genre, 30463
22569, has_tags, 30463
22569, release_year, 35935
16113, has_genre, 30463
16113, has_tags, 30463
16113, release_year, 35935
35314, has_genre, 30463
35314, has_tags, 30463
35314, release_year, 35935
29535, has_genre, 30463
29535, release_year, 35935
38849, directed_by, 14466
38849, has_genre, 30463
23899, has_genre, 30463
23899, release_year, 35935
36819, has_genre, 30463
36819, release_year, 35935
30771, has_genre, 30463
30771, release_year, 6216
15433, has_genre, 30463
15433, release_year, 35935
39619, has_genre, 30463
39619, release_year, 35935
8732, has_genre, 30463
8732, release_year, 35935
27128, has_genre, 30463
27128, release_year, 35935
37616, directed_by, 19932
37616, has_genre, 30463
37616, has_tags, 19932
37616, written_by, 14466
235, has_genre, 30463
235, has_tags, 30463
235, has_tags, 26838
235, starred_actors, 26838
32620, has_genre, 30463
32620, has_tags, 30463
32620, release_year, 35935
14572, has_genre, 30463
14572, release_year, 35935
27929, has_genre, 30463
27929, release_year, 35935
23286, has_genre, 30463
23286, release_year, 35935
20073, has_genre, 30463
20073, release_year, 35935
10349, has_genre, 30463
10349, release_year, 35935
32644, has_genre, 30463
32644, release_year, 35935
21391, has_genre, 30463
21391, release_year, 35935
30019, has_genre, 30463
30019, release_year, 35935
36382, has_genre, 30463
36382, starred_actors, 31563
21730, has_genre, 30463
21730, release_year, 35935
19179, has_genre, 30463
19179, release_year, 35935
34250, has_genre, 30463
34250, has_tags, 26838
34250, starred_actors, 26838
34250, starred_actors, 31563
15791, directed_by, 19932
15791, has_genre, 30463
15791, has_tags, 19932
21079, has_genre, 30463
21079, has_tags, 30463
21079, release_year, 35935
14249, has_genre, 30463
14249, release_year, 6216
25651, has_genre, 30463
25651, release_year, 35935
26815, has_genre, 30463
26815, release_year, 35935
38543, has_genre, 30463
38543, release_year, 35935
38250, has_genre, 30463
38250, has_tags, 30463
38250, has_tags, 31563
38250, starred_actors, 31563
8745, has_genre, 30463
8745, starred_actors, 31563
27539, has_genre, 30463
27539, release_year, 35935
30712, directed_by, 30422
30712, has_genre, 30463
29241, has_genre, 30463
29241, release_year, 35935
20995, directed_by, 19932
20995, has_genre, 30463
20995, has_tags, 19932
29563, has_genre, 30463
29563, has_tags, 31563
29563, starred_actors, 26838
29563, starred_actors, 31563
6388, has_genre, 30463
6388, has_tags, 10638
6388, starred_actors, 10638
10990, has_genre, 30463
10990, release_year, 35935
3829, has_genre, 30463
3829, release_year, 35935
7289, directed_by, 19932
7289, has_genre, 30463
7289, has_tags, 30463
7289, has_tags, 19932
7289, has_tags, 26838
7289, starred_actors, 26838
15629, has_genre, 30463
15629, release_year, 35935
22069, has_genre, 30463
22069, has_tags, 30463
22069, release_year, 35935
27919, has_genre, 30463
27919, release_year, 35935
16371, has_genre, 30463
16371, has_tags, 30463
16371, release_year, 35935
17197, has_genre, 30463
17197, release_year, 35935
30470, directed_by, 19932
30470, has_genre, 30463
30470, has_tags, 19932
30470, written_by, 14466
11295, has_genre, 30463
11295, has_tags, 30463
11295, starred_actors, 31563
33001, has_genre, 30463
33001, release_year, 35935
2204, has_genre, 30463
2204, release_year, 35935
32010, has_genre, 30463
32010, release_year, 35935
19966, has_genre, 30463
19966, release_year, 6216
20863, directed_by, 19932
20863, has_genre, 30463
10267, directed_by, 19932
10267, has_genre, 30463
2563, has_genre, 30463
2563, starred_actors, 31563
12137, has_genre, 30463
12137, release_year, 35935
28832, has_genre, 30463
28832, release_year, 35935
16155, has_genre, 30463
16155, release_year, 35935
9812, has_genre, 30463
9812, release_year, 35935
32481, has_genre, 30463
32481, starred_actors, 31563
4270, has_genre, 30463
4270, release_year, 35935
36083, has_genre, 30463
36083, release_year, 35935
13717, has_genre, 30463
13717, has_tags, 30463
13717, release_year, 6216
16662, has_genre, 30463
16662, starred_actors, 26838
20803, has_genre, 30463
20803, release_year, 35935
22064, has_genre, 30463
22064, has_tags, 30463
22064, release_year, 35935
32122, directed_by, 14466
32122, has_genre, 30463
4887, has_genre, 30463
4887, release_year, 35935
35262, has_genre, 30463
35262, release_year, 35935
25269, release_year, 35935
35794, has_genre, 30463
35794, release_year, 35935
1493, has_genre, 30463
1493, release_year, 35935
2721, has_genre, 30463
2721, release_year, 35935
4582, has_genre, 30463
4582, release_year, 35935
24375, directed_by, 19932
24375, has_genre, 30463
37178, has_genre, 30463
37178, release_year, 35935
27117, has_genre, 30463
27117, release_year, 35935
36277, directed_by, 19932
36277, has_genre, 30463
36277, has_tags, 19932
36277, release_year, 6216
36277, starred_actors, 26838
36277, starred_actors, 31563
36277, written_by, 14466
36277, written_by, 10638
9976, has_genre, 30463
9976, release_year, 35935
3688, has_genre, 30463
3688, release_year, 35935
34602, has_genre, 30463
34602, has_tags, 30463
34602, release_year, 35935
21890, has_genre, 30463
21890, release_year, 35935
3525, has_genre, 30463
3525, release_year, 6216
25769, has_genre, 30463
25769, release_year, 35935
37522, has_genre, 30463
37522, release_year, 6216
12987, has_genre, 30463
12987, release_year, 35935
19244, has_genre, 30463
19244, release_year, 35935
6603, has_genre, 30463
6603, release_year, 35935
26261, has_genre, 30463
26261, release_year, 35935
28298, has_genre, 30463
28298, has_tags, 30463
28298, release_year, 6216
15043, has_genre, 30463
15043, release_year, 35935
25151, has_genre, 30463
25151, release_year, 35935
16907, has_genre, 30463
16907, release_year, 6216
24961, has_genre, 30463
24961, release_year, 35935
35843, has_genre, 30463
35843, release_year, 35935
5170, has_genre, 30463
5170, release_year, 35935
15100, has_genre, 30463
15100, release_year, 35935
9276, has_genre, 30463
9276, release_year, 35935
26790, has_genre, 30463
26790, release_year, 35935
11247, directed_by, 19932
11247, has_genre, 30463
11247, starred_actors, 26838
22407, directed_by, 19932
22407, has_genre, 30463
22407, starred_actors, 31563
22407, written_by, 10638
36316, has_genre, 30463
36316, release_year, 35935
2316, has_genre, 30463
2316, release_year, 35935
304, has_genre, 30463
304, release_year, 35935
21330, has_genre, 30463
21330, release_year, 6216
11696, has_genre, 30463
11696, release_year, 35935
3324, has_genre, 30463
3324, release_year, 35935
914, has_genre, 30463
914, release_year, 35935
26531, has_genre, 30463
26531, release_year, 35935
24302, has_genre, 30463
24302, has_tags, 30463
24302, release_year, 35935
13534, has_genre, 30463
13534, release_year, 35935
2147, has_genre, 30463
2147, release_year, 35935
6908, has_genre, 30463
6908, release_year, 35935
32297, has_genre, 30463
32297, release_year, 6216
295, has_genre, 30463
295, release_year, 35935
1192, has_genre, 30463
1192, release_year, 35935
28172, directed_by, 19932
28172, has_genre, 30463
28172, has_tags, 19932
28172, has_tags, 26838
28172, starred_actors, 26838
31851, has_genre, 30463
31851, release_year, 6216
16199, has_genre, 30463
16199, release_year, 6216
31401, has_genre, 30463
31401, release_year, 35935
7052, has_genre, 30463
7052, has_tags, 30463
7052, release_year, 35935
34172, has_genre, 30463
34172, has_tags, 30463
34172, release_year, 35935
34529, has_genre, 30463
34529, release_year, 6216
20210, directed_by, 19932
20210, has_genre, 30463
20210, has_tags, 19932
488, directed_by, 19932
488, has_genre, 30463
10720, has_genre, 30463
10720, release_year, 35935
9612, has_genre, 30463
9612, release_year, 35935
13214, has_genre, 30463
13214, release_year, 35935
16991, has_genre, 30463
16991, release_year, 35935
14438, has_genre, 30463
14438, starred_actors, 31563
21576, has_genre, 30463
21576, release_year, 35935
31364, has_genre, 30463
31364, release_year, 6216
37568, has_genre, 30463
37568, has_tags, 30463
37568, release_year, 35935
39802, has_genre, 30463
39802, release_year, 35935
28231, has_genre, 30463
28231, has_tags, 10638
28231, starred_actors, 10638
8249, has_genre, 30463
8249, has_tags, 26838
8249, has_tags, 31563
8249, starred_actors, 26838
8249, starred_actors, 31563
2659, has_genre, 30463
2659, starred_actors, 26838
2659, starred_actors, 31563
Question: In what context are NINE LIVES, PAT AND MIKE, and RICHARD RUSH connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"NINE LIVES",
"PAT AND MIKE",
"RICHARD RUSH"
],
"valid_edges": [
[
"24 HOUR PARTY PEOPLE",
"has_genre",
"COMEDY"
],
[
"24 HOUR PARTY PEOPLE",
"release_year",
"2002"
],
[
"40 DAYS AND 40 NIGHTS",
"has_genre",
"COMEDY"
],
[
"40 DAYS AND 40 NIGHTS",
"has_tags",
"COMEDY"
],
[
"40 DAYS AND 40 NIGHTS",
"release_year",
"2002"
],
[
"8 WOMEN",
"has_genre",
"COMEDY"
],
[
"8 WOMEN",
"release_year",
"2002"
],
[
"9 DEAD GAY GUYS",
"has_genre",
"COMEDY"
],
[
"9 DEAD GAY GUYS",
"release_year",
"2002"
],
[
"ABBOTT AND COSTELLO MEET CAPTAIN KIDD",
"has_genre",
"COMEDY"
],
[
"ABBOTT AND COSTELLO MEET CAPTAIN KIDD",
"release_year",
"1952"
],
[
"ABOUT A BOY",
"has_genre",
"COMEDY"
],
[
"ABOUT A BOY",
"has_tags",
"COMEDY"
],
[
"ABOUT A BOY",
"release_year",
"2002"
],
[
"ABOUT SCHMIDT",
"has_genre",
"COMEDY"
],
[
"ABOUT SCHMIDT",
"has_tags",
"COMEDY"
],
[
"ABOUT SCHMIDT",
"release_year",
"2002"
],
[
"ADAM'S RIB",
"directed_by",
"GEORGE CUKOR"
],
[
"ADAM'S RIB",
"has_genre",
"COMEDY"
],
[
"ADAM'S RIB",
"has_tags",
"GEORGE CUKOR"
],
[
"ADAM'S RIB",
"has_tags",
"KATHARINE HEPBURN"
],
[
"ADAM'S RIB",
"has_tags",
"SPENCER TRACY"
],
[
"ADAM'S RIB",
"starred_actors",
"KATHARINE HEPBURN"
],
[
"ADAM'S RIB",
"starred_actors",
"SPENCER TRACY"
],
[
"ADAM'S RIB",
"written_by",
"GARSON KANIN"
],
[
"ADAM'S RIB",
"written_by",
"RUTH GORDON"
],
[
"ALI G INDAHOUSE",
"has_genre",
"COMEDY"
],
[
"ALI G INDAHOUSE",
"release_year",
"2002"
],
[
"ALL ABOUT THE BENJAMINS",
"has_genre",
"COMEDY"
],
[
"ALL ABOUT THE BENJAMINS",
"has_tags",
"COMEDY"
],
[
"ALL ABOUT THE BENJAMINS",
"release_year",
"2002"
],
[
"ANALYZE THAT",
"has_genre",
"COMEDY"
],
[
"ANALYZE THAT",
"has_tags",
"COMEDY"
],
[
"ANALYZE THAT",
"release_year",
"2002"
],
[
"AUSTIN POWERS IN GOLDMEMBER",
"has_genre",
"COMEDY"
],
[
"AUSTIN POWERS IN GOLDMEMBER",
"has_tags",
"COMEDY"
],
[
"AUSTIN POWERS IN GOLDMEMBER",
"release_year",
"2002"
],
[
"AVENGING ANGELO",
"has_genre",
"COMEDY"
],
[
"AVENGING ANGELO",
"release_year",
"2002"
],
[
"BACHELOR MOTHER",
"directed_by",
"GARSON KANIN"
],
[
"BACHELOR MOTHER",
"has_genre",
"COMEDY"
],
[
"BAD COMPANY",
"has_genre",
"COMEDY"
],
[
"BAD COMPANY",
"release_year",
"2002"
],
[
"BARBERSHOP",
"has_genre",
"COMEDY"
],
[
"BARBERSHOP",
"release_year",
"2002"
],
[
"BECAUSE YOU'RE MINE",
"has_genre",
"COMEDY"
],
[
"BECAUSE YOU'RE MINE",
"release_year",
"1952"
],
[
"BEND IT LIKE BECKHAM",
"has_genre",
"COMEDY"
],
[
"BEND IT LIKE BECKHAM",
"release_year",
"2002"
],
[
"BIG FAT LIAR",
"has_genre",
"COMEDY"
],
[
"BIG FAT LIAR",
"release_year",
"2002"
],
[
"BIG TROUBLE",
"has_genre",
"COMEDY"
],
[
"BIG TROUBLE",
"release_year",
"2002"
],
[
"BOAT TRIP",
"has_genre",
"COMEDY"
],
[
"BOAT TRIP",
"release_year",
"2002"
],
[
"BORN YESTERDAY",
"directed_by",
"GEORGE CUKOR"
],
[
"BORN YESTERDAY",
"has_genre",
"COMEDY"
],
[
"BORN YESTERDAY",
"has_tags",
"GEORGE CUKOR"
],
[
"BORN YESTERDAY",
"written_by",
"GARSON KANIN"
],
[
"BRINGING UP BABY",
"has_genre",
"COMEDY"
],
[
"BRINGING UP BABY",
"has_tags",
"COMEDY"
],
[
"BRINGING UP BABY",
"has_tags",
"KATHARINE HEPBURN"
],
[
"BRINGING UP BABY",
"starred_actors",
"KATHARINE HEPBURN"
],
[
"BUBBA HO-TEP",
"has_genre",
"COMEDY"
],
[
"BUBBA HO-TEP",
"has_tags",
"COMEDY"
],
[
"BUBBA HO-TEP",
"release_year",
"2002"
],
[
"BUYING THE COW",
"has_genre",
"COMEDY"
],
[
"BUYING THE COW",
"release_year",
"2002"
],
[
"CABIN FEVER",
"has_genre",
"COMEDY"
],
[
"CABIN FEVER",
"release_year",
"2002"
],
[
"CARNAGE",
"has_genre",
"COMEDY"
],
[
"CARNAGE",
"release_year",
"2002"
],
[
"CHERISH",
"has_genre",
"COMEDY"
],
[
"CHERISH",
"release_year",
"2002"
],
[
"CHICAGO",
"has_genre",
"COMEDY"
],
[
"CHICAGO",
"release_year",
"2002"
],
[
"CHINESE ODYSSEY 2002",
"has_genre",
"COMEDY"
],
[
"CHINESE ODYSSEY 2002",
"release_year",
"2002"
],
[
"CRACKERJACK",
"has_genre",
"COMEDY"
],
[
"CRACKERJACK",
"release_year",
"2002"
],
[
"CROSSROADS",
"has_genre",
"COMEDY"
],
[
"CROSSROADS",
"release_year",
"2002"
],
[
"DANTE'S INFERNO",
"has_genre",
"COMEDY"
],
[
"DANTE'S INFERNO",
"starred_actors",
"SPENCER TRACY"
],
[
"DAY OF THE WACKO",
"has_genre",
"COMEDY"
],
[
"DAY OF THE WACKO",
"release_year",
"2002"
],
[
"DEATH TO SMOOCHY",
"has_genre",
"COMEDY"
],
[
"DEATH TO SMOOCHY",
"release_year",
"2002"
],
[
"DESK SET",
"has_genre",
"COMEDY"
],
[
"DESK SET",
"has_tags",
"KATHARINE HEPBURN"
],
[
"DESK SET",
"starred_actors",
"KATHARINE HEPBURN"
],
[
"DESK SET",
"starred_actors",
"SPENCER TRACY"
],
[
"DINNER AT EIGHT",
"directed_by",
"GEORGE CUKOR"
],
[
"DINNER AT EIGHT",
"has_genre",
"COMEDY"
],
[
"DINNER AT EIGHT",
"has_tags",
"GEORGE CUKOR"
],
[
"DIRTY DEEDS",
"has_genre",
"COMEDY"
],
[
"DIRTY DEEDS",
"has_tags",
"COMEDY"
],
[
"DIRTY DEEDS",
"release_year",
"2002"
],
[
"DREAMBOAT",
"has_genre",
"COMEDY"
],
[
"DREAMBOAT",
"release_year",
"1952"
],
[
"DUMMY",
"has_genre",
"COMEDY"
],
[
"DUMMY",
"release_year",
"2002"
],
[
"EIGHT CRAZY NIGHTS",
"has_genre",
"COMEDY"
],
[
"EIGHT CRAZY NIGHTS",
"release_year",
"2002"
],
[
"EIGHT LEGGED FREAKS",
"has_genre",
"COMEDY"
],
[
"EIGHT LEGGED FREAKS",
"release_year",
"2002"
],
[
"FATHER OF THE BRIDE",
"has_genre",
"COMEDY"
],
[
"FATHER OF THE BRIDE",
"has_tags",
"COMEDY"
],
[
"FATHER OF THE BRIDE",
"has_tags",
"SPENCER TRACY"
],
[
"FATHER OF THE BRIDE",
"starred_actors",
"SPENCER TRACY"
],
[
"FATHER'S LITTLE DIVIDEND",
"has_genre",
"COMEDY"
],
[
"FATHER'S LITTLE DIVIDEND",
"starred_actors",
"SPENCER TRACY"
],
[
"FRANK MCKLUSKY, C.I.",
"has_genre",
"COMEDY"
],
[
"FRANK MCKLUSKY, C.I.",
"release_year",
"2002"
],
[
"FREEBIE AND THE BEAN",
"directed_by",
"RICHARD RUSH"
],
[
"FREEBIE AND THE BEAN",
"has_genre",
"COMEDY"
],
[
"FRIDAY AFTER NEXT",
"has_genre",
"COMEDY"
],
[
"FRIDAY AFTER NEXT",
"release_year",
"2002"
],
[
"GIRLS ABOUT TOWN",
"directed_by",
"GEORGE CUKOR"
],
[
"GIRLS ABOUT TOWN",
"has_genre",
"COMEDY"
],
[
"GIRLS ABOUT TOWN",
"has_tags",
"GEORGE CUKOR"
],
[
"GUESS WHO'S COMING TO DINNER",
"has_genre",
"COMEDY"
],
[
"GUESS WHO'S COMING TO DINNER",
"has_tags",
"SPENCER TRACY"
],
[
"GUESS WHO'S COMING TO DINNER",
"starred_actors",
"KATHARINE HEPBURN"
],
[
"GUESS WHO'S COMING TO DINNER",
"starred_actors",
"SPENCER TRACY"
],
[
"HAROLD AND MAUDE",
"has_genre",
"COMEDY"
],
[
"HAROLD AND MAUDE",
"has_tags",
"RUTH GORDON"
],
[
"HAROLD AND MAUDE",
"starred_actors",
"RUTH GORDON"
],
[
"HEARTLANDS",
"has_genre",
"COMEDY"
],
[
"HEARTLANDS",
"release_year",
"2002"
],
[
"HERO",
"has_genre",
"COMEDY"
],
[
"HERO",
"release_year",
"2002"
],
[
"HOLIDAY",
"directed_by",
"GEORGE CUKOR"
],
[
"HOLIDAY",
"has_genre",
"COMEDY"
],
[
"HOLIDAY",
"has_tags",
"COMEDY"
],
[
"HOLIDAY",
"has_tags",
"GEORGE CUKOR"
],
[
"HOLIDAY",
"has_tags",
"KATHARINE HEPBURN"
],
[
"HOLIDAY",
"starred_actors",
"KATHARINE HEPBURN"
],
[
"HOME ALONE 4",
"has_genre",
"COMEDY"
],
[
"HOME ALONE 4",
"release_year",
"2002"
],
[
"I SPY",
"has_genre",
"COMEDY"
],
[
"I SPY",
"has_tags",
"COMEDY"
],
[
"I SPY",
"release_year",
"2002"
],
[
"I'M WITH LUCY",
"has_genre",
"COMEDY"
],
[
"I'M WITH LUCY",
"release_year",
"2002"
],
[
"ICE AGE",
"has_genre",
"COMEDY"
],
[
"ICE AGE",
"has_tags",
"COMEDY"
],
[
"ICE AGE",
"release_year",
"2002"
],
[
"IGBY GOES DOWN",
"has_genre",
"COMEDY"
],
[
"IGBY GOES DOWN",
"release_year",
"2002"
],
[
"IT SHOULD HAPPEN TO YOU",
"directed_by",
"GEORGE CUKOR"
],
[
"IT SHOULD HAPPEN TO YOU",
"has_genre",
"COMEDY"
],
[
"IT SHOULD HAPPEN TO YOU",
"has_tags",
"GEORGE CUKOR"
],
[
"IT SHOULD HAPPEN TO YOU",
"written_by",
"GARSON KANIN"
],
[
"IT'S A MAD, MAD, MAD, MAD WORLD",
"has_genre",
"COMEDY"
],
[
"IT'S A MAD, MAD, MAD, MAD WORLD",
"has_tags",
"COMEDY"
],
[
"IT'S A MAD, MAD, MAD, MAD WORLD",
"starred_actors",
"SPENCER TRACY"
],
[
"JUST A KISS",
"has_genre",
"COMEDY"
],
[
"JUST A KISS",
"release_year",
"2002"
],
[
"JUWANNA MANN",
"has_genre",
"COMEDY"
],
[
"JUWANNA MANN",
"release_year",
"2002"
],
[
"KISS THE BRIDE",
"has_genre",
"COMEDY"
],
[
"KISS THE BRIDE",
"release_year",
"2002"
],
[
"LE PLAISIR",
"has_genre",
"COMEDY"
],
[
"LE PLAISIR",
"release_year",
"1952"
],
[
"LES GIRLS",
"directed_by",
"GEORGE CUKOR"
],
[
"LES GIRLS",
"has_genre",
"COMEDY"
],
[
"LET'S MAKE LOVE",
"directed_by",
"GEORGE CUKOR"
],
[
"LET'S MAKE LOVE",
"has_genre",
"COMEDY"
],
[
"LIBELED LADY",
"has_genre",
"COMEDY"
],
[
"LIBELED LADY",
"starred_actors",
"SPENCER TRACY"
],
[
"LIFE OR SOMETHING LIKE IT",
"has_genre",
"COMEDY"
],
[
"LIFE OR SOMETHING LIKE IT",
"release_year",
"2002"
],
[
"LIFE WITHOUT DICK",
"has_genre",
"COMEDY"
],
[
"LIFE WITHOUT DICK",
"release_year",
"2002"
],
[
"LOVE LIZA",
"has_genre",
"COMEDY"
],
[
"LOVE LIZA",
"release_year",
"2002"
],
[
"MAID IN MANHATTAN",
"has_genre",
"COMEDY"
],
[
"MAID IN MANHATTAN",
"release_year",
"2002"
],
[
"MANNEQUIN",
"has_genre",
"COMEDY"
],
[
"MANNEQUIN",
"starred_actors",
"SPENCER TRACY"
],
[
"MEN WITH BROOMS",
"has_genre",
"COMEDY"
],
[
"MEN WITH BROOMS",
"release_year",
"2002"
],
[
"MIRANDA",
"has_genre",
"COMEDY"
],
[
"MIRANDA",
"release_year",
"2002"
],
[
"MONKEY BUSINESS",
"has_genre",
"COMEDY"
],
[
"MONKEY BUSINESS",
"has_tags",
"COMEDY"
],
[
"MONKEY BUSINESS",
"release_year",
"1952"
],
[
"MORNING GLORY",
"has_genre",
"COMEDY"
],
[
"MORNING GLORY",
"starred_actors",
"KATHARINE HEPBURN"
],
[
"MR. DEEDS",
"has_genre",
"COMEDY"
],
[
"MR. DEEDS",
"release_year",
"2002"
],
[
"MY BIG FAT GREEK WEDDING",
"has_genre",
"COMEDY"
],
[
"MY BIG FAT GREEK WEDDING",
"has_tags",
"COMEDY"
],
[
"MY BIG FAT GREEK WEDDING",
"release_year",
"2002"
],
[
"MY FAVORITE WIFE",
"directed_by",
"GARSON KANIN"
],
[
"MY FAVORITE WIFE",
"has_genre",
"COMEDY"
],
[
"MY LEFT EYE SEES GHOSTS",
"has_genre",
"COMEDY"
],
[
"MY LEFT EYE SEES GHOSTS",
"release_year",
"2002"
],
[
"MY MOTHER LIKES WOMEN",
"has_genre",
"COMEDY"
],
[
"MY MOTHER LIKES WOMEN",
"release_year",
"2002"
],
[
"NINE LIVES",
"release_year",
"2002"
],
[
"NOVO",
"has_genre",
"COMEDY"
],
[
"NOVO",
"release_year",
"2002"
],
[
"NOW YOU KNOW",
"has_genre",
"COMEDY"
],
[
"NOW YOU KNOW",
"release_year",
"2002"
],
[
"OCCIDENT",
"has_genre",
"COMEDY"
],
[
"OCCIDENT",
"release_year",
"2002"
],
[
"ONCE UPON A TIME IN THE MIDLANDS",
"has_genre",
"COMEDY"
],
[
"ONCE UPON A TIME IN THE MIDLANDS",
"release_year",
"2002"
],
[
"ONE HOUR WITH YOU",
"directed_by",
"GEORGE CUKOR"
],
[
"ONE HOUR WITH YOU",
"has_genre",
"COMEDY"
],
[
"ORANGE COUNTY",
"has_genre",
"COMEDY"
],
[
"ORANGE COUNTY",
"release_year",
"2002"
],
[
"PASSIONADA",
"has_genre",
"COMEDY"
],
[
"PASSIONADA",
"release_year",
"2002"
],
[
"PAT AND MIKE",
"directed_by",
"GEORGE CUKOR"
],
[
"PAT AND MIKE",
"has_genre",
"COMEDY"
],
[
"PAT AND MIKE",
"has_tags",
"GEORGE CUKOR"
],
[
"PAT AND MIKE",
"release_year",
"1952"
],
[
"PAT AND MIKE",
"starred_actors",
"KATHARINE HEPBURN"
],
[
"PAT AND MIKE",
"starred_actors",
"SPENCER TRACY"
],
[
"PAT AND MIKE",
"written_by",
"GARSON KANIN"
],
[
"PAT AND MIKE",
"written_by",
"RUTH GORDON"
],
[
"PIPE DREAM",
"has_genre",
"COMEDY"
],
[
"PIPE DREAM",
"release_year",
"2002"
],
[
"PUMPKIN",
"has_genre",
"COMEDY"
],
[
"PUMPKIN",
"release_year",
"2002"
],
[
"PUNCH-DRUNK LOVE",
"has_genre",
"COMEDY"
],
[
"PUNCH-DRUNK LOVE",
"has_tags",
"COMEDY"
],
[
"PUNCH-DRUNK LOVE",
"release_year",
"2002"
],
[
"R.S.V.P.",
"has_genre",
"COMEDY"
],
[
"R.S.V.P.",
"release_year",
"2002"
],
[
"ROAD TO BALI",
"has_genre",
"COMEDY"
],
[
"ROAD TO BALI",
"release_year",
"1952"
],
[
"ROGER DODGER",
"has_genre",
"COMEDY"
],
[
"ROGER DODGER",
"release_year",
"2002"
],
[
"ROOM FOR ONE MORE",
"has_genre",
"COMEDY"
],
[
"ROOM FOR ONE MORE",
"release_year",
"1952"
],
[
"SCOOBY-DOO",
"has_genre",
"COMEDY"
],
[
"SCOOBY-DOO",
"release_year",
"2002"
],
[
"SERVING SARA",
"has_genre",
"COMEDY"
],
[
"SERVING SARA",
"release_year",
"2002"
],
[
"SEX IS COMEDY",
"has_genre",
"COMEDY"
],
[
"SEX IS COMEDY",
"release_year",
"2002"
],
[
"SHOWTIME",
"has_genre",
"COMEDY"
],
[
"SHOWTIME",
"release_year",
"2002"
],
[
"SINGIN' IN THE RAIN",
"has_genre",
"COMEDY"
],
[
"SINGIN' IN THE RAIN",
"has_tags",
"COMEDY"
],
[
"SINGIN' IN THE RAIN",
"release_year",
"1952"
],
[
"SLACKERS",
"has_genre",
"COMEDY"
],
[
"SLACKERS",
"release_year",
"2002"
],
[
"SNOW DOGS",
"has_genre",
"COMEDY"
],
[
"SNOW DOGS",
"release_year",
"2002"
],
[
"SON OF PALEFACE",
"has_genre",
"COMEDY"
],
[
"SON OF PALEFACE",
"release_year",
"1952"
],
[
"SORORITY BOYS",
"has_genre",
"COMEDY"
],
[
"SORORITY BOYS",
"release_year",
"2002"
],
[
"SPUN",
"has_genre",
"COMEDY"
],
[
"SPUN",
"release_year",
"2002"
],
[
"STEALING HARVARD",
"has_genre",
"COMEDY"
],
[
"STEALING HARVARD",
"release_year",
"2002"
],
[
"SUPER SUCKER",
"has_genre",
"COMEDY"
],
[
"SUPER SUCKER",
"release_year",
"2002"
],
[
"SWEET HOME ALABAMA",
"has_genre",
"COMEDY"
],
[
"SWEET HOME ALABAMA",
"release_year",
"2002"
],
[
"SWEPT AWAY",
"has_genre",
"COMEDY"
],
[
"SWEPT AWAY",
"release_year",
"2002"
],
[
"SYLVIA SCARLETT",
"directed_by",
"GEORGE CUKOR"
],
[
"SYLVIA SCARLETT",
"has_genre",
"COMEDY"
],
[
"SYLVIA SCARLETT",
"starred_actors",
"KATHARINE HEPBURN"
],
[
"THE ACTRESS",
"directed_by",
"GEORGE CUKOR"
],
[
"THE ACTRESS",
"has_genre",
"COMEDY"
],
[
"THE ACTRESS",
"starred_actors",
"SPENCER TRACY"
],
[
"THE ACTRESS",
"written_by",
"RUTH GORDON"
],
[
"THE ADVENTURES OF PLUTO NASH",
"has_genre",
"COMEDY"
],
[
"THE ADVENTURES OF PLUTO NASH",
"release_year",
"2002"
],
[
"THE ANARCHIST COOKBOOK",
"has_genre",
"COMEDY"
],
[
"THE ANARCHIST COOKBOOK",
"release_year",
"2002"
],
[
"THE BANGER SISTERS",
"has_genre",
"COMEDY"
],
[
"THE BANGER SISTERS",
"release_year",
"2002"
],
[
"THE CRIMSON PIRATE",
"has_genre",
"COMEDY"
],
[
"THE CRIMSON PIRATE",
"release_year",
"1952"
],
[
"THE CUCKOO",
"has_genre",
"COMEDY"
],
[
"THE CUCKOO",
"release_year",
"2002"
],
[
"THE DANGEROUS LIVES OF ALTAR BOYS",
"has_genre",
"COMEDY"
],
[
"THE DANGEROUS LIVES OF ALTAR BOYS",
"release_year",
"2002"
],
[
"THE GOOD GIRL",
"has_genre",
"COMEDY"
],
[
"THE GOOD GIRL",
"release_year",
"2002"
],
[
"THE GURU",
"has_genre",
"COMEDY"
],
[
"THE GURU",
"release_year",
"2002"
],
[
"THE HOT CHICK",
"has_genre",
"COMEDY"
],
[
"THE HOT CHICK",
"has_tags",
"COMEDY"
],
[
"THE HOT CHICK",
"release_year",
"2002"
],
[
"THE IMPORTANCE OF BEING EARNEST",
"has_genre",
"COMEDY"
],
[
"THE IMPORTANCE OF BEING EARNEST",
"release_year",
"2002"
],
[
"THE MAN WITHOUT A PAST",
"has_genre",
"COMEDY"
],
[
"THE MAN WITHOUT A PAST",
"release_year",
"2002"
],
[
"THE MASTER OF DISGUISE",
"has_genre",
"COMEDY"
],
[
"THE MASTER OF DISGUISE",
"release_year",
"2002"
],
[
"THE MERRY WIDOW",
"has_genre",
"COMEDY"
],
[
"THE MERRY WIDOW",
"release_year",
"1952"
],
[
"THE NEW GUY",
"has_genre",
"COMEDY"
],
[
"THE NEW GUY",
"release_year",
"2002"
],
[
"THE ONE AND ONLY",
"has_genre",
"COMEDY"
],
[
"THE ONE AND ONLY",
"release_year",
"2002"
],
[
"THE PHILADELPHIA STORY",
"directed_by",
"GEORGE CUKOR"
],
[
"THE PHILADELPHIA STORY",
"has_genre",
"COMEDY"
],
[
"THE PHILADELPHIA STORY",
"has_tags",
"GEORGE CUKOR"
],
[
"THE PHILADELPHIA STORY",
"has_tags",
"KATHARINE HEPBURN"
],
[
"THE PHILADELPHIA STORY",
"starred_actors",
"KATHARINE HEPBURN"
],
[
"THE PRISONER OF ZENDA",
"has_genre",
"COMEDY"
],
[
"THE PRISONER OF ZENDA",
"release_year",
"1952"
],
[
"THE QUIET MAN",
"has_genre",
"COMEDY"
],
[
"THE QUIET MAN",
"release_year",
"1952"
],
[
"THE RULES OF ATTRACTION",
"has_genre",
"COMEDY"
],
[
"THE RULES OF ATTRACTION",
"release_year",
"2002"
],
[
"THE SWEETEST THING",
"has_genre",
"COMEDY"
],
[
"THE SWEETEST THING",
"has_tags",
"COMEDY"
],
[
"THE SWEETEST THING",
"release_year",
"2002"
],
[
"THE TUXEDO",
"has_genre",
"COMEDY"
],
[
"THE TUXEDO",
"has_tags",
"COMEDY"
],
[
"THE TUXEDO",
"release_year",
"2002"
],
[
"THE WHITE SHEIK",
"has_genre",
"COMEDY"
],
[
"THE WHITE SHEIK",
"release_year",
"1952"
],
[
"THE WOMEN",
"directed_by",
"GEORGE CUKOR"
],
[
"THE WOMEN",
"has_genre",
"COMEDY"
],
[
"THE WOMEN",
"has_tags",
"GEORGE CUKOR"
],
[
"TRAVELS WITH MY AUNT",
"directed_by",
"GEORGE CUKOR"
],
[
"TRAVELS WITH MY AUNT",
"has_genre",
"COMEDY"
],
[
"TRIGGERMEN",
"has_genre",
"COMEDY"
],
[
"TRIGGERMEN",
"release_year",
"2002"
],
[
"TWO WEEKS NOTICE",
"has_genre",
"COMEDY"
],
[
"TWO WEEKS NOTICE",
"release_year",
"2002"
],
[
"UNCONDITIONAL LOVE",
"has_genre",
"COMEDY"
],
[
"UNCONDITIONAL LOVE",
"release_year",
"2002"
],
[
"UNDERCOVER BROTHER",
"has_genre",
"COMEDY"
],
[
"UNDERCOVER BROTHER",
"release_year",
"2002"
],
[
"UP THE RIVER",
"has_genre",
"COMEDY"
],
[
"UP THE RIVER",
"starred_actors",
"SPENCER TRACY"
],
[
"WAKING UP IN RENO",
"has_genre",
"COMEDY"
],
[
"WAKING UP IN RENO",
"release_year",
"2002"
],
[
"WE'RE NOT MARRIED!",
"has_genre",
"COMEDY"
],
[
"WE'RE NOT MARRIED!",
"release_year",
"1952"
],
[
"WELCOME TO COLLINWOOD",
"has_genre",
"COMEDY"
],
[
"WELCOME TO COLLINWOOD",
"has_tags",
"COMEDY"
],
[
"WELCOME TO COLLINWOOD",
"release_year",
"2002"
],
[
"WHEN IN ROME",
"has_genre",
"COMEDY"
],
[
"WHEN IN ROME",
"release_year",
"2002"
],
[
"WHERE'S POPPA?",
"has_genre",
"COMEDY"
],
[
"WHERE'S POPPA?",
"has_tags",
"RUTH GORDON"
],
[
"WHERE'S POPPA?",
"starred_actors",
"RUTH GORDON"
],
[
"WITHOUT LOVE",
"has_genre",
"COMEDY"
],
[
"WITHOUT LOVE",
"has_tags",
"KATHARINE HEPBURN"
],
[
"WITHOUT LOVE",
"has_tags",
"SPENCER TRACY"
],
[
"WITHOUT LOVE",
"starred_actors",
"KATHARINE HEPBURN"
],
[
"WITHOUT LOVE",
"starred_actors",
"SPENCER TRACY"
],
[
"WOMAN OF THE YEAR",
"has_genre",
"COMEDY"
],
[
"WOMAN OF THE YEAR",
"starred_actors",
"KATHARINE HEPBURN"
],
[
"WOMAN OF THE YEAR",
"starred_actors",
"SPENCER TRACY"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
36163, 1967
17315, 2007
26123, 5 CENTIMETERS PER SECOND
14771, A CAT IN PARIS
10244, A COLT IS MY PASSPORT
13496, A SECRET
31672, A.K.
21128, ACTRICES
31322, ASTERIX THE GAUL
30795, ATLANTIC CITY
23893, BEACH RED
16426, BELLE DE JOUR
22690, BIG MAN JAPAN
23951, BIRDS
26908, BLACK MOON
33881, BOARDING GATE
12252, BRANDED TO KILL
38311, CHAOS
13627, CONVERSATIONS WITH MY GARDENER
14724, CRIME
38495, CRIME SPREE
26635, CROWS ZERO
18405, DAMAGE
22667, DAYS OF DARKNESS
24410, DEMONLOVER
962, DORORO
8333, ELEVATOR TO THE GALLOWS
6012, FRENCH
37699, FRENCH CONNECTION II
1677, GENEVIÈVE BUJOLD
28864, GLORY TO THE FILMMAKER!
3553, GODZILLA
31911, HEARTBEAT DETECTOR
9613, HUNTING AND GATHERING
24208, INSIDE
36874, JAPANESE
24305, JCVD
2685, JUDEX
14772, KING KONG ESCAPES
22352, LA VIE EN ROSE
24812, LACOMBE, LUCIEN
23661, LE SAMOURAÏ
14433, LOUIS MALLE
9792, LOVE CRIME
11735, LOVE SONGS
22804, LUST, CAUTION
10560, MAN BITES DOG
29660, MAY FOOLS
11170, MOLIÈRE
12100, MOUCHETTE
7745, MURMUR OF THE HEART
11056, PAULETTE
16348, PERSEPOLIS
5311, PLAYTIME
21835, POINT BLANK
29620, POLICE
9019, RATATOUILLE
15938, RIFIFI
18478, RUSH HOUR 3
25217, SAMURAI REBELLION
39915, SHALL WE KISS?
15772, SILK
10280, SON OF GODZILLA
17447, SON OF RAMBOW
8436, SPIRITS OF THE DEAD
36983, SUMMER DAYS WITH COO
35926, SÉRIE NOIRE
24351, TAXI 4
14557, THE ADVENTURES OF ARSÈNE LUPIN
21712, THE CLASS
26236, THE CRIME OF MONSIEUR LANGE
21280, THE DUCHESS OF LANGEAIS
38918, THE FAMILY
28928, THE FIRE WITHIN
29103, THE LAST MISTRESS
9799, THE LOST SON
17428, THE LOVERS
21696, THE MAN FROM LONDON
21821, THE MOURNING FOREST
27909, THE SECRET OF THE GRAIN
26678, THE SWINDLE
11654, THE THIEF OF PARIS
30481, THE TWO OF US
31589, THE WAR IS OVER
5537, THE WITNESSES
2363, THE X FROM OUTER SPACE
34585, THE YOUNG GIRLS OF ROCHEFORT
19606, TWO MEN IN MANHATTAN
19779, UNDER THE BOMBS
9811, VEXILLE
11659, VIVA MARIA!
29077, WASABI
15557, WATER LILIES
33483, WEEKEND
19257, WINGED MIGRATION
31658, YOU ONLY LIVE TWICE
18197, ZATOICHI THE OUTLAW
src, edge_attr, dst
26123, has_tags, 36874
26123, in_language, 36874
26123, release_year, 17315
14771, has_genre, 14724
14771, in_language, 6012
10244, in_language, 36874
10244, release_year, 36163
13496, in_language, 6012
13496, release_year, 17315
31672, in_language, 6012
31672, in_language, 36874
21128, in_language, 6012
21128, release_year, 17315
31322, in_language, 6012
31322, release_year, 36163
30795, directed_by, 14433
30795, has_genre, 14724
30795, has_tags, 14433
30795, in_language, 6012
23893, in_language, 36874
23893, release_year, 36163
16426, in_language, 6012
16426, release_year, 36163
22690, in_language, 36874
22690, release_year, 17315
26908, directed_by, 14433
26908, has_tags, 14433
26908, in_language, 6012
26908, written_by, 14433
33881, in_language, 6012
33881, release_year, 17315
12252, in_language, 36874
12252, release_year, 36163
38311, in_language, 6012
38311, in_language, 36874
13627, in_language, 6012
13627, release_year, 17315
38495, has_genre, 14724
38495, in_language, 6012
26635, in_language, 36874
26635, release_year, 17315
18405, directed_by, 14433
18405, has_tags, 14433
18405, in_language, 6012
22667, in_language, 6012
22667, release_year, 17315
24410, in_language, 6012
24410, in_language, 36874
962, in_language, 36874
962, release_year, 17315
8333, directed_by, 14433
8333, has_genre, 14724
8333, has_tags, 14433
8333, in_language, 6012
8333, written_by, 14433
37699, has_genre, 14724
37699, in_language, 6012
28864, in_language, 36874
28864, release_year, 17315
3553, in_language, 6012
3553, in_language, 36874
31911, in_language, 6012
31911, release_year, 17315
9613, in_language, 6012
9613, release_year, 17315
24208, has_tags, 6012
24208, in_language, 6012
24208, release_year, 17315
24305, has_genre, 14724
24305, in_language, 6012
2685, has_genre, 14724
2685, in_language, 6012
14772, has_tags, 36874
14772, in_language, 36874
14772, release_year, 36163
22352, has_tags, 6012
22352, in_language, 6012
22352, release_year, 17315
24812, directed_by, 14433
24812, has_tags, 14433
24812, in_language, 6012
24812, written_by, 14433
23661, has_genre, 14724
23661, has_tags, 14724
23661, in_language, 6012
23661, release_year, 36163
9792, has_genre, 14724
9792, in_language, 6012
11735, in_language, 6012
11735, release_year, 17315
22804, in_language, 36874
22804, release_year, 17315
10560, has_genre, 14724
10560, in_language, 6012
29660, directed_by, 14433
29660, has_tags, 14433
29660, in_language, 6012
29660, written_by, 14433
11170, in_language, 6012
11170, release_year, 17315
12100, in_language, 6012
12100, release_year, 36163
7745, directed_by, 14433
7745, has_tags, 14433
7745, in_language, 6012
7745, written_by, 14433
11056, has_genre, 14724
11056, in_language, 6012
16348, has_tags, 6012
16348, in_language, 6012
16348, release_year, 17315
5311, in_language, 6012
5311, release_year, 36163
21835, has_genre, 14724
21835, in_language, 6012
21835, release_year, 36163
29620, has_genre, 14724
29620, in_language, 6012
9019, in_language, 6012
9019, release_year, 17315
15938, has_genre, 14724
15938, has_tags, 14724
15938, in_language, 6012
18478, in_language, 6012
18478, release_year, 17315
25217, in_language, 36874
25217, release_year, 36163
39915, in_language, 6012
39915, release_year, 17315
15772, in_language, 36874
15772, release_year, 17315
10280, in_language, 36874
10280, release_year, 36163
17447, in_language, 6012
17447, release_year, 17315
8436, directed_by, 14433
8436, in_language, 6012
8436, written_by, 14433
36983, in_language, 36874
36983, release_year, 17315
35926, has_genre, 14724
35926, in_language, 6012
24351, in_language, 6012
24351, release_year, 17315
14557, has_genre, 14724
14557, in_language, 6012
21712, has_tags, 6012
21712, in_language, 6012
21712, release_year, 17315
26236, has_genre, 14724
26236, in_language, 6012
21280, in_language, 6012
21280, release_year, 17315
38918, has_genre, 14724
38918, in_language, 6012
28928, directed_by, 14433
28928, has_tags, 14433
28928, in_language, 6012
29103, in_language, 6012
29103, release_year, 17315
9799, has_genre, 14724
9799, in_language, 6012
17428, directed_by, 14433
17428, has_tags, 14433
17428, in_language, 6012
21696, has_genre, 14724
21696, in_language, 6012
21696, release_year, 17315
21821, in_language, 36874
21821, release_year, 17315
27909, in_language, 6012
27909, release_year, 17315
26678, has_genre, 14724
26678, in_language, 6012
11654, directed_by, 14433
11654, has_genre, 14724
11654, in_language, 6012
11654, release_year, 36163
11654, starred_actors, 1677
11654, written_by, 14433
30481, in_language, 6012
30481, release_year, 36163
31589, in_language, 6012
31589, starred_actors, 1677
5537, in_language, 6012
5537, release_year, 17315
2363, in_language, 36874
2363, release_year, 36163
34585, in_language, 6012
34585, release_year, 36163
19606, has_genre, 14724
19606, in_language, 6012
19779, in_language, 6012
19779, release_year, 17315
9811, in_language, 36874
9811, release_year, 17315
11659, directed_by, 14433
11659, has_tags, 6012
11659, has_tags, 14433
11659, in_language, 6012
11659, written_by, 14433
29077, in_language, 6012
29077, in_language, 36874
15557, in_language, 6012
15557, release_year, 17315
33483, has_tags, 6012
33483, in_language, 6012
33483, release_year, 36163
19257, has_tags, 23951
19257, in_language, 6012
31658, in_language, 36874
31658, release_year, 36163
18197, in_language, 36874
18197, release_year, 36163
Question: For what reason are BIRDS, DORORO, and THE THIEF OF PARIS associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"BIRDS",
"DORORO",
"THE THIEF OF PARIS"
],
"valid_edges": [
[
"5 CENTIMETERS PER SECOND",
"has_tags",
"JAPANESE"
],
[
"5 CENTIMETERS PER SECOND",
"in_language",
"JAPANESE"
],
[
"5 CENTIMETERS PER SECOND",
"release_year",
"2007"
],
[
"A CAT IN PARIS",
"has_genre",
"CRIME"
],
[
"A CAT IN PARIS",
"in_language",
"FRENCH"
],
[
"A COLT IS MY PASSPORT",
"in_language",
"JAPANESE"
],
[
"A COLT IS MY PASSPORT",
"release_year",
"1967"
],
[
"A SECRET",
"in_language",
"FRENCH"
],
[
"A SECRET",
"release_year",
"2007"
],
[
"A.K.",
"in_language",
"FRENCH"
],
[
"A.K.",
"in_language",
"JAPANESE"
],
[
"ACTRICES",
"in_language",
"FRENCH"
],
[
"ACTRICES",
"release_year",
"2007"
],
[
"ASTERIX THE GAUL",
"in_language",
"FRENCH"
],
[
"ASTERIX THE GAUL",
"release_year",
"1967"
],
[
"ATLANTIC CITY",
"directed_by",
"LOUIS MALLE"
],
[
"ATLANTIC CITY",
"has_genre",
"CRIME"
],
[
"ATLANTIC CITY",
"has_tags",
"LOUIS MALLE"
],
[
"ATLANTIC CITY",
"in_language",
"FRENCH"
],
[
"BEACH RED",
"in_language",
"JAPANESE"
],
[
"BEACH RED",
"release_year",
"1967"
],
[
"BELLE DE JOUR",
"in_language",
"FRENCH"
],
[
"BELLE DE JOUR",
"release_year",
"1967"
],
[
"BIG MAN JAPAN",
"in_language",
"JAPANESE"
],
[
"BIG MAN JAPAN",
"release_year",
"2007"
],
[
"BLACK MOON",
"directed_by",
"LOUIS MALLE"
],
[
"BLACK MOON",
"has_tags",
"LOUIS MALLE"
],
[
"BLACK MOON",
"in_language",
"FRENCH"
],
[
"BLACK MOON",
"written_by",
"LOUIS MALLE"
],
[
"BOARDING GATE",
"in_language",
"FRENCH"
],
[
"BOARDING GATE",
"release_year",
"2007"
],
[
"BRANDED TO KILL",
"in_language",
"JAPANESE"
],
[
"BRANDED TO KILL",
"release_year",
"1967"
],
[
"CHAOS",
"in_language",
"FRENCH"
],
[
"CHAOS",
"in_language",
"JAPANESE"
],
[
"CONVERSATIONS WITH MY GARDENER",
"in_language",
"FRENCH"
],
[
"CONVERSATIONS WITH MY GARDENER",
"release_year",
"2007"
],
[
"CRIME SPREE",
"has_genre",
"CRIME"
],
[
"CRIME SPREE",
"in_language",
"FRENCH"
],
[
"CROWS ZERO",
"in_language",
"JAPANESE"
],
[
"CROWS ZERO",
"release_year",
"2007"
],
[
"DAMAGE",
"directed_by",
"LOUIS MALLE"
],
[
"DAMAGE",
"has_tags",
"LOUIS MALLE"
],
[
"DAMAGE",
"in_language",
"FRENCH"
],
[
"DAYS OF DARKNESS",
"in_language",
"FRENCH"
],
[
"DAYS OF DARKNESS",
"release_year",
"2007"
],
[
"DEMONLOVER",
"in_language",
"FRENCH"
],
[
"DEMONLOVER",
"in_language",
"JAPANESE"
],
[
"DORORO",
"in_language",
"JAPANESE"
],
[
"DORORO",
"release_year",
"2007"
],
[
"ELEVATOR TO THE GALLOWS",
"directed_by",
"LOUIS MALLE"
],
[
"ELEVATOR TO THE GALLOWS",
"has_genre",
"CRIME"
],
[
"ELEVATOR TO THE GALLOWS",
"has_tags",
"LOUIS MALLE"
],
[
"ELEVATOR TO THE GALLOWS",
"in_language",
"FRENCH"
],
[
"ELEVATOR TO THE GALLOWS",
"written_by",
"LOUIS MALLE"
],
[
"FRENCH CONNECTION II",
"has_genre",
"CRIME"
],
[
"FRENCH CONNECTION II",
"in_language",
"FRENCH"
],
[
"GLORY TO THE FILMMAKER!",
"in_language",
"JAPANESE"
],
[
"GLORY TO THE FILMMAKER!",
"release_year",
"2007"
],
[
"GODZILLA",
"in_language",
"FRENCH"
],
[
"GODZILLA",
"in_language",
"JAPANESE"
],
[
"HEARTBEAT DETECTOR",
"in_language",
"FRENCH"
],
[
"HEARTBEAT DETECTOR",
"release_year",
"2007"
],
[
"HUNTING AND GATHERING",
"in_language",
"FRENCH"
],
[
"HUNTING AND GATHERING",
"release_year",
"2007"
],
[
"INSIDE",
"has_tags",
"FRENCH"
],
[
"INSIDE",
"in_language",
"FRENCH"
],
[
"INSIDE",
"release_year",
"2007"
],
[
"JCVD",
"has_genre",
"CRIME"
],
[
"JCVD",
"in_language",
"FRENCH"
],
[
"JUDEX",
"has_genre",
"CRIME"
],
[
"JUDEX",
"in_language",
"FRENCH"
],
[
"KING KONG ESCAPES",
"has_tags",
"JAPANESE"
],
[
"KING KONG ESCAPES",
"in_language",
"JAPANESE"
],
[
"KING KONG ESCAPES",
"release_year",
"1967"
],
[
"LA VIE EN ROSE",
"has_tags",
"FRENCH"
],
[
"LA VIE EN ROSE",
"in_language",
"FRENCH"
],
[
"LA VIE EN ROSE",
"release_year",
"2007"
],
[
"LACOMBE, LUCIEN",
"directed_by",
"LOUIS MALLE"
],
[
"LACOMBE, LUCIEN",
"has_tags",
"LOUIS MALLE"
],
[
"LACOMBE, LUCIEN",
"in_language",
"FRENCH"
],
[
"LACOMBE, LUCIEN",
"written_by",
"LOUIS MALLE"
],
[
"LE SAMOURAÏ",
"has_genre",
"CRIME"
],
[
"LE SAMOURAÏ",
"has_tags",
"CRIME"
],
[
"LE SAMOURAÏ",
"in_language",
"FRENCH"
],
[
"LE SAMOURAÏ",
"release_year",
"1967"
],
[
"LOVE CRIME",
"has_genre",
"CRIME"
],
[
"LOVE CRIME",
"in_language",
"FRENCH"
],
[
"LOVE SONGS",
"in_language",
"FRENCH"
],
[
"LOVE SONGS",
"release_year",
"2007"
],
[
"LUST, CAUTION",
"in_language",
"JAPANESE"
],
[
"LUST, CAUTION",
"release_year",
"2007"
],
[
"MAN BITES DOG",
"has_genre",
"CRIME"
],
[
"MAN BITES DOG",
"in_language",
"FRENCH"
],
[
"MAY FOOLS",
"directed_by",
"LOUIS MALLE"
],
[
"MAY FOOLS",
"has_tags",
"LOUIS MALLE"
],
[
"MAY FOOLS",
"in_language",
"FRENCH"
],
[
"MAY FOOLS",
"written_by",
"LOUIS MALLE"
],
[
"MOLIÈRE",
"in_language",
"FRENCH"
],
[
"MOLIÈRE",
"release_year",
"2007"
],
[
"MOUCHETTE",
"in_language",
"FRENCH"
],
[
"MOUCHETTE",
"release_year",
"1967"
],
[
"MURMUR OF THE HEART",
"directed_by",
"LOUIS MALLE"
],
[
"MURMUR OF THE HEART",
"has_tags",
"LOUIS MALLE"
],
[
"MURMUR OF THE HEART",
"in_language",
"FRENCH"
],
[
"MURMUR OF THE HEART",
"written_by",
"LOUIS MALLE"
],
[
"PAULETTE",
"has_genre",
"CRIME"
],
[
"PAULETTE",
"in_language",
"FRENCH"
],
[
"PERSEPOLIS",
"has_tags",
"FRENCH"
],
[
"PERSEPOLIS",
"in_language",
"FRENCH"
],
[
"PERSEPOLIS",
"release_year",
"2007"
],
[
"PLAYTIME",
"in_language",
"FRENCH"
],
[
"PLAYTIME",
"release_year",
"1967"
],
[
"POINT BLANK",
"has_genre",
"CRIME"
],
[
"POINT BLANK",
"in_language",
"FRENCH"
],
[
"POINT BLANK",
"release_year",
"1967"
],
[
"POLICE",
"has_genre",
"CRIME"
],
[
"POLICE",
"in_language",
"FRENCH"
],
[
"RATATOUILLE",
"in_language",
"FRENCH"
],
[
"RATATOUILLE",
"release_year",
"2007"
],
[
"RIFIFI",
"has_genre",
"CRIME"
],
[
"RIFIFI",
"has_tags",
"CRIME"
],
[
"RIFIFI",
"in_language",
"FRENCH"
],
[
"RUSH HOUR 3",
"in_language",
"FRENCH"
],
[
"RUSH HOUR 3",
"release_year",
"2007"
],
[
"SAMURAI REBELLION",
"in_language",
"JAPANESE"
],
[
"SAMURAI REBELLION",
"release_year",
"1967"
],
[
"SHALL WE KISS?",
"in_language",
"FRENCH"
],
[
"SHALL WE KISS?",
"release_year",
"2007"
],
[
"SILK",
"in_language",
"JAPANESE"
],
[
"SILK",
"release_year",
"2007"
],
[
"SON OF GODZILLA",
"in_language",
"JAPANESE"
],
[
"SON OF GODZILLA",
"release_year",
"1967"
],
[
"SON OF RAMBOW",
"in_language",
"FRENCH"
],
[
"SON OF RAMBOW",
"release_year",
"2007"
],
[
"SPIRITS OF THE DEAD",
"directed_by",
"LOUIS MALLE"
],
[
"SPIRITS OF THE DEAD",
"in_language",
"FRENCH"
],
[
"SPIRITS OF THE DEAD",
"written_by",
"LOUIS MALLE"
],
[
"SUMMER DAYS WITH COO",
"in_language",
"JAPANESE"
],
[
"SUMMER DAYS WITH COO",
"release_year",
"2007"
],
[
"SÉRIE NOIRE",
"has_genre",
"CRIME"
],
[
"SÉRIE NOIRE",
"in_language",
"FRENCH"
],
[
"TAXI 4",
"in_language",
"FRENCH"
],
[
"TAXI 4",
"release_year",
"2007"
],
[
"THE ADVENTURES OF ARSÈNE LUPIN",
"has_genre",
"CRIME"
],
[
"THE ADVENTURES OF ARSÈNE LUPIN",
"in_language",
"FRENCH"
],
[
"THE CLASS",
"has_tags",
"FRENCH"
],
[
"THE CLASS",
"in_language",
"FRENCH"
],
[
"THE CLASS",
"release_year",
"2007"
],
[
"THE CRIME OF MONSIEUR LANGE",
"has_genre",
"CRIME"
],
[
"THE CRIME OF MONSIEUR LANGE",
"in_language",
"FRENCH"
],
[
"THE DUCHESS OF LANGEAIS",
"in_language",
"FRENCH"
],
[
"THE DUCHESS OF LANGEAIS",
"release_year",
"2007"
],
[
"THE FAMILY",
"has_genre",
"CRIME"
],
[
"THE FAMILY",
"in_language",
"FRENCH"
],
[
"THE FIRE WITHIN",
"directed_by",
"LOUIS MALLE"
],
[
"THE FIRE WITHIN",
"has_tags",
"LOUIS MALLE"
],
[
"THE FIRE WITHIN",
"in_language",
"FRENCH"
],
[
"THE LAST MISTRESS",
"in_language",
"FRENCH"
],
[
"THE LAST MISTRESS",
"release_year",
"2007"
],
[
"THE LOST SON",
"has_genre",
"CRIME"
],
[
"THE LOST SON",
"in_language",
"FRENCH"
],
[
"THE LOVERS",
"directed_by",
"LOUIS MALLE"
],
[
"THE LOVERS",
"has_tags",
"LOUIS MALLE"
],
[
"THE LOVERS",
"in_language",
"FRENCH"
],
[
"THE MAN FROM LONDON",
"has_genre",
"CRIME"
],
[
"THE MAN FROM LONDON",
"in_language",
"FRENCH"
],
[
"THE MAN FROM LONDON",
"release_year",
"2007"
],
[
"THE MOURNING FOREST",
"in_language",
"JAPANESE"
],
[
"THE MOURNING FOREST",
"release_year",
"2007"
],
[
"THE SECRET OF THE GRAIN",
"in_language",
"FRENCH"
],
[
"THE SECRET OF THE GRAIN",
"release_year",
"2007"
],
[
"THE SWINDLE",
"has_genre",
"CRIME"
],
[
"THE SWINDLE",
"in_language",
"FRENCH"
],
[
"THE THIEF OF PARIS",
"directed_by",
"LOUIS MALLE"
],
[
"THE THIEF OF PARIS",
"has_genre",
"CRIME"
],
[
"THE THIEF OF PARIS",
"in_language",
"FRENCH"
],
[
"THE THIEF OF PARIS",
"release_year",
"1967"
],
[
"THE THIEF OF PARIS",
"starred_actors",
"GENEVIÈVE BUJOLD"
],
[
"THE THIEF OF PARIS",
"written_by",
"LOUIS MALLE"
],
[
"THE TWO OF US",
"in_language",
"FRENCH"
],
[
"THE TWO OF US",
"release_year",
"1967"
],
[
"THE WAR IS OVER",
"in_language",
"FRENCH"
],
[
"THE WAR IS OVER",
"starred_actors",
"GENEVIÈVE BUJOLD"
],
[
"THE WITNESSES",
"in_language",
"FRENCH"
],
[
"THE WITNESSES",
"release_year",
"2007"
],
[
"THE X FROM OUTER SPACE",
"in_language",
"JAPANESE"
],
[
"THE X FROM OUTER SPACE",
"release_year",
"1967"
],
[
"THE YOUNG GIRLS OF ROCHEFORT",
"in_language",
"FRENCH"
],
[
"THE YOUNG GIRLS OF ROCHEFORT",
"release_year",
"1967"
],
[
"TWO MEN IN MANHATTAN",
"has_genre",
"CRIME"
],
[
"TWO MEN IN MANHATTAN",
"in_language",
"FRENCH"
],
[
"UNDER THE BOMBS",
"in_language",
"FRENCH"
],
[
"UNDER THE BOMBS",
"release_year",
"2007"
],
[
"VEXILLE",
"in_language",
"JAPANESE"
],
[
"VEXILLE",
"release_year",
"2007"
],
[
"VIVA MARIA!",
"directed_by",
"LOUIS MALLE"
],
[
"VIVA MARIA!",
"has_tags",
"FRENCH"
],
[
"VIVA MARIA!",
"has_tags",
"LOUIS MALLE"
],
[
"VIVA MARIA!",
"in_language",
"FRENCH"
],
[
"VIVA MARIA!",
"written_by",
"LOUIS MALLE"
],
[
"WASABI",
"in_language",
"FRENCH"
],
[
"WASABI",
"in_language",
"JAPANESE"
],
[
"WATER LILIES",
"in_language",
"FRENCH"
],
[
"WATER LILIES",
"release_year",
"2007"
],
[
"WEEKEND",
"has_tags",
"FRENCH"
],
[
"WEEKEND",
"in_language",
"FRENCH"
],
[
"WEEKEND",
"release_year",
"1967"
],
[
"WINGED MIGRATION",
"has_tags",
"BIRDS"
],
[
"WINGED MIGRATION",
"in_language",
"FRENCH"
],
[
"YOU ONLY LIVE TWICE",
"in_language",
"JAPANESE"
],
[
"YOU ONLY LIVE TWICE",
"release_year",
"1967"
],
[
"ZATOICHI THE OUTLAW",
"in_language",
"JAPANESE"
],
[
"ZATOICHI THE OUTLAW",
"release_year",
"1967"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
31196, 1974
31365, COCKFIGHTER
4119, DYLAN MCDERMOTT
35711, HARRY DEAN STANTON
7083, SONNY
15352, THE QUESTOR TAPES
30585, TWISTER
16336, WHERE SLEEPING DOGS LIE
src, edge_attr, dst
31365, release_year, 31196
31365, starred_actors, 35711
7083, starred_actors, 35711
15352, release_year, 31196
30585, starred_actors, 4119
30585, starred_actors, 35711
16336, starred_actors, 4119
Question: How are SONNY, THE QUESTOR TAPES, and WHERE SLEEPING DOGS LIE related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"SONNY",
"THE QUESTOR TAPES",
"WHERE SLEEPING DOGS LIE"
],
"valid_edges": [
[
"COCKFIGHTER",
"release_year",
"1974"
],
[
"COCKFIGHTER",
"starred_actors",
"HARRY DEAN STANTON"
],
[
"SONNY",
"starred_actors",
"HARRY DEAN STANTON"
],
[
"THE QUESTOR TAPES",
"release_year",
"1974"
],
[
"TWISTER",
"starred_actors",
"DYLAN MCDERMOTT"
],
[
"TWISTER",
"starred_actors",
"HARRY DEAN STANTON"
],
[
"WHERE SLEEPING DOGS LIE",
"starred_actors",
"DYLAN MCDERMOTT"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
30407, ALIEN
31076, CHARLOTTE STEWART
38780, DETENTION
9611, ERASERHEAD
35711, HARRY DEAN STANTON
5870, HORROR
37497, NATIONAL FILM REGISTRY
34822, SHANLEY CASWELL
src, edge_attr, dst
30407, has_genre, 5870
30407, has_tags, 30407
30407, has_tags, 5870
30407, has_tags, 37497
30407, starred_actors, 35711
38780, has_genre, 5870
38780, starred_actors, 34822
9611, has_genre, 5870
9611, has_tags, 37497
9611, starred_actors, 31076
Question: How are CHARLOTTE STEWART, HARRY DEAN STANTON, and SHANLEY CASWELL related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"CHARLOTTE STEWART",
"HARRY DEAN STANTON",
"SHANLEY CASWELL"
],
"valid_edges": [
[
"ALIEN",
"has_genre",
"HORROR"
],
[
"ALIEN",
"has_tags",
"ALIEN"
],
[
"ALIEN",
"has_tags",
"HORROR"
],
[
"ALIEN",
"has_tags",
"NATIONAL FILM REGISTRY"
],
[
"ALIEN",
"starred_actors",
"HARRY DEAN STANTON"
],
[
"DETENTION",
"has_genre",
"HORROR"
],
[
"DETENTION",
"starred_actors",
"SHANLEY CASWELL"
],
[
"ERASERHEAD",
"has_genre",
"HORROR"
],
[
"ERASERHEAD",
"has_tags",
"NATIONAL FILM REGISTRY"
],
[
"ERASERHEAD",
"starred_actors",
"CHARLOTTE STEWART"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
35798, 2010
14531, A HORRIBLE WAY TO DIE
24480, A NIGHTMARE ON ELM STREET
25532, ALICE IN MURDERLAND
23960, ATROCIOUS
19826, BLACK DEATH
31909, BLACK SWAN
30352, BURNING BRIGHT
30430, CHERRY TREE LANE
20871, DEVIL
13272, DON'T BE AFRAID OF THE DARK
26523, EXORCISMUS
29544, FORGET ME NOT
3553, GODZILLA
3120, GODZILLA VS. DESTOROYAH
25799, GODZILLA VS. KING GHIDORAH
20909, GODZILLA VS. MECHAGODZILLA II
5451, GROWTH
5870, HORROR
31812, I AM LEGEND
15439, I SPIT ON YOUR GRAVE
16313, INSIDIOUS
36874, JAPANESE
19452, JULIA'S EYES
28584, KAIJU
29987, LET ME IN
29511, MEGA PIRANHA
1943, MEGUMI ODAKA
15489, MIRRORS 2
39644, MUTANTS
2831, MY SOUL TO TAKE
38244, NINE DEAD
39250, PARANORMAL ACTIVITY 2
21830, PIRANHA 3D
36052, PROWL
33753, PSYCHOSIS
11677, RAMMBOCK
6924, ROAD KILL
1722, SHARKTOPUS
25057, STREETDANCE 3D
10173, TAKAO OKAWARA
25463, THE CRAZIES
16105, THE DEAD
14270, THE FINAL
18609, THE LAST EXORCISM
1250, THE LAST MAN ON EARTH
28305, THE MAZE
12531, THE PRESENCE
22440, THE REEF
16147, THE SILENT HOUSE
12533, THE TORTURED
497, THE TRAVELER
8494, THE VIOLENT KIND
35250, THE WARD
23343, THE WOLFMAN
20520, TOHO
15490, WE ARE THE NIGHT
18049, WE ARE WHAT WE ARE
src, edge_attr, dst
14531, has_genre, 5870
14531, release_year, 35798
24480, has_genre, 5870
24480, has_tags, 5870
24480, release_year, 35798
25532, has_genre, 5870
25532, release_year, 35798
23960, has_genre, 5870
23960, release_year, 35798
19826, has_genre, 5870
19826, release_year, 35798
31909, has_tags, 5870
31909, release_year, 35798
30352, has_genre, 5870
30352, release_year, 35798
30430, has_genre, 5870
30430, release_year, 35798
20871, has_genre, 5870
20871, has_tags, 5870
20871, release_year, 35798
13272, has_genre, 5870
13272, release_year, 35798
26523, has_genre, 5870
26523, release_year, 35798
29544, has_genre, 5870
29544, release_year, 35798
3553, has_genre, 5870
3120, directed_by, 10173
3120, has_tags, 3553
3120, has_tags, 28584
3120, has_tags, 20520
3120, in_language, 36874
3120, starred_actors, 1943
25799, has_tags, 3553
25799, has_tags, 28584
25799, has_tags, 20520
25799, in_language, 36874
25799, starred_actors, 1943
20909, directed_by, 10173
20909, has_tags, 3553
20909, has_tags, 28584
20909, has_tags, 20520
20909, in_language, 36874
20909, starred_actors, 1943
5451, has_genre, 5870
5451, release_year, 35798
31812, has_tags, 5870
31812, has_tags, 31812
31812, has_tags, 39644
15439, has_genre, 5870
15439, release_year, 35798
16313, has_genre, 5870
16313, has_tags, 5870
16313, release_year, 35798
19452, has_genre, 5870
19452, release_year, 35798
29987, has_genre, 5870
29987, has_tags, 5870
29987, release_year, 35798
29511, has_genre, 5870
29511, release_year, 35798
15489, has_genre, 5870
15489, release_year, 35798
39644, has_genre, 5870
2831, has_genre, 5870
2831, release_year, 35798
38244, has_genre, 5870
38244, release_year, 35798
39250, has_genre, 5870
39250, release_year, 35798
21830, has_genre, 5870
21830, release_year, 35798
36052, has_genre, 5870
36052, release_year, 35798
33753, has_genre, 5870
33753, release_year, 35798
11677, has_genre, 5870
11677, release_year, 35798
6924, has_genre, 5870
6924, has_tags, 5870
6924, release_year, 35798
1722, has_genre, 5870
1722, release_year, 35798
25057, release_year, 35798
25463, has_genre, 5870
25463, release_year, 35798
16105, has_genre, 5870
16105, release_year, 35798
14270, has_genre, 5870
14270, release_year, 35798
18609, has_genre, 5870
18609, release_year, 35798
1250, has_genre, 5870
1250, has_tags, 31812
28305, has_genre, 5870
28305, release_year, 35798
12531, has_genre, 5870
12531, release_year, 35798
22440, has_genre, 5870
22440, release_year, 35798
16147, has_genre, 5870
16147, release_year, 35798
12533, has_genre, 5870
12533, release_year, 35798
497, has_genre, 5870
497, release_year, 35798
8494, has_genre, 5870
8494, release_year, 35798
35250, has_genre, 5870
35250, release_year, 35798
23343, has_genre, 5870
23343, release_year, 35798
15490, has_genre, 5870
15490, release_year, 35798
18049, has_genre, 5870
18049, has_tags, 5870
18049, release_year, 35798
Question: In what context are MEGUMI ODAKA, STREETDANCE 3D, and THE LAST MAN ON EARTH connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"MEGUMI ODAKA",
"STREETDANCE 3D",
"THE LAST MAN ON EARTH"
],
"valid_edges": [
[
"A HORRIBLE WAY TO DIE",
"has_genre",
"HORROR"
],
[
"A HORRIBLE WAY TO DIE",
"release_year",
"2010"
],
[
"A NIGHTMARE ON ELM STREET",
"has_genre",
"HORROR"
],
[
"A NIGHTMARE ON ELM STREET",
"has_tags",
"HORROR"
],
[
"A NIGHTMARE ON ELM STREET",
"release_year",
"2010"
],
[
"ALICE IN MURDERLAND",
"has_genre",
"HORROR"
],
[
"ALICE IN MURDERLAND",
"release_year",
"2010"
],
[
"ATROCIOUS",
"has_genre",
"HORROR"
],
[
"ATROCIOUS",
"release_year",
"2010"
],
[
"BLACK DEATH",
"has_genre",
"HORROR"
],
[
"BLACK DEATH",
"release_year",
"2010"
],
[
"BLACK SWAN",
"has_tags",
"HORROR"
],
[
"BLACK SWAN",
"release_year",
"2010"
],
[
"BURNING BRIGHT",
"has_genre",
"HORROR"
],
[
"BURNING BRIGHT",
"release_year",
"2010"
],
[
"CHERRY TREE LANE",
"has_genre",
"HORROR"
],
[
"CHERRY TREE LANE",
"release_year",
"2010"
],
[
"DEVIL",
"has_genre",
"HORROR"
],
[
"DEVIL",
"has_tags",
"HORROR"
],
[
"DEVIL",
"release_year",
"2010"
],
[
"DON'T BE AFRAID OF THE DARK",
"has_genre",
"HORROR"
],
[
"DON'T BE AFRAID OF THE DARK",
"release_year",
"2010"
],
[
"EXORCISMUS",
"has_genre",
"HORROR"
],
[
"EXORCISMUS",
"release_year",
"2010"
],
[
"FORGET ME NOT",
"has_genre",
"HORROR"
],
[
"FORGET ME NOT",
"release_year",
"2010"
],
[
"GODZILLA",
"has_genre",
"HORROR"
],
[
"GODZILLA VS. DESTOROYAH",
"directed_by",
"TAKAO OKAWARA"
],
[
"GODZILLA VS. DESTOROYAH",
"has_tags",
"GODZILLA"
],
[
"GODZILLA VS. DESTOROYAH",
"has_tags",
"KAIJU"
],
[
"GODZILLA VS. DESTOROYAH",
"has_tags",
"TOHO"
],
[
"GODZILLA VS. DESTOROYAH",
"in_language",
"JAPANESE"
],
[
"GODZILLA VS. DESTOROYAH",
"starred_actors",
"MEGUMI ODAKA"
],
[
"GODZILLA VS. KING GHIDORAH",
"has_tags",
"GODZILLA"
],
[
"GODZILLA VS. KING GHIDORAH",
"has_tags",
"KAIJU"
],
[
"GODZILLA VS. KING GHIDORAH",
"has_tags",
"TOHO"
],
[
"GODZILLA VS. KING GHIDORAH",
"in_language",
"JAPANESE"
],
[
"GODZILLA VS. KING GHIDORAH",
"starred_actors",
"MEGUMI ODAKA"
],
[
"GODZILLA VS. MECHAGODZILLA II",
"directed_by",
"TAKAO OKAWARA"
],
[
"GODZILLA VS. MECHAGODZILLA II",
"has_tags",
"GODZILLA"
],
[
"GODZILLA VS. MECHAGODZILLA II",
"has_tags",
"KAIJU"
],
[
"GODZILLA VS. MECHAGODZILLA II",
"has_tags",
"TOHO"
],
[
"GODZILLA VS. MECHAGODZILLA II",
"in_language",
"JAPANESE"
],
[
"GODZILLA VS. MECHAGODZILLA II",
"starred_actors",
"MEGUMI ODAKA"
],
[
"GROWTH",
"has_genre",
"HORROR"
],
[
"GROWTH",
"release_year",
"2010"
],
[
"I AM LEGEND",
"has_tags",
"HORROR"
],
[
"I AM LEGEND",
"has_tags",
"I AM LEGEND"
],
[
"I AM LEGEND",
"has_tags",
"MUTANTS"
],
[
"I SPIT ON YOUR GRAVE",
"has_genre",
"HORROR"
],
[
"I SPIT ON YOUR GRAVE",
"release_year",
"2010"
],
[
"INSIDIOUS",
"has_genre",
"HORROR"
],
[
"INSIDIOUS",
"has_tags",
"HORROR"
],
[
"INSIDIOUS",
"release_year",
"2010"
],
[
"JULIA'S EYES",
"has_genre",
"HORROR"
],
[
"JULIA'S EYES",
"release_year",
"2010"
],
[
"LET ME IN",
"has_genre",
"HORROR"
],
[
"LET ME IN",
"has_tags",
"HORROR"
],
[
"LET ME IN",
"release_year",
"2010"
],
[
"MEGA PIRANHA",
"has_genre",
"HORROR"
],
[
"MEGA PIRANHA",
"release_year",
"2010"
],
[
"MIRRORS 2",
"has_genre",
"HORROR"
],
[
"MIRRORS 2",
"release_year",
"2010"
],
[
"MUTANTS",
"has_genre",
"HORROR"
],
[
"MY SOUL TO TAKE",
"has_genre",
"HORROR"
],
[
"MY SOUL TO TAKE",
"release_year",
"2010"
],
[
"NINE DEAD",
"has_genre",
"HORROR"
],
[
"NINE DEAD",
"release_year",
"2010"
],
[
"PARANORMAL ACTIVITY 2",
"has_genre",
"HORROR"
],
[
"PARANORMAL ACTIVITY 2",
"release_year",
"2010"
],
[
"PIRANHA 3D",
"has_genre",
"HORROR"
],
[
"PIRANHA 3D",
"release_year",
"2010"
],
[
"PROWL",
"has_genre",
"HORROR"
],
[
"PROWL",
"release_year",
"2010"
],
[
"PSYCHOSIS",
"has_genre",
"HORROR"
],
[
"PSYCHOSIS",
"release_year",
"2010"
],
[
"RAMMBOCK",
"has_genre",
"HORROR"
],
[
"RAMMBOCK",
"release_year",
"2010"
],
[
"ROAD KILL",
"has_genre",
"HORROR"
],
[
"ROAD KILL",
"has_tags",
"HORROR"
],
[
"ROAD KILL",
"release_year",
"2010"
],
[
"SHARKTOPUS",
"has_genre",
"HORROR"
],
[
"SHARKTOPUS",
"release_year",
"2010"
],
[
"STREETDANCE 3D",
"release_year",
"2010"
],
[
"THE CRAZIES",
"has_genre",
"HORROR"
],
[
"THE CRAZIES",
"release_year",
"2010"
],
[
"THE DEAD",
"has_genre",
"HORROR"
],
[
"THE DEAD",
"release_year",
"2010"
],
[
"THE FINAL",
"has_genre",
"HORROR"
],
[
"THE FINAL",
"release_year",
"2010"
],
[
"THE LAST EXORCISM",
"has_genre",
"HORROR"
],
[
"THE LAST EXORCISM",
"release_year",
"2010"
],
[
"THE LAST MAN ON EARTH",
"has_genre",
"HORROR"
],
[
"THE LAST MAN ON EARTH",
"has_tags",
"I AM LEGEND"
],
[
"THE MAZE",
"has_genre",
"HORROR"
],
[
"THE MAZE",
"release_year",
"2010"
],
[
"THE PRESENCE",
"has_genre",
"HORROR"
],
[
"THE PRESENCE",
"release_year",
"2010"
],
[
"THE REEF",
"has_genre",
"HORROR"
],
[
"THE REEF",
"release_year",
"2010"
],
[
"THE SILENT HOUSE",
"has_genre",
"HORROR"
],
[
"THE SILENT HOUSE",
"release_year",
"2010"
],
[
"THE TORTURED",
"has_genre",
"HORROR"
],
[
"THE TORTURED",
"release_year",
"2010"
],
[
"THE TRAVELER",
"has_genre",
"HORROR"
],
[
"THE TRAVELER",
"release_year",
"2010"
],
[
"THE VIOLENT KIND",
"has_genre",
"HORROR"
],
[
"THE VIOLENT KIND",
"release_year",
"2010"
],
[
"THE WARD",
"has_genre",
"HORROR"
],
[
"THE WARD",
"release_year",
"2010"
],
[
"THE WOLFMAN",
"has_genre",
"HORROR"
],
[
"THE WOLFMAN",
"release_year",
"2010"
],
[
"WE ARE THE NIGHT",
"has_genre",
"HORROR"
],
[
"WE ARE THE NIGHT",
"release_year",
"2010"
],
[
"WE ARE WHAT WE ARE",
"has_genre",
"HORROR"
],
[
"WE ARE WHAT WE ARE",
"has_tags",
"HORROR"
],
[
"WE ARE WHAT WE ARE",
"release_year",
"2010"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
1006, 1996
10067, BERNIE
10569, DANIEL CHUBA
21909, ROBIN TUNNEY
19392, SKIP HOLLANDSWORTH
31004, SUPERNOVA
20760, THE CRAFT
29745, WITCHCRAFT
src, edge_attr, dst
10067, release_year, 1006
10067, written_by, 19392
31004, has_tags, 21909
31004, written_by, 10569
20760, has_tags, 21909
20760, has_tags, 29745
20760, release_year, 1006
20760, starred_actors, 21909
Question: How are DANIEL CHUBA, SKIP HOLLANDSWORTH, and WITCHCRAFT related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"DANIEL CHUBA",
"SKIP HOLLANDSWORTH",
"WITCHCRAFT"
],
"valid_edges": [
[
"BERNIE",
"release_year",
"1996"
],
[
"BERNIE",
"written_by",
"SKIP HOLLANDSWORTH"
],
[
"SUPERNOVA",
"has_tags",
"ROBIN TUNNEY"
],
[
"SUPERNOVA",
"written_by",
"DANIEL CHUBA"
],
[
"THE CRAFT",
"has_tags",
"ROBIN TUNNEY"
],
[
"THE CRAFT",
"has_tags",
"WITCHCRAFT"
],
[
"THE CRAFT",
"release_year",
"1996"
],
[
"THE CRAFT",
"starred_actors",
"ROBIN TUNNEY"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
26310, 1947
1567, 1954
35063, 1976
9152, A STAR IS BORN
21857, ALAN CAMPBELL
21816, APARTHEID
10045, BD-R
5189, CAPE FEAR
39676, CROSSFIRE
6692, DISTRICT 9
18693, FILM NOIR
37497, NATIONAL FILM REGISTRY
21620, NOIR
14276, OUT OF THE PAST
28729, REMAKE
18515, RIVER OF NO RETURN
17979, ROBERT DE NIRO
39935, ROBERT MITCHUM
697, ROBERT RYAN
30447, RYAN'S DAUGHTER
1899, SECRET CEREMONY
37368, THE BIG SLEEP
34379, THE HUNTERS
30201, THE LAST TYCOON
27599, THE NIGHT OF THE HUNTER
7478, THE RACKET
24811, THRILLER
27872, TRACK OF THE CAT
14843, WHERE DANGER LIVES
24706, WILLIAM A. WELLMAN
src, edge_attr, dst
9152, directed_by, 24706
9152, has_tags, 10045
9152, has_tags, 37497
9152, has_tags, 24706
9152, release_year, 1567
9152, release_year, 35063
9152, written_by, 21857
9152, written_by, 24706
5189, has_genre, 24811
5189, has_tags, 28729
5189, has_tags, 17979
5189, has_tags, 39935
5189, has_tags, 24811
5189, starred_actors, 17979
5189, starred_actors, 39935
39676, has_tags, 10045
39676, release_year, 26310
39676, starred_actors, 39935
39676, starred_actors, 697
6692, has_genre, 24811
6692, has_tags, 21816
6692, has_tags, 24811
14276, has_tags, 18693
14276, has_tags, 37497
14276, has_tags, 21620
14276, release_year, 26310
14276, starred_actors, 39935
18515, release_year, 1567
18515, starred_actors, 39935
30447, has_tags, 10045
30447, has_tags, 39935
30447, starred_actors, 39935
1899, has_tags, 10045
1899, starred_actors, 39935
37368, has_tags, 10045
37368, has_tags, 18693
37368, has_tags, 37497
37368, has_tags, 21620
37368, has_tags, 28729
37368, starred_actors, 39935
34379, has_genre, 24811
34379, starred_actors, 39935
30201, release_year, 35063
30201, starred_actors, 17979
30201, starred_actors, 39935
27599, directed_by, 39935
27599, has_tags, 10045
27599, has_tags, 37497
27599, has_tags, 39935
27599, has_tags, 24811
27599, starred_actors, 39935
7478, has_tags, 10045
7478, starred_actors, 39935
7478, starred_actors, 697
27872, directed_by, 24706
27872, release_year, 1567
27872, starred_actors, 39935
14843, has_genre, 24811
14843, starred_actors, 39935
Question: In what context are ALAN CAMPBELL, APARTHEID, and ROBERT MITCHUM connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"ALAN CAMPBELL",
"APARTHEID",
"ROBERT MITCHUM"
],
"valid_edges": [
[
"A STAR IS BORN",
"directed_by",
"WILLIAM A. WELLMAN"
],
[
"A STAR IS BORN",
"has_tags",
"BD-R"
],
[
"A STAR IS BORN",
"has_tags",
"NATIONAL FILM REGISTRY"
],
[
"A STAR IS BORN",
"has_tags",
"WILLIAM A. WELLMAN"
],
[
"A STAR IS BORN",
"release_year",
"1954"
],
[
"A STAR IS BORN",
"release_year",
"1976"
],
[
"A STAR IS BORN",
"written_by",
"ALAN CAMPBELL"
],
[
"A STAR IS BORN",
"written_by",
"WILLIAM A. WELLMAN"
],
[
"CAPE FEAR",
"has_genre",
"THRILLER"
],
[
"CAPE FEAR",
"has_tags",
"REMAKE"
],
[
"CAPE FEAR",
"has_tags",
"ROBERT DE NIRO"
],
[
"CAPE FEAR",
"has_tags",
"ROBERT MITCHUM"
],
[
"CAPE FEAR",
"has_tags",
"THRILLER"
],
[
"CAPE FEAR",
"starred_actors",
"ROBERT DE NIRO"
],
[
"CAPE FEAR",
"starred_actors",
"ROBERT MITCHUM"
],
[
"CROSSFIRE",
"has_tags",
"BD-R"
],
[
"CROSSFIRE",
"release_year",
"1947"
],
[
"CROSSFIRE",
"starred_actors",
"ROBERT MITCHUM"
],
[
"CROSSFIRE",
"starred_actors",
"ROBERT RYAN"
],
[
"DISTRICT 9",
"has_genre",
"THRILLER"
],
[
"DISTRICT 9",
"has_tags",
"APARTHEID"
],
[
"DISTRICT 9",
"has_tags",
"THRILLER"
],
[
"OUT OF THE PAST",
"has_tags",
"FILM NOIR"
],
[
"OUT OF THE PAST",
"has_tags",
"NATIONAL FILM REGISTRY"
],
[
"OUT OF THE PAST",
"has_tags",
"NOIR"
],
[
"OUT OF THE PAST",
"release_year",
"1947"
],
[
"OUT OF THE PAST",
"starred_actors",
"ROBERT MITCHUM"
],
[
"RIVER OF NO RETURN",
"release_year",
"1954"
],
[
"RIVER OF NO RETURN",
"starred_actors",
"ROBERT MITCHUM"
],
[
"RYAN'S DAUGHTER",
"has_tags",
"BD-R"
],
[
"RYAN'S DAUGHTER",
"has_tags",
"ROBERT MITCHUM"
],
[
"RYAN'S DAUGHTER",
"starred_actors",
"ROBERT MITCHUM"
],
[
"SECRET CEREMONY",
"has_tags",
"BD-R"
],
[
"SECRET CEREMONY",
"starred_actors",
"ROBERT MITCHUM"
],
[
"THE BIG SLEEP",
"has_tags",
"BD-R"
],
[
"THE BIG SLEEP",
"has_tags",
"FILM NOIR"
],
[
"THE BIG SLEEP",
"has_tags",
"NATIONAL FILM REGISTRY"
],
[
"THE BIG SLEEP",
"has_tags",
"NOIR"
],
[
"THE BIG SLEEP",
"has_tags",
"REMAKE"
],
[
"THE BIG SLEEP",
"starred_actors",
"ROBERT MITCHUM"
],
[
"THE HUNTERS",
"has_genre",
"THRILLER"
],
[
"THE HUNTERS",
"starred_actors",
"ROBERT MITCHUM"
],
[
"THE LAST TYCOON",
"release_year",
"1976"
],
[
"THE LAST TYCOON",
"starred_actors",
"ROBERT DE NIRO"
],
[
"THE LAST TYCOON",
"starred_actors",
"ROBERT MITCHUM"
],
[
"THE NIGHT OF THE HUNTER",
"directed_by",
"ROBERT MITCHUM"
],
[
"THE NIGHT OF THE HUNTER",
"has_tags",
"BD-R"
],
[
"THE NIGHT OF THE HUNTER",
"has_tags",
"NATIONAL FILM REGISTRY"
],
[
"THE NIGHT OF THE HUNTER",
"has_tags",
"ROBERT MITCHUM"
],
[
"THE NIGHT OF THE HUNTER",
"has_tags",
"THRILLER"
],
[
"THE NIGHT OF THE HUNTER",
"starred_actors",
"ROBERT MITCHUM"
],
[
"THE RACKET",
"has_tags",
"BD-R"
],
[
"THE RACKET",
"starred_actors",
"ROBERT MITCHUM"
],
[
"THE RACKET",
"starred_actors",
"ROBERT RYAN"
],
[
"TRACK OF THE CAT",
"directed_by",
"WILLIAM A. WELLMAN"
],
[
"TRACK OF THE CAT",
"release_year",
"1954"
],
[
"TRACK OF THE CAT",
"starred_actors",
"ROBERT MITCHUM"
],
[
"WHERE DANGER LIVES",
"has_genre",
"THRILLER"
],
[
"WHERE DANGER LIVES",
"starred_actors",
"ROBERT MITCHUM"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
16055, 1983
1006, 1996
30269, AMITYVILLE 3-D
22951, DON'T BE A MENACE TO SOUTH CENTRAL WHILE DRINKING YOUR JUICE IN THE HOOD
37940, OCTOPUSSY
36554, ROGER MOORE
12863, THE QUEST
6911, THE WILD GEESE
src, edge_attr, dst
30269, release_year, 16055
22951, release_year, 1006
37940, has_tags, 36554
37940, release_year, 16055
37940, starred_actors, 36554
12863, has_tags, 36554
12863, release_year, 1006
12863, starred_actors, 36554
6911, has_tags, 36554
6911, starred_actors, 36554
Question: For what reason are AMITYVILLE 3-D, DON'T BE A MENACE TO SOUTH CENTRAL WHILE DRINKING YOUR JUICE IN THE HOOD, and THE WILD GEESE associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"AMITYVILLE 3-D",
"DON'T BE A MENACE TO SOUTH CENTRAL WHILE DRINKING YOUR JUICE IN THE HOOD",
"THE WILD GEESE"
],
"valid_edges": [
[
"AMITYVILLE 3-D",
"release_year",
"1983"
],
[
"DON'T BE A MENACE TO SOUTH CENTRAL WHILE DRINKING YOUR JUICE IN THE HOOD",
"release_year",
"1996"
],
[
"OCTOPUSSY",
"has_tags",
"ROGER MOORE"
],
[
"OCTOPUSSY",
"release_year",
"1983"
],
[
"OCTOPUSSY",
"starred_actors",
"ROGER MOORE"
],
[
"THE QUEST",
"has_tags",
"ROGER MOORE"
],
[
"THE QUEST",
"release_year",
"1996"
],
[
"THE QUEST",
"starred_actors",
"ROGER MOORE"
],
[
"THE WILD GEESE",
"has_tags",
"ROGER MOORE"
],
[
"THE WILD GEESE",
"starred_actors",
"ROGER MOORE"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
4151, A THIN LINE BETWEEN LOVE AND HATE
30463, COMEDY
1221, GONE FISHIN'
6886, HOUSEFULL 2
36949, JALLA! JALLA!
37303, LALEH POURKARIM
28563, LYNN WHITFIELD
13879, SAJID NADIADWALA
src, edge_attr, dst
4151, has_genre, 30463
4151, starred_actors, 28563
1221, has_genre, 30463
1221, starred_actors, 28563
6886, has_genre, 30463
6886, written_by, 13879
36949, has_genre, 30463
36949, starred_actors, 37303
Question: For what reason are LALEH POURKARIM, LYNN WHITFIELD, and SAJID NADIADWALA associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"LALEH POURKARIM",
"LYNN WHITFIELD",
"SAJID NADIADWALA"
],
"valid_edges": [
[
"A THIN LINE BETWEEN LOVE AND HATE",
"has_genre",
"COMEDY"
],
[
"A THIN LINE BETWEEN LOVE AND HATE",
"starred_actors",
"LYNN WHITFIELD"
],
[
"GONE FISHIN'",
"has_genre",
"COMEDY"
],
[
"GONE FISHIN'",
"starred_actors",
"LYNN WHITFIELD"
],
[
"HOUSEFULL 2",
"has_genre",
"COMEDY"
],
[
"HOUSEFULL 2",
"written_by",
"SAJID NADIADWALA"
],
[
"JALLA! JALLA!",
"has_genre",
"COMEDY"
],
[
"JALLA! JALLA!",
"starred_actors",
"LALEH POURKARIM"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
6347, $
7977, 1969
37484, 2004
1698, ALFIE
6360, AROUND THE BEND
10045, BD-R
16823, BITE THE BULLET
11108, BRUTE FORCE
32075, BURN!
35953, BUTCH CASSIDY AND THE SUNDANCE KID
3034, CAT ON A HOT TIN ROOF
39676, CROSSFIRE
13424, DON'T DRINK THE WATER
4728, EASY RIDER
26308, FLIPPER
32144, FRANKENSTEIN MUST BE DESTROYED
2048, GOODBYE, MR. CHIPS
4709, GREAT EXPECTATIONS
12244, GUYS AND DOLLS
20941, HAMLET
12087, HOWL'S MOVING CASTLE
30184, IN COLD BLOOD
36637, JAMES B. CLARK
25901, JEAN SIMMONS
18020, JOHN FORSYTHE
13763, KES
4929, KEY LARGO
14156, KING SOLOMON'S MINES
28933, LAST SUMMER
26370, MADHOUSE
22678, MARLOWE
6543, MODEL SHOP
16139, MY SIDE OF THE MOUNTAIN
18184, OKLAHOMA!
33617, RED DUST
8614, RICHARD BROOKS
38066, SHIRLEY JONES
420, SUPPORT YOUR LOCAL SHERIFF!
24926, SWEET CHARITY
31619, THE ARRANGEMENT
2915, THE BROTHERS KARAMAZOV
31280, THE CATERED AFFAIR
7763, THE CHEYENNE SOCIAL CLUB
557, THE HAPPY ENDING
7447, THE INCREDIBLES
1443, THE ITALIAN JOB
30690, THE LADYKILLERS
1368, THE MILKY WAY
28118, THE MUSIC MAN
31953, THE PRIME OF MISS JEAN BRODIE
19768, THE PROFESSIONALS
23847, THE STEPFORD WIVES
18433, THE WILD BUNCH
37252, WOMEN IN LOVE
31083, WRONG IS RIGHT
38760, Z
src, edge_attr, dst
6347, directed_by, 8614
6347, has_tags, 10045
6347, written_by, 8614
1698, has_tags, 10045
1698, release_year, 37484
6360, release_year, 37484
16823, directed_by, 8614
16823, has_tags, 10045
16823, written_by, 8614
11108, has_tags, 10045
11108, written_by, 8614
32075, has_tags, 10045
32075, release_year, 7977
35953, has_tags, 10045
35953, release_year, 7977
3034, directed_by, 8614
3034, has_tags, 10045
3034, has_tags, 8614
3034, written_by, 8614
39676, has_tags, 10045
39676, written_by, 8614
13424, has_tags, 10045
13424, release_year, 7977
4728, has_tags, 10045
4728, release_year, 7977
26308, directed_by, 36637
26308, has_tags, 10045
32144, has_tags, 10045
32144, release_year, 7977
2048, has_tags, 10045
2048, release_year, 7977
4709, has_tags, 10045
4709, starred_actors, 25901
12244, has_tags, 10045
12244, starred_actors, 25901
20941, has_tags, 10045
20941, release_year, 7977
12087, has_tags, 10045
12087, release_year, 37484
30184, directed_by, 8614
30184, has_tags, 10045
30184, has_tags, 8614
30184, starred_actors, 18020
30184, written_by, 8614
13763, has_tags, 10045
13763, release_year, 7977
4929, has_tags, 10045
4929, written_by, 8614
14156, has_tags, 10045
14156, release_year, 37484
28933, has_tags, 10045
28933, release_year, 7977
26370, has_tags, 10045
26370, release_year, 37484
22678, has_tags, 10045
22678, release_year, 7977
6543, has_tags, 10045
6543, release_year, 7977
16139, directed_by, 36637
16139, release_year, 7977
18184, has_tags, 10045
18184, has_tags, 38066
33617, has_tags, 10045
33617, release_year, 37484
420, has_tags, 10045
420, release_year, 7977
24926, has_tags, 10045
24926, release_year, 7977
31619, has_tags, 10045
31619, release_year, 7977
2915, directed_by, 8614
2915, has_tags, 10045
2915, written_by, 8614
31280, directed_by, 8614
31280, has_tags, 10045
31280, has_tags, 8614
7763, has_tags, 10045
7763, starred_actors, 38066
557, directed_by, 8614
557, has_tags, 10045
557, release_year, 7977
557, starred_actors, 25901
557, starred_actors, 18020
557, starred_actors, 38066
557, written_by, 8614
7447, has_tags, 10045
7447, release_year, 37484
1443, has_tags, 10045
1443, release_year, 7977
30690, has_tags, 10045
30690, release_year, 37484
1368, has_tags, 10045
1368, release_year, 7977
28118, has_tags, 10045
28118, has_tags, 38066
28118, starred_actors, 38066
31953, has_tags, 10045
31953, release_year, 7977
19768, directed_by, 8614
19768, has_tags, 10045
19768, has_tags, 8614
19768, written_by, 8614
23847, has_tags, 10045
23847, release_year, 37484
18433, has_tags, 10045
18433, release_year, 7977
37252, has_tags, 10045
37252, release_year, 7977
31083, directed_by, 8614
31083, has_tags, 10045
31083, written_by, 8614
38760, has_tags, 10045
38760, release_year, 7977
Question: How are AROUND THE BEND, JAMES B. CLARK, and THE HAPPY ENDING related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"AROUND THE BEND",
"JAMES B. CLARK",
"THE HAPPY ENDING"
],
"valid_edges": [
[
"$",
"directed_by",
"RICHARD BROOKS"
],
[
"$",
"has_tags",
"BD-R"
],
[
"$",
"written_by",
"RICHARD BROOKS"
],
[
"ALFIE",
"has_tags",
"BD-R"
],
[
"ALFIE",
"release_year",
"2004"
],
[
"AROUND THE BEND",
"release_year",
"2004"
],
[
"BITE THE BULLET",
"directed_by",
"RICHARD BROOKS"
],
[
"BITE THE BULLET",
"has_tags",
"BD-R"
],
[
"BITE THE BULLET",
"written_by",
"RICHARD BROOKS"
],
[
"BRUTE FORCE",
"has_tags",
"BD-R"
],
[
"BRUTE FORCE",
"written_by",
"RICHARD BROOKS"
],
[
"BURN!",
"has_tags",
"BD-R"
],
[
"BURN!",
"release_year",
"1969"
],
[
"BUTCH CASSIDY AND THE SUNDANCE KID",
"has_tags",
"BD-R"
],
[
"BUTCH CASSIDY AND THE SUNDANCE KID",
"release_year",
"1969"
],
[
"CAT ON A HOT TIN ROOF",
"directed_by",
"RICHARD BROOKS"
],
[
"CAT ON A HOT TIN ROOF",
"has_tags",
"BD-R"
],
[
"CAT ON A HOT TIN ROOF",
"has_tags",
"RICHARD BROOKS"
],
[
"CAT ON A HOT TIN ROOF",
"written_by",
"RICHARD BROOKS"
],
[
"CROSSFIRE",
"has_tags",
"BD-R"
],
[
"CROSSFIRE",
"written_by",
"RICHARD BROOKS"
],
[
"DON'T DRINK THE WATER",
"has_tags",
"BD-R"
],
[
"DON'T DRINK THE WATER",
"release_year",
"1969"
],
[
"EASY RIDER",
"has_tags",
"BD-R"
],
[
"EASY RIDER",
"release_year",
"1969"
],
[
"FLIPPER",
"directed_by",
"JAMES B. CLARK"
],
[
"FLIPPER",
"has_tags",
"BD-R"
],
[
"FRANKENSTEIN MUST BE DESTROYED",
"has_tags",
"BD-R"
],
[
"FRANKENSTEIN MUST BE DESTROYED",
"release_year",
"1969"
],
[
"GOODBYE, MR. CHIPS",
"has_tags",
"BD-R"
],
[
"GOODBYE, MR. CHIPS",
"release_year",
"1969"
],
[
"GREAT EXPECTATIONS",
"has_tags",
"BD-R"
],
[
"GREAT EXPECTATIONS",
"starred_actors",
"JEAN SIMMONS"
],
[
"GUYS AND DOLLS",
"has_tags",
"BD-R"
],
[
"GUYS AND DOLLS",
"starred_actors",
"JEAN SIMMONS"
],
[
"HAMLET",
"has_tags",
"BD-R"
],
[
"HAMLET",
"release_year",
"1969"
],
[
"HOWL'S MOVING CASTLE",
"has_tags",
"BD-R"
],
[
"HOWL'S MOVING CASTLE",
"release_year",
"2004"
],
[
"IN COLD BLOOD",
"directed_by",
"RICHARD BROOKS"
],
[
"IN COLD BLOOD",
"has_tags",
"BD-R"
],
[
"IN COLD BLOOD",
"has_tags",
"RICHARD BROOKS"
],
[
"IN COLD BLOOD",
"starred_actors",
"JOHN FORSYTHE"
],
[
"IN COLD BLOOD",
"written_by",
"RICHARD BROOKS"
],
[
"KES",
"has_tags",
"BD-R"
],
[
"KES",
"release_year",
"1969"
],
[
"KEY LARGO",
"has_tags",
"BD-R"
],
[
"KEY LARGO",
"written_by",
"RICHARD BROOKS"
],
[
"KING SOLOMON'S MINES",
"has_tags",
"BD-R"
],
[
"KING SOLOMON'S MINES",
"release_year",
"2004"
],
[
"LAST SUMMER",
"has_tags",
"BD-R"
],
[
"LAST SUMMER",
"release_year",
"1969"
],
[
"MADHOUSE",
"has_tags",
"BD-R"
],
[
"MADHOUSE",
"release_year",
"2004"
],
[
"MARLOWE",
"has_tags",
"BD-R"
],
[
"MARLOWE",
"release_year",
"1969"
],
[
"MODEL SHOP",
"has_tags",
"BD-R"
],
[
"MODEL SHOP",
"release_year",
"1969"
],
[
"MY SIDE OF THE MOUNTAIN",
"directed_by",
"JAMES B. CLARK"
],
[
"MY SIDE OF THE MOUNTAIN",
"release_year",
"1969"
],
[
"OKLAHOMA!",
"has_tags",
"BD-R"
],
[
"OKLAHOMA!",
"has_tags",
"SHIRLEY JONES"
],
[
"RED DUST",
"has_tags",
"BD-R"
],
[
"RED DUST",
"release_year",
"2004"
],
[
"SUPPORT YOUR LOCAL SHERIFF!",
"has_tags",
"BD-R"
],
[
"SUPPORT YOUR LOCAL SHERIFF!",
"release_year",
"1969"
],
[
"SWEET CHARITY",
"has_tags",
"BD-R"
],
[
"SWEET CHARITY",
"release_year",
"1969"
],
[
"THE ARRANGEMENT",
"has_tags",
"BD-R"
],
[
"THE ARRANGEMENT",
"release_year",
"1969"
],
[
"THE BROTHERS KARAMAZOV",
"directed_by",
"RICHARD BROOKS"
],
[
"THE BROTHERS KARAMAZOV",
"has_tags",
"BD-R"
],
[
"THE BROTHERS KARAMAZOV",
"written_by",
"RICHARD BROOKS"
],
[
"THE CATERED AFFAIR",
"directed_by",
"RICHARD BROOKS"
],
[
"THE CATERED AFFAIR",
"has_tags",
"BD-R"
],
[
"THE CATERED AFFAIR",
"has_tags",
"RICHARD BROOKS"
],
[
"THE CHEYENNE SOCIAL CLUB",
"has_tags",
"BD-R"
],
[
"THE CHEYENNE SOCIAL CLUB",
"starred_actors",
"SHIRLEY JONES"
],
[
"THE HAPPY ENDING",
"directed_by",
"RICHARD BROOKS"
],
[
"THE HAPPY ENDING",
"has_tags",
"BD-R"
],
[
"THE HAPPY ENDING",
"release_year",
"1969"
],
[
"THE HAPPY ENDING",
"starred_actors",
"JEAN SIMMONS"
],
[
"THE HAPPY ENDING",
"starred_actors",
"JOHN FORSYTHE"
],
[
"THE HAPPY ENDING",
"starred_actors",
"SHIRLEY JONES"
],
[
"THE HAPPY ENDING",
"written_by",
"RICHARD BROOKS"
],
[
"THE INCREDIBLES",
"has_tags",
"BD-R"
],
[
"THE INCREDIBLES",
"release_year",
"2004"
],
[
"THE ITALIAN JOB",
"has_tags",
"BD-R"
],
[
"THE ITALIAN JOB",
"release_year",
"1969"
],
[
"THE LADYKILLERS",
"has_tags",
"BD-R"
],
[
"THE LADYKILLERS",
"release_year",
"2004"
],
[
"THE MILKY WAY",
"has_tags",
"BD-R"
],
[
"THE MILKY WAY",
"release_year",
"1969"
],
[
"THE MUSIC MAN",
"has_tags",
"BD-R"
],
[
"THE MUSIC MAN",
"has_tags",
"SHIRLEY JONES"
],
[
"THE MUSIC MAN",
"starred_actors",
"SHIRLEY JONES"
],
[
"THE PRIME OF MISS JEAN BRODIE",
"has_tags",
"BD-R"
],
[
"THE PRIME OF MISS JEAN BRODIE",
"release_year",
"1969"
],
[
"THE PROFESSIONALS",
"directed_by",
"RICHARD BROOKS"
],
[
"THE PROFESSIONALS",
"has_tags",
"BD-R"
],
[
"THE PROFESSIONALS",
"has_tags",
"RICHARD BROOKS"
],
[
"THE PROFESSIONALS",
"written_by",
"RICHARD BROOKS"
],
[
"THE STEPFORD WIVES",
"has_tags",
"BD-R"
],
[
"THE STEPFORD WIVES",
"release_year",
"2004"
],
[
"THE WILD BUNCH",
"has_tags",
"BD-R"
],
[
"THE WILD BUNCH",
"release_year",
"1969"
],
[
"WOMEN IN LOVE",
"has_tags",
"BD-R"
],
[
"WOMEN IN LOVE",
"release_year",
"1969"
],
[
"WRONG IS RIGHT",
"directed_by",
"RICHARD BROOKS"
],
[
"WRONG IS RIGHT",
"has_tags",
"BD-R"
],
[
"WRONG IS RIGHT",
"written_by",
"RICHARD BROOKS"
],
[
"Z",
"has_tags",
"BD-R"
],
[
"Z",
"release_year",
"1969"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
13464, 10 THINGS I HATE ABOUT YOU
8486, 1999
5620, 200 CIGARETTES
30146, A CHRISTMAS CAROL
38367, A MAP OF THE WORLD
27672, A ROOM FOR ROMEO BRASS
5152, A SLIPPING-DOWN LIFE
30464, A WALK ON THE MOON
35603, AGNES BROWNE
30284, ALL ABOUT MY MOTHER
39271, ALL FALL DOWN
17254, AMERICAN BEAUTY
17481, ANGELA'S ASHES
29422, ANNA AND THE KING
17320, ANY GIVEN SUNDAY
25586, ARLINGTON ROAD
7908, AUDITION
10045, BD-R
26205, BEING JOHN MALKOVICH
2067, BETWEEN YOUR LEGS
8900, BICENTENNIAL MAN
37569, BOYS DON'T CRY
21035, BRINGING OUT THE DEAD
7918, BROKEDOWN PALACE
26642, BUS STOP
3291, CATFISH IN BLACK BEAN SAUCE
32880, COME BACK, LITTLE SHEBA
23710, CRADLE WILL ROCK
32140, CRAZY IN ALABAMA
27377, CRUEL INTENTIONS
13007, DETERRENCE
36212, DRAMA
12319, DREAMING OF JOSEPH LEES
7568, EAST IS EAST
34555, FLAWLESS
17478, FOOLISH
9161, FOR LOVE OF THE GAME
5820, FOREVER MINE
22532, GIRL, INTERRUPTED
35657, GLORIA
10457, GOYA IN BORDEAUX
19204, GUINEVERE
24044, IMMEDIATE FAMILY
27446, IN TOO DEEP
35335, IT ALL STARTS TODAY
4912, JAKOB THE LIAR
14391, JOE THE KING
4864, JOSHUA LOGAN
27249, JUDY BERLIN
21224, KIKUJIRO
22333, KING OF COMEDY
18023, LIBERTY HEIGHTS
7104, LIFE
21197, LIGHT IT UP
4052, LIMBO
28092, MAGNOLIA
37867, MAN ON THE MOON
6649, MANSFIELD PARK
6559, MESSAGE IN A BOTTLE
30008, MISS JULIE
19598, MOLLY
14977, MOLOCH
16428, MUMFORD
3018, MUSIC OF THE HEART
33718, MYSTERY, ALASKA
493, ONE MAN'S HERO
18987, ONEGIN
35341, ORFEU
24816, OXYGEN
439, PICNIC
35054, PLAY IT TO THE BONE
21386, POLA X
10039, PUPS
16964, PUSHING TIN
9963, RANDOM HEARTS
27631, RIDE WITH THE DEVIL
12234, RKO 281
27556, ROGUE TRADER
8379, ROMANCE
15252, SCREWED IN TALLINN
36167, SOFT FRUIT
1469, SOPHIE'S WORLD
8753, SPLENDOR IN THE GRASS
32984, SWEET AND LOWDOWN
4157, THE BEST MAN
27111, THE BIG KAHUNA
22372, THE CIDER HOUSE RULES
6150, THE CONFESSION
25509, THE DEBT
791, THE DEEP END OF THE OCEAN
8141, THE END OF THE AFFAIR
14220, THE FIVE SENSES
12748, THE GLASS AGENCY
35367, THE GREEN MILE
16209, THE HI-LINE
12439, THE INSIDER
34986, THE JOYRIDERS
37562, THE KING AND I
9799, THE LOST SON
27045, THE MISSION
5098, THE MOMENT AFTER
37200, THE STORY OF US
9301, THE STRAIGHT STORY
11235, THE SUBURBANS
13405, THE THIRD MIRACLE
12026, THE TIC CODE
12801, THE VIRGIN SUICIDES
39253, THE WAR ZONE
14983, THE WINSLOW BOY
332, TOPSY-TURVY
308, TRUE CRIME
13101, TUMBLEWEEDS
9202, VARSITY BLUES
16102, WILDFLOWERS
16030, WILLIAM INGE
30288, WISCONSIN DEATH TRIP
6567, WITH FIRE AND SWORD
31862, WONDERLAND
src, edge_attr, dst
13464, has_genre, 36212
13464, release_year, 8486
5620, has_genre, 36212
5620, release_year, 8486
30146, has_genre, 36212
30146, release_year, 8486
38367, has_genre, 36212
38367, release_year, 8486
27672, has_genre, 36212
27672, release_year, 8486
5152, has_genre, 36212
5152, release_year, 8486
30464, has_genre, 36212
30464, release_year, 8486
35603, has_genre, 36212
35603, release_year, 8486
30284, has_genre, 36212
30284, release_year, 8486
39271, has_genre, 36212
39271, written_by, 16030
17254, has_genre, 36212
17254, has_tags, 36212
17254, release_year, 8486
17481, has_genre, 36212
17481, release_year, 8486
29422, has_genre, 36212
29422, release_year, 8486
17320, has_genre, 36212
17320, release_year, 8486
25586, has_genre, 36212
25586, release_year, 8486
7908, has_genre, 36212
7908, release_year, 8486
26205, has_genre, 36212
26205, has_tags, 36212
26205, release_year, 8486
2067, has_genre, 36212
2067, release_year, 8486
8900, has_genre, 36212
8900, release_year, 8486
37569, has_genre, 36212
37569, has_tags, 36212
37569, release_year, 8486
21035, has_genre, 36212
21035, has_tags, 36212
21035, release_year, 8486
7918, has_genre, 36212
7918, release_year, 8486
26642, directed_by, 4864
26642, has_genre, 36212
26642, has_tags, 10045
26642, written_by, 16030
3291, has_genre, 36212
3291, release_year, 8486
32880, has_genre, 36212
32880, written_by, 16030
23710, has_genre, 36212
23710, release_year, 8486
32140, has_genre, 36212
32140, release_year, 8486
27377, has_genre, 36212
27377, release_year, 8486
13007, has_genre, 36212
13007, release_year, 8486
12319, has_genre, 36212
12319, release_year, 8486
7568, has_genre, 36212
7568, release_year, 8486
34555, has_genre, 36212
34555, release_year, 8486
17478, has_genre, 36212
17478, release_year, 8486
9161, has_genre, 36212
9161, release_year, 8486
5820, has_genre, 36212
5820, release_year, 8486
22532, has_genre, 36212
22532, has_tags, 36212
22532, release_year, 8486
35657, has_genre, 36212
35657, release_year, 8486
10457, has_genre, 36212
10457, release_year, 8486
19204, has_genre, 36212
19204, release_year, 8486
24044, has_genre, 36212
27446, has_genre, 36212
27446, release_year, 8486
35335, has_genre, 36212
35335, release_year, 8486
4912, has_genre, 36212
4912, release_year, 8486
14391, has_genre, 36212
14391, release_year, 8486
27249, has_genre, 36212
27249, release_year, 8486
21224, has_genre, 36212
21224, release_year, 8486
22333, has_genre, 36212
22333, release_year, 8486
18023, has_genre, 36212
18023, release_year, 8486
7104, has_genre, 36212
7104, release_year, 8486
21197, has_genre, 36212
21197, release_year, 8486
4052, has_genre, 36212
4052, release_year, 8486
28092, has_genre, 36212
28092, release_year, 8486
37867, has_genre, 36212
37867, release_year, 8486
6649, has_genre, 36212
6649, release_year, 8486
6559, has_genre, 36212
6559, release_year, 8486
30008, has_genre, 36212
30008, release_year, 8486
19598, has_genre, 36212
19598, release_year, 8486
14977, has_genre, 36212
14977, release_year, 8486
16428, has_genre, 36212
16428, release_year, 8486
3018, has_genre, 36212
3018, release_year, 8486
33718, has_genre, 36212
33718, release_year, 8486
493, has_genre, 36212
493, release_year, 8486
18987, has_genre, 36212
18987, release_year, 8486
35341, has_genre, 36212
35341, release_year, 8486
24816, release_year, 8486
439, directed_by, 4864
439, has_genre, 36212
439, has_tags, 10045
439, has_tags, 4864
439, written_by, 16030
35054, has_genre, 36212
35054, release_year, 8486
21386, has_genre, 36212
21386, release_year, 8486
10039, has_genre, 36212
10039, release_year, 8486
16964, has_genre, 36212
16964, release_year, 8486
9963, has_genre, 36212
9963, release_year, 8486
27631, has_genre, 36212
27631, release_year, 8486
12234, has_genre, 36212
12234, release_year, 8486
27556, has_genre, 36212
27556, release_year, 8486
8379, has_genre, 36212
8379, release_year, 8486
15252, has_genre, 36212
15252, release_year, 8486
36167, has_genre, 36212
36167, release_year, 8486
1469, has_genre, 36212
1469, release_year, 8486
8753, has_genre, 36212
8753, has_tags, 10045
8753, written_by, 16030
32984, has_genre, 36212
32984, release_year, 8486
4157, has_genre, 36212
4157, release_year, 8486
27111, has_genre, 36212
27111, release_year, 8486
22372, has_genre, 36212
22372, has_tags, 36212
22372, release_year, 8486
6150, has_genre, 36212
6150, release_year, 8486
25509, has_genre, 36212
25509, release_year, 8486
791, has_genre, 36212
791, release_year, 8486
8141, has_genre, 36212
8141, release_year, 8486
14220, has_genre, 36212
14220, release_year, 8486
12748, has_genre, 36212
12748, release_year, 8486
35367, has_genre, 36212
35367, has_tags, 36212
35367, release_year, 8486
16209, has_genre, 36212
16209, release_year, 8486
12439, has_genre, 36212
12439, has_tags, 36212
12439, release_year, 8486
34986, has_genre, 36212
34986, release_year, 8486
37562, has_genre, 36212
37562, release_year, 8486
9799, has_genre, 36212
9799, release_year, 8486
27045, has_genre, 36212
27045, release_year, 8486
5098, has_genre, 36212
5098, release_year, 8486
37200, has_genre, 36212
37200, has_tags, 36212
37200, release_year, 8486
9301, has_genre, 36212
9301, release_year, 8486
11235, has_genre, 36212
11235, release_year, 8486
13405, has_genre, 36212
13405, release_year, 8486
12026, has_genre, 36212
12026, release_year, 8486
12801, has_genre, 36212
12801, release_year, 8486
39253, has_genre, 36212
39253, release_year, 8486
14983, has_genre, 36212
14983, release_year, 8486
332, has_genre, 36212
332, release_year, 8486
308, has_genre, 36212
308, release_year, 8486
13101, has_genre, 36212
13101, release_year, 8486
9202, has_genre, 36212
9202, release_year, 8486
16102, has_genre, 36212
16102, release_year, 8486
30288, has_genre, 36212
30288, release_year, 8486
6567, has_genre, 36212
6567, release_year, 8486
31862, has_genre, 36212
31862, release_year, 8486
Question: In what context are IMMEDIATE FAMILY, OXYGEN, and WILLIAM INGE connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"IMMEDIATE FAMILY",
"OXYGEN",
"WILLIAM INGE"
],
"valid_edges": [
[
"10 THINGS I HATE ABOUT YOU",
"has_genre",
"DRAMA"
],
[
"10 THINGS I HATE ABOUT YOU",
"release_year",
"1999"
],
[
"200 CIGARETTES",
"has_genre",
"DRAMA"
],
[
"200 CIGARETTES",
"release_year",
"1999"
],
[
"A CHRISTMAS CAROL",
"has_genre",
"DRAMA"
],
[
"A CHRISTMAS CAROL",
"release_year",
"1999"
],
[
"A MAP OF THE WORLD",
"has_genre",
"DRAMA"
],
[
"A MAP OF THE WORLD",
"release_year",
"1999"
],
[
"A ROOM FOR ROMEO BRASS",
"has_genre",
"DRAMA"
],
[
"A ROOM FOR ROMEO BRASS",
"release_year",
"1999"
],
[
"A SLIPPING-DOWN LIFE",
"has_genre",
"DRAMA"
],
[
"A SLIPPING-DOWN LIFE",
"release_year",
"1999"
],
[
"A WALK ON THE MOON",
"has_genre",
"DRAMA"
],
[
"A WALK ON THE MOON",
"release_year",
"1999"
],
[
"AGNES BROWNE",
"has_genre",
"DRAMA"
],
[
"AGNES BROWNE",
"release_year",
"1999"
],
[
"ALL ABOUT MY MOTHER",
"has_genre",
"DRAMA"
],
[
"ALL ABOUT MY MOTHER",
"release_year",
"1999"
],
[
"ALL FALL DOWN",
"has_genre",
"DRAMA"
],
[
"ALL FALL DOWN",
"written_by",
"WILLIAM INGE"
],
[
"AMERICAN BEAUTY",
"has_genre",
"DRAMA"
],
[
"AMERICAN BEAUTY",
"has_tags",
"DRAMA"
],
[
"AMERICAN BEAUTY",
"release_year",
"1999"
],
[
"ANGELA'S ASHES",
"has_genre",
"DRAMA"
],
[
"ANGELA'S ASHES",
"release_year",
"1999"
],
[
"ANNA AND THE KING",
"has_genre",
"DRAMA"
],
[
"ANNA AND THE KING",
"release_year",
"1999"
],
[
"ANY GIVEN SUNDAY",
"has_genre",
"DRAMA"
],
[
"ANY GIVEN SUNDAY",
"release_year",
"1999"
],
[
"ARLINGTON ROAD",
"has_genre",
"DRAMA"
],
[
"ARLINGTON ROAD",
"release_year",
"1999"
],
[
"AUDITION",
"has_genre",
"DRAMA"
],
[
"AUDITION",
"release_year",
"1999"
],
[
"BEING JOHN MALKOVICH",
"has_genre",
"DRAMA"
],
[
"BEING JOHN MALKOVICH",
"has_tags",
"DRAMA"
],
[
"BEING JOHN MALKOVICH",
"release_year",
"1999"
],
[
"BETWEEN YOUR LEGS",
"has_genre",
"DRAMA"
],
[
"BETWEEN YOUR LEGS",
"release_year",
"1999"
],
[
"BICENTENNIAL MAN",
"has_genre",
"DRAMA"
],
[
"BICENTENNIAL MAN",
"release_year",
"1999"
],
[
"BOYS DON'T CRY",
"has_genre",
"DRAMA"
],
[
"BOYS DON'T CRY",
"has_tags",
"DRAMA"
],
[
"BOYS DON'T CRY",
"release_year",
"1999"
],
[
"BRINGING OUT THE DEAD",
"has_genre",
"DRAMA"
],
[
"BRINGING OUT THE DEAD",
"has_tags",
"DRAMA"
],
[
"BRINGING OUT THE DEAD",
"release_year",
"1999"
],
[
"BROKEDOWN PALACE",
"has_genre",
"DRAMA"
],
[
"BROKEDOWN PALACE",
"release_year",
"1999"
],
[
"BUS STOP",
"directed_by",
"JOSHUA LOGAN"
],
[
"BUS STOP",
"has_genre",
"DRAMA"
],
[
"BUS STOP",
"has_tags",
"BD-R"
],
[
"BUS STOP",
"written_by",
"WILLIAM INGE"
],
[
"CATFISH IN BLACK BEAN SAUCE",
"has_genre",
"DRAMA"
],
[
"CATFISH IN BLACK BEAN SAUCE",
"release_year",
"1999"
],
[
"COME BACK, LITTLE SHEBA",
"has_genre",
"DRAMA"
],
[
"COME BACK, LITTLE SHEBA",
"written_by",
"WILLIAM INGE"
],
[
"CRADLE WILL ROCK",
"has_genre",
"DRAMA"
],
[
"CRADLE WILL ROCK",
"release_year",
"1999"
],
[
"CRAZY IN ALABAMA",
"has_genre",
"DRAMA"
],
[
"CRAZY IN ALABAMA",
"release_year",
"1999"
],
[
"CRUEL INTENTIONS",
"has_genre",
"DRAMA"
],
[
"CRUEL INTENTIONS",
"release_year",
"1999"
],
[
"DETERRENCE",
"has_genre",
"DRAMA"
],
[
"DETERRENCE",
"release_year",
"1999"
],
[
"DREAMING OF JOSEPH LEES",
"has_genre",
"DRAMA"
],
[
"DREAMING OF JOSEPH LEES",
"release_year",
"1999"
],
[
"EAST IS EAST",
"has_genre",
"DRAMA"
],
[
"EAST IS EAST",
"release_year",
"1999"
],
[
"FLAWLESS",
"has_genre",
"DRAMA"
],
[
"FLAWLESS",
"release_year",
"1999"
],
[
"FOOLISH",
"has_genre",
"DRAMA"
],
[
"FOOLISH",
"release_year",
"1999"
],
[
"FOR LOVE OF THE GAME",
"has_genre",
"DRAMA"
],
[
"FOR LOVE OF THE GAME",
"release_year",
"1999"
],
[
"FOREVER MINE",
"has_genre",
"DRAMA"
],
[
"FOREVER MINE",
"release_year",
"1999"
],
[
"GIRL, INTERRUPTED",
"has_genre",
"DRAMA"
],
[
"GIRL, INTERRUPTED",
"has_tags",
"DRAMA"
],
[
"GIRL, INTERRUPTED",
"release_year",
"1999"
],
[
"GLORIA",
"has_genre",
"DRAMA"
],
[
"GLORIA",
"release_year",
"1999"
],
[
"GOYA IN BORDEAUX",
"has_genre",
"DRAMA"
],
[
"GOYA IN BORDEAUX",
"release_year",
"1999"
],
[
"GUINEVERE",
"has_genre",
"DRAMA"
],
[
"GUINEVERE",
"release_year",
"1999"
],
[
"IMMEDIATE FAMILY",
"has_genre",
"DRAMA"
],
[
"IN TOO DEEP",
"has_genre",
"DRAMA"
],
[
"IN TOO DEEP",
"release_year",
"1999"
],
[
"IT ALL STARTS TODAY",
"has_genre",
"DRAMA"
],
[
"IT ALL STARTS TODAY",
"release_year",
"1999"
],
[
"JAKOB THE LIAR",
"has_genre",
"DRAMA"
],
[
"JAKOB THE LIAR",
"release_year",
"1999"
],
[
"JOE THE KING",
"has_genre",
"DRAMA"
],
[
"JOE THE KING",
"release_year",
"1999"
],
[
"JUDY BERLIN",
"has_genre",
"DRAMA"
],
[
"JUDY BERLIN",
"release_year",
"1999"
],
[
"KIKUJIRO",
"has_genre",
"DRAMA"
],
[
"KIKUJIRO",
"release_year",
"1999"
],
[
"KING OF COMEDY",
"has_genre",
"DRAMA"
],
[
"KING OF COMEDY",
"release_year",
"1999"
],
[
"LIBERTY HEIGHTS",
"has_genre",
"DRAMA"
],
[
"LIBERTY HEIGHTS",
"release_year",
"1999"
],
[
"LIFE",
"has_genre",
"DRAMA"
],
[
"LIFE",
"release_year",
"1999"
],
[
"LIGHT IT UP",
"has_genre",
"DRAMA"
],
[
"LIGHT IT UP",
"release_year",
"1999"
],
[
"LIMBO",
"has_genre",
"DRAMA"
],
[
"LIMBO",
"release_year",
"1999"
],
[
"MAGNOLIA",
"has_genre",
"DRAMA"
],
[
"MAGNOLIA",
"release_year",
"1999"
],
[
"MAN ON THE MOON",
"has_genre",
"DRAMA"
],
[
"MAN ON THE MOON",
"release_year",
"1999"
],
[
"MANSFIELD PARK",
"has_genre",
"DRAMA"
],
[
"MANSFIELD PARK",
"release_year",
"1999"
],
[
"MESSAGE IN A BOTTLE",
"has_genre",
"DRAMA"
],
[
"MESSAGE IN A BOTTLE",
"release_year",
"1999"
],
[
"MISS JULIE",
"has_genre",
"DRAMA"
],
[
"MISS JULIE",
"release_year",
"1999"
],
[
"MOLLY",
"has_genre",
"DRAMA"
],
[
"MOLLY",
"release_year",
"1999"
],
[
"MOLOCH",
"has_genre",
"DRAMA"
],
[
"MOLOCH",
"release_year",
"1999"
],
[
"MUMFORD",
"has_genre",
"DRAMA"
],
[
"MUMFORD",
"release_year",
"1999"
],
[
"MUSIC OF THE HEART",
"has_genre",
"DRAMA"
],
[
"MUSIC OF THE HEART",
"release_year",
"1999"
],
[
"MYSTERY, ALASKA",
"has_genre",
"DRAMA"
],
[
"MYSTERY, ALASKA",
"release_year",
"1999"
],
[
"ONE MAN'S HERO",
"has_genre",
"DRAMA"
],
[
"ONE MAN'S HERO",
"release_year",
"1999"
],
[
"ONEGIN",
"has_genre",
"DRAMA"
],
[
"ONEGIN",
"release_year",
"1999"
],
[
"ORFEU",
"has_genre",
"DRAMA"
],
[
"ORFEU",
"release_year",
"1999"
],
[
"OXYGEN",
"release_year",
"1999"
],
[
"PICNIC",
"directed_by",
"JOSHUA LOGAN"
],
[
"PICNIC",
"has_genre",
"DRAMA"
],
[
"PICNIC",
"has_tags",
"BD-R"
],
[
"PICNIC",
"has_tags",
"JOSHUA LOGAN"
],
[
"PICNIC",
"written_by",
"WILLIAM INGE"
],
[
"PLAY IT TO THE BONE",
"has_genre",
"DRAMA"
],
[
"PLAY IT TO THE BONE",
"release_year",
"1999"
],
[
"POLA X",
"has_genre",
"DRAMA"
],
[
"POLA X",
"release_year",
"1999"
],
[
"PUPS",
"has_genre",
"DRAMA"
],
[
"PUPS",
"release_year",
"1999"
],
[
"PUSHING TIN",
"has_genre",
"DRAMA"
],
[
"PUSHING TIN",
"release_year",
"1999"
],
[
"RANDOM HEARTS",
"has_genre",
"DRAMA"
],
[
"RANDOM HEARTS",
"release_year",
"1999"
],
[
"RIDE WITH THE DEVIL",
"has_genre",
"DRAMA"
],
[
"RIDE WITH THE DEVIL",
"release_year",
"1999"
],
[
"RKO 281",
"has_genre",
"DRAMA"
],
[
"RKO 281",
"release_year",
"1999"
],
[
"ROGUE TRADER",
"has_genre",
"DRAMA"
],
[
"ROGUE TRADER",
"release_year",
"1999"
],
[
"ROMANCE",
"has_genre",
"DRAMA"
],
[
"ROMANCE",
"release_year",
"1999"
],
[
"SCREWED IN TALLINN",
"has_genre",
"DRAMA"
],
[
"SCREWED IN TALLINN",
"release_year",
"1999"
],
[
"SOFT FRUIT",
"has_genre",
"DRAMA"
],
[
"SOFT FRUIT",
"release_year",
"1999"
],
[
"SOPHIE'S WORLD",
"has_genre",
"DRAMA"
],
[
"SOPHIE'S WORLD",
"release_year",
"1999"
],
[
"SPLENDOR IN THE GRASS",
"has_genre",
"DRAMA"
],
[
"SPLENDOR IN THE GRASS",
"has_tags",
"BD-R"
],
[
"SPLENDOR IN THE GRASS",
"written_by",
"WILLIAM INGE"
],
[
"SWEET AND LOWDOWN",
"has_genre",
"DRAMA"
],
[
"SWEET AND LOWDOWN",
"release_year",
"1999"
],
[
"THE BEST MAN",
"has_genre",
"DRAMA"
],
[
"THE BEST MAN",
"release_year",
"1999"
],
[
"THE BIG KAHUNA",
"has_genre",
"DRAMA"
],
[
"THE BIG KAHUNA",
"release_year",
"1999"
],
[
"THE CIDER HOUSE RULES",
"has_genre",
"DRAMA"
],
[
"THE CIDER HOUSE RULES",
"has_tags",
"DRAMA"
],
[
"THE CIDER HOUSE RULES",
"release_year",
"1999"
],
[
"THE CONFESSION",
"has_genre",
"DRAMA"
],
[
"THE CONFESSION",
"release_year",
"1999"
],
[
"THE DEBT",
"has_genre",
"DRAMA"
],
[
"THE DEBT",
"release_year",
"1999"
],
[
"THE DEEP END OF THE OCEAN",
"has_genre",
"DRAMA"
],
[
"THE DEEP END OF THE OCEAN",
"release_year",
"1999"
],
[
"THE END OF THE AFFAIR",
"has_genre",
"DRAMA"
],
[
"THE END OF THE AFFAIR",
"release_year",
"1999"
],
[
"THE FIVE SENSES",
"has_genre",
"DRAMA"
],
[
"THE FIVE SENSES",
"release_year",
"1999"
],
[
"THE GLASS AGENCY",
"has_genre",
"DRAMA"
],
[
"THE GLASS AGENCY",
"release_year",
"1999"
],
[
"THE GREEN MILE",
"has_genre",
"DRAMA"
],
[
"THE GREEN MILE",
"has_tags",
"DRAMA"
],
[
"THE GREEN MILE",
"release_year",
"1999"
],
[
"THE HI-LINE",
"has_genre",
"DRAMA"
],
[
"THE HI-LINE",
"release_year",
"1999"
],
[
"THE INSIDER",
"has_genre",
"DRAMA"
],
[
"THE INSIDER",
"has_tags",
"DRAMA"
],
[
"THE INSIDER",
"release_year",
"1999"
],
[
"THE JOYRIDERS",
"has_genre",
"DRAMA"
],
[
"THE JOYRIDERS",
"release_year",
"1999"
],
[
"THE KING AND I",
"has_genre",
"DRAMA"
],
[
"THE KING AND I",
"release_year",
"1999"
],
[
"THE LOST SON",
"has_genre",
"DRAMA"
],
[
"THE LOST SON",
"release_year",
"1999"
],
[
"THE MISSION",
"has_genre",
"DRAMA"
],
[
"THE MISSION",
"release_year",
"1999"
],
[
"THE MOMENT AFTER",
"has_genre",
"DRAMA"
],
[
"THE MOMENT AFTER",
"release_year",
"1999"
],
[
"THE STORY OF US",
"has_genre",
"DRAMA"
],
[
"THE STORY OF US",
"has_tags",
"DRAMA"
],
[
"THE STORY OF US",
"release_year",
"1999"
],
[
"THE STRAIGHT STORY",
"has_genre",
"DRAMA"
],
[
"THE STRAIGHT STORY",
"release_year",
"1999"
],
[
"THE SUBURBANS",
"has_genre",
"DRAMA"
],
[
"THE SUBURBANS",
"release_year",
"1999"
],
[
"THE THIRD MIRACLE",
"has_genre",
"DRAMA"
],
[
"THE THIRD MIRACLE",
"release_year",
"1999"
],
[
"THE TIC CODE",
"has_genre",
"DRAMA"
],
[
"THE TIC CODE",
"release_year",
"1999"
],
[
"THE VIRGIN SUICIDES",
"has_genre",
"DRAMA"
],
[
"THE VIRGIN SUICIDES",
"release_year",
"1999"
],
[
"THE WAR ZONE",
"has_genre",
"DRAMA"
],
[
"THE WAR ZONE",
"release_year",
"1999"
],
[
"THE WINSLOW BOY",
"has_genre",
"DRAMA"
],
[
"THE WINSLOW BOY",
"release_year",
"1999"
],
[
"TOPSY-TURVY",
"has_genre",
"DRAMA"
],
[
"TOPSY-TURVY",
"release_year",
"1999"
],
[
"TRUE CRIME",
"has_genre",
"DRAMA"
],
[
"TRUE CRIME",
"release_year",
"1999"
],
[
"TUMBLEWEEDS",
"has_genre",
"DRAMA"
],
[
"TUMBLEWEEDS",
"release_year",
"1999"
],
[
"VARSITY BLUES",
"has_genre",
"DRAMA"
],
[
"VARSITY BLUES",
"release_year",
"1999"
],
[
"WILDFLOWERS",
"has_genre",
"DRAMA"
],
[
"WILDFLOWERS",
"release_year",
"1999"
],
[
"WISCONSIN DEATH TRIP",
"has_genre",
"DRAMA"
],
[
"WISCONSIN DEATH TRIP",
"release_year",
"1999"
],
[
"WITH FIRE AND SWORD",
"has_genre",
"DRAMA"
],
[
"WITH FIRE AND SWORD",
"release_year",
"1999"
],
[
"WONDERLAND",
"has_genre",
"DRAMA"
],
[
"WONDERLAND",
"release_year",
"1999"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
35935, 2002
26646, 3000 MILES TO GRACELAND
6094, A CLOCKWORK ORANGE
6938, ALPHA DOG
20584, AMERICAN GANGSTER
26048, AMERICAN HUSTLE
446, ANTHONY HOPKINS
23328, APPALOOSA
23513, ASH WEDNESDAY
27270, ASSASSINATION TANGO
5247, BAD LIEUTENANT
8402, BANGKOK DANGEROUS
23466, BEFORE THE DEVIL KNOWS YOU'RE DEAD
12228, BETTER LUCK TOMORROW
16956, BLUE COLLAR
20906, BRETT RATNER
12698, BUDD BOETTICHER
13639, BUGSY
33362, CARLITO'S WAY
27059, CATCH ME IF YOU CAN
33387, CITY OF GOD
29115, CITY OF INDUSTRY
28269, CLOCKERS
6871, COP LAND
32049, CRASH
14724, CRIME
7393, CRIME AND PUNISHMENT
38495, CRIME SPREE
17819, DARK BLUE
14292, DEAD IN THE WATER
11826, DEEP COVER
36982, DESPERATE HOURS
23027, DEUCES WILD
5795, DINNER RUSH
15961, DON
15892, DONNIE BRASCO
21021, DRIVE
12628, EASTERN PROMISES
26366, EDWARD NORTON
34642, EMILY WATSON
21123, FARGO
19755, FBI
18217, FIND ME GUILTY
34555, FLAWLESS
1033, FRACTURE
8690, FROZEN RIVER
17400, GANGS OF NEW YORK
23299, GET CARTER
35838, GUNCRAZY
17938, HANNIBAL
25245, HANNIBAL LECTER
18431, HARD EIGHT
13846, HARSH TIMES
31948, HARVEY KEITEL
33673, HEAT
26297, HIGH CRIMES
34072, I'M NOT SCARED
978, INFERNAL AFFAIRS
7264, INSIDE MAN
24305, JCVD
15615, JENNIFER LEITZES
11346, KISS KISS BANG BANG
3854, LAYER CAKE
38120, LORD OF WAR
33950, LUCKY NUMBER SLEVIN
10560, MAN BITES DOG
37052, MANHUNTER
33561, MEAN STREETS
38677, MIAMI VICE
3487, MINORITY REPORT
27827, MONSTER
10883, MONTANA
13217, NARC
1922, NINE QUEENS
29893, NO GOOD DEED
32999, PAID IN FULL
8869, PAYBACK
14744, PEOPLE I KNOW
27139, PHILIP SEYMOUR HOFFMAN
26716, PRIDE AND GLORY
31741, PRIMAL FEAR
26174, PULP FICTION
13081, R
2169, RANSOM
4523, RED DRAGON
28729, REMAKE
32357, RESERVOIR DOGS
25098, RICOCHET
5844, RIGHTEOUS KILL
19362, RISING SUN
1507, ROAD TO PERDITION
8516, ROBOCOP
9206, ROCKNROLLA
31913, ROMEO IS BLEEDING
5362, ROUNDERS
32607, RUSH HOUR
8020, SAFE MEN
6056, SCARFACE
10981, SERIAL KILLER
27807, SHAFT
1472, SHOTTAS
12333, SMOKIN' ACES
7083, SONNY
35843, SPUN
4722, STATE PROPERTY
5170, STEALING HARVARD
33414, SWEET SIXTEEN
30932, SWORDFISH
12, TAXI DRIVER
2512, THE BANK JOB
26674, THE BIG EASY
14696, THE BIG LEBOWSKI
11948, THE BLACK DAHLIA
16900, THE CALL
32597, THE DANCER UPSTAIRS
18997, THE DEPARTED
6524, THE GETAWAY
35551, THE GODFATHER
17518, THE GOOD THIEF
13052, THE HARD WORD
29952, THE INTERNATIONAL
33807, THE KILLER IS LOOSE
16288, THE LARAMIE PROJECT
11559, THE LOOKOUT
13761, THE ROOKIE
14250, THE SALTON SEA
14886, THE SCORE
37148, THE SECRET IN THEIR EYES
27836, THE SILENCE OF THE LAMBS
19084, THE TOWN
22820, THE UNITED STATES OF LELAND
9390, THE UNTOUCHABLES
20880, THE USUAL SUSPECTS
26758, THICK AS THIEVES
9726, THOMAS HARRIS
37331, TO DIE FOR
33836, TRAFFIC
17169, TRAINING DAY
27559, TRAINSPOTTING
24487, TRAPPED
10720, TRIGGERMEN
6485, TRIXIE
22588, WANTED
6770, WE OWN THE NIGHT
37210, ZODIAC
src, edge_attr, dst
26646, has_genre, 14724
26646, has_tags, 13081
6094, has_genre, 14724
6094, has_tags, 13081
6938, has_genre, 14724
6938, has_tags, 13081
20584, has_genre, 14724
20584, has_tags, 14724
20584, has_tags, 13081
26048, has_genre, 14724
26048, has_tags, 13081
23328, has_genre, 14724
23328, has_tags, 13081
23513, has_genre, 14724
23513, release_year, 35935
27270, has_genre, 14724
27270, release_year, 35935
5247, has_genre, 14724
5247, has_tags, 31948
5247, starred_actors, 31948
8402, has_genre, 14724
8402, has_tags, 14724
8402, has_tags, 13081
23466, has_genre, 14724
23466, has_tags, 27139
23466, has_tags, 13081
23466, starred_actors, 27139
12228, has_genre, 14724
12228, release_year, 35935
16956, has_genre, 14724
16956, starred_actors, 31948
13639, has_genre, 14724
13639, starred_actors, 31948
33362, has_genre, 14724
33362, has_tags, 14724
33362, has_tags, 13081
27059, has_genre, 14724
27059, has_tags, 14724
27059, release_year, 35935
33387, has_genre, 14724
33387, has_tags, 14724
33387, has_tags, 13081
33387, release_year, 35935
29115, has_genre, 14724
29115, starred_actors, 31948
28269, has_genre, 14724
28269, starred_actors, 31948
6871, has_genre, 14724
6871, has_tags, 14724
6871, starred_actors, 31948
32049, has_tags, 14724
32049, has_tags, 13081
7393, has_genre, 14724
7393, release_year, 35935
38495, has_genre, 14724
38495, starred_actors, 31948
17819, has_genre, 14724
17819, release_year, 35935
14292, has_genre, 14724
14292, release_year, 35935
11826, has_genre, 14724
11826, has_tags, 13081
36982, has_genre, 14724
36982, starred_actors, 446
23027, has_genre, 14724
23027, release_year, 35935
5795, has_genre, 14724
5795, has_tags, 13081
15961, has_genre, 14724
15961, has_tags, 28729
15892, has_genre, 14724
15892, has_tags, 19755
21021, has_genre, 14724
21021, has_tags, 14724
21021, has_tags, 13081
12628, has_genre, 14724
12628, has_tags, 13081
21123, has_genre, 14724
21123, has_tags, 14724
21123, has_tags, 13081
18217, has_genre, 14724
18217, has_tags, 13081
34555, has_genre, 14724
34555, has_tags, 27139
34555, starred_actors, 27139
1033, has_genre, 14724
1033, has_tags, 446
1033, has_tags, 13081
1033, starred_actors, 446
8690, has_genre, 14724
8690, has_tags, 13081
17400, has_genre, 14724
17400, has_tags, 13081
17400, release_year, 35935
23299, has_genre, 14724
23299, has_tags, 28729
35838, has_genre, 14724
35838, has_tags, 28729
17938, has_genre, 14724
17938, has_tags, 446
17938, has_tags, 25245
17938, has_tags, 13081
17938, has_tags, 10981
17938, has_tags, 9726
17938, starred_actors, 446
17938, written_by, 9726
18431, has_genre, 14724
18431, has_tags, 27139
13846, has_genre, 14724
13846, has_tags, 13081
33673, has_genre, 14724
33673, has_tags, 14724
33673, has_tags, 13081
26297, has_genre, 14724
26297, release_year, 35935
34072, has_genre, 14724
34072, has_tags, 14724
34072, has_tags, 13081
978, has_genre, 14724
978, has_tags, 13081
978, release_year, 35935
7264, has_genre, 14724
7264, has_tags, 13081
24305, has_genre, 14724
24305, has_tags, 13081
11346, has_genre, 14724
11346, has_tags, 13081
3854, has_genre, 14724
3854, has_tags, 13081
38120, has_genre, 14724
38120, has_tags, 14724
38120, has_tags, 13081
33950, has_genre, 14724
33950, has_tags, 14724
33950, has_tags, 13081
10560, has_genre, 14724
10560, has_tags, 10981
37052, has_genre, 14724
37052, has_tags, 19755
37052, has_tags, 25245
37052, has_tags, 10981
37052, written_by, 9726
33561, has_genre, 14724
33561, has_tags, 31948
33561, has_tags, 13081
33561, starred_actors, 31948
38677, has_genre, 14724
38677, has_tags, 13081
3487, has_tags, 14724
3487, release_year, 35935
27827, has_genre, 14724
27827, has_tags, 14724
27827, has_tags, 10981
10883, directed_by, 15615
10883, has_genre, 14724
13217, has_genre, 14724
13217, release_year, 35935
1922, has_genre, 14724
1922, has_tags, 14724
1922, has_tags, 13081
29893, has_genre, 14724
29893, release_year, 35935
32999, has_genre, 14724
32999, release_year, 35935
8869, has_genre, 14724
8869, has_tags, 13081
14744, has_genre, 14724
14744, has_tags, 13081
14744, release_year, 35935
26716, has_genre, 14724
26716, has_tags, 26366
26716, has_tags, 13081
26716, starred_actors, 26366
31741, has_genre, 14724
31741, has_tags, 14724
31741, has_tags, 26366
26174, has_genre, 14724
26174, has_tags, 14724
26174, has_tags, 13081
2169, has_genre, 14724
2169, has_tags, 13081
4523, directed_by, 20906
4523, has_genre, 14724
4523, has_tags, 446
4523, has_tags, 20906
4523, has_tags, 26366
4523, has_tags, 34642
4523, has_tags, 19755
4523, has_tags, 25245
4523, has_tags, 31948
4523, has_tags, 27139
4523, has_tags, 13081
4523, has_tags, 28729
4523, has_tags, 10981
4523, release_year, 35935
4523, starred_actors, 446
4523, starred_actors, 26366
4523, starred_actors, 31948
4523, written_by, 9726
32357, has_genre, 14724
32357, has_tags, 14724
32357, has_tags, 31948
32357, starred_actors, 31948
25098, has_genre, 14724
25098, has_tags, 13081
5844, has_genre, 14724
5844, has_tags, 13081
19362, has_genre, 14724
19362, has_tags, 14724
19362, starred_actors, 31948
1507, has_genre, 14724
1507, release_year, 35935
8516, has_tags, 14724
8516, has_tags, 28729
9206, has_genre, 14724
9206, has_tags, 14724
9206, has_tags, 13081
31913, has_genre, 14724
31913, has_tags, 13081
5362, has_genre, 14724
5362, has_tags, 26366
32607, directed_by, 20906
32607, has_tags, 20906
32607, has_tags, 14724
8020, has_genre, 14724
8020, has_tags, 13081
6056, has_genre, 14724
6056, has_tags, 14724
6056, has_tags, 28729
27807, has_genre, 14724
27807, has_tags, 28729
1472, has_genre, 14724
1472, release_year, 35935
12333, has_genre, 14724
12333, has_tags, 13081
7083, has_genre, 14724
7083, release_year, 35935
35843, has_genre, 14724
35843, release_year, 35935
4722, has_genre, 14724
4722, release_year, 35935
5170, has_genre, 14724
5170, release_year, 35935
33414, has_genre, 14724
33414, has_tags, 13081
33414, release_year, 35935
30932, has_genre, 14724
30932, has_tags, 13081
12, has_genre, 14724
12, has_tags, 31948
2512, has_genre, 14724
2512, has_tags, 13081
26674, has_genre, 14724
26674, has_tags, 13081
14696, has_genre, 14724
14696, has_tags, 14724
14696, has_tags, 27139
11948, has_genre, 14724
11948, has_tags, 13081
16900, has_genre, 14724
16900, has_tags, 10981
32597, has_genre, 14724
32597, release_year, 35935
18997, has_genre, 14724
18997, has_tags, 14724
18997, has_tags, 13081
18997, has_tags, 28729
6524, has_genre, 14724
6524, has_tags, 28729
35551, has_genre, 14724
35551, has_tags, 14724
35551, has_tags, 13081
17518, has_genre, 14724
17518, release_year, 35935
13052, has_genre, 14724
13052, release_year, 35935
29952, has_genre, 14724
29952, has_tags, 13081
33807, directed_by, 12698
33807, has_genre, 14724
16288, has_genre, 14724
16288, release_year, 35935
11559, has_genre, 14724
11559, has_tags, 13081
13761, has_genre, 14724
13761, release_year, 35935
14250, has_genre, 14724
14250, release_year, 35935
14886, has_genre, 14724
14886, has_tags, 26366
14886, starred_actors, 26366
37148, has_tags, 14724
37148, has_tags, 13081
27836, has_tags, 446
27836, has_tags, 14724
27836, has_tags, 19755
27836, has_tags, 25245
27836, has_tags, 10981
27836, has_tags, 9726
27836, written_by, 9726
19084, has_genre, 14724
19084, has_tags, 14724
19084, has_tags, 13081
22820, has_genre, 14724
22820, has_tags, 13081
9390, has_genre, 14724
9390, has_tags, 14724
9390, has_tags, 13081
20880, has_genre, 14724
20880, has_tags, 14724
20880, has_tags, 13081
26758, has_genre, 14724
26758, has_tags, 13081
37331, has_genre, 14724
37331, has_tags, 13081
33836, has_genre, 14724
33836, has_tags, 13081
17169, has_genre, 14724
17169, has_tags, 13081
27559, has_tags, 14724
27559, has_tags, 13081
24487, has_genre, 14724
24487, release_year, 35935
10720, has_genre, 14724
10720, has_tags, 14724
10720, release_year, 35935
6485, has_genre, 14724
6485, starred_actors, 34642
22588, has_genre, 14724
22588, has_tags, 13081
6770, has_genre, 14724
6770, has_tags, 13081
37210, has_genre, 14724
37210, has_tags, 14724
37210, has_tags, 13081
37210, has_tags, 10981
Question: For what reason are BUDD BOETTICHER, JENNIFER LEITZES, and RED DRAGON associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"BUDD BOETTICHER",
"JENNIFER LEITZES",
"RED DRAGON"
],
"valid_edges": [
[
"3000 MILES TO GRACELAND",
"has_genre",
"CRIME"
],
[
"3000 MILES TO GRACELAND",
"has_tags",
"R"
],
[
"A CLOCKWORK ORANGE",
"has_genre",
"CRIME"
],
[
"A CLOCKWORK ORANGE",
"has_tags",
"R"
],
[
"ALPHA DOG",
"has_genre",
"CRIME"
],
[
"ALPHA DOG",
"has_tags",
"R"
],
[
"AMERICAN GANGSTER",
"has_genre",
"CRIME"
],
[
"AMERICAN GANGSTER",
"has_tags",
"CRIME"
],
[
"AMERICAN GANGSTER",
"has_tags",
"R"
],
[
"AMERICAN HUSTLE",
"has_genre",
"CRIME"
],
[
"AMERICAN HUSTLE",
"has_tags",
"R"
],
[
"APPALOOSA",
"has_genre",
"CRIME"
],
[
"APPALOOSA",
"has_tags",
"R"
],
[
"ASH WEDNESDAY",
"has_genre",
"CRIME"
],
[
"ASH WEDNESDAY",
"release_year",
"2002"
],
[
"ASSASSINATION TANGO",
"has_genre",
"CRIME"
],
[
"ASSASSINATION TANGO",
"release_year",
"2002"
],
[
"BAD LIEUTENANT",
"has_genre",
"CRIME"
],
[
"BAD LIEUTENANT",
"has_tags",
"HARVEY KEITEL"
],
[
"BAD LIEUTENANT",
"starred_actors",
"HARVEY KEITEL"
],
[
"BANGKOK DANGEROUS",
"has_genre",
"CRIME"
],
[
"BANGKOK DANGEROUS",
"has_tags",
"CRIME"
],
[
"BANGKOK DANGEROUS",
"has_tags",
"R"
],
[
"BEFORE THE DEVIL KNOWS YOU'RE DEAD",
"has_genre",
"CRIME"
],
[
"BEFORE THE DEVIL KNOWS YOU'RE DEAD",
"has_tags",
"PHILIP SEYMOUR HOFFMAN"
],
[
"BEFORE THE DEVIL KNOWS YOU'RE DEAD",
"has_tags",
"R"
],
[
"BEFORE THE DEVIL KNOWS YOU'RE DEAD",
"starred_actors",
"PHILIP SEYMOUR HOFFMAN"
],
[
"BETTER LUCK TOMORROW",
"has_genre",
"CRIME"
],
[
"BETTER LUCK TOMORROW",
"release_year",
"2002"
],
[
"BLUE COLLAR",
"has_genre",
"CRIME"
],
[
"BLUE COLLAR",
"starred_actors",
"HARVEY KEITEL"
],
[
"BUGSY",
"has_genre",
"CRIME"
],
[
"BUGSY",
"starred_actors",
"HARVEY KEITEL"
],
[
"CARLITO'S WAY",
"has_genre",
"CRIME"
],
[
"CARLITO'S WAY",
"has_tags",
"CRIME"
],
[
"CARLITO'S WAY",
"has_tags",
"R"
],
[
"CATCH ME IF YOU CAN",
"has_genre",
"CRIME"
],
[
"CATCH ME IF YOU CAN",
"has_tags",
"CRIME"
],
[
"CATCH ME IF YOU CAN",
"release_year",
"2002"
],
[
"CITY OF GOD",
"has_genre",
"CRIME"
],
[
"CITY OF GOD",
"has_tags",
"CRIME"
],
[
"CITY OF GOD",
"has_tags",
"R"
],
[
"CITY OF GOD",
"release_year",
"2002"
],
[
"CITY OF INDUSTRY",
"has_genre",
"CRIME"
],
[
"CITY OF INDUSTRY",
"starred_actors",
"HARVEY KEITEL"
],
[
"CLOCKERS",
"has_genre",
"CRIME"
],
[
"CLOCKERS",
"starred_actors",
"HARVEY KEITEL"
],
[
"COP LAND",
"has_genre",
"CRIME"
],
[
"COP LAND",
"has_tags",
"CRIME"
],
[
"COP LAND",
"starred_actors",
"HARVEY KEITEL"
],
[
"CRASH",
"has_tags",
"CRIME"
],
[
"CRASH",
"has_tags",
"R"
],
[
"CRIME AND PUNISHMENT",
"has_genre",
"CRIME"
],
[
"CRIME AND PUNISHMENT",
"release_year",
"2002"
],
[
"CRIME SPREE",
"has_genre",
"CRIME"
],
[
"CRIME SPREE",
"starred_actors",
"HARVEY KEITEL"
],
[
"DARK BLUE",
"has_genre",
"CRIME"
],
[
"DARK BLUE",
"release_year",
"2002"
],
[
"DEAD IN THE WATER",
"has_genre",
"CRIME"
],
[
"DEAD IN THE WATER",
"release_year",
"2002"
],
[
"DEEP COVER",
"has_genre",
"CRIME"
],
[
"DEEP COVER",
"has_tags",
"R"
],
[
"DESPERATE HOURS",
"has_genre",
"CRIME"
],
[
"DESPERATE HOURS",
"starred_actors",
"ANTHONY HOPKINS"
],
[
"DEUCES WILD",
"has_genre",
"CRIME"
],
[
"DEUCES WILD",
"release_year",
"2002"
],
[
"DINNER RUSH",
"has_genre",
"CRIME"
],
[
"DINNER RUSH",
"has_tags",
"R"
],
[
"DON",
"has_genre",
"CRIME"
],
[
"DON",
"has_tags",
"REMAKE"
],
[
"DONNIE BRASCO",
"has_genre",
"CRIME"
],
[
"DONNIE BRASCO",
"has_tags",
"FBI"
],
[
"DRIVE",
"has_genre",
"CRIME"
],
[
"DRIVE",
"has_tags",
"CRIME"
],
[
"DRIVE",
"has_tags",
"R"
],
[
"EASTERN PROMISES",
"has_genre",
"CRIME"
],
[
"EASTERN PROMISES",
"has_tags",
"R"
],
[
"FARGO",
"has_genre",
"CRIME"
],
[
"FARGO",
"has_tags",
"CRIME"
],
[
"FARGO",
"has_tags",
"R"
],
[
"FIND ME GUILTY",
"has_genre",
"CRIME"
],
[
"FIND ME GUILTY",
"has_tags",
"R"
],
[
"FLAWLESS",
"has_genre",
"CRIME"
],
[
"FLAWLESS",
"has_tags",
"PHILIP SEYMOUR HOFFMAN"
],
[
"FLAWLESS",
"starred_actors",
"PHILIP SEYMOUR HOFFMAN"
],
[
"FRACTURE",
"has_genre",
"CRIME"
],
[
"FRACTURE",
"has_tags",
"ANTHONY HOPKINS"
],
[
"FRACTURE",
"has_tags",
"R"
],
[
"FRACTURE",
"starred_actors",
"ANTHONY HOPKINS"
],
[
"FROZEN RIVER",
"has_genre",
"CRIME"
],
[
"FROZEN RIVER",
"has_tags",
"R"
],
[
"GANGS OF NEW YORK",
"has_genre",
"CRIME"
],
[
"GANGS OF NEW YORK",
"has_tags",
"R"
],
[
"GANGS OF NEW YORK",
"release_year",
"2002"
],
[
"GET CARTER",
"has_genre",
"CRIME"
],
[
"GET CARTER",
"has_tags",
"REMAKE"
],
[
"GUNCRAZY",
"has_genre",
"CRIME"
],
[
"GUNCRAZY",
"has_tags",
"REMAKE"
],
[
"HANNIBAL",
"has_genre",
"CRIME"
],
[
"HANNIBAL",
"has_tags",
"ANTHONY HOPKINS"
],
[
"HANNIBAL",
"has_tags",
"HANNIBAL LECTER"
],
[
"HANNIBAL",
"has_tags",
"R"
],
[
"HANNIBAL",
"has_tags",
"SERIAL KILLER"
],
[
"HANNIBAL",
"has_tags",
"THOMAS HARRIS"
],
[
"HANNIBAL",
"starred_actors",
"ANTHONY HOPKINS"
],
[
"HANNIBAL",
"written_by",
"THOMAS HARRIS"
],
[
"HARD EIGHT",
"has_genre",
"CRIME"
],
[
"HARD EIGHT",
"has_tags",
"PHILIP SEYMOUR HOFFMAN"
],
[
"HARSH TIMES",
"has_genre",
"CRIME"
],
[
"HARSH TIMES",
"has_tags",
"R"
],
[
"HEAT",
"has_genre",
"CRIME"
],
[
"HEAT",
"has_tags",
"CRIME"
],
[
"HEAT",
"has_tags",
"R"
],
[
"HIGH CRIMES",
"has_genre",
"CRIME"
],
[
"HIGH CRIMES",
"release_year",
"2002"
],
[
"I'M NOT SCARED",
"has_genre",
"CRIME"
],
[
"I'M NOT SCARED",
"has_tags",
"CRIME"
],
[
"I'M NOT SCARED",
"has_tags",
"R"
],
[
"INFERNAL AFFAIRS",
"has_genre",
"CRIME"
],
[
"INFERNAL AFFAIRS",
"has_tags",
"R"
],
[
"INFERNAL AFFAIRS",
"release_year",
"2002"
],
[
"INSIDE MAN",
"has_genre",
"CRIME"
],
[
"INSIDE MAN",
"has_tags",
"R"
],
[
"JCVD",
"has_genre",
"CRIME"
],
[
"JCVD",
"has_tags",
"R"
],
[
"KISS KISS BANG BANG",
"has_genre",
"CRIME"
],
[
"KISS KISS BANG BANG",
"has_tags",
"R"
],
[
"LAYER CAKE",
"has_genre",
"CRIME"
],
[
"LAYER CAKE",
"has_tags",
"R"
],
[
"LORD OF WAR",
"has_genre",
"CRIME"
],
[
"LORD OF WAR",
"has_tags",
"CRIME"
],
[
"LORD OF WAR",
"has_tags",
"R"
],
[
"LUCKY NUMBER SLEVIN",
"has_genre",
"CRIME"
],
[
"LUCKY NUMBER SLEVIN",
"has_tags",
"CRIME"
],
[
"LUCKY NUMBER SLEVIN",
"has_tags",
"R"
],
[
"MAN BITES DOG",
"has_genre",
"CRIME"
],
[
"MAN BITES DOG",
"has_tags",
"SERIAL KILLER"
],
[
"MANHUNTER",
"has_genre",
"CRIME"
],
[
"MANHUNTER",
"has_tags",
"FBI"
],
[
"MANHUNTER",
"has_tags",
"HANNIBAL LECTER"
],
[
"MANHUNTER",
"has_tags",
"SERIAL KILLER"
],
[
"MANHUNTER",
"written_by",
"THOMAS HARRIS"
],
[
"MEAN STREETS",
"has_genre",
"CRIME"
],
[
"MEAN STREETS",
"has_tags",
"HARVEY KEITEL"
],
[
"MEAN STREETS",
"has_tags",
"R"
],
[
"MEAN STREETS",
"starred_actors",
"HARVEY KEITEL"
],
[
"MIAMI VICE",
"has_genre",
"CRIME"
],
[
"MIAMI VICE",
"has_tags",
"R"
],
[
"MINORITY REPORT",
"has_tags",
"CRIME"
],
[
"MINORITY REPORT",
"release_year",
"2002"
],
[
"MONSTER",
"has_genre",
"CRIME"
],
[
"MONSTER",
"has_tags",
"CRIME"
],
[
"MONSTER",
"has_tags",
"SERIAL KILLER"
],
[
"MONTANA",
"directed_by",
"JENNIFER LEITZES"
],
[
"MONTANA",
"has_genre",
"CRIME"
],
[
"NARC",
"has_genre",
"CRIME"
],
[
"NARC",
"release_year",
"2002"
],
[
"NINE QUEENS",
"has_genre",
"CRIME"
],
[
"NINE QUEENS",
"has_tags",
"CRIME"
],
[
"NINE QUEENS",
"has_tags",
"R"
],
[
"NO GOOD DEED",
"has_genre",
"CRIME"
],
[
"NO GOOD DEED",
"release_year",
"2002"
],
[
"PAID IN FULL",
"has_genre",
"CRIME"
],
[
"PAID IN FULL",
"release_year",
"2002"
],
[
"PAYBACK",
"has_genre",
"CRIME"
],
[
"PAYBACK",
"has_tags",
"R"
],
[
"PEOPLE I KNOW",
"has_genre",
"CRIME"
],
[
"PEOPLE I KNOW",
"has_tags",
"R"
],
[
"PEOPLE I KNOW",
"release_year",
"2002"
],
[
"PRIDE AND GLORY",
"has_genre",
"CRIME"
],
[
"PRIDE AND GLORY",
"has_tags",
"EDWARD NORTON"
],
[
"PRIDE AND GLORY",
"has_tags",
"R"
],
[
"PRIDE AND GLORY",
"starred_actors",
"EDWARD NORTON"
],
[
"PRIMAL FEAR",
"has_genre",
"CRIME"
],
[
"PRIMAL FEAR",
"has_tags",
"CRIME"
],
[
"PRIMAL FEAR",
"has_tags",
"EDWARD NORTON"
],
[
"PULP FICTION",
"has_genre",
"CRIME"
],
[
"PULP FICTION",
"has_tags",
"CRIME"
],
[
"PULP FICTION",
"has_tags",
"R"
],
[
"RANSOM",
"has_genre",
"CRIME"
],
[
"RANSOM",
"has_tags",
"R"
],
[
"RED DRAGON",
"directed_by",
"BRETT RATNER"
],
[
"RED DRAGON",
"has_genre",
"CRIME"
],
[
"RED DRAGON",
"has_tags",
"ANTHONY HOPKINS"
],
[
"RED DRAGON",
"has_tags",
"BRETT RATNER"
],
[
"RED DRAGON",
"has_tags",
"EDWARD NORTON"
],
[
"RED DRAGON",
"has_tags",
"EMILY WATSON"
],
[
"RED DRAGON",
"has_tags",
"FBI"
],
[
"RED DRAGON",
"has_tags",
"HANNIBAL LECTER"
],
[
"RED DRAGON",
"has_tags",
"HARVEY KEITEL"
],
[
"RED DRAGON",
"has_tags",
"PHILIP SEYMOUR HOFFMAN"
],
[
"RED DRAGON",
"has_tags",
"R"
],
[
"RED DRAGON",
"has_tags",
"REMAKE"
],
[
"RED DRAGON",
"has_tags",
"SERIAL KILLER"
],
[
"RED DRAGON",
"release_year",
"2002"
],
[
"RED DRAGON",
"starred_actors",
"ANTHONY HOPKINS"
],
[
"RED DRAGON",
"starred_actors",
"EDWARD NORTON"
],
[
"RED DRAGON",
"starred_actors",
"HARVEY KEITEL"
],
[
"RED DRAGON",
"written_by",
"THOMAS HARRIS"
],
[
"RESERVOIR DOGS",
"has_genre",
"CRIME"
],
[
"RESERVOIR DOGS",
"has_tags",
"CRIME"
],
[
"RESERVOIR DOGS",
"has_tags",
"HARVEY KEITEL"
],
[
"RESERVOIR DOGS",
"starred_actors",
"HARVEY KEITEL"
],
[
"RICOCHET",
"has_genre",
"CRIME"
],
[
"RICOCHET",
"has_tags",
"R"
],
[
"RIGHTEOUS KILL",
"has_genre",
"CRIME"
],
[
"RIGHTEOUS KILL",
"has_tags",
"R"
],
[
"RISING SUN",
"has_genre",
"CRIME"
],
[
"RISING SUN",
"has_tags",
"CRIME"
],
[
"RISING SUN",
"starred_actors",
"HARVEY KEITEL"
],
[
"ROAD TO PERDITION",
"has_genre",
"CRIME"
],
[
"ROAD TO PERDITION",
"release_year",
"2002"
],
[
"ROBOCOP",
"has_tags",
"CRIME"
],
[
"ROBOCOP",
"has_tags",
"REMAKE"
],
[
"ROCKNROLLA",
"has_genre",
"CRIME"
],
[
"ROCKNROLLA",
"has_tags",
"CRIME"
],
[
"ROCKNROLLA",
"has_tags",
"R"
],
[
"ROMEO IS BLEEDING",
"has_genre",
"CRIME"
],
[
"ROMEO IS BLEEDING",
"has_tags",
"R"
],
[
"ROUNDERS",
"has_genre",
"CRIME"
],
[
"ROUNDERS",
"has_tags",
"EDWARD NORTON"
],
[
"RUSH HOUR",
"directed_by",
"BRETT RATNER"
],
[
"RUSH HOUR",
"has_tags",
"BRETT RATNER"
],
[
"RUSH HOUR",
"has_tags",
"CRIME"
],
[
"SAFE MEN",
"has_genre",
"CRIME"
],
[
"SAFE MEN",
"has_tags",
"R"
],
[
"SCARFACE",
"has_genre",
"CRIME"
],
[
"SCARFACE",
"has_tags",
"CRIME"
],
[
"SCARFACE",
"has_tags",
"REMAKE"
],
[
"SHAFT",
"has_genre",
"CRIME"
],
[
"SHAFT",
"has_tags",
"REMAKE"
],
[
"SHOTTAS",
"has_genre",
"CRIME"
],
[
"SHOTTAS",
"release_year",
"2002"
],
[
"SMOKIN' ACES",
"has_genre",
"CRIME"
],
[
"SMOKIN' ACES",
"has_tags",
"R"
],
[
"SONNY",
"has_genre",
"CRIME"
],
[
"SONNY",
"release_year",
"2002"
],
[
"SPUN",
"has_genre",
"CRIME"
],
[
"SPUN",
"release_year",
"2002"
],
[
"STATE PROPERTY",
"has_genre",
"CRIME"
],
[
"STATE PROPERTY",
"release_year",
"2002"
],
[
"STEALING HARVARD",
"has_genre",
"CRIME"
],
[
"STEALING HARVARD",
"release_year",
"2002"
],
[
"SWEET SIXTEEN",
"has_genre",
"CRIME"
],
[
"SWEET SIXTEEN",
"has_tags",
"R"
],
[
"SWEET SIXTEEN",
"release_year",
"2002"
],
[
"SWORDFISH",
"has_genre",
"CRIME"
],
[
"SWORDFISH",
"has_tags",
"R"
],
[
"TAXI DRIVER",
"has_genre",
"CRIME"
],
[
"TAXI DRIVER",
"has_tags",
"HARVEY KEITEL"
],
[
"THE BANK JOB",
"has_genre",
"CRIME"
],
[
"THE BANK JOB",
"has_tags",
"R"
],
[
"THE BIG EASY",
"has_genre",
"CRIME"
],
[
"THE BIG EASY",
"has_tags",
"R"
],
[
"THE BIG LEBOWSKI",
"has_genre",
"CRIME"
],
[
"THE BIG LEBOWSKI",
"has_tags",
"CRIME"
],
[
"THE BIG LEBOWSKI",
"has_tags",
"PHILIP SEYMOUR HOFFMAN"
],
[
"THE BLACK DAHLIA",
"has_genre",
"CRIME"
],
[
"THE BLACK DAHLIA",
"has_tags",
"R"
],
[
"THE CALL",
"has_genre",
"CRIME"
],
[
"THE CALL",
"has_tags",
"SERIAL KILLER"
],
[
"THE DANCER UPSTAIRS",
"has_genre",
"CRIME"
],
[
"THE DANCER UPSTAIRS",
"release_year",
"2002"
],
[
"THE DEPARTED",
"has_genre",
"CRIME"
],
[
"THE DEPARTED",
"has_tags",
"CRIME"
],
[
"THE DEPARTED",
"has_tags",
"R"
],
[
"THE DEPARTED",
"has_tags",
"REMAKE"
],
[
"THE GETAWAY",
"has_genre",
"CRIME"
],
[
"THE GETAWAY",
"has_tags",
"REMAKE"
],
[
"THE GODFATHER",
"has_genre",
"CRIME"
],
[
"THE GODFATHER",
"has_tags",
"CRIME"
],
[
"THE GODFATHER",
"has_tags",
"R"
],
[
"THE GOOD THIEF",
"has_genre",
"CRIME"
],
[
"THE GOOD THIEF",
"release_year",
"2002"
],
[
"THE HARD WORD",
"has_genre",
"CRIME"
],
[
"THE HARD WORD",
"release_year",
"2002"
],
[
"THE INTERNATIONAL",
"has_genre",
"CRIME"
],
[
"THE INTERNATIONAL",
"has_tags",
"R"
],
[
"THE KILLER IS LOOSE",
"directed_by",
"BUDD BOETTICHER"
],
[
"THE KILLER IS LOOSE",
"has_genre",
"CRIME"
],
[
"THE LARAMIE PROJECT",
"has_genre",
"CRIME"
],
[
"THE LARAMIE PROJECT",
"release_year",
"2002"
],
[
"THE LOOKOUT",
"has_genre",
"CRIME"
],
[
"THE LOOKOUT",
"has_tags",
"R"
],
[
"THE ROOKIE",
"has_genre",
"CRIME"
],
[
"THE ROOKIE",
"release_year",
"2002"
],
[
"THE SALTON SEA",
"has_genre",
"CRIME"
],
[
"THE SALTON SEA",
"release_year",
"2002"
],
[
"THE SCORE",
"has_genre",
"CRIME"
],
[
"THE SCORE",
"has_tags",
"EDWARD NORTON"
],
[
"THE SCORE",
"starred_actors",
"EDWARD NORTON"
],
[
"THE SECRET IN THEIR EYES",
"has_tags",
"CRIME"
],
[
"THE SECRET IN THEIR EYES",
"has_tags",
"R"
],
[
"THE SILENCE OF THE LAMBS",
"has_tags",
"ANTHONY HOPKINS"
],
[
"THE SILENCE OF THE LAMBS",
"has_tags",
"CRIME"
],
[
"THE SILENCE OF THE LAMBS",
"has_tags",
"FBI"
],
[
"THE SILENCE OF THE LAMBS",
"has_tags",
"HANNIBAL LECTER"
],
[
"THE SILENCE OF THE LAMBS",
"has_tags",
"SERIAL KILLER"
],
[
"THE SILENCE OF THE LAMBS",
"has_tags",
"THOMAS HARRIS"
],
[
"THE SILENCE OF THE LAMBS",
"written_by",
"THOMAS HARRIS"
],
[
"THE TOWN",
"has_genre",
"CRIME"
],
[
"THE TOWN",
"has_tags",
"CRIME"
],
[
"THE TOWN",
"has_tags",
"R"
],
[
"THE UNITED STATES OF LELAND",
"has_genre",
"CRIME"
],
[
"THE UNITED STATES OF LELAND",
"has_tags",
"R"
],
[
"THE UNTOUCHABLES",
"has_genre",
"CRIME"
],
[
"THE UNTOUCHABLES",
"has_tags",
"CRIME"
],
[
"THE UNTOUCHABLES",
"has_tags",
"R"
],
[
"THE USUAL SUSPECTS",
"has_genre",
"CRIME"
],
[
"THE USUAL SUSPECTS",
"has_tags",
"CRIME"
],
[
"THE USUAL SUSPECTS",
"has_tags",
"R"
],
[
"THICK AS THIEVES",
"has_genre",
"CRIME"
],
[
"THICK AS THIEVES",
"has_tags",
"R"
],
[
"TO DIE FOR",
"has_genre",
"CRIME"
],
[
"TO DIE FOR",
"has_tags",
"R"
],
[
"TRAFFIC",
"has_genre",
"CRIME"
],
[
"TRAFFIC",
"has_tags",
"R"
],
[
"TRAINING DAY",
"has_genre",
"CRIME"
],
[
"TRAINING DAY",
"has_tags",
"R"
],
[
"TRAINSPOTTING",
"has_tags",
"CRIME"
],
[
"TRAINSPOTTING",
"has_tags",
"R"
],
[
"TRAPPED",
"has_genre",
"CRIME"
],
[
"TRAPPED",
"release_year",
"2002"
],
[
"TRIGGERMEN",
"has_genre",
"CRIME"
],
[
"TRIGGERMEN",
"has_tags",
"CRIME"
],
[
"TRIGGERMEN",
"release_year",
"2002"
],
[
"TRIXIE",
"has_genre",
"CRIME"
],
[
"TRIXIE",
"starred_actors",
"EMILY WATSON"
],
[
"WANTED",
"has_genre",
"CRIME"
],
[
"WANTED",
"has_tags",
"R"
],
[
"WE OWN THE NIGHT",
"has_genre",
"CRIME"
],
[
"WE OWN THE NIGHT",
"has_tags",
"R"
],
[
"ZODIAC",
"has_genre",
"CRIME"
],
[
"ZODIAC",
"has_tags",
"CRIME"
],
[
"ZODIAC",
"has_tags",
"R"
],
[
"ZODIAC",
"has_tags",
"SERIAL KILLER"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
5658, BAD BOY BUBBY
35468, CLEAN SLATE
30463, COMEDY
36280, MR. BEAN'S HOLIDAY
20191, NICHOLAS HOPE
src, edge_attr, dst
5658, has_genre, 30463
5658, starred_actors, 20191
35468, has_genre, 30463
36280, has_genre, 30463
Question: For what reason are CLEAN SLATE, MR. BEAN'S HOLIDAY, and NICHOLAS HOPE associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"CLEAN SLATE",
"MR. BEAN'S HOLIDAY",
"NICHOLAS HOPE"
],
"valid_edges": [
[
"BAD BOY BUBBY",
"has_genre",
"COMEDY"
],
[
"BAD BOY BUBBY",
"starred_actors",
"NICHOLAS HOPE"
],
[
"CLEAN SLATE",
"has_genre",
"COMEDY"
],
[
"MR. BEAN'S HOLIDAY",
"has_genre",
"COMEDY"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
17315, 2007
7795, BEN CHAPLIN
6012, FRENCH
6480, GERMAN
5870, HORROR
35224, LOST SOULS
31784, PAUL A. PARTAIN
16348, PERSEPOLIS
36258, TALI-IHANTALA 1944
19649, THE COUNTERFEITERS
429, THE SEARCH
38051, THE TEXAS CHAIN SAW MASSACRE
31126, THE WATER HORSE
19779, UNDER THE BOMBS
22214, WAR
src, edge_attr, dst
35224, has_genre, 5870
35224, starred_actors, 7795
16348, has_tags, 6012
16348, has_tags, 22214
16348, in_language, 6012
36258, has_genre, 22214
36258, in_language, 6480
19649, has_genre, 22214
19649, in_language, 6480
429, has_genre, 22214
429, in_language, 6012
429, in_language, 6480
38051, has_genre, 5870
38051, has_tags, 5870
38051, starred_actors, 31784
31126, release_year, 17315
31126, starred_actors, 7795
19779, has_genre, 22214
19779, in_language, 6012
22214, release_year, 17315
Question: In what context are BEN CHAPLIN, PAUL A. PARTAIN, and THE SEARCH connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"BEN CHAPLIN",
"PAUL A. PARTAIN",
"THE SEARCH"
],
"valid_edges": [
[
"LOST SOULS",
"has_genre",
"HORROR"
],
[
"LOST SOULS",
"starred_actors",
"BEN CHAPLIN"
],
[
"PERSEPOLIS",
"has_tags",
"FRENCH"
],
[
"PERSEPOLIS",
"has_tags",
"WAR"
],
[
"PERSEPOLIS",
"in_language",
"FRENCH"
],
[
"TALI-IHANTALA 1944",
"has_genre",
"WAR"
],
[
"TALI-IHANTALA 1944",
"in_language",
"GERMAN"
],
[
"THE COUNTERFEITERS",
"has_genre",
"WAR"
],
[
"THE COUNTERFEITERS",
"in_language",
"GERMAN"
],
[
"THE SEARCH",
"has_genre",
"WAR"
],
[
"THE SEARCH",
"in_language",
"FRENCH"
],
[
"THE SEARCH",
"in_language",
"GERMAN"
],
[
"THE TEXAS CHAIN SAW MASSACRE",
"has_genre",
"HORROR"
],
[
"THE TEXAS CHAIN SAW MASSACRE",
"has_tags",
"HORROR"
],
[
"THE TEXAS CHAIN SAW MASSACRE",
"starred_actors",
"PAUL A. PARTAIN"
],
[
"THE WATER HORSE",
"release_year",
"2007"
],
[
"THE WATER HORSE",
"starred_actors",
"BEN CHAPLIN"
],
[
"UNDER THE BOMBS",
"has_genre",
"WAR"
],
[
"UNDER THE BOMBS",
"in_language",
"FRENCH"
],
[
"WAR",
"release_year",
"2007"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
17480, 1988
27261, 2009
18599, BILOXI BLUES
9551, KYLE MCCULLOCH
25508, MATTHEW BRODERICK
3977, TALES FROM THE GIMLI HOSPITAL
18158, THE PERFECT GAME
11574, TORCH SONG TRILOGY
37971, W. WILLIAM WINOKUR
31035, WONDERFUL WORLD
src, edge_attr, dst
18599, release_year, 17480
18599, starred_actors, 25508
3977, release_year, 17480
3977, starred_actors, 9551
18158, release_year, 27261
18158, written_by, 37971
11574, has_tags, 25508
11574, release_year, 17480
11574, starred_actors, 25508
31035, release_year, 27261
31035, starred_actors, 25508
Question: How are KYLE MCCULLOCH, MATTHEW BRODERICK, and W. WILLIAM WINOKUR related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"KYLE MCCULLOCH",
"MATTHEW BRODERICK",
"W. WILLIAM WINOKUR"
],
"valid_edges": [
[
"BILOXI BLUES",
"release_year",
"1988"
],
[
"BILOXI BLUES",
"starred_actors",
"MATTHEW BRODERICK"
],
[
"TALES FROM THE GIMLI HOSPITAL",
"release_year",
"1988"
],
[
"TALES FROM THE GIMLI HOSPITAL",
"starred_actors",
"KYLE MCCULLOCH"
],
[
"THE PERFECT GAME",
"release_year",
"2009"
],
[
"THE PERFECT GAME",
"written_by",
"W. WILLIAM WINOKUR"
],
[
"TORCH SONG TRILOGY",
"has_tags",
"MATTHEW BRODERICK"
],
[
"TORCH SONG TRILOGY",
"release_year",
"1988"
],
[
"TORCH SONG TRILOGY",
"starred_actors",
"MATTHEW BRODERICK"
],
[
"WONDERFUL WORLD",
"release_year",
"2009"
],
[
"WONDERFUL WORLD",
"starred_actors",
"MATTHEW BRODERICK"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
27810, 1968
4816, BANDOLERO!
29521, EASY VIRTUE
8406, FIRECREEK
39775, IN YOUR EYES
7736, JAMES STEWART
23224, KRISTIN SCOTT THOMAS
8379, ROMANCE
2738, ROMEO AND JULIET
22580, SUITE FRANÇAISE
27995, THE FAR COUNTRY
src, edge_attr, dst
4816, release_year, 27810
4816, starred_actors, 7736
29521, has_genre, 8379
29521, starred_actors, 23224
8406, release_year, 27810
8406, starred_actors, 7736
39775, has_genre, 8379
2738, has_genre, 8379
2738, has_tags, 8379
2738, release_year, 27810
22580, has_genre, 8379
22580, starred_actors, 23224
27995, has_genre, 8379
27995, starred_actors, 7736
Question: For what reason are FIRECREEK, IN YOUR EYES, and KRISTIN SCOTT THOMAS associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"FIRECREEK",
"IN YOUR EYES",
"KRISTIN SCOTT THOMAS"
],
"valid_edges": [
[
"BANDOLERO!",
"release_year",
"1968"
],
[
"BANDOLERO!",
"starred_actors",
"JAMES STEWART"
],
[
"EASY VIRTUE",
"has_genre",
"ROMANCE"
],
[
"EASY VIRTUE",
"starred_actors",
"KRISTIN SCOTT THOMAS"
],
[
"FIRECREEK",
"release_year",
"1968"
],
[
"FIRECREEK",
"starred_actors",
"JAMES STEWART"
],
[
"IN YOUR EYES",
"has_genre",
"ROMANCE"
],
[
"ROMEO AND JULIET",
"has_genre",
"ROMANCE"
],
[
"ROMEO AND JULIET",
"has_tags",
"ROMANCE"
],
[
"ROMEO AND JULIET",
"release_year",
"1968"
],
[
"SUITE FRANÇAISE",
"has_genre",
"ROMANCE"
],
[
"SUITE FRANÇAISE",
"starred_actors",
"KRISTIN SCOTT THOMAS"
],
[
"THE FAR COUNTRY",
"has_genre",
"ROMANCE"
],
[
"THE FAR COUNTRY",
"starred_actors",
"JAMES STEWART"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
25221, 1981
27261, 2009
35798, 2010
673, 9
2992, A VERY POTTER MUSICAL
39013, A VERY POTTER SEQUEL
20762, BONNIE GRUESEN
3693, BRIAN HOLDEN
8709, CHRISTOPHER PLUMMER
14850, DARREN CRISS
11528, DEE HEPBURN
2807, GREGORY'S GIRL
5887, HARRY POTTER
7709, HELEN MIRREN
28207, JOEY RICHTER
8481, LAUREN LOPEZ
4018, MATT LANG
24593, MUSICAL
3347, MY DOG TULIP
18396, NICK LANG
27541, PARODY
38000, STATE OF PLAY
5081, THE IMAGINARIUM OF DOCTOR PARNASSUS
29682, THE LAST STATION
src, edge_attr, dst
25221, release_year, 27261
35798, starred_actors, 7709
673, has_tags, 8709
673, release_year, 27261
673, starred_actors, 8709
2992, directed_by, 4018
2992, has_genre, 24593
2992, has_tags, 5887
2992, has_tags, 27541
2992, release_year, 27261
2992, starred_actors, 20762
2992, starred_actors, 14850
2992, starred_actors, 28207
2992, starred_actors, 8481
2992, written_by, 3693
2992, written_by, 4018
2992, written_by, 18396
39013, directed_by, 4018
39013, has_genre, 24593
39013, has_tags, 5887
39013, has_tags, 27541
39013, release_year, 35798
39013, starred_actors, 20762
39013, starred_actors, 14850
39013, starred_actors, 28207
39013, starred_actors, 8481
39013, written_by, 3693
39013, written_by, 4018
39013, written_by, 18396
2807, release_year, 25221
2807, starred_actors, 11528
3347, release_year, 27261
3347, starred_actors, 8709
38000, has_tags, 7709
38000, release_year, 27261
38000, starred_actors, 7709
5081, has_tags, 8709
5081, release_year, 27261
5081, starred_actors, 8709
29682, has_tags, 7709
29682, release_year, 27261
29682, starred_actors, 8709
29682, starred_actors, 7709
Question: For what reason are BRIAN HOLDEN, DEE HEPBURN, and THE LAST STATION associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"BRIAN HOLDEN",
"DEE HEPBURN",
"THE LAST STATION"
],
"valid_edges": [
[
"1981",
"release_year",
"2009"
],
[
"2010",
"starred_actors",
"HELEN MIRREN"
],
[
"9",
"has_tags",
"CHRISTOPHER PLUMMER"
],
[
"9",
"release_year",
"2009"
],
[
"9",
"starred_actors",
"CHRISTOPHER PLUMMER"
],
[
"A VERY POTTER MUSICAL",
"directed_by",
"MATT LANG"
],
[
"A VERY POTTER MUSICAL",
"has_genre",
"MUSICAL"
],
[
"A VERY POTTER MUSICAL",
"has_tags",
"HARRY POTTER"
],
[
"A VERY POTTER MUSICAL",
"has_tags",
"PARODY"
],
[
"A VERY POTTER MUSICAL",
"release_year",
"2009"
],
[
"A VERY POTTER MUSICAL",
"starred_actors",
"BONNIE GRUESEN"
],
[
"A VERY POTTER MUSICAL",
"starred_actors",
"DARREN CRISS"
],
[
"A VERY POTTER MUSICAL",
"starred_actors",
"JOEY RICHTER"
],
[
"A VERY POTTER MUSICAL",
"starred_actors",
"LAUREN LOPEZ"
],
[
"A VERY POTTER MUSICAL",
"written_by",
"BRIAN HOLDEN"
],
[
"A VERY POTTER MUSICAL",
"written_by",
"MATT LANG"
],
[
"A VERY POTTER MUSICAL",
"written_by",
"NICK LANG"
],
[
"A VERY POTTER SEQUEL",
"directed_by",
"MATT LANG"
],
[
"A VERY POTTER SEQUEL",
"has_genre",
"MUSICAL"
],
[
"A VERY POTTER SEQUEL",
"has_tags",
"HARRY POTTER"
],
[
"A VERY POTTER SEQUEL",
"has_tags",
"PARODY"
],
[
"A VERY POTTER SEQUEL",
"release_year",
"2010"
],
[
"A VERY POTTER SEQUEL",
"starred_actors",
"BONNIE GRUESEN"
],
[
"A VERY POTTER SEQUEL",
"starred_actors",
"DARREN CRISS"
],
[
"A VERY POTTER SEQUEL",
"starred_actors",
"JOEY RICHTER"
],
[
"A VERY POTTER SEQUEL",
"starred_actors",
"LAUREN LOPEZ"
],
[
"A VERY POTTER SEQUEL",
"written_by",
"BRIAN HOLDEN"
],
[
"A VERY POTTER SEQUEL",
"written_by",
"MATT LANG"
],
[
"A VERY POTTER SEQUEL",
"written_by",
"NICK LANG"
],
[
"GREGORY'S GIRL",
"release_year",
"1981"
],
[
"GREGORY'S GIRL",
"starred_actors",
"DEE HEPBURN"
],
[
"MY DOG TULIP",
"release_year",
"2009"
],
[
"MY DOG TULIP",
"starred_actors",
"CHRISTOPHER PLUMMER"
],
[
"STATE OF PLAY",
"has_tags",
"HELEN MIRREN"
],
[
"STATE OF PLAY",
"release_year",
"2009"
],
[
"STATE OF PLAY",
"starred_actors",
"HELEN MIRREN"
],
[
"THE IMAGINARIUM OF DOCTOR PARNASSUS",
"has_tags",
"CHRISTOPHER PLUMMER"
],
[
"THE IMAGINARIUM OF DOCTOR PARNASSUS",
"release_year",
"2009"
],
[
"THE IMAGINARIUM OF DOCTOR PARNASSUS",
"starred_actors",
"CHRISTOPHER PLUMMER"
],
[
"THE LAST STATION",
"has_tags",
"HELEN MIRREN"
],
[
"THE LAST STATION",
"release_year",
"2009"
],
[
"THE LAST STATION",
"starred_actors",
"CHRISTOPHER PLUMMER"
],
[
"THE LAST STATION",
"starred_actors",
"HELEN MIRREN"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
10045, BD-R
2890, DESERT HEARTS
6565, DESPERATE JOURNEY
36212, DRAMA
37934, HELEN SHAVER
27893, POSSESSED
11501, RAYMOND MASSEY
24053, RUGGERO MACCARI
40001, SCENT OF A WOMAN
1277, THE COLOR OF MONEY
30987, THE FOUNTAINHEAD
31851, THE PRISONER OF ZENDA
src, edge_attr, dst
2890, has_genre, 36212
2890, starred_actors, 37934
6565, has_genre, 36212
6565, starred_actors, 11501
27893, has_genre, 36212
27893, has_tags, 10045
27893, starred_actors, 11501
40001, has_genre, 36212
40001, has_tags, 36212
40001, written_by, 24053
1277, has_genre, 36212
1277, starred_actors, 37934
30987, has_genre, 36212
30987, starred_actors, 11501
31851, has_genre, 36212
31851, has_tags, 10045
31851, starred_actors, 11501
Question: In what context are HELEN SHAVER, RAYMOND MASSEY, and RUGGERO MACCARI connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"HELEN SHAVER",
"RAYMOND MASSEY",
"RUGGERO MACCARI"
],
"valid_edges": [
[
"DESERT HEARTS",
"has_genre",
"DRAMA"
],
[
"DESERT HEARTS",
"starred_actors",
"HELEN SHAVER"
],
[
"DESPERATE JOURNEY",
"has_genre",
"DRAMA"
],
[
"DESPERATE JOURNEY",
"starred_actors",
"RAYMOND MASSEY"
],
[
"POSSESSED",
"has_genre",
"DRAMA"
],
[
"POSSESSED",
"has_tags",
"BD-R"
],
[
"POSSESSED",
"starred_actors",
"RAYMOND MASSEY"
],
[
"SCENT OF A WOMAN",
"has_genre",
"DRAMA"
],
[
"SCENT OF A WOMAN",
"has_tags",
"DRAMA"
],
[
"SCENT OF A WOMAN",
"written_by",
"RUGGERO MACCARI"
],
[
"THE COLOR OF MONEY",
"has_genre",
"DRAMA"
],
[
"THE COLOR OF MONEY",
"starred_actors",
"HELEN SHAVER"
],
[
"THE FOUNTAINHEAD",
"has_genre",
"DRAMA"
],
[
"THE FOUNTAINHEAD",
"starred_actors",
"RAYMOND MASSEY"
],
[
"THE PRISONER OF ZENDA",
"has_genre",
"DRAMA"
],
[
"THE PRISONER OF ZENDA",
"has_tags",
"BD-R"
],
[
"THE PRISONER OF ZENDA",
"starred_actors",
"RAYMOND MASSEY"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
658, 2012
22920, CHUNGKING EXPRESS
26193, ELECTION
31783, ENGLISH
24535, GAME CHANGE
12060, GARY LOCKWOOD
26001, HONG KONG
978, INFERNAL AFFAIRS
39252, JOHNNIE TO
6543, MODEL SHOP
31252, V/H/S
10735, VENGEANCE
src, edge_attr, dst
22920, has_tags, 26001
22920, in_language, 31783
26193, directed_by, 39252
26193, has_tags, 26001
26193, has_tags, 39252
24535, has_tags, 26193
24535, release_year, 658
978, has_tags, 26001
978, in_language, 31783
6543, in_language, 31783
6543, starred_actors, 12060
31252, release_year, 658
10735, directed_by, 39252
10735, has_tags, 26001
10735, has_tags, 39252
10735, has_tags, 10735
10735, in_language, 31783
Question: How are GARY LOCKWOOD, HONG KONG, and V/H/S related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"GARY LOCKWOOD",
"HONG KONG",
"V/H/S"
],
"valid_edges": [
[
"CHUNGKING EXPRESS",
"has_tags",
"HONG KONG"
],
[
"CHUNGKING EXPRESS",
"in_language",
"ENGLISH"
],
[
"ELECTION",
"directed_by",
"JOHNNIE TO"
],
[
"ELECTION",
"has_tags",
"HONG KONG"
],
[
"ELECTION",
"has_tags",
"JOHNNIE TO"
],
[
"GAME CHANGE",
"has_tags",
"ELECTION"
],
[
"GAME CHANGE",
"release_year",
"2012"
],
[
"INFERNAL AFFAIRS",
"has_tags",
"HONG KONG"
],
[
"INFERNAL AFFAIRS",
"in_language",
"ENGLISH"
],
[
"MODEL SHOP",
"in_language",
"ENGLISH"
],
[
"MODEL SHOP",
"starred_actors",
"GARY LOCKWOOD"
],
[
"V/H/S",
"release_year",
"2012"
],
[
"VENGEANCE",
"directed_by",
"JOHNNIE TO"
],
[
"VENGEANCE",
"has_tags",
"HONG KONG"
],
[
"VENGEANCE",
"has_tags",
"JOHNNIE TO"
],
[
"VENGEANCE",
"has_tags",
"VENGEANCE"
],
[
"VENGEANCE",
"in_language",
"ENGLISH"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
26257, 1994
1097, 2003
12144, BAD BOYS
34486, EILA
6666, FINNISH
39394, SHOPPING
1124, TAKE CARE OF YOUR SCARF, TATIANA
38099, THE HOME OF DARK BUTTERFLIES
29084, TWENTYNINE PALMS
6867, YOUNG GODS
src, edge_attr, dst
12144, in_language, 6666
12144, release_year, 1097
34486, in_language, 6666
34486, release_year, 1097
39394, release_year, 26257
1124, in_language, 6666
1124, release_year, 26257
38099, in_language, 6666
29084, release_year, 1097
6867, in_language, 6666
6867, release_year, 1097
Question: How are SHOPPING, THE HOME OF DARK BUTTERFLIES, and TWENTYNINE PALMS related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"SHOPPING",
"THE HOME OF DARK BUTTERFLIES",
"TWENTYNINE PALMS"
],
"valid_edges": [
[
"BAD BOYS",
"in_language",
"FINNISH"
],
[
"BAD BOYS",
"release_year",
"2003"
],
[
"EILA",
"in_language",
"FINNISH"
],
[
"EILA",
"release_year",
"2003"
],
[
"SHOPPING",
"release_year",
"1994"
],
[
"TAKE CARE OF YOUR SCARF, TATIANA",
"in_language",
"FINNISH"
],
[
"TAKE CARE OF YOUR SCARF, TATIANA",
"release_year",
"1994"
],
[
"THE HOME OF DARK BUTTERFLIES",
"in_language",
"FINNISH"
],
[
"TWENTYNINE PALMS",
"release_year",
"2003"
],
[
"YOUNG GODS",
"in_language",
"FINNISH"
],
[
"YOUNG GODS",
"release_year",
"2003"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
14259, 1997
35288, ALL OR NOTHING
37672, ANOTHER YEAR
16654, BRITISH
33121, CAREER GIRLS
31728, CHARLY
30463, COMEDY
30946, DANIEL BENZALI
36212, DRAMA
36942, HAPPY-GO-LUCKY
10555, HIGH HOPES
24353, MIKE LEIGH
9635, MR. TURNER
33425, MURDER AT 1600
3159, NAKED
4629, RUTH SHEEN
332, TOPSY-TURVY
22949, VERA DRAKE
src, edge_attr, dst
35288, directed_by, 24353
35288, has_genre, 36212
35288, has_tags, 24353
35288, written_by, 24353
37672, directed_by, 24353
37672, has_genre, 36212
37672, has_tags, 16654
37672, has_tags, 24353
37672, starred_actors, 4629
37672, written_by, 24353
33121, directed_by, 24353
33121, has_genre, 36212
33121, has_tags, 24353
33121, release_year, 14259
33121, written_by, 24353
31728, has_genre, 36212
36942, directed_by, 24353
36942, has_genre, 30463
36942, has_genre, 36212
36942, has_tags, 16654
36942, has_tags, 36212
36942, has_tags, 24353
36942, written_by, 24353
10555, directed_by, 24353
10555, has_genre, 30463
10555, has_genre, 36212
10555, has_tags, 24353
10555, starred_actors, 4629
10555, written_by, 24353
9635, directed_by, 24353
9635, has_genre, 36212
9635, has_tags, 24353
9635, written_by, 24353
33425, release_year, 14259
33425, starred_actors, 30946
3159, directed_by, 24353
3159, has_genre, 36212
3159, has_tags, 16654
3159, has_tags, 24353
3159, written_by, 24353
332, directed_by, 24353
332, has_genre, 36212
332, has_tags, 24353
332, written_by, 24353
22949, directed_by, 24353
22949, has_genre, 36212
22949, has_tags, 24353
22949, written_by, 24353
Question: In what context are CHARLY, DANIEL BENZALI, and MIKE LEIGH connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"CHARLY",
"DANIEL BENZALI",
"MIKE LEIGH"
],
"valid_edges": [
[
"ALL OR NOTHING",
"directed_by",
"MIKE LEIGH"
],
[
"ALL OR NOTHING",
"has_genre",
"DRAMA"
],
[
"ALL OR NOTHING",
"has_tags",
"MIKE LEIGH"
],
[
"ALL OR NOTHING",
"written_by",
"MIKE LEIGH"
],
[
"ANOTHER YEAR",
"directed_by",
"MIKE LEIGH"
],
[
"ANOTHER YEAR",
"has_genre",
"DRAMA"
],
[
"ANOTHER YEAR",
"has_tags",
"BRITISH"
],
[
"ANOTHER YEAR",
"has_tags",
"MIKE LEIGH"
],
[
"ANOTHER YEAR",
"starred_actors",
"RUTH SHEEN"
],
[
"ANOTHER YEAR",
"written_by",
"MIKE LEIGH"
],
[
"CAREER GIRLS",
"directed_by",
"MIKE LEIGH"
],
[
"CAREER GIRLS",
"has_genre",
"DRAMA"
],
[
"CAREER GIRLS",
"has_tags",
"MIKE LEIGH"
],
[
"CAREER GIRLS",
"release_year",
"1997"
],
[
"CAREER GIRLS",
"written_by",
"MIKE LEIGH"
],
[
"CHARLY",
"has_genre",
"DRAMA"
],
[
"HAPPY-GO-LUCKY",
"directed_by",
"MIKE LEIGH"
],
[
"HAPPY-GO-LUCKY",
"has_genre",
"COMEDY"
],
[
"HAPPY-GO-LUCKY",
"has_genre",
"DRAMA"
],
[
"HAPPY-GO-LUCKY",
"has_tags",
"BRITISH"
],
[
"HAPPY-GO-LUCKY",
"has_tags",
"DRAMA"
],
[
"HAPPY-GO-LUCKY",
"has_tags",
"MIKE LEIGH"
],
[
"HAPPY-GO-LUCKY",
"written_by",
"MIKE LEIGH"
],
[
"HIGH HOPES",
"directed_by",
"MIKE LEIGH"
],
[
"HIGH HOPES",
"has_genre",
"COMEDY"
],
[
"HIGH HOPES",
"has_genre",
"DRAMA"
],
[
"HIGH HOPES",
"has_tags",
"MIKE LEIGH"
],
[
"HIGH HOPES",
"starred_actors",
"RUTH SHEEN"
],
[
"HIGH HOPES",
"written_by",
"MIKE LEIGH"
],
[
"MR. TURNER",
"directed_by",
"MIKE LEIGH"
],
[
"MR. TURNER",
"has_genre",
"DRAMA"
],
[
"MR. TURNER",
"has_tags",
"MIKE LEIGH"
],
[
"MR. TURNER",
"written_by",
"MIKE LEIGH"
],
[
"MURDER AT 1600",
"release_year",
"1997"
],
[
"MURDER AT 1600",
"starred_actors",
"DANIEL BENZALI"
],
[
"NAKED",
"directed_by",
"MIKE LEIGH"
],
[
"NAKED",
"has_genre",
"DRAMA"
],
[
"NAKED",
"has_tags",
"BRITISH"
],
[
"NAKED",
"has_tags",
"MIKE LEIGH"
],
[
"NAKED",
"written_by",
"MIKE LEIGH"
],
[
"TOPSY-TURVY",
"directed_by",
"MIKE LEIGH"
],
[
"TOPSY-TURVY",
"has_genre",
"DRAMA"
],
[
"TOPSY-TURVY",
"has_tags",
"MIKE LEIGH"
],
[
"TOPSY-TURVY",
"written_by",
"MIKE LEIGH"
],
[
"VERA DRAKE",
"directed_by",
"MIKE LEIGH"
],
[
"VERA DRAKE",
"has_genre",
"DRAMA"
],
[
"VERA DRAKE",
"has_tags",
"MIKE LEIGH"
],
[
"VERA DRAKE",
"written_by",
"MIKE LEIGH"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
26762, 2008
24116, COLLEGE
14144, CRAZY LOVE
18087, DAN KLORES
12841, DOCUMENTARY
17682, EXAMINED LIFE
18916, JAMES W. HORNE
4238, JUDITH BUTLER
src, edge_attr, dst
24116, directed_by, 18916
24116, has_tags, 18916
24116, release_year, 26762
14144, directed_by, 18087
14144, has_genre, 12841
14144, written_by, 18087
17682, has_genre, 12841
17682, release_year, 26762
17682, starred_actors, 4238
Question: For what reason are DAN KLORES, JAMES W. HORNE, and JUDITH BUTLER associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"DAN KLORES",
"JAMES W. HORNE",
"JUDITH BUTLER"
],
"valid_edges": [
[
"COLLEGE",
"directed_by",
"JAMES W. HORNE"
],
[
"COLLEGE",
"has_tags",
"JAMES W. HORNE"
],
[
"COLLEGE",
"release_year",
"2008"
],
[
"CRAZY LOVE",
"directed_by",
"DAN KLORES"
],
[
"CRAZY LOVE",
"has_genre",
"DOCUMENTARY"
],
[
"CRAZY LOVE",
"written_by",
"DAN KLORES"
],
[
"EXAMINED LIFE",
"has_genre",
"DOCUMENTARY"
],
[
"EXAMINED LIFE",
"release_year",
"2008"
],
[
"EXAMINED LIFE",
"starred_actors",
"JUDITH BUTLER"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
3702, 1995
8486, 1999
22189, BEFORE SUNRISE
6230, BYE-BYE
30463, COMEDY
36212, DRAMA
20071, FLIRT
21828, HUMAN TRAFFIC
11499, JOHN SIMM
33519, LA HAINE
14601, LES MISÉRABLES
36083, MIRANDA
35637, MITCH MULLANY
22915, MONDO
8379, ROMANCE
4689, SABRINA
8605, THE BREAKS
src, edge_attr, dst
22189, has_genre, 36212
22189, release_year, 3702
6230, has_genre, 36212
6230, release_year, 3702
20071, has_genre, 36212
20071, release_year, 3702
21828, release_year, 8486
21828, starred_actors, 11499
33519, has_genre, 36212
33519, release_year, 3702
14601, has_genre, 36212
14601, release_year, 3702
36083, has_genre, 30463
36083, has_genre, 8379
36083, starred_actors, 11499
22915, has_genre, 36212
22915, release_year, 3702
8379, has_genre, 36212
4689, has_genre, 36212
4689, has_tags, 36212
4689, release_year, 3702
8605, has_genre, 30463
8605, release_year, 8486
8605, written_by, 35637
Question: How are FLIRT, JOHN SIMM, and MITCH MULLANY related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"FLIRT",
"JOHN SIMM",
"MITCH MULLANY"
],
"valid_edges": [
[
"BEFORE SUNRISE",
"has_genre",
"DRAMA"
],
[
"BEFORE SUNRISE",
"release_year",
"1995"
],
[
"BYE-BYE",
"has_genre",
"DRAMA"
],
[
"BYE-BYE",
"release_year",
"1995"
],
[
"FLIRT",
"has_genre",
"DRAMA"
],
[
"FLIRT",
"release_year",
"1995"
],
[
"HUMAN TRAFFIC",
"release_year",
"1999"
],
[
"HUMAN TRAFFIC",
"starred_actors",
"JOHN SIMM"
],
[
"LA HAINE",
"has_genre",
"DRAMA"
],
[
"LA HAINE",
"release_year",
"1995"
],
[
"LES MISÉRABLES",
"has_genre",
"DRAMA"
],
[
"LES MISÉRABLES",
"release_year",
"1995"
],
[
"MIRANDA",
"has_genre",
"COMEDY"
],
[
"MIRANDA",
"has_genre",
"ROMANCE"
],
[
"MIRANDA",
"starred_actors",
"JOHN SIMM"
],
[
"MONDO",
"has_genre",
"DRAMA"
],
[
"MONDO",
"release_year",
"1995"
],
[
"ROMANCE",
"has_genre",
"DRAMA"
],
[
"SABRINA",
"has_genre",
"DRAMA"
],
[
"SABRINA",
"has_tags",
"DRAMA"
],
[
"SABRINA",
"release_year",
"1995"
],
[
"THE BREAKS",
"has_genre",
"COMEDY"
],
[
"THE BREAKS",
"release_year",
"1999"
],
[
"THE BREAKS",
"written_by",
"MITCH MULLANY"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
26762, 2008
30721, A BEAUTIFUL MIND
9197, AKIVA GOLDSMAN
37752, ASIMOV
5496, BOOK
22958, FAMOUS
11339, FANTASTIC VOYAGE
11565, GOOD
20625, I, ROBOT
29267, ISAAC ASIMOV
14017, JURASSIC PARK
995, MIDNIGHT IN THE GARDEN OF GOOD AND EVIL
31134, PARIS
19982, PAUL BETTANY
26434, RON HOWARD
32533, SCIENCE FICTION
1059, THE DA VINCI CODE
33995, THE GOOD EARTH
16999, ZACK AND MIRI MAKE A PORNO
src, edge_attr, dst
30721, directed_by, 26434
30721, has_tags, 5496
30721, has_tags, 19982
30721, has_tags, 26434
30721, written_by, 9197
11339, has_tags, 37752
11339, has_tags, 29267
11339, has_tags, 32533
11565, release_year, 26762
20625, has_tags, 37752
20625, has_tags, 29267
20625, written_by, 9197
20625, written_by, 29267
14017, has_tags, 5496
14017, has_tags, 32533
995, has_imdb_rating, 11565
995, has_imdb_votes, 22958
995, has_tags, 5496
31134, release_year, 26762
1059, directed_by, 26434
1059, has_imdb_votes, 22958
1059, has_tags, 5496
1059, has_tags, 31134
1059, has_tags, 19982
1059, has_tags, 26434
1059, written_by, 9197
33995, has_imdb_rating, 11565
33995, has_tags, 5496
16999, release_year, 26762
Question: In what context are ASIMOV, BOOK, and ZACK AND MIRI MAKE A PORNO connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"ASIMOV",
"BOOK",
"ZACK AND MIRI MAKE A PORNO"
],
"valid_edges": [
[
"A BEAUTIFUL MIND",
"directed_by",
"RON HOWARD"
],
[
"A BEAUTIFUL MIND",
"has_tags",
"BOOK"
],
[
"A BEAUTIFUL MIND",
"has_tags",
"PAUL BETTANY"
],
[
"A BEAUTIFUL MIND",
"has_tags",
"RON HOWARD"
],
[
"A BEAUTIFUL MIND",
"written_by",
"AKIVA GOLDSMAN"
],
[
"FANTASTIC VOYAGE",
"has_tags",
"ASIMOV"
],
[
"FANTASTIC VOYAGE",
"has_tags",
"ISAAC ASIMOV"
],
[
"FANTASTIC VOYAGE",
"has_tags",
"SCIENCE FICTION"
],
[
"GOOD",
"release_year",
"2008"
],
[
"I, ROBOT",
"has_tags",
"ASIMOV"
],
[
"I, ROBOT",
"has_tags",
"ISAAC ASIMOV"
],
[
"I, ROBOT",
"written_by",
"AKIVA GOLDSMAN"
],
[
"I, ROBOT",
"written_by",
"ISAAC ASIMOV"
],
[
"JURASSIC PARK",
"has_tags",
"BOOK"
],
[
"JURASSIC PARK",
"has_tags",
"SCIENCE FICTION"
],
[
"MIDNIGHT IN THE GARDEN OF GOOD AND EVIL",
"has_imdb_rating",
"GOOD"
],
[
"MIDNIGHT IN THE GARDEN OF GOOD AND EVIL",
"has_imdb_votes",
"FAMOUS"
],
[
"MIDNIGHT IN THE GARDEN OF GOOD AND EVIL",
"has_tags",
"BOOK"
],
[
"PARIS",
"release_year",
"2008"
],
[
"THE DA VINCI CODE",
"directed_by",
"RON HOWARD"
],
[
"THE DA VINCI CODE",
"has_imdb_votes",
"FAMOUS"
],
[
"THE DA VINCI CODE",
"has_tags",
"BOOK"
],
[
"THE DA VINCI CODE",
"has_tags",
"PARIS"
],
[
"THE DA VINCI CODE",
"has_tags",
"PAUL BETTANY"
],
[
"THE DA VINCI CODE",
"has_tags",
"RON HOWARD"
],
[
"THE DA VINCI CODE",
"written_by",
"AKIVA GOLDSMAN"
],
[
"THE GOOD EARTH",
"has_imdb_rating",
"GOOD"
],
[
"THE GOOD EARTH",
"has_tags",
"BOOK"
],
[
"ZACK AND MIRI MAKE A PORNO",
"release_year",
"2008"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
37967, 13 SINS
26762, 2008
9377, 2014
26212, 3 DAYS TO KILL
29141, A MOST WANTED MAN
14987, A SECOND CHANCE
38646, ACHILLES AND THE TORTOISE
23806, ADDICTED
36359, AFTERWARDS
36494, ANYTHING FOR HER
8402, BANGKOK DANGEROUS
22475, BOOT CAMP
5376, CAPE NO. 7
38311, CHAOS
24400, DARK WATER
5148, DEATH RACE
24410, DEMONLOVER
2710, DEPARTURES
2827, DETROIT METAL CITY
9456, DOOMSDAY
21692, EAGLE EYE
25595, EDEN LAKE
28064, FEAR ME NOT
16516, FIFTY DEAD MEN WALKING
17653, FINE, TOTALLY FINE
26691, FREEZER
3553, GODZILLA
9642, GONE GIRL
13851, GOOD PEOPLE
10147, HOUSE
35436, HUSH
10121, IP MAN
36874, JAPANESE
33200, JESSABELLE
38731, KIKI'S DELIVERY SERVICE
26839, KILLERS
35352, KILLSHOT
7415, KISS OF DEATH
35280, LAKEVIEW TERRACE
19523, LEFT BEHIND
9396, LINEWATCH
20189, LOFT
22804, LUST, CAUTION
30350, NEXT
1128, NICOLAS CAGE
22868, NIGHTCRAWLER
29893, NO GOOD DEED
31027, NOT SAFE FOR WORK
36326, ONE MISSED CALL
12482, OPEN WINDOWS
36532, OVER YOUR DEAD BODY
21178, PATHOLOGY
20144, PONYO
12428, RAGE
29252, REASONABLE DOUBT
16595, RED
19630, RESTRAINT
37097, SABOTAGE
10303, SEEKING JUSTICE
12787, STAND BY ME DORAEMON
26269, STEREO
14619, STONEHEARST ASYLUM
32584, SUSPECT X
30003, TAKEN
23782, TAKEN 3
19565, THE 39 STEPS
20129, THE ALPHABET KILLER
23821, THE BAG MAN
30049, THE CAPTIVE
6633, THE DEAD OUTSIDE
33457, THE DEAL
10912, THE EQUALIZER
9522, THE ESCAPIST
34975, THE GUEST
9187, THE HAPPENING
8194, THE HEADLESS WOMAN
10421, THE HORSEMAN
6126, THE INCITE MILL
4223, THE INTERVIEW
13613, THE LAZARUS PROJECT
30751, THE LOFT
27657, THE MACHINE GIRL
30336, THE MIDNIGHT MEAT TRAIN
39061, THE OXFORD MURDERS
27529, THE POKER CLUB
30014, THE RAID 2
8660, THE RECKONING
20527, THE SCRIBBLER
28095, THE SIGNAL
10017, THE SKY CRAWLERS
8659, THE SNOW WHITE MURDER CASE
1330, THE SQUARE
23525, THE TWO FACES OF JANUARY
17568, THE VANISHING
21593, THE VOICES
22751, THE WICKER MAN
36616, THE WORLD OF KANAKO
24811, THRILLER
37444, TIM KRABBÉ
37920, TOKYO!
34541, TORTURED
8334, TRANSSIBERIAN
22110, TRESPASS
18451, UNTRACEABLE
33011, VALKYRIE
4375, WHEN MARNIE WAS THERE
20222, WHILE SHE WAS OUT
6262, WHITE BIRD IN A BLIZZARD
28356, WICKED BLOOD
15405, ZANDALEE
src, edge_attr, dst
37967, has_genre, 24811
37967, release_year, 9377
26212, has_genre, 24811
26212, release_year, 9377
29141, has_genre, 24811
29141, has_tags, 24811
29141, release_year, 9377
14987, has_genre, 24811
14987, release_year, 9377
38646, in_language, 36874
38646, release_year, 26762
23806, has_genre, 24811
23806, release_year, 9377
36359, has_genre, 24811
36359, release_year, 26762
36494, has_genre, 24811
36494, release_year, 26762
8402, has_genre, 24811
8402, has_tags, 1128
8402, release_year, 26762
8402, starred_actors, 1128
22475, has_genre, 24811
22475, release_year, 26762
5376, in_language, 36874
5376, release_year, 26762
38311, has_genre, 24811
38311, in_language, 36874
24400, has_genre, 24811
24400, in_language, 36874
5148, has_genre, 24811
5148, release_year, 26762
24410, has_genre, 24811
24410, in_language, 36874
2710, in_language, 36874
2710, release_year, 26762
2827, in_language, 36874
2827, release_year, 26762
9456, has_genre, 24811
9456, release_year, 26762
21692, has_genre, 24811
21692, release_year, 26762
25595, has_genre, 24811
25595, release_year, 26762
28064, has_genre, 24811
28064, release_year, 26762
16516, has_genre, 24811
16516, release_year, 26762
17653, in_language, 36874
17653, release_year, 26762
26691, has_genre, 24811
26691, release_year, 9377
3553, in_language, 36874
3553, release_year, 9377
9642, has_genre, 24811
9642, has_tags, 9377
9642, has_tags, 24811
9642, release_year, 9377
13851, has_genre, 24811
13851, release_year, 9377
10147, has_tags, 36874
10147, in_language, 36874
10147, release_year, 26762
35436, has_genre, 24811
35436, release_year, 26762
10121, in_language, 36874
10121, release_year, 26762
33200, has_genre, 24811
33200, release_year, 9377
38731, in_language, 36874
38731, release_year, 9377
26839, in_language, 36874
26839, release_year, 9377
35352, has_genre, 24811
35352, release_year, 26762
7415, has_genre, 24811
7415, starred_actors, 1128
35280, has_genre, 24811
35280, release_year, 26762
19523, has_genre, 24811
19523, has_tags, 1128
19523, release_year, 9377
19523, starred_actors, 1128
9396, has_genre, 24811
9396, release_year, 26762
20189, in_language, 36874
20189, release_year, 26762
22804, has_genre, 24811
22804, in_language, 36874
30350, has_genre, 24811
30350, has_tags, 1128
30350, starred_actors, 1128
22868, has_genre, 24811
22868, has_tags, 24811
22868, release_year, 9377
29893, has_genre, 24811
29893, release_year, 9377
31027, has_genre, 24811
31027, release_year, 9377
36326, in_language, 36874
36326, release_year, 26762
12482, has_genre, 24811
12482, release_year, 9377
36532, in_language, 36874
36532, release_year, 9377
21178, has_genre, 24811
21178, release_year, 26762
20144, in_language, 36874
20144, release_year, 26762
12428, has_genre, 24811
12428, release_year, 9377
12428, starred_actors, 1128
29252, has_genre, 24811
29252, release_year, 9377
16595, has_genre, 24811
16595, release_year, 26762
19630, has_genre, 24811
19630, release_year, 26762
37097, has_genre, 24811
37097, release_year, 9377
10303, has_genre, 24811
10303, has_tags, 1128
10303, starred_actors, 1128
12787, in_language, 36874
12787, release_year, 9377
26269, has_genre, 24811
26269, release_year, 9377
14619, has_genre, 24811
14619, release_year, 9377
32584, in_language, 36874
32584, release_year, 26762
30003, has_genre, 24811
30003, has_tags, 24811
30003, release_year, 26762
23782, has_genre, 24811
23782, release_year, 9377
19565, has_genre, 24811
19565, has_tags, 24811
19565, release_year, 26762
20129, has_genre, 24811
20129, release_year, 26762
23821, has_genre, 24811
23821, release_year, 9377
30049, has_genre, 24811
30049, release_year, 9377
6633, has_genre, 24811
6633, release_year, 26762
33457, has_genre, 24811
33457, release_year, 26762
10912, has_genre, 24811
10912, release_year, 9377
9522, has_genre, 24811
9522, release_year, 26762
34975, has_genre, 24811
34975, release_year, 9377
9187, has_genre, 24811
9187, release_year, 26762
8194, has_genre, 24811
8194, release_year, 26762
10421, has_genre, 24811
10421, release_year, 26762
6126, has_genre, 24811
6126, in_language, 36874
4223, has_genre, 24811
4223, release_year, 9377
13613, has_genre, 24811
13613, release_year, 26762
30751, has_genre, 24811
30751, release_year, 9377
27657, in_language, 36874
27657, release_year, 26762
30336, has_genre, 24811
30336, release_year, 26762
39061, has_genre, 24811
39061, release_year, 26762
27529, has_genre, 24811
27529, release_year, 26762
30014, in_language, 36874
30014, release_year, 9377
8660, has_genre, 24811
8660, release_year, 9377
20527, has_genre, 24811
20527, release_year, 9377
28095, has_genre, 24811
28095, release_year, 9377
10017, has_tags, 36874
10017, in_language, 36874
10017, release_year, 26762
8659, in_language, 36874
8659, release_year, 9377
1330, has_genre, 24811
1330, release_year, 26762
23525, has_genre, 24811
23525, release_year, 9377
17568, has_genre, 24811
17568, written_by, 37444
21593, has_genre, 24811
21593, release_year, 9377
22751, has_genre, 24811
22751, has_tags, 1128
22751, starred_actors, 1128
36616, in_language, 36874
36616, release_year, 9377
37920, in_language, 36874
37920, release_year, 26762
34541, has_genre, 24811
34541, release_year, 26762
8334, has_tags, 24811
8334, release_year, 26762
22110, has_genre, 24811
22110, has_tags, 1128
22110, starred_actors, 1128
18451, has_genre, 24811
18451, release_year, 26762
33011, has_genre, 24811
33011, release_year, 26762
4375, in_language, 36874
4375, release_year, 9377
20222, has_genre, 24811
20222, release_year, 26762
6262, has_genre, 24811
6262, release_year, 9377
28356, has_genre, 24811
28356, release_year, 9377
15405, has_genre, 24811
15405, starred_actors, 1128
Question: For what reason are LEFT BEHIND, THE MACHINE GIRL, and TIM KRABBÉ associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"LEFT BEHIND",
"THE MACHINE GIRL",
"TIM KRABBÉ"
],
"valid_edges": [
[
"13 SINS",
"has_genre",
"THRILLER"
],
[
"13 SINS",
"release_year",
"2014"
],
[
"3 DAYS TO KILL",
"has_genre",
"THRILLER"
],
[
"3 DAYS TO KILL",
"release_year",
"2014"
],
[
"A MOST WANTED MAN",
"has_genre",
"THRILLER"
],
[
"A MOST WANTED MAN",
"has_tags",
"THRILLER"
],
[
"A MOST WANTED MAN",
"release_year",
"2014"
],
[
"A SECOND CHANCE",
"has_genre",
"THRILLER"
],
[
"A SECOND CHANCE",
"release_year",
"2014"
],
[
"ACHILLES AND THE TORTOISE",
"in_language",
"JAPANESE"
],
[
"ACHILLES AND THE TORTOISE",
"release_year",
"2008"
],
[
"ADDICTED",
"has_genre",
"THRILLER"
],
[
"ADDICTED",
"release_year",
"2014"
],
[
"AFTERWARDS",
"has_genre",
"THRILLER"
],
[
"AFTERWARDS",
"release_year",
"2008"
],
[
"ANYTHING FOR HER",
"has_genre",
"THRILLER"
],
[
"ANYTHING FOR HER",
"release_year",
"2008"
],
[
"BANGKOK DANGEROUS",
"has_genre",
"THRILLER"
],
[
"BANGKOK DANGEROUS",
"has_tags",
"NICOLAS CAGE"
],
[
"BANGKOK DANGEROUS",
"release_year",
"2008"
],
[
"BANGKOK DANGEROUS",
"starred_actors",
"NICOLAS CAGE"
],
[
"BOOT CAMP",
"has_genre",
"THRILLER"
],
[
"BOOT CAMP",
"release_year",
"2008"
],
[
"CAPE NO. 7",
"in_language",
"JAPANESE"
],
[
"CAPE NO. 7",
"release_year",
"2008"
],
[
"CHAOS",
"has_genre",
"THRILLER"
],
[
"CHAOS",
"in_language",
"JAPANESE"
],
[
"DARK WATER",
"has_genre",
"THRILLER"
],
[
"DARK WATER",
"in_language",
"JAPANESE"
],
[
"DEATH RACE",
"has_genre",
"THRILLER"
],
[
"DEATH RACE",
"release_year",
"2008"
],
[
"DEMONLOVER",
"has_genre",
"THRILLER"
],
[
"DEMONLOVER",
"in_language",
"JAPANESE"
],
[
"DEPARTURES",
"in_language",
"JAPANESE"
],
[
"DEPARTURES",
"release_year",
"2008"
],
[
"DETROIT METAL CITY",
"in_language",
"JAPANESE"
],
[
"DETROIT METAL CITY",
"release_year",
"2008"
],
[
"DOOMSDAY",
"has_genre",
"THRILLER"
],
[
"DOOMSDAY",
"release_year",
"2008"
],
[
"EAGLE EYE",
"has_genre",
"THRILLER"
],
[
"EAGLE EYE",
"release_year",
"2008"
],
[
"EDEN LAKE",
"has_genre",
"THRILLER"
],
[
"EDEN LAKE",
"release_year",
"2008"
],
[
"FEAR ME NOT",
"has_genre",
"THRILLER"
],
[
"FEAR ME NOT",
"release_year",
"2008"
],
[
"FIFTY DEAD MEN WALKING",
"has_genre",
"THRILLER"
],
[
"FIFTY DEAD MEN WALKING",
"release_year",
"2008"
],
[
"FINE, TOTALLY FINE",
"in_language",
"JAPANESE"
],
[
"FINE, TOTALLY FINE",
"release_year",
"2008"
],
[
"FREEZER",
"has_genre",
"THRILLER"
],
[
"FREEZER",
"release_year",
"2014"
],
[
"GODZILLA",
"in_language",
"JAPANESE"
],
[
"GODZILLA",
"release_year",
"2014"
],
[
"GONE GIRL",
"has_genre",
"THRILLER"
],
[
"GONE GIRL",
"has_tags",
"2014"
],
[
"GONE GIRL",
"has_tags",
"THRILLER"
],
[
"GONE GIRL",
"release_year",
"2014"
],
[
"GOOD PEOPLE",
"has_genre",
"THRILLER"
],
[
"GOOD PEOPLE",
"release_year",
"2014"
],
[
"HOUSE",
"has_tags",
"JAPANESE"
],
[
"HOUSE",
"in_language",
"JAPANESE"
],
[
"HOUSE",
"release_year",
"2008"
],
[
"HUSH",
"has_genre",
"THRILLER"
],
[
"HUSH",
"release_year",
"2008"
],
[
"IP MAN",
"in_language",
"JAPANESE"
],
[
"IP MAN",
"release_year",
"2008"
],
[
"JESSABELLE",
"has_genre",
"THRILLER"
],
[
"JESSABELLE",
"release_year",
"2014"
],
[
"KIKI'S DELIVERY SERVICE",
"in_language",
"JAPANESE"
],
[
"KIKI'S DELIVERY SERVICE",
"release_year",
"2014"
],
[
"KILLERS",
"in_language",
"JAPANESE"
],
[
"KILLERS",
"release_year",
"2014"
],
[
"KILLSHOT",
"has_genre",
"THRILLER"
],
[
"KILLSHOT",
"release_year",
"2008"
],
[
"KISS OF DEATH",
"has_genre",
"THRILLER"
],
[
"KISS OF DEATH",
"starred_actors",
"NICOLAS CAGE"
],
[
"LAKEVIEW TERRACE",
"has_genre",
"THRILLER"
],
[
"LAKEVIEW TERRACE",
"release_year",
"2008"
],
[
"LEFT BEHIND",
"has_genre",
"THRILLER"
],
[
"LEFT BEHIND",
"has_tags",
"NICOLAS CAGE"
],
[
"LEFT BEHIND",
"release_year",
"2014"
],
[
"LEFT BEHIND",
"starred_actors",
"NICOLAS CAGE"
],
[
"LINEWATCH",
"has_genre",
"THRILLER"
],
[
"LINEWATCH",
"release_year",
"2008"
],
[
"LOFT",
"in_language",
"JAPANESE"
],
[
"LOFT",
"release_year",
"2008"
],
[
"LUST, CAUTION",
"has_genre",
"THRILLER"
],
[
"LUST, CAUTION",
"in_language",
"JAPANESE"
],
[
"NEXT",
"has_genre",
"THRILLER"
],
[
"NEXT",
"has_tags",
"NICOLAS CAGE"
],
[
"NEXT",
"starred_actors",
"NICOLAS CAGE"
],
[
"NIGHTCRAWLER",
"has_genre",
"THRILLER"
],
[
"NIGHTCRAWLER",
"has_tags",
"THRILLER"
],
[
"NIGHTCRAWLER",
"release_year",
"2014"
],
[
"NO GOOD DEED",
"has_genre",
"THRILLER"
],
[
"NO GOOD DEED",
"release_year",
"2014"
],
[
"NOT SAFE FOR WORK",
"has_genre",
"THRILLER"
],
[
"NOT SAFE FOR WORK",
"release_year",
"2014"
],
[
"ONE MISSED CALL",
"in_language",
"JAPANESE"
],
[
"ONE MISSED CALL",
"release_year",
"2008"
],
[
"OPEN WINDOWS",
"has_genre",
"THRILLER"
],
[
"OPEN WINDOWS",
"release_year",
"2014"
],
[
"OVER YOUR DEAD BODY",
"in_language",
"JAPANESE"
],
[
"OVER YOUR DEAD BODY",
"release_year",
"2014"
],
[
"PATHOLOGY",
"has_genre",
"THRILLER"
],
[
"PATHOLOGY",
"release_year",
"2008"
],
[
"PONYO",
"in_language",
"JAPANESE"
],
[
"PONYO",
"release_year",
"2008"
],
[
"RAGE",
"has_genre",
"THRILLER"
],
[
"RAGE",
"release_year",
"2014"
],
[
"RAGE",
"starred_actors",
"NICOLAS CAGE"
],
[
"REASONABLE DOUBT",
"has_genre",
"THRILLER"
],
[
"REASONABLE DOUBT",
"release_year",
"2014"
],
[
"RED",
"has_genre",
"THRILLER"
],
[
"RED",
"release_year",
"2008"
],
[
"RESTRAINT",
"has_genre",
"THRILLER"
],
[
"RESTRAINT",
"release_year",
"2008"
],
[
"SABOTAGE",
"has_genre",
"THRILLER"
],
[
"SABOTAGE",
"release_year",
"2014"
],
[
"SEEKING JUSTICE",
"has_genre",
"THRILLER"
],
[
"SEEKING JUSTICE",
"has_tags",
"NICOLAS CAGE"
],
[
"SEEKING JUSTICE",
"starred_actors",
"NICOLAS CAGE"
],
[
"STAND BY ME DORAEMON",
"in_language",
"JAPANESE"
],
[
"STAND BY ME DORAEMON",
"release_year",
"2014"
],
[
"STEREO",
"has_genre",
"THRILLER"
],
[
"STEREO",
"release_year",
"2014"
],
[
"STONEHEARST ASYLUM",
"has_genre",
"THRILLER"
],
[
"STONEHEARST ASYLUM",
"release_year",
"2014"
],
[
"SUSPECT X",
"in_language",
"JAPANESE"
],
[
"SUSPECT X",
"release_year",
"2008"
],
[
"TAKEN",
"has_genre",
"THRILLER"
],
[
"TAKEN",
"has_tags",
"THRILLER"
],
[
"TAKEN",
"release_year",
"2008"
],
[
"TAKEN 3",
"has_genre",
"THRILLER"
],
[
"TAKEN 3",
"release_year",
"2014"
],
[
"THE 39 STEPS",
"has_genre",
"THRILLER"
],
[
"THE 39 STEPS",
"has_tags",
"THRILLER"
],
[
"THE 39 STEPS",
"release_year",
"2008"
],
[
"THE ALPHABET KILLER",
"has_genre",
"THRILLER"
],
[
"THE ALPHABET KILLER",
"release_year",
"2008"
],
[
"THE BAG MAN",
"has_genre",
"THRILLER"
],
[
"THE BAG MAN",
"release_year",
"2014"
],
[
"THE CAPTIVE",
"has_genre",
"THRILLER"
],
[
"THE CAPTIVE",
"release_year",
"2014"
],
[
"THE DEAD OUTSIDE",
"has_genre",
"THRILLER"
],
[
"THE DEAD OUTSIDE",
"release_year",
"2008"
],
[
"THE DEAL",
"has_genre",
"THRILLER"
],
[
"THE DEAL",
"release_year",
"2008"
],
[
"THE EQUALIZER",
"has_genre",
"THRILLER"
],
[
"THE EQUALIZER",
"release_year",
"2014"
],
[
"THE ESCAPIST",
"has_genre",
"THRILLER"
],
[
"THE ESCAPIST",
"release_year",
"2008"
],
[
"THE GUEST",
"has_genre",
"THRILLER"
],
[
"THE GUEST",
"release_year",
"2014"
],
[
"THE HAPPENING",
"has_genre",
"THRILLER"
],
[
"THE HAPPENING",
"release_year",
"2008"
],
[
"THE HEADLESS WOMAN",
"has_genre",
"THRILLER"
],
[
"THE HEADLESS WOMAN",
"release_year",
"2008"
],
[
"THE HORSEMAN",
"has_genre",
"THRILLER"
],
[
"THE HORSEMAN",
"release_year",
"2008"
],
[
"THE INCITE MILL",
"has_genre",
"THRILLER"
],
[
"THE INCITE MILL",
"in_language",
"JAPANESE"
],
[
"THE INTERVIEW",
"has_genre",
"THRILLER"
],
[
"THE INTERVIEW",
"release_year",
"2014"
],
[
"THE LAZARUS PROJECT",
"has_genre",
"THRILLER"
],
[
"THE LAZARUS PROJECT",
"release_year",
"2008"
],
[
"THE LOFT",
"has_genre",
"THRILLER"
],
[
"THE LOFT",
"release_year",
"2014"
],
[
"THE MACHINE GIRL",
"in_language",
"JAPANESE"
],
[
"THE MACHINE GIRL",
"release_year",
"2008"
],
[
"THE MIDNIGHT MEAT TRAIN",
"has_genre",
"THRILLER"
],
[
"THE MIDNIGHT MEAT TRAIN",
"release_year",
"2008"
],
[
"THE OXFORD MURDERS",
"has_genre",
"THRILLER"
],
[
"THE OXFORD MURDERS",
"release_year",
"2008"
],
[
"THE POKER CLUB",
"has_genre",
"THRILLER"
],
[
"THE POKER CLUB",
"release_year",
"2008"
],
[
"THE RAID 2",
"in_language",
"JAPANESE"
],
[
"THE RAID 2",
"release_year",
"2014"
],
[
"THE RECKONING",
"has_genre",
"THRILLER"
],
[
"THE RECKONING",
"release_year",
"2014"
],
[
"THE SCRIBBLER",
"has_genre",
"THRILLER"
],
[
"THE SCRIBBLER",
"release_year",
"2014"
],
[
"THE SIGNAL",
"has_genre",
"THRILLER"
],
[
"THE SIGNAL",
"release_year",
"2014"
],
[
"THE SKY CRAWLERS",
"has_tags",
"JAPANESE"
],
[
"THE SKY CRAWLERS",
"in_language",
"JAPANESE"
],
[
"THE SKY CRAWLERS",
"release_year",
"2008"
],
[
"THE SNOW WHITE MURDER CASE",
"in_language",
"JAPANESE"
],
[
"THE SNOW WHITE MURDER CASE",
"release_year",
"2014"
],
[
"THE SQUARE",
"has_genre",
"THRILLER"
],
[
"THE SQUARE",
"release_year",
"2008"
],
[
"THE TWO FACES OF JANUARY",
"has_genre",
"THRILLER"
],
[
"THE TWO FACES OF JANUARY",
"release_year",
"2014"
],
[
"THE VANISHING",
"has_genre",
"THRILLER"
],
[
"THE VANISHING",
"written_by",
"TIM KRABBÉ"
],
[
"THE VOICES",
"has_genre",
"THRILLER"
],
[
"THE VOICES",
"release_year",
"2014"
],
[
"THE WICKER MAN",
"has_genre",
"THRILLER"
],
[
"THE WICKER MAN",
"has_tags",
"NICOLAS CAGE"
],
[
"THE WICKER MAN",
"starred_actors",
"NICOLAS CAGE"
],
[
"THE WORLD OF KANAKO",
"in_language",
"JAPANESE"
],
[
"THE WORLD OF KANAKO",
"release_year",
"2014"
],
[
"TOKYO!",
"in_language",
"JAPANESE"
],
[
"TOKYO!",
"release_year",
"2008"
],
[
"TORTURED",
"has_genre",
"THRILLER"
],
[
"TORTURED",
"release_year",
"2008"
],
[
"TRANSSIBERIAN",
"has_tags",
"THRILLER"
],
[
"TRANSSIBERIAN",
"release_year",
"2008"
],
[
"TRESPASS",
"has_genre",
"THRILLER"
],
[
"TRESPASS",
"has_tags",
"NICOLAS CAGE"
],
[
"TRESPASS",
"starred_actors",
"NICOLAS CAGE"
],
[
"UNTRACEABLE",
"has_genre",
"THRILLER"
],
[
"UNTRACEABLE",
"release_year",
"2008"
],
[
"VALKYRIE",
"has_genre",
"THRILLER"
],
[
"VALKYRIE",
"release_year",
"2008"
],
[
"WHEN MARNIE WAS THERE",
"in_language",
"JAPANESE"
],
[
"WHEN MARNIE WAS THERE",
"release_year",
"2014"
],
[
"WHILE SHE WAS OUT",
"has_genre",
"THRILLER"
],
[
"WHILE SHE WAS OUT",
"release_year",
"2008"
],
[
"WHITE BIRD IN A BLIZZARD",
"has_genre",
"THRILLER"
],
[
"WHITE BIRD IN A BLIZZARD",
"release_year",
"2014"
],
[
"WICKED BLOOD",
"has_genre",
"THRILLER"
],
[
"WICKED BLOOD",
"release_year",
"2014"
],
[
"ZANDALEE",
"has_genre",
"THRILLER"
],
[
"ZANDALEE",
"starred_actors",
"NICOLAS CAGE"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
36212, DRAMA
25127, GLENN WITHROW
35364, NORTH DALLAS FORTY
39846, OLEG DRACH
39963, PETER GENT
25509, THE DEBT
38801, THE MOORING
24811, THRILLER
src, edge_attr, dst
35364, has_genre, 36212
35364, written_by, 39963
25509, has_genre, 36212
25509, has_genre, 24811
25509, starred_actors, 39846
38801, directed_by, 25127
38801, has_genre, 24811
38801, written_by, 25127
Question: How are GLENN WITHROW, OLEG DRACH, and PETER GENT related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"GLENN WITHROW",
"OLEG DRACH",
"PETER GENT"
],
"valid_edges": [
[
"NORTH DALLAS FORTY",
"has_genre",
"DRAMA"
],
[
"NORTH DALLAS FORTY",
"written_by",
"PETER GENT"
],
[
"THE DEBT",
"has_genre",
"DRAMA"
],
[
"THE DEBT",
"has_genre",
"THRILLER"
],
[
"THE DEBT",
"starred_actors",
"OLEG DRACH"
],
[
"THE MOORING",
"directed_by",
"GLENN WITHROW"
],
[
"THE MOORING",
"has_genre",
"THRILLER"
],
[
"THE MOORING",
"written_by",
"GLENN WITHROW"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
8486, 1999
29422, ANNA AND THE KING
32474, EMMANUELLE
6012, FRENCH
38857, JEAN POIRET
31026, LA CAGE AUX FOLLES
24110, ONLY GOD FORGIVES
8379, ROMANCE
13090, THAI
37261, THAILAND
22505, THE HANGOVER PART II
6207, THE LOVE OF SIAM
38179, THE UNDERGROUND COMEDY MOVIE
src, edge_attr, dst
29422, has_tags, 37261
29422, in_language, 13090
29422, release_year, 8486
32474, has_tags, 37261
32474, in_language, 6012
31026, has_tags, 6012
31026, in_language, 6012
31026, written_by, 38857
24110, has_tags, 37261
24110, in_language, 13090
8379, release_year, 8486
22505, has_tags, 37261
22505, in_language, 13090
6207, has_genre, 8379
6207, has_tags, 8379
6207, has_tags, 37261
6207, in_language, 13090
38179, release_year, 8486
Question: In what context are JEAN POIRET, THAILAND, and THE UNDERGROUND COMEDY MOVIE connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"JEAN POIRET",
"THAILAND",
"THE UNDERGROUND COMEDY MOVIE"
],
"valid_edges": [
[
"ANNA AND THE KING",
"has_tags",
"THAILAND"
],
[
"ANNA AND THE KING",
"in_language",
"THAI"
],
[
"ANNA AND THE KING",
"release_year",
"1999"
],
[
"EMMANUELLE",
"has_tags",
"THAILAND"
],
[
"EMMANUELLE",
"in_language",
"FRENCH"
],
[
"LA CAGE AUX FOLLES",
"has_tags",
"FRENCH"
],
[
"LA CAGE AUX FOLLES",
"in_language",
"FRENCH"
],
[
"LA CAGE AUX FOLLES",
"written_by",
"JEAN POIRET"
],
[
"ONLY GOD FORGIVES",
"has_tags",
"THAILAND"
],
[
"ONLY GOD FORGIVES",
"in_language",
"THAI"
],
[
"ROMANCE",
"release_year",
"1999"
],
[
"THE HANGOVER PART II",
"has_tags",
"THAILAND"
],
[
"THE HANGOVER PART II",
"in_language",
"THAI"
],
[
"THE LOVE OF SIAM",
"has_genre",
"ROMANCE"
],
[
"THE LOVE OF SIAM",
"has_tags",
"ROMANCE"
],
[
"THE LOVE OF SIAM",
"has_tags",
"THAILAND"
],
[
"THE LOVE OF SIAM",
"in_language",
"THAI"
],
[
"THE UNDERGROUND COMEDY MOVIE",
"release_year",
"1999"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
13408, 2001
36212, DRAMA
6012, FRENCH
28028, JESSICA CAPSHAW
25430, KARIN VIARD
5493, POLISSE
31405, THE CARDINAL
28275, THE UNHOLY WIFE
25783, TIME OUT
2194, TOM TRYON
6988, VALENTINE
src, edge_attr, dst
5493, has_genre, 36212
5493, in_language, 6012
5493, starred_actors, 25430
31405, has_genre, 36212
31405, starred_actors, 2194
28275, has_genre, 36212
28275, starred_actors, 2194
25783, has_genre, 36212
25783, in_language, 6012
25783, release_year, 13408
25783, starred_actors, 25430
6988, release_year, 13408
6988, starred_actors, 28028
Question: For what reason are JESSICA CAPSHAW, KARIN VIARD, and TOM TRYON associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"JESSICA CAPSHAW",
"KARIN VIARD",
"TOM TRYON"
],
"valid_edges": [
[
"POLISSE",
"has_genre",
"DRAMA"
],
[
"POLISSE",
"in_language",
"FRENCH"
],
[
"POLISSE",
"starred_actors",
"KARIN VIARD"
],
[
"THE CARDINAL",
"has_genre",
"DRAMA"
],
[
"THE CARDINAL",
"starred_actors",
"TOM TRYON"
],
[
"THE UNHOLY WIFE",
"has_genre",
"DRAMA"
],
[
"THE UNHOLY WIFE",
"starred_actors",
"TOM TRYON"
],
[
"TIME OUT",
"has_genre",
"DRAMA"
],
[
"TIME OUT",
"in_language",
"FRENCH"
],
[
"TIME OUT",
"release_year",
"2001"
],
[
"TIME OUT",
"starred_actors",
"KARIN VIARD"
],
[
"VALENTINE",
"release_year",
"2001"
],
[
"VALENTINE",
"starred_actors",
"JESSICA CAPSHAW"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
15421, 100 BLOODY ACRES
24580, 2-HEADED SHARK ATTACK
658, 2012
30586, A FANTASTIC FEAR OF EVERYTHING
24466, A FUNNY MAN
25327, AFTERSHOCK
34229, ANTIVIRAL
3449, APARTMENT 1303 3D
13736, BLACK ROCK
5946, BLOODY BLOODY BIBLE CAMP
30191, CHERNOBYL DIARIES
30339, CITADEL
38598, COME OUT AND PLAY
22349, CRAWLSPACE
7316, DANISH
30529, DARK SHADOWS
33477, DARKEST NIGHT
17466, DETENTION OF THE DEAD
28770, DRACULA 3D
36212, DRAMA
6394, EXCISION
938, FRANZ SCHULZ
1041, GALLOWWALKERS
24098, GRAVE ENCOUNTERS 2
5870, HORROR
4823, HOUSE AT THE END OF THE STREET
36133, JOHN DIES AT THE END
24437, MANIAC
10848, MARTIN ZANDVLIET
38276, MIDNIGHT
10573, NO ONE LIVES
36239, PARANORMAL ACTIVITY 4
35289, PARANORMAN
17916, PIRANHA 3DD
38226, RESOLUTION
31339, RISE OF THE ZOMBIES
38815, SADAKO 3D
24992, SCARY OR DIE
15926, SILENT NIGHT
8359, SINISTER
9247, STITCHES
39265, STORAGE 24
30456, TEDDY BEAR
31162, THE ABCS OF DEATH
39296, THE APPARITION
25250, THE BARRENS
19623, THE BATTERY
16753, THE BAY
19938, THE CABIN IN THE WOODS
2974, THE COLLECTION
18592, THE DEVIL INSIDE
7153, THE DEVIL'S CARNIVAL
19064, THE HAUNTING OF HELENA
11861, THE LORDS OF SALEM
24652, THE MAN WHO LAUGHS
29525, THE PACT
2023, THE POSSESSION
18162, THE RAVEN
27003, THE THOMPSONS
3437, THE WOMAN IN BLACK
31252, V/H/S
24570, VAMPS
39464, WOULD YOU RATHER
src, edge_attr, dst
15421, has_genre, 5870
15421, release_year, 658
24580, has_genre, 5870
24580, release_year, 658
30586, has_genre, 5870
30586, has_tags, 5870
30586, release_year, 658
24466, directed_by, 10848
24466, has_genre, 36212
24466, in_language, 7316
24466, written_by, 10848
25327, has_genre, 5870
25327, release_year, 658
34229, has_genre, 5870
34229, release_year, 658
3449, has_genre, 5870
3449, release_year, 658
13736, has_genre, 5870
13736, release_year, 658
5946, has_genre, 5870
5946, release_year, 658
30191, has_genre, 5870
30191, release_year, 658
30339, has_genre, 5870
30339, release_year, 658
38598, has_genre, 5870
38598, release_year, 658
22349, has_genre, 5870
22349, release_year, 658
30529, has_genre, 5870
30529, release_year, 658
33477, has_genre, 5870
33477, has_tags, 5870
33477, release_year, 658
17466, has_genre, 5870
17466, release_year, 658
28770, has_genre, 5870
28770, release_year, 658
6394, has_genre, 5870
6394, release_year, 658
1041, has_genre, 5870
1041, release_year, 658
24098, has_genre, 5870
24098, release_year, 658
4823, has_genre, 5870
4823, release_year, 658
36133, has_genre, 5870
36133, release_year, 658
24437, has_genre, 5870
24437, release_year, 658
38276, has_genre, 36212
38276, written_by, 938
10573, has_genre, 5870
10573, release_year, 658
36239, has_genre, 5870
36239, release_year, 658
35289, has_tags, 5870
35289, release_year, 658
17916, has_genre, 5870
17916, release_year, 658
38226, has_genre, 5870
38226, release_year, 658
31339, has_genre, 5870
31339, release_year, 658
38815, has_genre, 5870
38815, release_year, 658
24992, has_genre, 5870
24992, release_year, 658
15926, has_genre, 5870
15926, release_year, 658
8359, has_genre, 5870
8359, has_tags, 5870
8359, release_year, 658
9247, has_genre, 5870
9247, release_year, 658
39265, has_genre, 5870
39265, release_year, 658
30456, in_language, 7316
30456, release_year, 658
30456, written_by, 10848
31162, has_genre, 5870
31162, release_year, 658
39296, has_genre, 5870
39296, release_year, 658
25250, has_genre, 5870
25250, release_year, 658
19623, has_genre, 5870
19623, release_year, 658
16753, has_genre, 5870
16753, release_year, 658
19938, has_genre, 5870
19938, has_tags, 5870
19938, release_year, 658
2974, has_genre, 5870
2974, release_year, 658
18592, has_genre, 5870
18592, release_year, 658
7153, has_genre, 5870
7153, release_year, 658
19064, has_genre, 5870
19064, release_year, 658
11861, has_genre, 5870
11861, release_year, 658
24652, has_genre, 5870
24652, release_year, 658
29525, has_genre, 5870
29525, release_year, 658
2023, has_genre, 5870
2023, has_tags, 5870
2023, release_year, 658
18162, has_genre, 5870
18162, has_tags, 5870
18162, release_year, 658
27003, has_genre, 5870
27003, release_year, 658
3437, has_genre, 5870
3437, has_tags, 5870
3437, release_year, 658
31252, has_genre, 5870
31252, has_tags, 5870
31252, release_year, 658
24570, has_genre, 5870
24570, release_year, 658
39464, has_genre, 5870
39464, has_tags, 5870
39464, release_year, 658
Question: For what reason are DARKEST NIGHT, FRANZ SCHULZ, and MARTIN ZANDVLIET associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"DARKEST NIGHT",
"FRANZ SCHULZ",
"MARTIN ZANDVLIET"
],
"valid_edges": [
[
"100 BLOODY ACRES",
"has_genre",
"HORROR"
],
[
"100 BLOODY ACRES",
"release_year",
"2012"
],
[
"2-HEADED SHARK ATTACK",
"has_genre",
"HORROR"
],
[
"2-HEADED SHARK ATTACK",
"release_year",
"2012"
],
[
"A FANTASTIC FEAR OF EVERYTHING",
"has_genre",
"HORROR"
],
[
"A FANTASTIC FEAR OF EVERYTHING",
"has_tags",
"HORROR"
],
[
"A FANTASTIC FEAR OF EVERYTHING",
"release_year",
"2012"
],
[
"A FUNNY MAN",
"directed_by",
"MARTIN ZANDVLIET"
],
[
"A FUNNY MAN",
"has_genre",
"DRAMA"
],
[
"A FUNNY MAN",
"in_language",
"DANISH"
],
[
"A FUNNY MAN",
"written_by",
"MARTIN ZANDVLIET"
],
[
"AFTERSHOCK",
"has_genre",
"HORROR"
],
[
"AFTERSHOCK",
"release_year",
"2012"
],
[
"ANTIVIRAL",
"has_genre",
"HORROR"
],
[
"ANTIVIRAL",
"release_year",
"2012"
],
[
"APARTMENT 1303 3D",
"has_genre",
"HORROR"
],
[
"APARTMENT 1303 3D",
"release_year",
"2012"
],
[
"BLACK ROCK",
"has_genre",
"HORROR"
],
[
"BLACK ROCK",
"release_year",
"2012"
],
[
"BLOODY BLOODY BIBLE CAMP",
"has_genre",
"HORROR"
],
[
"BLOODY BLOODY BIBLE CAMP",
"release_year",
"2012"
],
[
"CHERNOBYL DIARIES",
"has_genre",
"HORROR"
],
[
"CHERNOBYL DIARIES",
"release_year",
"2012"
],
[
"CITADEL",
"has_genre",
"HORROR"
],
[
"CITADEL",
"release_year",
"2012"
],
[
"COME OUT AND PLAY",
"has_genre",
"HORROR"
],
[
"COME OUT AND PLAY",
"release_year",
"2012"
],
[
"CRAWLSPACE",
"has_genre",
"HORROR"
],
[
"CRAWLSPACE",
"release_year",
"2012"
],
[
"DARK SHADOWS",
"has_genre",
"HORROR"
],
[
"DARK SHADOWS",
"release_year",
"2012"
],
[
"DARKEST NIGHT",
"has_genre",
"HORROR"
],
[
"DARKEST NIGHT",
"has_tags",
"HORROR"
],
[
"DARKEST NIGHT",
"release_year",
"2012"
],
[
"DETENTION OF THE DEAD",
"has_genre",
"HORROR"
],
[
"DETENTION OF THE DEAD",
"release_year",
"2012"
],
[
"DRACULA 3D",
"has_genre",
"HORROR"
],
[
"DRACULA 3D",
"release_year",
"2012"
],
[
"EXCISION",
"has_genre",
"HORROR"
],
[
"EXCISION",
"release_year",
"2012"
],
[
"GALLOWWALKERS",
"has_genre",
"HORROR"
],
[
"GALLOWWALKERS",
"release_year",
"2012"
],
[
"GRAVE ENCOUNTERS 2",
"has_genre",
"HORROR"
],
[
"GRAVE ENCOUNTERS 2",
"release_year",
"2012"
],
[
"HOUSE AT THE END OF THE STREET",
"has_genre",
"HORROR"
],
[
"HOUSE AT THE END OF THE STREET",
"release_year",
"2012"
],
[
"JOHN DIES AT THE END",
"has_genre",
"HORROR"
],
[
"JOHN DIES AT THE END",
"release_year",
"2012"
],
[
"MANIAC",
"has_genre",
"HORROR"
],
[
"MANIAC",
"release_year",
"2012"
],
[
"MIDNIGHT",
"has_genre",
"DRAMA"
],
[
"MIDNIGHT",
"written_by",
"FRANZ SCHULZ"
],
[
"NO ONE LIVES",
"has_genre",
"HORROR"
],
[
"NO ONE LIVES",
"release_year",
"2012"
],
[
"PARANORMAL ACTIVITY 4",
"has_genre",
"HORROR"
],
[
"PARANORMAL ACTIVITY 4",
"release_year",
"2012"
],
[
"PARANORMAN",
"has_tags",
"HORROR"
],
[
"PARANORMAN",
"release_year",
"2012"
],
[
"PIRANHA 3DD",
"has_genre",
"HORROR"
],
[
"PIRANHA 3DD",
"release_year",
"2012"
],
[
"RESOLUTION",
"has_genre",
"HORROR"
],
[
"RESOLUTION",
"release_year",
"2012"
],
[
"RISE OF THE ZOMBIES",
"has_genre",
"HORROR"
],
[
"RISE OF THE ZOMBIES",
"release_year",
"2012"
],
[
"SADAKO 3D",
"has_genre",
"HORROR"
],
[
"SADAKO 3D",
"release_year",
"2012"
],
[
"SCARY OR DIE",
"has_genre",
"HORROR"
],
[
"SCARY OR DIE",
"release_year",
"2012"
],
[
"SILENT NIGHT",
"has_genre",
"HORROR"
],
[
"SILENT NIGHT",
"release_year",
"2012"
],
[
"SINISTER",
"has_genre",
"HORROR"
],
[
"SINISTER",
"has_tags",
"HORROR"
],
[
"SINISTER",
"release_year",
"2012"
],
[
"STITCHES",
"has_genre",
"HORROR"
],
[
"STITCHES",
"release_year",
"2012"
],
[
"STORAGE 24",
"has_genre",
"HORROR"
],
[
"STORAGE 24",
"release_year",
"2012"
],
[
"TEDDY BEAR",
"in_language",
"DANISH"
],
[
"TEDDY BEAR",
"release_year",
"2012"
],
[
"TEDDY BEAR",
"written_by",
"MARTIN ZANDVLIET"
],
[
"THE ABCS OF DEATH",
"has_genre",
"HORROR"
],
[
"THE ABCS OF DEATH",
"release_year",
"2012"
],
[
"THE APPARITION",
"has_genre",
"HORROR"
],
[
"THE APPARITION",
"release_year",
"2012"
],
[
"THE BARRENS",
"has_genre",
"HORROR"
],
[
"THE BARRENS",
"release_year",
"2012"
],
[
"THE BATTERY",
"has_genre",
"HORROR"
],
[
"THE BATTERY",
"release_year",
"2012"
],
[
"THE BAY",
"has_genre",
"HORROR"
],
[
"THE BAY",
"release_year",
"2012"
],
[
"THE CABIN IN THE WOODS",
"has_genre",
"HORROR"
],
[
"THE CABIN IN THE WOODS",
"has_tags",
"HORROR"
],
[
"THE CABIN IN THE WOODS",
"release_year",
"2012"
],
[
"THE COLLECTION",
"has_genre",
"HORROR"
],
[
"THE COLLECTION",
"release_year",
"2012"
],
[
"THE DEVIL INSIDE",
"has_genre",
"HORROR"
],
[
"THE DEVIL INSIDE",
"release_year",
"2012"
],
[
"THE DEVIL'S CARNIVAL",
"has_genre",
"HORROR"
],
[
"THE DEVIL'S CARNIVAL",
"release_year",
"2012"
],
[
"THE HAUNTING OF HELENA",
"has_genre",
"HORROR"
],
[
"THE HAUNTING OF HELENA",
"release_year",
"2012"
],
[
"THE LORDS OF SALEM",
"has_genre",
"HORROR"
],
[
"THE LORDS OF SALEM",
"release_year",
"2012"
],
[
"THE MAN WHO LAUGHS",
"has_genre",
"HORROR"
],
[
"THE MAN WHO LAUGHS",
"release_year",
"2012"
],
[
"THE PACT",
"has_genre",
"HORROR"
],
[
"THE PACT",
"release_year",
"2012"
],
[
"THE POSSESSION",
"has_genre",
"HORROR"
],
[
"THE POSSESSION",
"has_tags",
"HORROR"
],
[
"THE POSSESSION",
"release_year",
"2012"
],
[
"THE RAVEN",
"has_genre",
"HORROR"
],
[
"THE RAVEN",
"has_tags",
"HORROR"
],
[
"THE RAVEN",
"release_year",
"2012"
],
[
"THE THOMPSONS",
"has_genre",
"HORROR"
],
[
"THE THOMPSONS",
"release_year",
"2012"
],
[
"THE WOMAN IN BLACK",
"has_genre",
"HORROR"
],
[
"THE WOMAN IN BLACK",
"has_tags",
"HORROR"
],
[
"THE WOMAN IN BLACK",
"release_year",
"2012"
],
[
"V/H/S",
"has_genre",
"HORROR"
],
[
"V/H/S",
"has_tags",
"HORROR"
],
[
"V/H/S",
"release_year",
"2012"
],
[
"VAMPS",
"has_genre",
"HORROR"
],
[
"VAMPS",
"release_year",
"2012"
],
[
"WOULD YOU RATHER",
"has_genre",
"HORROR"
],
[
"WOULD YOU RATHER",
"has_tags",
"HORROR"
],
[
"WOULD YOU RATHER",
"release_year",
"2012"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
8486, 1999
1421, 2013
35260, A CASE OF YOU
18943, BRIAN BLESSED
35657, GLORIA
67, TARZAN
12439, THE INSIDER
src, edge_attr, dst
35260, release_year, 1421
35657, release_year, 8486
35657, release_year, 1421
67, release_year, 8486
67, release_year, 1421
67, starred_actors, 18943
12439, release_year, 8486
Question: How are A CASE OF YOU, BRIAN BLESSED, and THE INSIDER related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"A CASE OF YOU",
"BRIAN BLESSED",
"THE INSIDER"
],
"valid_edges": [
[
"A CASE OF YOU",
"release_year",
"2013"
],
[
"GLORIA",
"release_year",
"1999"
],
[
"GLORIA",
"release_year",
"2013"
],
[
"TARZAN",
"release_year",
"1999"
],
[
"TARZAN",
"release_year",
"2013"
],
[
"TARZAN",
"starred_actors",
"BRIAN BLESSED"
],
[
"THE INSIDER",
"release_year",
"1999"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
6776, 2000
33688, ABERDEEN
11856, COLE PORTER
17606, DAMIEN CHAZELLE
33486, DE-LOVELY
36212, DRAMA
32380, GOSSIP
16354, GUY AND MADELINE ON A PARK BENCH
15017, LENA HEADEY
22845, MUSIC
24593, MUSICAL
8546, NIGHT AND DAY
38804, WHIPLASH
src, edge_attr, dst
33688, has_genre, 36212
33688, release_year, 6776
33688, starred_actors, 15017
33486, has_genre, 22845
33486, has_tags, 11856
32380, has_genre, 36212
32380, has_tags, 32380
32380, release_year, 6776
32380, starred_actors, 15017
16354, directed_by, 17606
16354, has_genre, 24593
16354, has_tags, 17606
16354, written_by, 17606
8546, has_genre, 24593
8546, has_tags, 11856
38804, directed_by, 17606
38804, has_genre, 36212
38804, has_genre, 22845
38804, has_tags, 17606
38804, has_tags, 22845
38804, written_by, 17606
Question: In what context are COLE PORTER, DAMIEN CHAZELLE, and LENA HEADEY connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"COLE PORTER",
"DAMIEN CHAZELLE",
"LENA HEADEY"
],
"valid_edges": [
[
"ABERDEEN",
"has_genre",
"DRAMA"
],
[
"ABERDEEN",
"release_year",
"2000"
],
[
"ABERDEEN",
"starred_actors",
"LENA HEADEY"
],
[
"DE-LOVELY",
"has_genre",
"MUSIC"
],
[
"DE-LOVELY",
"has_tags",
"COLE PORTER"
],
[
"GOSSIP",
"has_genre",
"DRAMA"
],
[
"GOSSIP",
"has_tags",
"GOSSIP"
],
[
"GOSSIP",
"release_year",
"2000"
],
[
"GOSSIP",
"starred_actors",
"LENA HEADEY"
],
[
"GUY AND MADELINE ON A PARK BENCH",
"directed_by",
"DAMIEN CHAZELLE"
],
[
"GUY AND MADELINE ON A PARK BENCH",
"has_genre",
"MUSICAL"
],
[
"GUY AND MADELINE ON A PARK BENCH",
"has_tags",
"DAMIEN CHAZELLE"
],
[
"GUY AND MADELINE ON A PARK BENCH",
"written_by",
"DAMIEN CHAZELLE"
],
[
"NIGHT AND DAY",
"has_genre",
"MUSICAL"
],
[
"NIGHT AND DAY",
"has_tags",
"COLE PORTER"
],
[
"WHIPLASH",
"directed_by",
"DAMIEN CHAZELLE"
],
[
"WHIPLASH",
"has_genre",
"DRAMA"
],
[
"WHIPLASH",
"has_genre",
"MUSIC"
],
[
"WHIPLASH",
"has_tags",
"DAMIEN CHAZELLE"
],
[
"WHIPLASH",
"has_tags",
"MUSIC"
],
[
"WHIPLASH",
"written_by",
"DAMIEN CHAZELLE"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
658, 2012
34699, CHRONICLE
10377, CIVIC DUTY
30806, IMAGINAERUM
17791, JEFF RENFROE
22063, MAX LANDIS
32395, STOBE HARJU
24811, THRILLER
src, edge_attr, dst
34699, has_genre, 24811
34699, release_year, 658
34699, written_by, 22063
10377, directed_by, 17791
10377, has_genre, 24811
30806, directed_by, 32395
30806, release_year, 658
30806, written_by, 32395
Question: How are JEFF RENFROE, MAX LANDIS, and STOBE HARJU related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"JEFF RENFROE",
"MAX LANDIS",
"STOBE HARJU"
],
"valid_edges": [
[
"CHRONICLE",
"has_genre",
"THRILLER"
],
[
"CHRONICLE",
"release_year",
"2012"
],
[
"CHRONICLE",
"written_by",
"MAX LANDIS"
],
[
"CIVIC DUTY",
"directed_by",
"JEFF RENFROE"
],
[
"CIVIC DUTY",
"has_genre",
"THRILLER"
],
[
"IMAGINAERUM",
"directed_by",
"STOBE HARJU"
],
[
"IMAGINAERUM",
"release_year",
"2012"
],
[
"IMAGINAERUM",
"written_by",
"STOBE HARJU"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
6718, A FAREWELL TO ARMS
32006, ARCH OF TRIUMPH
25805, DOCTOR ZHIVAGO
24981, FOR THE MOMENT
20693, GONE WITH THE WIND
234, PEARL HARBOR
8379, ROMANCE
22580, SUITE FRANÇAISE
11696, THE CUCKOO
36390, THE ENGLISH PATIENT
7831, THE SHEIK
32898, THIS ABOVE ALL
19813, VERBOTEN!
22214, WAR
src, edge_attr, dst
6718, has_genre, 8379
6718, has_genre, 22214
32006, has_genre, 8379
32006, has_genre, 22214
25805, has_genre, 8379
25805, has_genre, 22214
25805, has_tags, 22214
24981, has_genre, 8379
24981, has_genre, 22214
20693, has_genre, 8379
20693, has_genre, 22214
20693, has_tags, 8379
20693, has_tags, 22214
234, has_genre, 8379
234, has_tags, 8379
234, has_tags, 22214
22580, has_genre, 8379
22580, has_genre, 22214
11696, has_genre, 22214
36390, has_genre, 8379
36390, has_genre, 22214
36390, has_tags, 22214
7831, has_genre, 8379
32898, has_genre, 8379
32898, has_genre, 22214
19813, has_genre, 22214
Question: In what context are THE CUCKOO, THE SHEIK, and VERBOTEN! connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"THE CUCKOO",
"THE SHEIK",
"VERBOTEN!"
],
"valid_edges": [
[
"A FAREWELL TO ARMS",
"has_genre",
"ROMANCE"
],
[
"A FAREWELL TO ARMS",
"has_genre",
"WAR"
],
[
"ARCH OF TRIUMPH",
"has_genre",
"ROMANCE"
],
[
"ARCH OF TRIUMPH",
"has_genre",
"WAR"
],
[
"DOCTOR ZHIVAGO",
"has_genre",
"ROMANCE"
],
[
"DOCTOR ZHIVAGO",
"has_genre",
"WAR"
],
[
"DOCTOR ZHIVAGO",
"has_tags",
"WAR"
],
[
"FOR THE MOMENT",
"has_genre",
"ROMANCE"
],
[
"FOR THE MOMENT",
"has_genre",
"WAR"
],
[
"GONE WITH THE WIND",
"has_genre",
"ROMANCE"
],
[
"GONE WITH THE WIND",
"has_genre",
"WAR"
],
[
"GONE WITH THE WIND",
"has_tags",
"ROMANCE"
],
[
"GONE WITH THE WIND",
"has_tags",
"WAR"
],
[
"PEARL HARBOR",
"has_genre",
"ROMANCE"
],
[
"PEARL HARBOR",
"has_tags",
"ROMANCE"
],
[
"PEARL HARBOR",
"has_tags",
"WAR"
],
[
"SUITE FRANÇAISE",
"has_genre",
"ROMANCE"
],
[
"SUITE FRANÇAISE",
"has_genre",
"WAR"
],
[
"THE CUCKOO",
"has_genre",
"WAR"
],
[
"THE ENGLISH PATIENT",
"has_genre",
"ROMANCE"
],
[
"THE ENGLISH PATIENT",
"has_genre",
"WAR"
],
[
"THE ENGLISH PATIENT",
"has_tags",
"WAR"
],
[
"THE SHEIK",
"has_genre",
"ROMANCE"
],
[
"THIS ABOVE ALL",
"has_genre",
"ROMANCE"
],
[
"THIS ABOVE ALL",
"has_genre",
"WAR"
],
[
"VERBOTEN!",
"has_genre",
"WAR"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
30172, 1964
26257, 1994
4269, A HARD DAY'S NIGHT
17505, A LOW DOWN DIRTY SHAME
431, A MAN OF NO IMPORTANCE
36629, A MILLION TO JUAN
31850, A SHOT IN THE DARK
29838, A SIMPLE TWIST OF FATE
7687, ADVANCE TO THE REAR
8837, AIRHEADS
33883, ALL THESE WOMEN
27410, ANGELS IN THE OUTFIELD
24704, ANGIE
35639, BABY'S DAY OUT
1868, BARCELONA
37702, BEDTIME STORY
10890, BEVERLY HILLS COP III
29301, BLANK CHECK
24639, BLANKMAN
34157, BLINK
34318, CABIN BOY
22539, CAR 54, WHERE ARE YOU?
26883, CEMETERY MAN
16350, CHASERS
35468, CLEAN SLATE
35351, CLERKS
9387, CLIFFORD
30463, COMEDY
10092, CONTINENTAL DIVIDE
21391, CRACKERJACK
5277, CRITICAL CONDITION
25978, DEADLY ADVICE
19009, DEAR HEART
13424, DON'T DRINK THE WATER
3893, ED WOOD
26709, ERNEST GOES TO SCHOOL
20441, EXIT TO EDEN
22720, FATHER GOOSE
24028, FLOUNDERING
22371, FORREST GUMP
6215, FOUR WEDDINGS AND A FUNERAL
36927, FROM BEIJING WITH LOVE
19795, GET YOURSELF A COLLEGE GIRL
34775, GETTING EVEN WITH DAD
9142, GETTING IN
26124, GOOD NEIGHBOR SAM
12502, GOODBYE CHARLIE
5585, GREEDY
34489, GUARDING TESS
25670, HAIL CAESAR
20990, HOLY MATRIMONY
34412, I LIKE IT LIKE THAT
13163, I LOVE TROUBLE
18096, I.Q.
24832, IN THE ARMY NOW
14341, IT COULD HAPPEN TO YOU
39987, IT RUNS IN THE FAMILY
37202, IT'S PAT
29404, JUNIOR
14878, KABHI HAAN KABHI NAA
4285, KISS ME, STUPID
13469, KISSES FOR MY PRESIDENT
18648, LEPRECHAUN 2
19862, LIGHTNING JACK
16780, LITTLE GIANTS
5975, MAN'S FAVORITE SPORT?
25283, MAVERICK
35439, MICHAEL APTED
12620, MILK MONEY
12371, MIXED NUTS
24172, MO OGRODNIK
9817, MONKEY TROUBLE
25796, MURIEL'S WEDDING
28963, MY GIRL 2
10609, NELL
4398, NOBODY'S FOOL
32358, NORTH
36883, ONLY YOU
7364, PARIS WHEN IT SIZZLES
24732, PCU
11042, PRINCESS CARABOO
26174, PULP FICTION
22395, RADIOLAND MURDERS
26180, REALITY BITES
25577, RENAISSANCE MAN
14486, SANTA CLAUS CONQUERS THE MARTIANS
24232, SEND ME NO FLOWERS
24642, SERIAL MOM
7941, SEX AND THE SINGLE GIRL
1374, SLEEP WITH ME
6144, SPANKING THE MONKEY
7010, SPEECHLESS
35026, STAGGERED
20877, SWIMMING WITH SHARKS
2567, TAMMY AND THE T-REX
25270, THE ADVENTURES OF PRISCILLA, QUEEN OF THE DESERT
30090, THE AIR UP THERE
36790, THE AMERICANIZATION OF EMILY
4157, THE BEST MAN
13685, THE CHASE
22164, THE COWBOY WAY
39794, THE DISORDERLY ORDERLY
9215, THE FAVOR
17956, THE FLINTSTONES
10878, THE HUDSUCKER PROXY
38210, THE INKWELL
38550, THE LITTLE RASCALS
23802, THE MASK
29233, THE MONSTER
33982, THE PAPER
2732, THE PATSY
26061, THE REF
13917, THE ROAD TO WELLVILLE
17314, THE SANTA CLAUSE
36289, THE SCOUT
33905, THE SEARCH FOR ONE-EYE JIMMY
4767, THE SUM OF US
29878, THE WORLD OF HENRY ORIENT
16762, THREESOME
18195, TRAPPED IN PARADISE
12860, TRUE LIES
33767, TWIN SITTERS
35371, UPTOWN GIRLS
12130, WELCOME, OR NO TRESPASSING
37603, WHAT A WAY TO GO!
39623, WITH HONORS
src, edge_attr, dst
4269, has_genre, 30463
4269, has_tags, 30463
4269, release_year, 30172
17505, has_genre, 30463
17505, release_year, 26257
431, has_genre, 30463
431, release_year, 26257
36629, has_genre, 30463
36629, release_year, 26257
31850, has_genre, 30463
31850, release_year, 30172
29838, has_genre, 30463
29838, release_year, 26257
7687, has_genre, 30463
7687, release_year, 30172
8837, has_genre, 30463
8837, has_tags, 30463
8837, release_year, 26257
33883, has_genre, 30463
33883, release_year, 30172
27410, has_genre, 30463
27410, release_year, 26257
24704, has_genre, 30463
24704, release_year, 26257
35639, has_genre, 30463
35639, release_year, 26257
1868, has_genre, 30463
1868, release_year, 26257
37702, has_genre, 30463
37702, release_year, 30172
10890, has_genre, 30463
10890, has_tags, 30463
10890, release_year, 26257
29301, has_genre, 30463
29301, release_year, 26257
24639, has_genre, 30463
24639, release_year, 26257
34157, directed_by, 35439
34157, release_year, 26257
34318, has_genre, 30463
34318, release_year, 26257
22539, has_genre, 30463
22539, release_year, 26257
26883, has_genre, 30463
26883, release_year, 26257
16350, has_genre, 30463
16350, release_year, 26257
35468, has_genre, 30463
35468, release_year, 26257
35351, has_genre, 30463
35351, has_tags, 30463
35351, release_year, 26257
9387, has_genre, 30463
9387, release_year, 26257
10092, directed_by, 35439
10092, has_genre, 30463
21391, has_genre, 30463
21391, release_year, 26257
5277, directed_by, 35439
5277, has_genre, 30463
25978, has_genre, 30463
25978, release_year, 26257
19009, has_genre, 30463
19009, release_year, 30172
13424, has_genre, 30463
13424, release_year, 26257
3893, has_genre, 30463
3893, release_year, 26257
26709, has_genre, 30463
26709, release_year, 26257
20441, has_genre, 30463
20441, release_year, 26257
22720, has_genre, 30463
22720, has_tags, 30463
22720, release_year, 30172
24028, has_genre, 30463
24028, release_year, 26257
22371, has_tags, 30463
22371, release_year, 26257
6215, has_genre, 30463
6215, has_tags, 30463
6215, release_year, 26257
36927, has_genre, 30463
36927, release_year, 26257
19795, has_genre, 30463
19795, release_year, 30172
34775, has_genre, 30463
34775, release_year, 26257
9142, has_genre, 30463
9142, release_year, 26257
26124, has_genre, 30463
26124, release_year, 30172
12502, has_genre, 30463
12502, release_year, 30172
5585, has_genre, 30463
5585, release_year, 26257
34489, has_genre, 30463
34489, release_year, 26257
25670, has_genre, 30463
25670, release_year, 26257
20990, has_genre, 30463
20990, release_year, 26257
34412, has_genre, 30463
34412, release_year, 26257
13163, has_genre, 30463
13163, release_year, 26257
18096, has_genre, 30463
18096, release_year, 26257
24832, has_genre, 30463
24832, release_year, 26257
14341, has_genre, 30463
14341, has_tags, 30463
14341, release_year, 26257
39987, has_genre, 30463
39987, release_year, 26257
37202, has_genre, 30463
37202, release_year, 26257
29404, has_genre, 30463
29404, release_year, 26257
14878, has_genre, 30463
14878, release_year, 26257
4285, has_genre, 30463
4285, release_year, 30172
13469, has_genre, 30463
13469, release_year, 30172
18648, has_genre, 30463
18648, release_year, 26257
19862, has_genre, 30463
19862, release_year, 26257
16780, has_genre, 30463
16780, release_year, 26257
5975, has_genre, 30463
5975, release_year, 30172
25283, has_genre, 30463
25283, has_tags, 30463
25283, release_year, 26257
12620, has_genre, 30463
12620, release_year, 26257
12371, has_genre, 30463
12371, release_year, 26257
9817, has_genre, 30463
9817, release_year, 26257
25796, has_genre, 30463
25796, has_tags, 30463
25796, release_year, 26257
28963, has_genre, 30463
28963, release_year, 26257
10609, directed_by, 35439
10609, release_year, 26257
4398, has_genre, 30463
4398, release_year, 26257
32358, has_genre, 30463
32358, release_year, 26257
36883, has_genre, 30463
36883, release_year, 26257
7364, has_genre, 30463
7364, release_year, 30172
24732, has_genre, 30463
24732, release_year, 26257
11042, has_genre, 30463
11042, release_year, 26257
26174, has_tags, 30463
26174, release_year, 26257
22395, has_genre, 30463
22395, release_year, 26257
26180, has_genre, 30463
26180, release_year, 26257
25577, has_genre, 30463
25577, release_year, 26257
14486, has_genre, 30463
14486, release_year, 30172
24232, has_genre, 30463
24232, release_year, 30172
24642, has_genre, 30463
24642, has_tags, 30463
24642, release_year, 26257
7941, has_genre, 30463
7941, release_year, 30172
1374, has_genre, 30463
1374, release_year, 26257
6144, has_genre, 30463
6144, release_year, 26257
7010, has_genre, 30463
7010, release_year, 26257
35026, has_genre, 30463
35026, release_year, 26257
20877, has_genre, 30463
20877, release_year, 26257
2567, has_genre, 30463
2567, release_year, 26257
25270, has_genre, 30463
25270, release_year, 26257
30090, has_genre, 30463
30090, has_tags, 30463
30090, release_year, 26257
36790, has_genre, 30463
36790, release_year, 30172
4157, has_genre, 30463
4157, release_year, 30172
13685, has_genre, 30463
13685, release_year, 26257
22164, has_genre, 30463
22164, release_year, 26257
39794, has_genre, 30463
39794, release_year, 30172
9215, has_genre, 30463
9215, release_year, 26257
17956, has_genre, 30463
17956, has_tags, 30463
17956, release_year, 26257
10878, has_genre, 30463
10878, has_tags, 30463
10878, release_year, 26257
38210, has_genre, 30463
38210, release_year, 26257
38550, has_genre, 30463
38550, release_year, 26257
23802, has_genre, 30463
23802, has_tags, 30463
23802, release_year, 26257
29233, has_genre, 30463
29233, has_tags, 30463
29233, release_year, 26257
33982, has_genre, 30463
33982, release_year, 26257
2732, has_genre, 30463
2732, release_year, 30172
26061, has_genre, 30463
26061, has_tags, 30463
26061, release_year, 26257
13917, has_genre, 30463
13917, release_year, 26257
17314, has_genre, 30463
17314, release_year, 26257
36289, has_genre, 30463
36289, release_year, 26257
33905, has_genre, 30463
33905, release_year, 26257
4767, has_genre, 30463
4767, release_year, 26257
29878, has_genre, 30463
29878, has_tags, 30463
29878, release_year, 30172
16762, has_genre, 30463
16762, has_tags, 30463
16762, release_year, 26257
18195, has_genre, 30463
18195, release_year, 26257
12860, has_genre, 30463
12860, has_tags, 30463
12860, release_year, 26257
33767, has_genre, 30463
33767, release_year, 26257
35371, has_genre, 30463
35371, written_by, 24172
12130, has_genre, 30463
12130, release_year, 30172
37603, has_genre, 30463
37603, release_year, 30172
39623, has_genre, 30463
39623, release_year, 26257
Question: In what context are BLINK, MO OGRODNIK, and WELCOME, OR NO TRESPASSING connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"BLINK",
"MO OGRODNIK",
"WELCOME, OR NO TRESPASSING"
],
"valid_edges": [
[
"A HARD DAY'S NIGHT",
"has_genre",
"COMEDY"
],
[
"A HARD DAY'S NIGHT",
"has_tags",
"COMEDY"
],
[
"A HARD DAY'S NIGHT",
"release_year",
"1964"
],
[
"A LOW DOWN DIRTY SHAME",
"has_genre",
"COMEDY"
],
[
"A LOW DOWN DIRTY SHAME",
"release_year",
"1994"
],
[
"A MAN OF NO IMPORTANCE",
"has_genre",
"COMEDY"
],
[
"A MAN OF NO IMPORTANCE",
"release_year",
"1994"
],
[
"A MILLION TO JUAN",
"has_genre",
"COMEDY"
],
[
"A MILLION TO JUAN",
"release_year",
"1994"
],
[
"A SHOT IN THE DARK",
"has_genre",
"COMEDY"
],
[
"A SHOT IN THE DARK",
"release_year",
"1964"
],
[
"A SIMPLE TWIST OF FATE",
"has_genre",
"COMEDY"
],
[
"A SIMPLE TWIST OF FATE",
"release_year",
"1994"
],
[
"ADVANCE TO THE REAR",
"has_genre",
"COMEDY"
],
[
"ADVANCE TO THE REAR",
"release_year",
"1964"
],
[
"AIRHEADS",
"has_genre",
"COMEDY"
],
[
"AIRHEADS",
"has_tags",
"COMEDY"
],
[
"AIRHEADS",
"release_year",
"1994"
],
[
"ALL THESE WOMEN",
"has_genre",
"COMEDY"
],
[
"ALL THESE WOMEN",
"release_year",
"1964"
],
[
"ANGELS IN THE OUTFIELD",
"has_genre",
"COMEDY"
],
[
"ANGELS IN THE OUTFIELD",
"release_year",
"1994"
],
[
"ANGIE",
"has_genre",
"COMEDY"
],
[
"ANGIE",
"release_year",
"1994"
],
[
"BABY'S DAY OUT",
"has_genre",
"COMEDY"
],
[
"BABY'S DAY OUT",
"release_year",
"1994"
],
[
"BARCELONA",
"has_genre",
"COMEDY"
],
[
"BARCELONA",
"release_year",
"1994"
],
[
"BEDTIME STORY",
"has_genre",
"COMEDY"
],
[
"BEDTIME STORY",
"release_year",
"1964"
],
[
"BEVERLY HILLS COP III",
"has_genre",
"COMEDY"
],
[
"BEVERLY HILLS COP III",
"has_tags",
"COMEDY"
],
[
"BEVERLY HILLS COP III",
"release_year",
"1994"
],
[
"BLANK CHECK",
"has_genre",
"COMEDY"
],
[
"BLANK CHECK",
"release_year",
"1994"
],
[
"BLANKMAN",
"has_genre",
"COMEDY"
],
[
"BLANKMAN",
"release_year",
"1994"
],
[
"BLINK",
"directed_by",
"MICHAEL APTED"
],
[
"BLINK",
"release_year",
"1994"
],
[
"CABIN BOY",
"has_genre",
"COMEDY"
],
[
"CABIN BOY",
"release_year",
"1994"
],
[
"CAR 54, WHERE ARE YOU?",
"has_genre",
"COMEDY"
],
[
"CAR 54, WHERE ARE YOU?",
"release_year",
"1994"
],
[
"CEMETERY MAN",
"has_genre",
"COMEDY"
],
[
"CEMETERY MAN",
"release_year",
"1994"
],
[
"CHASERS",
"has_genre",
"COMEDY"
],
[
"CHASERS",
"release_year",
"1994"
],
[
"CLEAN SLATE",
"has_genre",
"COMEDY"
],
[
"CLEAN SLATE",
"release_year",
"1994"
],
[
"CLERKS",
"has_genre",
"COMEDY"
],
[
"CLERKS",
"has_tags",
"COMEDY"
],
[
"CLERKS",
"release_year",
"1994"
],
[
"CLIFFORD",
"has_genre",
"COMEDY"
],
[
"CLIFFORD",
"release_year",
"1994"
],
[
"CONTINENTAL DIVIDE",
"directed_by",
"MICHAEL APTED"
],
[
"CONTINENTAL DIVIDE",
"has_genre",
"COMEDY"
],
[
"CRACKERJACK",
"has_genre",
"COMEDY"
],
[
"CRACKERJACK",
"release_year",
"1994"
],
[
"CRITICAL CONDITION",
"directed_by",
"MICHAEL APTED"
],
[
"CRITICAL CONDITION",
"has_genre",
"COMEDY"
],
[
"DEADLY ADVICE",
"has_genre",
"COMEDY"
],
[
"DEADLY ADVICE",
"release_year",
"1994"
],
[
"DEAR HEART",
"has_genre",
"COMEDY"
],
[
"DEAR HEART",
"release_year",
"1964"
],
[
"DON'T DRINK THE WATER",
"has_genre",
"COMEDY"
],
[
"DON'T DRINK THE WATER",
"release_year",
"1994"
],
[
"ED WOOD",
"has_genre",
"COMEDY"
],
[
"ED WOOD",
"release_year",
"1994"
],
[
"ERNEST GOES TO SCHOOL",
"has_genre",
"COMEDY"
],
[
"ERNEST GOES TO SCHOOL",
"release_year",
"1994"
],
[
"EXIT TO EDEN",
"has_genre",
"COMEDY"
],
[
"EXIT TO EDEN",
"release_year",
"1994"
],
[
"FATHER GOOSE",
"has_genre",
"COMEDY"
],
[
"FATHER GOOSE",
"has_tags",
"COMEDY"
],
[
"FATHER GOOSE",
"release_year",
"1964"
],
[
"FLOUNDERING",
"has_genre",
"COMEDY"
],
[
"FLOUNDERING",
"release_year",
"1994"
],
[
"FORREST GUMP",
"has_tags",
"COMEDY"
],
[
"FORREST GUMP",
"release_year",
"1994"
],
[
"FOUR WEDDINGS AND A FUNERAL",
"has_genre",
"COMEDY"
],
[
"FOUR WEDDINGS AND A FUNERAL",
"has_tags",
"COMEDY"
],
[
"FOUR WEDDINGS AND A FUNERAL",
"release_year",
"1994"
],
[
"FROM BEIJING WITH LOVE",
"has_genre",
"COMEDY"
],
[
"FROM BEIJING WITH LOVE",
"release_year",
"1994"
],
[
"GET YOURSELF A COLLEGE GIRL",
"has_genre",
"COMEDY"
],
[
"GET YOURSELF A COLLEGE GIRL",
"release_year",
"1964"
],
[
"GETTING EVEN WITH DAD",
"has_genre",
"COMEDY"
],
[
"GETTING EVEN WITH DAD",
"release_year",
"1994"
],
[
"GETTING IN",
"has_genre",
"COMEDY"
],
[
"GETTING IN",
"release_year",
"1994"
],
[
"GOOD NEIGHBOR SAM",
"has_genre",
"COMEDY"
],
[
"GOOD NEIGHBOR SAM",
"release_year",
"1964"
],
[
"GOODBYE CHARLIE",
"has_genre",
"COMEDY"
],
[
"GOODBYE CHARLIE",
"release_year",
"1964"
],
[
"GREEDY",
"has_genre",
"COMEDY"
],
[
"GREEDY",
"release_year",
"1994"
],
[
"GUARDING TESS",
"has_genre",
"COMEDY"
],
[
"GUARDING TESS",
"release_year",
"1994"
],
[
"HAIL CAESAR",
"has_genre",
"COMEDY"
],
[
"HAIL CAESAR",
"release_year",
"1994"
],
[
"HOLY MATRIMONY",
"has_genre",
"COMEDY"
],
[
"HOLY MATRIMONY",
"release_year",
"1994"
],
[
"I LIKE IT LIKE THAT",
"has_genre",
"COMEDY"
],
[
"I LIKE IT LIKE THAT",
"release_year",
"1994"
],
[
"I LOVE TROUBLE",
"has_genre",
"COMEDY"
],
[
"I LOVE TROUBLE",
"release_year",
"1994"
],
[
"I.Q.",
"has_genre",
"COMEDY"
],
[
"I.Q.",
"release_year",
"1994"
],
[
"IN THE ARMY NOW",
"has_genre",
"COMEDY"
],
[
"IN THE ARMY NOW",
"release_year",
"1994"
],
[
"IT COULD HAPPEN TO YOU",
"has_genre",
"COMEDY"
],
[
"IT COULD HAPPEN TO YOU",
"has_tags",
"COMEDY"
],
[
"IT COULD HAPPEN TO YOU",
"release_year",
"1994"
],
[
"IT RUNS IN THE FAMILY",
"has_genre",
"COMEDY"
],
[
"IT RUNS IN THE FAMILY",
"release_year",
"1994"
],
[
"IT'S PAT",
"has_genre",
"COMEDY"
],
[
"IT'S PAT",
"release_year",
"1994"
],
[
"JUNIOR",
"has_genre",
"COMEDY"
],
[
"JUNIOR",
"release_year",
"1994"
],
[
"KABHI HAAN KABHI NAA",
"has_genre",
"COMEDY"
],
[
"KABHI HAAN KABHI NAA",
"release_year",
"1994"
],
[
"KISS ME, STUPID",
"has_genre",
"COMEDY"
],
[
"KISS ME, STUPID",
"release_year",
"1964"
],
[
"KISSES FOR MY PRESIDENT",
"has_genre",
"COMEDY"
],
[
"KISSES FOR MY PRESIDENT",
"release_year",
"1964"
],
[
"LEPRECHAUN 2",
"has_genre",
"COMEDY"
],
[
"LEPRECHAUN 2",
"release_year",
"1994"
],
[
"LIGHTNING JACK",
"has_genre",
"COMEDY"
],
[
"LIGHTNING JACK",
"release_year",
"1994"
],
[
"LITTLE GIANTS",
"has_genre",
"COMEDY"
],
[
"LITTLE GIANTS",
"release_year",
"1994"
],
[
"MAN'S FAVORITE SPORT?",
"has_genre",
"COMEDY"
],
[
"MAN'S FAVORITE SPORT?",
"release_year",
"1964"
],
[
"MAVERICK",
"has_genre",
"COMEDY"
],
[
"MAVERICK",
"has_tags",
"COMEDY"
],
[
"MAVERICK",
"release_year",
"1994"
],
[
"MILK MONEY",
"has_genre",
"COMEDY"
],
[
"MILK MONEY",
"release_year",
"1994"
],
[
"MIXED NUTS",
"has_genre",
"COMEDY"
],
[
"MIXED NUTS",
"release_year",
"1994"
],
[
"MONKEY TROUBLE",
"has_genre",
"COMEDY"
],
[
"MONKEY TROUBLE",
"release_year",
"1994"
],
[
"MURIEL'S WEDDING",
"has_genre",
"COMEDY"
],
[
"MURIEL'S WEDDING",
"has_tags",
"COMEDY"
],
[
"MURIEL'S WEDDING",
"release_year",
"1994"
],
[
"MY GIRL 2",
"has_genre",
"COMEDY"
],
[
"MY GIRL 2",
"release_year",
"1994"
],
[
"NELL",
"directed_by",
"MICHAEL APTED"
],
[
"NELL",
"release_year",
"1994"
],
[
"NOBODY'S FOOL",
"has_genre",
"COMEDY"
],
[
"NOBODY'S FOOL",
"release_year",
"1994"
],
[
"NORTH",
"has_genre",
"COMEDY"
],
[
"NORTH",
"release_year",
"1994"
],
[
"ONLY YOU",
"has_genre",
"COMEDY"
],
[
"ONLY YOU",
"release_year",
"1994"
],
[
"PARIS WHEN IT SIZZLES",
"has_genre",
"COMEDY"
],
[
"PARIS WHEN IT SIZZLES",
"release_year",
"1964"
],
[
"PCU",
"has_genre",
"COMEDY"
],
[
"PCU",
"release_year",
"1994"
],
[
"PRINCESS CARABOO",
"has_genre",
"COMEDY"
],
[
"PRINCESS CARABOO",
"release_year",
"1994"
],
[
"PULP FICTION",
"has_tags",
"COMEDY"
],
[
"PULP FICTION",
"release_year",
"1994"
],
[
"RADIOLAND MURDERS",
"has_genre",
"COMEDY"
],
[
"RADIOLAND MURDERS",
"release_year",
"1994"
],
[
"REALITY BITES",
"has_genre",
"COMEDY"
],
[
"REALITY BITES",
"release_year",
"1994"
],
[
"RENAISSANCE MAN",
"has_genre",
"COMEDY"
],
[
"RENAISSANCE MAN",
"release_year",
"1994"
],
[
"SANTA CLAUS CONQUERS THE MARTIANS",
"has_genre",
"COMEDY"
],
[
"SANTA CLAUS CONQUERS THE MARTIANS",
"release_year",
"1964"
],
[
"SEND ME NO FLOWERS",
"has_genre",
"COMEDY"
],
[
"SEND ME NO FLOWERS",
"release_year",
"1964"
],
[
"SERIAL MOM",
"has_genre",
"COMEDY"
],
[
"SERIAL MOM",
"has_tags",
"COMEDY"
],
[
"SERIAL MOM",
"release_year",
"1994"
],
[
"SEX AND THE SINGLE GIRL",
"has_genre",
"COMEDY"
],
[
"SEX AND THE SINGLE GIRL",
"release_year",
"1964"
],
[
"SLEEP WITH ME",
"has_genre",
"COMEDY"
],
[
"SLEEP WITH ME",
"release_year",
"1994"
],
[
"SPANKING THE MONKEY",
"has_genre",
"COMEDY"
],
[
"SPANKING THE MONKEY",
"release_year",
"1994"
],
[
"SPEECHLESS",
"has_genre",
"COMEDY"
],
[
"SPEECHLESS",
"release_year",
"1994"
],
[
"STAGGERED",
"has_genre",
"COMEDY"
],
[
"STAGGERED",
"release_year",
"1994"
],
[
"SWIMMING WITH SHARKS",
"has_genre",
"COMEDY"
],
[
"SWIMMING WITH SHARKS",
"release_year",
"1994"
],
[
"TAMMY AND THE T-REX",
"has_genre",
"COMEDY"
],
[
"TAMMY AND THE T-REX",
"release_year",
"1994"
],
[
"THE ADVENTURES OF PRISCILLA, QUEEN OF THE DESERT",
"has_genre",
"COMEDY"
],
[
"THE ADVENTURES OF PRISCILLA, QUEEN OF THE DESERT",
"release_year",
"1994"
],
[
"THE AIR UP THERE",
"has_genre",
"COMEDY"
],
[
"THE AIR UP THERE",
"has_tags",
"COMEDY"
],
[
"THE AIR UP THERE",
"release_year",
"1994"
],
[
"THE AMERICANIZATION OF EMILY",
"has_genre",
"COMEDY"
],
[
"THE AMERICANIZATION OF EMILY",
"release_year",
"1964"
],
[
"THE BEST MAN",
"has_genre",
"COMEDY"
],
[
"THE BEST MAN",
"release_year",
"1964"
],
[
"THE CHASE",
"has_genre",
"COMEDY"
],
[
"THE CHASE",
"release_year",
"1994"
],
[
"THE COWBOY WAY",
"has_genre",
"COMEDY"
],
[
"THE COWBOY WAY",
"release_year",
"1994"
],
[
"THE DISORDERLY ORDERLY",
"has_genre",
"COMEDY"
],
[
"THE DISORDERLY ORDERLY",
"release_year",
"1964"
],
[
"THE FAVOR",
"has_genre",
"COMEDY"
],
[
"THE FAVOR",
"release_year",
"1994"
],
[
"THE FLINTSTONES",
"has_genre",
"COMEDY"
],
[
"THE FLINTSTONES",
"has_tags",
"COMEDY"
],
[
"THE FLINTSTONES",
"release_year",
"1994"
],
[
"THE HUDSUCKER PROXY",
"has_genre",
"COMEDY"
],
[
"THE HUDSUCKER PROXY",
"has_tags",
"COMEDY"
],
[
"THE HUDSUCKER PROXY",
"release_year",
"1994"
],
[
"THE INKWELL",
"has_genre",
"COMEDY"
],
[
"THE INKWELL",
"release_year",
"1994"
],
[
"THE LITTLE RASCALS",
"has_genre",
"COMEDY"
],
[
"THE LITTLE RASCALS",
"release_year",
"1994"
],
[
"THE MASK",
"has_genre",
"COMEDY"
],
[
"THE MASK",
"has_tags",
"COMEDY"
],
[
"THE MASK",
"release_year",
"1994"
],
[
"THE MONSTER",
"has_genre",
"COMEDY"
],
[
"THE MONSTER",
"has_tags",
"COMEDY"
],
[
"THE MONSTER",
"release_year",
"1994"
],
[
"THE PAPER",
"has_genre",
"COMEDY"
],
[
"THE PAPER",
"release_year",
"1994"
],
[
"THE PATSY",
"has_genre",
"COMEDY"
],
[
"THE PATSY",
"release_year",
"1964"
],
[
"THE REF",
"has_genre",
"COMEDY"
],
[
"THE REF",
"has_tags",
"COMEDY"
],
[
"THE REF",
"release_year",
"1994"
],
[
"THE ROAD TO WELLVILLE",
"has_genre",
"COMEDY"
],
[
"THE ROAD TO WELLVILLE",
"release_year",
"1994"
],
[
"THE SANTA CLAUSE",
"has_genre",
"COMEDY"
],
[
"THE SANTA CLAUSE",
"release_year",
"1994"
],
[
"THE SCOUT",
"has_genre",
"COMEDY"
],
[
"THE SCOUT",
"release_year",
"1994"
],
[
"THE SEARCH FOR ONE-EYE JIMMY",
"has_genre",
"COMEDY"
],
[
"THE SEARCH FOR ONE-EYE JIMMY",
"release_year",
"1994"
],
[
"THE SUM OF US",
"has_genre",
"COMEDY"
],
[
"THE SUM OF US",
"release_year",
"1994"
],
[
"THE WORLD OF HENRY ORIENT",
"has_genre",
"COMEDY"
],
[
"THE WORLD OF HENRY ORIENT",
"has_tags",
"COMEDY"
],
[
"THE WORLD OF HENRY ORIENT",
"release_year",
"1964"
],
[
"THREESOME",
"has_genre",
"COMEDY"
],
[
"THREESOME",
"has_tags",
"COMEDY"
],
[
"THREESOME",
"release_year",
"1994"
],
[
"TRAPPED IN PARADISE",
"has_genre",
"COMEDY"
],
[
"TRAPPED IN PARADISE",
"release_year",
"1994"
],
[
"TRUE LIES",
"has_genre",
"COMEDY"
],
[
"TRUE LIES",
"has_tags",
"COMEDY"
],
[
"TRUE LIES",
"release_year",
"1994"
],
[
"TWIN SITTERS",
"has_genre",
"COMEDY"
],
[
"TWIN SITTERS",
"release_year",
"1994"
],
[
"UPTOWN GIRLS",
"has_genre",
"COMEDY"
],
[
"UPTOWN GIRLS",
"written_by",
"MO OGRODNIK"
],
[
"WELCOME, OR NO TRESPASSING",
"has_genre",
"COMEDY"
],
[
"WELCOME, OR NO TRESPASSING",
"release_year",
"1964"
],
[
"WHAT A WAY TO GO!",
"has_genre",
"COMEDY"
],
[
"WHAT A WAY TO GO!",
"release_year",
"1964"
],
[
"WITH HONORS",
"has_genre",
"COMEDY"
],
[
"WITH HONORS",
"release_year",
"1994"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
4210, A FINE MADNESS
30463, COMEDY
80, LABOR PAINS
33319, LARA SHAPIRO
24096, MARY WALSH
16645, NEW WATERFORD GIRL
36591, SEAN CONNERY
src, edge_attr, dst
4210, has_genre, 30463
4210, starred_actors, 36591
80, directed_by, 33319
80, has_genre, 30463
80, written_by, 33319
16645, has_genre, 30463
16645, starred_actors, 24096
Question: How are LARA SHAPIRO, MARY WALSH, and SEAN CONNERY related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"LARA SHAPIRO",
"MARY WALSH",
"SEAN CONNERY"
],
"valid_edges": [
[
"A FINE MADNESS",
"has_genre",
"COMEDY"
],
[
"A FINE MADNESS",
"starred_actors",
"SEAN CONNERY"
],
[
"LABOR PAINS",
"directed_by",
"LARA SHAPIRO"
],
[
"LABOR PAINS",
"has_genre",
"COMEDY"
],
[
"LABOR PAINS",
"written_by",
"LARA SHAPIRO"
],
[
"NEW WATERFORD GIRL",
"has_genre",
"COMEDY"
],
[
"NEW WATERFORD GIRL",
"starred_actors",
"MARY WALSH"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
38680, COMPULSION
952, HEATHER GRAHAM
14037, MARY
27490, PHILIPPE ARACTINGI
22652, SEBASTIAN SHAW
15966, THE SPY IN BLACK
24811, THRILLER
19779, UNDER THE BOMBS
22214, WAR
src, edge_attr, dst
38680, has_genre, 24811
38680, starred_actors, 952
14037, has_genre, 24811
14037, starred_actors, 952
15966, has_genre, 24811
15966, has_genre, 22214
15966, starred_actors, 22652
19779, directed_by, 27490
19779, has_genre, 22214
19779, written_by, 27490
Question: In what context are HEATHER GRAHAM, PHILIPPE ARACTINGI, and SEBASTIAN SHAW connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"HEATHER GRAHAM",
"PHILIPPE ARACTINGI",
"SEBASTIAN SHAW"
],
"valid_edges": [
[
"COMPULSION",
"has_genre",
"THRILLER"
],
[
"COMPULSION",
"starred_actors",
"HEATHER GRAHAM"
],
[
"MARY",
"has_genre",
"THRILLER"
],
[
"MARY",
"starred_actors",
"HEATHER GRAHAM"
],
[
"THE SPY IN BLACK",
"has_genre",
"THRILLER"
],
[
"THE SPY IN BLACK",
"has_genre",
"WAR"
],
[
"THE SPY IN BLACK",
"starred_actors",
"SEBASTIAN SHAW"
],
[
"UNDER THE BOMBS",
"directed_by",
"PHILIPPE ARACTINGI"
],
[
"UNDER THE BOMBS",
"has_genre",
"WAR"
],
[
"UNDER THE BOMBS",
"written_by",
"PHILIPPE ARACTINGI"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
7034, CAN'T HELP SINGING
30615, CHRIS SANDERS
3461, IN OLD OKLAHOMA
10422, MARTHA SCOTT
23695, MULAN
24593, MUSICAL
35406, ROBERT PAIGE
36026, WESTERN
src, edge_attr, dst
7034, has_genre, 24593
7034, has_genre, 36026
7034, starred_actors, 35406
3461, has_genre, 36026
3461, starred_actors, 10422
23695, has_tags, 24593
23695, written_by, 30615
Question: How are CHRIS SANDERS, MARTHA SCOTT, and ROBERT PAIGE related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"CHRIS SANDERS",
"MARTHA SCOTT",
"ROBERT PAIGE"
],
"valid_edges": [
[
"CAN'T HELP SINGING",
"has_genre",
"MUSICAL"
],
[
"CAN'T HELP SINGING",
"has_genre",
"WESTERN"
],
[
"CAN'T HELP SINGING",
"starred_actors",
"ROBERT PAIGE"
],
[
"IN OLD OKLAHOMA",
"has_genre",
"WESTERN"
],
[
"IN OLD OKLAHOMA",
"starred_actors",
"MARTHA SCOTT"
],
[
"MULAN",
"has_tags",
"MUSICAL"
],
[
"MULAN",
"written_by",
"CHRIS SANDERS"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
20854, ALBERT BEICH
10045, BD-R
34664, BLOOD FROM THE MUMMY'S TOMB
29300, DEAD RINGER
21801, ROB EPSTEIN
9266, THE TIMES OF HARVEY MILK
12899, VALERIE LEON
src, edge_attr, dst
34664, has_tags, 10045
34664, starred_actors, 12899
29300, has_tags, 10045
29300, written_by, 20854
9266, directed_by, 21801
9266, has_tags, 10045
9266, has_tags, 21801
Question: For what reason are ALBERT BEICH, ROB EPSTEIN, and VALERIE LEON associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"ALBERT BEICH",
"ROB EPSTEIN",
"VALERIE LEON"
],
"valid_edges": [
[
"BLOOD FROM THE MUMMY'S TOMB",
"has_tags",
"BD-R"
],
[
"BLOOD FROM THE MUMMY'S TOMB",
"starred_actors",
"VALERIE LEON"
],
[
"DEAD RINGER",
"has_tags",
"BD-R"
],
[
"DEAD RINGER",
"written_by",
"ALBERT BEICH"
],
[
"THE TIMES OF HARVEY MILK",
"directed_by",
"ROB EPSTEIN"
],
[
"THE TIMES OF HARVEY MILK",
"has_tags",
"BD-R"
],
[
"THE TIMES OF HARVEY MILK",
"has_tags",
"ROB EPSTEIN"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
25221, 1981
24818, 1992
9005, 3 NINJAS
30146, A CHRISTMAS CAROL
16150, A CHRISTMAS STORY
9698, A CHRISTMAS TALE
31344, A LEAGUE OF THEIR OWN
10158, A PRINCESS FOR CHRISTMAS
28540, AN AMERICAN CAROL
26858, ARMY OF DARKNESS
14159, ARTHUR CHRISTMAS
34109, BAD SANTA
14271, BEETHOVEN
9127, BIG GIRLS DON'T CRY... THEY GET EVEN
32193, BLAME IT ON THE BELLBOY
14984, BLOW OUT
19829, BOOMERANG
8606, BRAIN DONORS
8065, BRIAN DE PALMA
23319, BUFFY THE VAMPIRE SLAYER
33773, BÉBÉ'S KIDS
10877, CAPTAIN RON
17280, CHRISTMAS
32407, CHRISTMAS IN CONNECTICUT
24598, CHRISTMAS WITH THE KRANKS
15721, CIAO, PROFESSORE!
12356, CLASS ACT
30463, COMEDY
11807, CRITTERS 4
27380, DEATH BECOMES HER
38345, DECK THE HALLS
771, DRESSED TO KILL
9505, ELF
9457, ENCINO MAN
29258, ERNEST SAVES CHRISTMAS
31630, EVIL TOONS
5636, FOLKS!
22005, FOUR CHRISTMASES
32553, FROZEN ASSETS
34177, GREMLINS
3829, HERO
18278, HOLIDAY IN HANDCUFFS
30886, HOME ALONE
18546, HONEYMOON IN VEGAS
25277, HUSBANDS AND WIVES
26137, I WANNA HOLD YOUR HAND
32168, ILLUSIVE TRACKS
4419, IN THE SOUP
19868, JACK FROST
4798, JINGLE ALL THE WAY
11719, JUST FRIENDS
25510, KING OF BEGGARS
13704, KUFFS
18950, LADYBUGS
191, LEAVING NORMAL
24500, LITTLE SISTER
3591, LIVE NUDE GIRLS
13672, LOVE ACTUALLY
19507, MAKE THE YULETIDE GAY
8268, MALEDETTO IL GIORNO CHE T'HO INCONTRATO
10560, MAN BITES DOG
24068, MAN TROUBLE
4561, MEMOIRS OF AN INVISIBLE MAN
34536, MISTRESS
12371, MIXED NUTS
39399, MO' MONEY
17135, MOM AND DAD SAVE THE WORLD
815, MR. BASEBALL
21919, MY COUSIN VINNY
2581, MY NEW GUN
27242, NANCY ALLEN
14917, OUT ON A LIMB
16910, PARENTI SERPENTI
25678, PETER'S FRIENDS
23220, REMEMBER THE NIGHT
4524, SANTA WITH MUSCLES
21320, SANTA'S SLAY
4187, SCROOGED
21512, SHERLOCK HOLMES
3358, SINGLES
8652, SISTER ACT
17370, STAY TUNED
2033, STOP! OR MY MOM WILL SHOOT
22993, STRAIGHT TALK
1432, STRICTLY BALLROOM
36928, THE BIKINI CARWASH COMPANY
13869, THE DISTINGUISHED GENTLEMAN
28948, THE FAMILY STONE
21831, THE GUN IN BETTY LOU'S HANDBAG
26955, THE HOLIDAY
24724, THE MIGHTY DUCKS
26128, THE MUPPET CHRISTMAS CAROL
24035, THE NORTHERNERS
28470, THE PERFECT HOLIDAY
10859, THE PREACHER'S WIFE
17314, THE SANTA CLAUSE
16918, THIS CHRISTMAS
24811, THRILLER
22911, TO GRANDMOTHER'S HOUSE WE GO
2281, TOYS
7279, TWIN DRAGONS
10376, USED PEOPLE
38839, WAYNE'S WORLD
22241, WE'RE NO ANGELS
20751, WHITE MEN CAN'T JUMP
src, edge_attr, dst
25221, has_genre, 30463
9005, has_genre, 30463
9005, release_year, 24818
30146, has_genre, 30463
30146, has_tags, 17280
16150, has_genre, 30463
16150, has_tags, 17280
9698, has_genre, 30463
9698, has_tags, 17280
31344, has_genre, 30463
31344, release_year, 24818
10158, has_genre, 30463
10158, has_tags, 17280
28540, has_genre, 30463
28540, has_tags, 17280
26858, has_genre, 30463
26858, has_tags, 30463
26858, release_year, 24818
14159, has_genre, 30463
14159, has_tags, 17280
34109, has_genre, 30463
34109, has_tags, 17280
14271, has_genre, 30463
14271, has_tags, 30463
14271, release_year, 24818
9127, has_genre, 30463
9127, release_year, 24818
32193, has_genre, 30463
32193, release_year, 24818
14984, directed_by, 8065
14984, has_genre, 24811
14984, has_tags, 8065
14984, release_year, 25221
14984, starred_actors, 27242
14984, written_by, 8065
19829, has_genre, 30463
19829, release_year, 24818
8606, has_genre, 30463
8606, release_year, 24818
23319, has_genre, 30463
23319, has_tags, 30463
23319, release_year, 24818
33773, has_genre, 30463
33773, release_year, 24818
10877, has_genre, 30463
10877, has_tags, 30463
10877, release_year, 24818
32407, has_genre, 30463
32407, has_tags, 17280
24598, has_genre, 30463
24598, has_tags, 17280
15721, has_genre, 30463
15721, release_year, 24818
12356, has_genre, 30463
12356, release_year, 24818
11807, has_genre, 30463
11807, release_year, 24818
27380, has_genre, 30463
27380, release_year, 24818
38345, has_genre, 30463
38345, has_tags, 17280
771, directed_by, 8065
771, has_genre, 24811
771, has_tags, 8065
771, has_tags, 21512
771, starred_actors, 27242
771, written_by, 8065
9505, has_genre, 30463
9505, has_tags, 17280
9505, has_tags, 30463
9457, has_genre, 30463
9457, release_year, 24818
29258, has_genre, 30463
29258, has_tags, 17280
31630, has_genre, 30463
31630, release_year, 24818
5636, has_genre, 30463
5636, release_year, 24818
22005, has_genre, 30463
22005, has_tags, 17280
32553, has_genre, 30463
32553, release_year, 24818
34177, has_genre, 30463
34177, has_tags, 17280
3829, has_genre, 30463
3829, release_year, 24818
18278, has_genre, 30463
18278, has_tags, 17280
30886, has_genre, 30463
30886, has_tags, 17280
30886, has_tags, 30463
18546, has_genre, 30463
18546, release_year, 24818
25277, has_genre, 30463
25277, release_year, 24818
26137, has_genre, 30463
26137, starred_actors, 27242
32168, has_genre, 30463
32168, has_tags, 17280
4419, has_genre, 30463
4419, release_year, 24818
19868, has_genre, 30463
19868, has_tags, 17280
4798, has_genre, 30463
4798, has_tags, 17280
11719, has_genre, 30463
11719, has_tags, 17280
25510, has_genre, 30463
25510, release_year, 24818
13704, has_genre, 30463
13704, release_year, 24818
18950, has_genre, 30463
18950, release_year, 24818
191, has_genre, 30463
191, release_year, 24818
24500, has_genre, 30463
24500, release_year, 24818
3591, has_genre, 30463
13672, has_genre, 30463
13672, has_tags, 17280
13672, has_tags, 30463
19507, has_genre, 30463
19507, has_tags, 17280
8268, has_genre, 30463
8268, release_year, 24818
10560, has_genre, 30463
10560, release_year, 24818
24068, has_genre, 30463
24068, release_year, 24818
4561, has_genre, 30463
4561, release_year, 24818
34536, has_genre, 30463
34536, release_year, 24818
12371, has_genre, 30463
12371, has_tags, 17280
39399, has_genre, 30463
39399, release_year, 24818
17135, has_genre, 30463
17135, release_year, 24818
815, has_genre, 30463
815, release_year, 24818
21919, has_genre, 30463
21919, has_tags, 30463
21919, release_year, 24818
2581, has_genre, 30463
2581, release_year, 24818
14917, has_genre, 30463
14917, release_year, 24818
16910, has_genre, 30463
16910, release_year, 24818
25678, has_genre, 30463
25678, release_year, 24818
23220, has_genre, 30463
23220, has_tags, 17280
4524, has_genre, 30463
4524, has_tags, 17280
21320, has_genre, 30463
21320, has_tags, 17280
4187, has_genre, 30463
4187, has_tags, 17280
4187, has_tags, 30463
21512, has_tags, 30463
3358, has_genre, 30463
3358, release_year, 24818
8652, has_genre, 30463
8652, release_year, 24818
17370, has_genre, 30463
17370, release_year, 24818
2033, has_genre, 30463
2033, has_tags, 30463
2033, release_year, 24818
22993, has_genre, 30463
22993, release_year, 24818
1432, has_genre, 30463
1432, release_year, 24818
36928, has_genre, 30463
36928, release_year, 24818
13869, has_genre, 30463
13869, release_year, 24818
28948, has_genre, 30463
28948, has_tags, 17280
28948, has_tags, 30463
21831, has_genre, 30463
21831, release_year, 24818
26955, has_genre, 30463
26955, has_tags, 17280
24724, has_genre, 30463
24724, release_year, 24818
26128, has_genre, 30463
26128, has_tags, 17280
26128, release_year, 24818
24035, has_genre, 30463
24035, release_year, 24818
28470, has_genre, 30463
28470, has_tags, 17280
10859, has_genre, 30463
10859, has_tags, 17280
17314, has_genre, 30463
17314, has_tags, 17280
16918, has_genre, 30463
16918, has_tags, 17280
22911, has_tags, 17280
22911, release_year, 24818
2281, has_genre, 30463
2281, release_year, 24818
7279, has_genre, 30463
7279, release_year, 24818
10376, has_genre, 30463
10376, release_year, 24818
38839, has_genre, 30463
38839, has_tags, 30463
38839, release_year, 24818
22241, has_genre, 30463
22241, has_tags, 17280
22241, has_tags, 30463
20751, has_genre, 30463
20751, has_tags, 30463
20751, release_year, 24818
Question: In what context are LIVE NUDE GIRLS, NANCY ALLEN, and TO GRANDMOTHER'S HOUSE WE GO connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"LIVE NUDE GIRLS",
"NANCY ALLEN",
"TO GRANDMOTHER'S HOUSE WE GO"
],
"valid_edges": [
[
"1981",
"has_genre",
"COMEDY"
],
[
"3 NINJAS",
"has_genre",
"COMEDY"
],
[
"3 NINJAS",
"release_year",
"1992"
],
[
"A CHRISTMAS CAROL",
"has_genre",
"COMEDY"
],
[
"A CHRISTMAS CAROL",
"has_tags",
"CHRISTMAS"
],
[
"A CHRISTMAS STORY",
"has_genre",
"COMEDY"
],
[
"A CHRISTMAS STORY",
"has_tags",
"CHRISTMAS"
],
[
"A CHRISTMAS TALE",
"has_genre",
"COMEDY"
],
[
"A CHRISTMAS TALE",
"has_tags",
"CHRISTMAS"
],
[
"A LEAGUE OF THEIR OWN",
"has_genre",
"COMEDY"
],
[
"A LEAGUE OF THEIR OWN",
"release_year",
"1992"
],
[
"A PRINCESS FOR CHRISTMAS",
"has_genre",
"COMEDY"
],
[
"A PRINCESS FOR CHRISTMAS",
"has_tags",
"CHRISTMAS"
],
[
"AN AMERICAN CAROL",
"has_genre",
"COMEDY"
],
[
"AN AMERICAN CAROL",
"has_tags",
"CHRISTMAS"
],
[
"ARMY OF DARKNESS",
"has_genre",
"COMEDY"
],
[
"ARMY OF DARKNESS",
"has_tags",
"COMEDY"
],
[
"ARMY OF DARKNESS",
"release_year",
"1992"
],
[
"ARTHUR CHRISTMAS",
"has_genre",
"COMEDY"
],
[
"ARTHUR CHRISTMAS",
"has_tags",
"CHRISTMAS"
],
[
"BAD SANTA",
"has_genre",
"COMEDY"
],
[
"BAD SANTA",
"has_tags",
"CHRISTMAS"
],
[
"BEETHOVEN",
"has_genre",
"COMEDY"
],
[
"BEETHOVEN",
"has_tags",
"COMEDY"
],
[
"BEETHOVEN",
"release_year",
"1992"
],
[
"BIG GIRLS DON'T CRY... THEY GET EVEN",
"has_genre",
"COMEDY"
],
[
"BIG GIRLS DON'T CRY... THEY GET EVEN",
"release_year",
"1992"
],
[
"BLAME IT ON THE BELLBOY",
"has_genre",
"COMEDY"
],
[
"BLAME IT ON THE BELLBOY",
"release_year",
"1992"
],
[
"BLOW OUT",
"directed_by",
"BRIAN DE PALMA"
],
[
"BLOW OUT",
"has_genre",
"THRILLER"
],
[
"BLOW OUT",
"has_tags",
"BRIAN DE PALMA"
],
[
"BLOW OUT",
"release_year",
"1981"
],
[
"BLOW OUT",
"starred_actors",
"NANCY ALLEN"
],
[
"BLOW OUT",
"written_by",
"BRIAN DE PALMA"
],
[
"BOOMERANG",
"has_genre",
"COMEDY"
],
[
"BOOMERANG",
"release_year",
"1992"
],
[
"BRAIN DONORS",
"has_genre",
"COMEDY"
],
[
"BRAIN DONORS",
"release_year",
"1992"
],
[
"BUFFY THE VAMPIRE SLAYER",
"has_genre",
"COMEDY"
],
[
"BUFFY THE VAMPIRE SLAYER",
"has_tags",
"COMEDY"
],
[
"BUFFY THE VAMPIRE SLAYER",
"release_year",
"1992"
],
[
"BÉBÉ'S KIDS",
"has_genre",
"COMEDY"
],
[
"BÉBÉ'S KIDS",
"release_year",
"1992"
],
[
"CAPTAIN RON",
"has_genre",
"COMEDY"
],
[
"CAPTAIN RON",
"has_tags",
"COMEDY"
],
[
"CAPTAIN RON",
"release_year",
"1992"
],
[
"CHRISTMAS IN CONNECTICUT",
"has_genre",
"COMEDY"
],
[
"CHRISTMAS IN CONNECTICUT",
"has_tags",
"CHRISTMAS"
],
[
"CHRISTMAS WITH THE KRANKS",
"has_genre",
"COMEDY"
],
[
"CHRISTMAS WITH THE KRANKS",
"has_tags",
"CHRISTMAS"
],
[
"CIAO, PROFESSORE!",
"has_genre",
"COMEDY"
],
[
"CIAO, PROFESSORE!",
"release_year",
"1992"
],
[
"CLASS ACT",
"has_genre",
"COMEDY"
],
[
"CLASS ACT",
"release_year",
"1992"
],
[
"CRITTERS 4",
"has_genre",
"COMEDY"
],
[
"CRITTERS 4",
"release_year",
"1992"
],
[
"DEATH BECOMES HER",
"has_genre",
"COMEDY"
],
[
"DEATH BECOMES HER",
"release_year",
"1992"
],
[
"DECK THE HALLS",
"has_genre",
"COMEDY"
],
[
"DECK THE HALLS",
"has_tags",
"CHRISTMAS"
],
[
"DRESSED TO KILL",
"directed_by",
"BRIAN DE PALMA"
],
[
"DRESSED TO KILL",
"has_genre",
"THRILLER"
],
[
"DRESSED TO KILL",
"has_tags",
"BRIAN DE PALMA"
],
[
"DRESSED TO KILL",
"has_tags",
"SHERLOCK HOLMES"
],
[
"DRESSED TO KILL",
"starred_actors",
"NANCY ALLEN"
],
[
"DRESSED TO KILL",
"written_by",
"BRIAN DE PALMA"
],
[
"ELF",
"has_genre",
"COMEDY"
],
[
"ELF",
"has_tags",
"CHRISTMAS"
],
[
"ELF",
"has_tags",
"COMEDY"
],
[
"ENCINO MAN",
"has_genre",
"COMEDY"
],
[
"ENCINO MAN",
"release_year",
"1992"
],
[
"ERNEST SAVES CHRISTMAS",
"has_genre",
"COMEDY"
],
[
"ERNEST SAVES CHRISTMAS",
"has_tags",
"CHRISTMAS"
],
[
"EVIL TOONS",
"has_genre",
"COMEDY"
],
[
"EVIL TOONS",
"release_year",
"1992"
],
[
"FOLKS!",
"has_genre",
"COMEDY"
],
[
"FOLKS!",
"release_year",
"1992"
],
[
"FOUR CHRISTMASES",
"has_genre",
"COMEDY"
],
[
"FOUR CHRISTMASES",
"has_tags",
"CHRISTMAS"
],
[
"FROZEN ASSETS",
"has_genre",
"COMEDY"
],
[
"FROZEN ASSETS",
"release_year",
"1992"
],
[
"GREMLINS",
"has_genre",
"COMEDY"
],
[
"GREMLINS",
"has_tags",
"CHRISTMAS"
],
[
"HERO",
"has_genre",
"COMEDY"
],
[
"HERO",
"release_year",
"1992"
],
[
"HOLIDAY IN HANDCUFFS",
"has_genre",
"COMEDY"
],
[
"HOLIDAY IN HANDCUFFS",
"has_tags",
"CHRISTMAS"
],
[
"HOME ALONE",
"has_genre",
"COMEDY"
],
[
"HOME ALONE",
"has_tags",
"CHRISTMAS"
],
[
"HOME ALONE",
"has_tags",
"COMEDY"
],
[
"HONEYMOON IN VEGAS",
"has_genre",
"COMEDY"
],
[
"HONEYMOON IN VEGAS",
"release_year",
"1992"
],
[
"HUSBANDS AND WIVES",
"has_genre",
"COMEDY"
],
[
"HUSBANDS AND WIVES",
"release_year",
"1992"
],
[
"I WANNA HOLD YOUR HAND",
"has_genre",
"COMEDY"
],
[
"I WANNA HOLD YOUR HAND",
"starred_actors",
"NANCY ALLEN"
],
[
"ILLUSIVE TRACKS",
"has_genre",
"COMEDY"
],
[
"ILLUSIVE TRACKS",
"has_tags",
"CHRISTMAS"
],
[
"IN THE SOUP",
"has_genre",
"COMEDY"
],
[
"IN THE SOUP",
"release_year",
"1992"
],
[
"JACK FROST",
"has_genre",
"COMEDY"
],
[
"JACK FROST",
"has_tags",
"CHRISTMAS"
],
[
"JINGLE ALL THE WAY",
"has_genre",
"COMEDY"
],
[
"JINGLE ALL THE WAY",
"has_tags",
"CHRISTMAS"
],
[
"JUST FRIENDS",
"has_genre",
"COMEDY"
],
[
"JUST FRIENDS",
"has_tags",
"CHRISTMAS"
],
[
"KING OF BEGGARS",
"has_genre",
"COMEDY"
],
[
"KING OF BEGGARS",
"release_year",
"1992"
],
[
"KUFFS",
"has_genre",
"COMEDY"
],
[
"KUFFS",
"release_year",
"1992"
],
[
"LADYBUGS",
"has_genre",
"COMEDY"
],
[
"LADYBUGS",
"release_year",
"1992"
],
[
"LEAVING NORMAL",
"has_genre",
"COMEDY"
],
[
"LEAVING NORMAL",
"release_year",
"1992"
],
[
"LITTLE SISTER",
"has_genre",
"COMEDY"
],
[
"LITTLE SISTER",
"release_year",
"1992"
],
[
"LIVE NUDE GIRLS",
"has_genre",
"COMEDY"
],
[
"LOVE ACTUALLY",
"has_genre",
"COMEDY"
],
[
"LOVE ACTUALLY",
"has_tags",
"CHRISTMAS"
],
[
"LOVE ACTUALLY",
"has_tags",
"COMEDY"
],
[
"MAKE THE YULETIDE GAY",
"has_genre",
"COMEDY"
],
[
"MAKE THE YULETIDE GAY",
"has_tags",
"CHRISTMAS"
],
[
"MALEDETTO IL GIORNO CHE T'HO INCONTRATO",
"has_genre",
"COMEDY"
],
[
"MALEDETTO IL GIORNO CHE T'HO INCONTRATO",
"release_year",
"1992"
],
[
"MAN BITES DOG",
"has_genre",
"COMEDY"
],
[
"MAN BITES DOG",
"release_year",
"1992"
],
[
"MAN TROUBLE",
"has_genre",
"COMEDY"
],
[
"MAN TROUBLE",
"release_year",
"1992"
],
[
"MEMOIRS OF AN INVISIBLE MAN",
"has_genre",
"COMEDY"
],
[
"MEMOIRS OF AN INVISIBLE MAN",
"release_year",
"1992"
],
[
"MISTRESS",
"has_genre",
"COMEDY"
],
[
"MISTRESS",
"release_year",
"1992"
],
[
"MIXED NUTS",
"has_genre",
"COMEDY"
],
[
"MIXED NUTS",
"has_tags",
"CHRISTMAS"
],
[
"MO' MONEY",
"has_genre",
"COMEDY"
],
[
"MO' MONEY",
"release_year",
"1992"
],
[
"MOM AND DAD SAVE THE WORLD",
"has_genre",
"COMEDY"
],
[
"MOM AND DAD SAVE THE WORLD",
"release_year",
"1992"
],
[
"MR. BASEBALL",
"has_genre",
"COMEDY"
],
[
"MR. BASEBALL",
"release_year",
"1992"
],
[
"MY COUSIN VINNY",
"has_genre",
"COMEDY"
],
[
"MY COUSIN VINNY",
"has_tags",
"COMEDY"
],
[
"MY COUSIN VINNY",
"release_year",
"1992"
],
[
"MY NEW GUN",
"has_genre",
"COMEDY"
],
[
"MY NEW GUN",
"release_year",
"1992"
],
[
"OUT ON A LIMB",
"has_genre",
"COMEDY"
],
[
"OUT ON A LIMB",
"release_year",
"1992"
],
[
"PARENTI SERPENTI",
"has_genre",
"COMEDY"
],
[
"PARENTI SERPENTI",
"release_year",
"1992"
],
[
"PETER'S FRIENDS",
"has_genre",
"COMEDY"
],
[
"PETER'S FRIENDS",
"release_year",
"1992"
],
[
"REMEMBER THE NIGHT",
"has_genre",
"COMEDY"
],
[
"REMEMBER THE NIGHT",
"has_tags",
"CHRISTMAS"
],
[
"SANTA WITH MUSCLES",
"has_genre",
"COMEDY"
],
[
"SANTA WITH MUSCLES",
"has_tags",
"CHRISTMAS"
],
[
"SANTA'S SLAY",
"has_genre",
"COMEDY"
],
[
"SANTA'S SLAY",
"has_tags",
"CHRISTMAS"
],
[
"SCROOGED",
"has_genre",
"COMEDY"
],
[
"SCROOGED",
"has_tags",
"CHRISTMAS"
],
[
"SCROOGED",
"has_tags",
"COMEDY"
],
[
"SHERLOCK HOLMES",
"has_tags",
"COMEDY"
],
[
"SINGLES",
"has_genre",
"COMEDY"
],
[
"SINGLES",
"release_year",
"1992"
],
[
"SISTER ACT",
"has_genre",
"COMEDY"
],
[
"SISTER ACT",
"release_year",
"1992"
],
[
"STAY TUNED",
"has_genre",
"COMEDY"
],
[
"STAY TUNED",
"release_year",
"1992"
],
[
"STOP! OR MY MOM WILL SHOOT",
"has_genre",
"COMEDY"
],
[
"STOP! OR MY MOM WILL SHOOT",
"has_tags",
"COMEDY"
],
[
"STOP! OR MY MOM WILL SHOOT",
"release_year",
"1992"
],
[
"STRAIGHT TALK",
"has_genre",
"COMEDY"
],
[
"STRAIGHT TALK",
"release_year",
"1992"
],
[
"STRICTLY BALLROOM",
"has_genre",
"COMEDY"
],
[
"STRICTLY BALLROOM",
"release_year",
"1992"
],
[
"THE BIKINI CARWASH COMPANY",
"has_genre",
"COMEDY"
],
[
"THE BIKINI CARWASH COMPANY",
"release_year",
"1992"
],
[
"THE DISTINGUISHED GENTLEMAN",
"has_genre",
"COMEDY"
],
[
"THE DISTINGUISHED GENTLEMAN",
"release_year",
"1992"
],
[
"THE FAMILY STONE",
"has_genre",
"COMEDY"
],
[
"THE FAMILY STONE",
"has_tags",
"CHRISTMAS"
],
[
"THE FAMILY STONE",
"has_tags",
"COMEDY"
],
[
"THE GUN IN BETTY LOU'S HANDBAG",
"has_genre",
"COMEDY"
],
[
"THE GUN IN BETTY LOU'S HANDBAG",
"release_year",
"1992"
],
[
"THE HOLIDAY",
"has_genre",
"COMEDY"
],
[
"THE HOLIDAY",
"has_tags",
"CHRISTMAS"
],
[
"THE MIGHTY DUCKS",
"has_genre",
"COMEDY"
],
[
"THE MIGHTY DUCKS",
"release_year",
"1992"
],
[
"THE MUPPET CHRISTMAS CAROL",
"has_genre",
"COMEDY"
],
[
"THE MUPPET CHRISTMAS CAROL",
"has_tags",
"CHRISTMAS"
],
[
"THE MUPPET CHRISTMAS CAROL",
"release_year",
"1992"
],
[
"THE NORTHERNERS",
"has_genre",
"COMEDY"
],
[
"THE NORTHERNERS",
"release_year",
"1992"
],
[
"THE PERFECT HOLIDAY",
"has_genre",
"COMEDY"
],
[
"THE PERFECT HOLIDAY",
"has_tags",
"CHRISTMAS"
],
[
"THE PREACHER'S WIFE",
"has_genre",
"COMEDY"
],
[
"THE PREACHER'S WIFE",
"has_tags",
"CHRISTMAS"
],
[
"THE SANTA CLAUSE",
"has_genre",
"COMEDY"
],
[
"THE SANTA CLAUSE",
"has_tags",
"CHRISTMAS"
],
[
"THIS CHRISTMAS",
"has_genre",
"COMEDY"
],
[
"THIS CHRISTMAS",
"has_tags",
"CHRISTMAS"
],
[
"TO GRANDMOTHER'S HOUSE WE GO",
"has_tags",
"CHRISTMAS"
],
[
"TO GRANDMOTHER'S HOUSE WE GO",
"release_year",
"1992"
],
[
"TOYS",
"has_genre",
"COMEDY"
],
[
"TOYS",
"release_year",
"1992"
],
[
"TWIN DRAGONS",
"has_genre",
"COMEDY"
],
[
"TWIN DRAGONS",
"release_year",
"1992"
],
[
"USED PEOPLE",
"has_genre",
"COMEDY"
],
[
"USED PEOPLE",
"release_year",
"1992"
],
[
"WAYNE'S WORLD",
"has_genre",
"COMEDY"
],
[
"WAYNE'S WORLD",
"has_tags",
"COMEDY"
],
[
"WAYNE'S WORLD",
"release_year",
"1992"
],
[
"WE'RE NO ANGELS",
"has_genre",
"COMEDY"
],
[
"WE'RE NO ANGELS",
"has_tags",
"CHRISTMAS"
],
[
"WE'RE NO ANGELS",
"has_tags",
"COMEDY"
],
[
"WHITE MEN CAN'T JUMP",
"has_genre",
"COMEDY"
],
[
"WHITE MEN CAN'T JUMP",
"has_tags",
"COMEDY"
],
[
"WHITE MEN CAN'T JUMP",
"release_year",
"1992"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
15271, ARIA
3957, BLUTZBRÜDAZ
33088, CARMEN
19500, FIRST SNOW
6480, GERMAN
7930, GUY PEARCE
1292, HEDWIG AND THE ANGRY INCH
18279, METROPOLIS
22845, MUSIC
21918, SIMON MACCORKINDALE
10522, TAKING SIDES
25270, THE ADVENTURES OF PRISCILLA, QUEEN OF THE DESERT
34277, THE APPLE
25230, THE RIDDLE OF THE SANDS
37901, THE SOUND OF MUSIC
src, edge_attr, dst
15271, has_genre, 22845
15271, in_language, 6480
3957, has_genre, 22845
3957, in_language, 6480
33088, has_genre, 22845
33088, in_language, 6480
19500, starred_actors, 7930
1292, has_genre, 22845
1292, has_tags, 22845
1292, in_language, 6480
18279, has_tags, 22845
18279, in_language, 6480
10522, has_genre, 22845
10522, in_language, 6480
25270, has_genre, 22845
25270, has_tags, 7930
25270, starred_actors, 7930
34277, has_genre, 22845
34277, has_tags, 22845
34277, in_language, 6480
25230, in_language, 6480
25230, starred_actors, 21918
37901, has_tags, 22845
37901, in_language, 6480
Question: For what reason are BLUTZBRÜDAZ, FIRST SNOW, and SIMON MACCORKINDALE associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"BLUTZBRÜDAZ",
"FIRST SNOW",
"SIMON MACCORKINDALE"
],
"valid_edges": [
[
"ARIA",
"has_genre",
"MUSIC"
],
[
"ARIA",
"in_language",
"GERMAN"
],
[
"BLUTZBRÜDAZ",
"has_genre",
"MUSIC"
],
[
"BLUTZBRÜDAZ",
"in_language",
"GERMAN"
],
[
"CARMEN",
"has_genre",
"MUSIC"
],
[
"CARMEN",
"in_language",
"GERMAN"
],
[
"FIRST SNOW",
"starred_actors",
"GUY PEARCE"
],
[
"HEDWIG AND THE ANGRY INCH",
"has_genre",
"MUSIC"
],
[
"HEDWIG AND THE ANGRY INCH",
"has_tags",
"MUSIC"
],
[
"HEDWIG AND THE ANGRY INCH",
"in_language",
"GERMAN"
],
[
"METROPOLIS",
"has_tags",
"MUSIC"
],
[
"METROPOLIS",
"in_language",
"GERMAN"
],
[
"TAKING SIDES",
"has_genre",
"MUSIC"
],
[
"TAKING SIDES",
"in_language",
"GERMAN"
],
[
"THE ADVENTURES OF PRISCILLA, QUEEN OF THE DESERT",
"has_genre",
"MUSIC"
],
[
"THE ADVENTURES OF PRISCILLA, QUEEN OF THE DESERT",
"has_tags",
"GUY PEARCE"
],
[
"THE ADVENTURES OF PRISCILLA, QUEEN OF THE DESERT",
"starred_actors",
"GUY PEARCE"
],
[
"THE APPLE",
"has_genre",
"MUSIC"
],
[
"THE APPLE",
"has_tags",
"MUSIC"
],
[
"THE APPLE",
"in_language",
"GERMAN"
],
[
"THE RIDDLE OF THE SANDS",
"in_language",
"GERMAN"
],
[
"THE RIDDLE OF THE SANDS",
"starred_actors",
"SIMON MACCORKINDALE"
],
[
"THE SOUND OF MUSIC",
"has_tags",
"MUSIC"
],
[
"THE SOUND OF MUSIC",
"in_language",
"GERMAN"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
4177, 2 DAYS IN PARIS
13747, 25 WATTS
31344, A LEAGUE OF THEIR OWN
37090, A LITTLE HELP
20033, ANGEL
28344, ANGUS
16052, ANNE OF THE THOUSAND DAYS
5593, BABY BOY
23952, BANDITS
27714, BARNEY'S VERSION
13418, BARTLEBY
28846, BEGINNERS
31957, BOY
17892, CAMOUFLAGE
18996, CEMETERY JUNCTION
13257, CHARLIE BARTLETT
13901, CHARLIE WILSON'S WAR
10349, CHICAGO
30463, COMEDY
23734, COUPE DE VILLE
656, CRUSH
16600, CYRUS
22663, DAN IN REAL LIFE
22667, DAYS OF DARKNESS
1915, DIL CHAHTA HAI
3172, DIRTY GIRL
36212, DRAMA
25651, DUMMY
14240, EVERYTHING MUST GO
15188, EXPIRED
2969, FATHER OF INVENTION
34555, FLAWLESS
24880, FLIPPED
6915, FOCUS
3079, FREEDOM WRITERS
5287, FROZEN
2155, GEORGIA RULE
12664, GHOST WORLD
27638, GREENBERG
19912, GRIFF THE INVISIBLE
33701, HAPPYTHANKYOUMOREPLEASE
21060, HARVARD MAN
1292, HEDWIG AND THE ANGRY INCH
3829, HERO
19039, HESHER
38901, HIGH HEELS AND LOW LIFES
37827, HIGH SCHOOL
4931, HOW DO YOU KNOW
35625, HUMAN NATURE
25277, HUSBANDS AND WIVES
34856, I THINK I LOVE MY WIFE
9359, IMELDA STAUNTON
21788, IT'S KIND OF A FUNNY STORY
23526, JACKPOT
12610, JOE SOMEBODY
37372, JUNO
4619, KING OF CALIFORNIA
7699, KINGDOM COME
37238, KNOCKED UP
39069, LARS AND THE REAL GIRL
191, LEAVING NORMAL
9452, LIFE AS WE KNOW IT
29734, LITTLE SECRETS
16814, LITTLE WHITE LIES
33238, MARTIAN CHILD
33714, MEAN MACHINE
22924, MEET MONICA VELOUR
2990, MERMAID
18214, MISTER LONELY
34536, MISTRESS
16662, MORNING GLORY
24616, MOSTLY MARTHA
9519, NO RESERVATIONS
33677, NOISE
32186, ONE MAN UP
28044, PAULINE AND PAULETTE
11129, PEEP WORLD
25678, PETER'S FRIENDS
31652, PRETTY IN PINK
28182, RARE BIRDS
18177, REIGN OVER ME
38381, ROCK STAR
15095, ROCKET SCIENCE
12153, RUSHMORE
22312, SAY ANYTHING...
26699, SHORT CUTS
37133, SOMEWHERE
2407, SON OF THE BRIDE
19971, SPIN
7949, STORYTELLING
1432, STRICTLY BALLROOM
25002, STRUCK BY LIGHTNING
30733, SUBMARINE
25865, SUBURBIA
27762, SWEET NOVEMBER
17992, SWING VOTE
34308, TEACHERS
15795, THE ANNIVERSARY PARTY
17931, THE BREAKFAST CLUB
25674, THE BROTHERS
13582, THE BUCKET LIST
32654, THE CHOSEN ONE
8512, THE DUKES
36722, THE FOUR-FACED LIAR
2507, THE KIDS ARE ALL RIGHT
28107, THE LAST KISS
25623, THE MATRIARCH
1345, THE NANNY DIARIES
20728, THE ROYAL TENENBAUMS
27067, THEN SHE FOUND ME
16918, THIS CHRISTMAS
1903, TINY FURNITURE
35988, TORTILLA SOUP
11987, TRUST
26275, TRUST ME
9436, VIVA
35443, VIZONTELE
4460, WAITRESS
33258, WEST IS WEST
29999, WHY DID I GET MARRIED TOO?
6287, WHY DID I GET MARRIED?
1287, WILDER NAPALM
29421, YEAR OF THE DOG
6279, YOU WILL MEET A TALL DARK STRANGER
src, edge_attr, dst
4177, has_genre, 30463
4177, has_genre, 36212
13747, has_genre, 30463
13747, has_genre, 36212
31344, has_genre, 30463
31344, has_genre, 36212
31344, has_tags, 36212
37090, has_genre, 30463
37090, has_genre, 36212
20033, has_genre, 30463
20033, has_genre, 36212
28344, has_genre, 30463
28344, has_genre, 36212
16052, has_genre, 36212
5593, has_genre, 30463
5593, has_genre, 36212
23952, has_genre, 30463
23952, has_genre, 36212
27714, has_genre, 30463
27714, has_genre, 36212
13418, has_genre, 30463
13418, has_genre, 36212
28846, has_genre, 30463
28846, has_genre, 36212
28846, has_tags, 36212
31957, has_genre, 30463
31957, has_genre, 36212
17892, has_genre, 30463
17892, has_genre, 36212
18996, has_genre, 30463
18996, has_genre, 36212
18996, has_tags, 30463
13257, has_genre, 30463
13257, has_genre, 36212
13901, has_genre, 30463
13901, has_genre, 36212
10349, has_genre, 30463
10349, has_genre, 36212
23734, has_genre, 30463
23734, has_genre, 36212
656, has_genre, 36212
656, starred_actors, 9359
16600, has_genre, 30463
16600, has_genre, 36212
22663, has_genre, 30463
22663, has_genre, 36212
22667, has_genre, 30463
22667, has_genre, 36212
1915, has_genre, 30463
1915, has_genre, 36212
1915, has_tags, 30463
3172, has_genre, 30463
3172, has_genre, 36212
25651, has_genre, 30463
25651, has_genre, 36212
14240, has_genre, 30463
14240, has_genre, 36212
15188, has_genre, 30463
15188, has_genre, 36212
2969, has_genre, 30463
2969, has_genre, 36212
34555, has_genre, 30463
34555, has_genre, 36212
24880, has_genre, 30463
24880, has_genre, 36212
6915, has_genre, 30463
6915, has_genre, 36212
3079, has_genre, 36212
3079, has_tags, 37827
3079, starred_actors, 9359
3079, written_by, 3079
5287, has_genre, 30463
5287, has_genre, 36212
2155, has_genre, 30463
2155, has_genre, 36212
12664, has_genre, 30463
12664, has_genre, 36212
27638, has_genre, 30463
27638, has_genre, 36212
19912, has_genre, 30463
19912, has_genre, 36212
33701, has_genre, 30463
33701, has_genre, 36212
21060, has_genre, 30463
21060, has_genre, 36212
1292, has_genre, 30463
1292, has_genre, 36212
3829, has_genre, 30463
3829, has_genre, 36212
19039, has_genre, 30463
19039, has_genre, 36212
38901, has_genre, 30463
38901, has_genre, 36212
37827, has_genre, 30463
4931, has_genre, 30463
4931, has_genre, 36212
35625, has_genre, 30463
35625, has_genre, 36212
25277, has_genre, 30463
25277, has_genre, 36212
34856, has_genre, 30463
34856, has_genre, 36212
21788, has_genre, 30463
21788, has_genre, 36212
23526, has_genre, 30463
23526, has_genre, 36212
12610, has_genre, 30463
12610, has_genre, 36212
37372, has_genre, 30463
37372, has_genre, 36212
37372, has_tags, 30463
4619, has_genre, 30463
4619, has_genre, 36212
7699, has_genre, 30463
7699, has_genre, 36212
37238, has_genre, 30463
37238, has_genre, 36212
39069, has_genre, 30463
39069, has_genre, 36212
191, has_genre, 30463
191, has_genre, 36212
9452, has_genre, 30463
9452, has_genre, 36212
9452, has_tags, 30463
9452, has_tags, 36212
29734, has_genre, 30463
29734, has_genre, 36212
16814, has_genre, 30463
16814, has_genre, 36212
33238, has_genre, 30463
33238, has_genre, 36212
33714, has_genre, 30463
33714, has_genre, 36212
22924, has_genre, 30463
22924, has_genre, 36212
2990, has_genre, 30463
2990, has_genre, 36212
18214, has_genre, 30463
18214, has_genre, 36212
34536, has_genre, 30463
34536, has_genre, 36212
16662, has_genre, 30463
16662, has_genre, 36212
24616, has_genre, 30463
24616, has_genre, 36212
9519, has_genre, 30463
9519, has_genre, 36212
33677, has_genre, 30463
33677, has_genre, 36212
33677, has_tags, 30463
32186, has_genre, 30463
32186, has_genre, 36212
28044, has_genre, 30463
28044, has_genre, 36212
11129, has_genre, 30463
11129, has_genre, 36212
25678, has_genre, 30463
25678, has_genre, 36212
31652, has_genre, 30463
31652, has_genre, 36212
31652, has_tags, 30463
28182, has_genre, 30463
28182, has_genre, 36212
18177, has_genre, 36212
18177, has_tags, 30463
18177, has_tags, 36212
38381, has_genre, 30463
38381, has_genre, 36212
15095, has_genre, 30463
15095, has_genre, 36212
12153, has_genre, 30463
12153, has_genre, 36212
12153, has_tags, 30463
22312, has_genre, 30463
22312, has_genre, 36212
26699, has_genre, 30463
26699, has_genre, 36212
37133, has_genre, 30463
37133, has_genre, 36212
2407, has_genre, 30463
2407, has_genre, 36212
19971, has_genre, 30463
19971, has_genre, 36212
7949, has_genre, 30463
7949, has_genre, 36212
1432, has_genre, 30463
1432, has_genre, 36212
25002, has_genre, 30463
25002, has_genre, 36212
30733, has_genre, 30463
30733, has_genre, 36212
25865, has_genre, 30463
25865, has_genre, 36212
27762, has_genre, 30463
27762, has_genre, 36212
17992, has_genre, 30463
17992, has_genre, 36212
34308, has_genre, 30463
34308, has_genre, 36212
15795, has_genre, 30463
15795, has_genre, 36212
17931, has_genre, 30463
17931, has_genre, 36212
17931, has_tags, 30463
17931, has_tags, 36212
25674, has_genre, 30463
25674, has_genre, 36212
13582, has_genre, 30463
13582, has_genre, 36212
32654, has_genre, 30463
32654, has_genre, 36212
8512, has_genre, 30463
8512, has_genre, 36212
36722, has_genre, 30463
36722, has_genre, 36212
2507, has_genre, 30463
2507, has_genre, 36212
2507, has_tags, 30463
2507, has_tags, 36212
28107, has_genre, 30463
28107, has_genre, 36212
25623, has_genre, 30463
25623, has_genre, 36212
25623, has_tags, 36212
1345, has_genre, 30463
1345, has_genre, 36212
20728, has_genre, 30463
20728, has_genre, 36212
20728, has_tags, 30463
27067, has_genre, 30463
27067, has_genre, 36212
16918, has_genre, 30463
16918, has_genre, 36212
1903, has_genre, 30463
1903, has_genre, 36212
35988, has_genre, 30463
35988, has_genre, 36212
11987, has_genre, 30463
11987, has_genre, 36212
26275, has_genre, 30463
26275, has_genre, 36212
9436, has_genre, 30463
9436, has_genre, 36212
35443, has_genre, 30463
35443, has_genre, 36212
35443, has_tags, 30463
4460, has_genre, 30463
4460, has_genre, 36212
33258, has_genre, 30463
33258, has_genre, 36212
29999, has_genre, 30463
29999, has_genre, 36212
6287, has_genre, 30463
6287, has_genre, 36212
1287, has_genre, 30463
29421, has_genre, 30463
29421, has_genre, 36212
6279, has_genre, 30463
6279, has_genre, 36212
6279, has_tags, 30463
6279, has_tags, 36212
Question: In what context are ANNE OF THE THOUSAND DAYS, IMELDA STAUNTON, and WILDER NAPALM connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"ANNE OF THE THOUSAND DAYS",
"IMELDA STAUNTON",
"WILDER NAPALM"
],
"valid_edges": [
[
"2 DAYS IN PARIS",
"has_genre",
"COMEDY"
],
[
"2 DAYS IN PARIS",
"has_genre",
"DRAMA"
],
[
"25 WATTS",
"has_genre",
"COMEDY"
],
[
"25 WATTS",
"has_genre",
"DRAMA"
],
[
"A LEAGUE OF THEIR OWN",
"has_genre",
"COMEDY"
],
[
"A LEAGUE OF THEIR OWN",
"has_genre",
"DRAMA"
],
[
"A LEAGUE OF THEIR OWN",
"has_tags",
"DRAMA"
],
[
"A LITTLE HELP",
"has_genre",
"COMEDY"
],
[
"A LITTLE HELP",
"has_genre",
"DRAMA"
],
[
"ANGEL",
"has_genre",
"COMEDY"
],
[
"ANGEL",
"has_genre",
"DRAMA"
],
[
"ANGUS",
"has_genre",
"COMEDY"
],
[
"ANGUS",
"has_genre",
"DRAMA"
],
[
"ANNE OF THE THOUSAND DAYS",
"has_genre",
"DRAMA"
],
[
"BABY BOY",
"has_genre",
"COMEDY"
],
[
"BABY BOY",
"has_genre",
"DRAMA"
],
[
"BANDITS",
"has_genre",
"COMEDY"
],
[
"BANDITS",
"has_genre",
"DRAMA"
],
[
"BARNEY'S VERSION",
"has_genre",
"COMEDY"
],
[
"BARNEY'S VERSION",
"has_genre",
"DRAMA"
],
[
"BARTLEBY",
"has_genre",
"COMEDY"
],
[
"BARTLEBY",
"has_genre",
"DRAMA"
],
[
"BEGINNERS",
"has_genre",
"COMEDY"
],
[
"BEGINNERS",
"has_genre",
"DRAMA"
],
[
"BEGINNERS",
"has_tags",
"DRAMA"
],
[
"BOY",
"has_genre",
"COMEDY"
],
[
"BOY",
"has_genre",
"DRAMA"
],
[
"CAMOUFLAGE",
"has_genre",
"COMEDY"
],
[
"CAMOUFLAGE",
"has_genre",
"DRAMA"
],
[
"CEMETERY JUNCTION",
"has_genre",
"COMEDY"
],
[
"CEMETERY JUNCTION",
"has_genre",
"DRAMA"
],
[
"CEMETERY JUNCTION",
"has_tags",
"COMEDY"
],
[
"CHARLIE BARTLETT",
"has_genre",
"COMEDY"
],
[
"CHARLIE BARTLETT",
"has_genre",
"DRAMA"
],
[
"CHARLIE WILSON'S WAR",
"has_genre",
"COMEDY"
],
[
"CHARLIE WILSON'S WAR",
"has_genre",
"DRAMA"
],
[
"CHICAGO",
"has_genre",
"COMEDY"
],
[
"CHICAGO",
"has_genre",
"DRAMA"
],
[
"COUPE DE VILLE",
"has_genre",
"COMEDY"
],
[
"COUPE DE VILLE",
"has_genre",
"DRAMA"
],
[
"CRUSH",
"has_genre",
"DRAMA"
],
[
"CRUSH",
"starred_actors",
"IMELDA STAUNTON"
],
[
"CYRUS",
"has_genre",
"COMEDY"
],
[
"CYRUS",
"has_genre",
"DRAMA"
],
[
"DAN IN REAL LIFE",
"has_genre",
"COMEDY"
],
[
"DAN IN REAL LIFE",
"has_genre",
"DRAMA"
],
[
"DAYS OF DARKNESS",
"has_genre",
"COMEDY"
],
[
"DAYS OF DARKNESS",
"has_genre",
"DRAMA"
],
[
"DIL CHAHTA HAI",
"has_genre",
"COMEDY"
],
[
"DIL CHAHTA HAI",
"has_genre",
"DRAMA"
],
[
"DIL CHAHTA HAI",
"has_tags",
"COMEDY"
],
[
"DIRTY GIRL",
"has_genre",
"COMEDY"
],
[
"DIRTY GIRL",
"has_genre",
"DRAMA"
],
[
"DUMMY",
"has_genre",
"COMEDY"
],
[
"DUMMY",
"has_genre",
"DRAMA"
],
[
"EVERYTHING MUST GO",
"has_genre",
"COMEDY"
],
[
"EVERYTHING MUST GO",
"has_genre",
"DRAMA"
],
[
"EXPIRED",
"has_genre",
"COMEDY"
],
[
"EXPIRED",
"has_genre",
"DRAMA"
],
[
"FATHER OF INVENTION",
"has_genre",
"COMEDY"
],
[
"FATHER OF INVENTION",
"has_genre",
"DRAMA"
],
[
"FLAWLESS",
"has_genre",
"COMEDY"
],
[
"FLAWLESS",
"has_genre",
"DRAMA"
],
[
"FLIPPED",
"has_genre",
"COMEDY"
],
[
"FLIPPED",
"has_genre",
"DRAMA"
],
[
"FOCUS",
"has_genre",
"COMEDY"
],
[
"FOCUS",
"has_genre",
"DRAMA"
],
[
"FREEDOM WRITERS",
"has_genre",
"DRAMA"
],
[
"FREEDOM WRITERS",
"has_tags",
"HIGH SCHOOL"
],
[
"FREEDOM WRITERS",
"starred_actors",
"IMELDA STAUNTON"
],
[
"FREEDOM WRITERS",
"written_by",
"FREEDOM WRITERS"
],
[
"FROZEN",
"has_genre",
"COMEDY"
],
[
"FROZEN",
"has_genre",
"DRAMA"
],
[
"GEORGIA RULE",
"has_genre",
"COMEDY"
],
[
"GEORGIA RULE",
"has_genre",
"DRAMA"
],
[
"GHOST WORLD",
"has_genre",
"COMEDY"
],
[
"GHOST WORLD",
"has_genre",
"DRAMA"
],
[
"GREENBERG",
"has_genre",
"COMEDY"
],
[
"GREENBERG",
"has_genre",
"DRAMA"
],
[
"GRIFF THE INVISIBLE",
"has_genre",
"COMEDY"
],
[
"GRIFF THE INVISIBLE",
"has_genre",
"DRAMA"
],
[
"HAPPYTHANKYOUMOREPLEASE",
"has_genre",
"COMEDY"
],
[
"HAPPYTHANKYOUMOREPLEASE",
"has_genre",
"DRAMA"
],
[
"HARVARD MAN",
"has_genre",
"COMEDY"
],
[
"HARVARD MAN",
"has_genre",
"DRAMA"
],
[
"HEDWIG AND THE ANGRY INCH",
"has_genre",
"COMEDY"
],
[
"HEDWIG AND THE ANGRY INCH",
"has_genre",
"DRAMA"
],
[
"HERO",
"has_genre",
"COMEDY"
],
[
"HERO",
"has_genre",
"DRAMA"
],
[
"HESHER",
"has_genre",
"COMEDY"
],
[
"HESHER",
"has_genre",
"DRAMA"
],
[
"HIGH HEELS AND LOW LIFES",
"has_genre",
"COMEDY"
],
[
"HIGH HEELS AND LOW LIFES",
"has_genre",
"DRAMA"
],
[
"HIGH SCHOOL",
"has_genre",
"COMEDY"
],
[
"HOW DO YOU KNOW",
"has_genre",
"COMEDY"
],
[
"HOW DO YOU KNOW",
"has_genre",
"DRAMA"
],
[
"HUMAN NATURE",
"has_genre",
"COMEDY"
],
[
"HUMAN NATURE",
"has_genre",
"DRAMA"
],
[
"HUSBANDS AND WIVES",
"has_genre",
"COMEDY"
],
[
"HUSBANDS AND WIVES",
"has_genre",
"DRAMA"
],
[
"I THINK I LOVE MY WIFE",
"has_genre",
"COMEDY"
],
[
"I THINK I LOVE MY WIFE",
"has_genre",
"DRAMA"
],
[
"IT'S KIND OF A FUNNY STORY",
"has_genre",
"COMEDY"
],
[
"IT'S KIND OF A FUNNY STORY",
"has_genre",
"DRAMA"
],
[
"JACKPOT",
"has_genre",
"COMEDY"
],
[
"JACKPOT",
"has_genre",
"DRAMA"
],
[
"JOE SOMEBODY",
"has_genre",
"COMEDY"
],
[
"JOE SOMEBODY",
"has_genre",
"DRAMA"
],
[
"JUNO",
"has_genre",
"COMEDY"
],
[
"JUNO",
"has_genre",
"DRAMA"
],
[
"JUNO",
"has_tags",
"COMEDY"
],
[
"KING OF CALIFORNIA",
"has_genre",
"COMEDY"
],
[
"KING OF CALIFORNIA",
"has_genre",
"DRAMA"
],
[
"KINGDOM COME",
"has_genre",
"COMEDY"
],
[
"KINGDOM COME",
"has_genre",
"DRAMA"
],
[
"KNOCKED UP",
"has_genre",
"COMEDY"
],
[
"KNOCKED UP",
"has_genre",
"DRAMA"
],
[
"LARS AND THE REAL GIRL",
"has_genre",
"COMEDY"
],
[
"LARS AND THE REAL GIRL",
"has_genre",
"DRAMA"
],
[
"LEAVING NORMAL",
"has_genre",
"COMEDY"
],
[
"LEAVING NORMAL",
"has_genre",
"DRAMA"
],
[
"LIFE AS WE KNOW IT",
"has_genre",
"COMEDY"
],
[
"LIFE AS WE KNOW IT",
"has_genre",
"DRAMA"
],
[
"LIFE AS WE KNOW IT",
"has_tags",
"COMEDY"
],
[
"LIFE AS WE KNOW IT",
"has_tags",
"DRAMA"
],
[
"LITTLE SECRETS",
"has_genre",
"COMEDY"
],
[
"LITTLE SECRETS",
"has_genre",
"DRAMA"
],
[
"LITTLE WHITE LIES",
"has_genre",
"COMEDY"
],
[
"LITTLE WHITE LIES",
"has_genre",
"DRAMA"
],
[
"MARTIAN CHILD",
"has_genre",
"COMEDY"
],
[
"MARTIAN CHILD",
"has_genre",
"DRAMA"
],
[
"MEAN MACHINE",
"has_genre",
"COMEDY"
],
[
"MEAN MACHINE",
"has_genre",
"DRAMA"
],
[
"MEET MONICA VELOUR",
"has_genre",
"COMEDY"
],
[
"MEET MONICA VELOUR",
"has_genre",
"DRAMA"
],
[
"MERMAID",
"has_genre",
"COMEDY"
],
[
"MERMAID",
"has_genre",
"DRAMA"
],
[
"MISTER LONELY",
"has_genre",
"COMEDY"
],
[
"MISTER LONELY",
"has_genre",
"DRAMA"
],
[
"MISTRESS",
"has_genre",
"COMEDY"
],
[
"MISTRESS",
"has_genre",
"DRAMA"
],
[
"MORNING GLORY",
"has_genre",
"COMEDY"
],
[
"MORNING GLORY",
"has_genre",
"DRAMA"
],
[
"MOSTLY MARTHA",
"has_genre",
"COMEDY"
],
[
"MOSTLY MARTHA",
"has_genre",
"DRAMA"
],
[
"NO RESERVATIONS",
"has_genre",
"COMEDY"
],
[
"NO RESERVATIONS",
"has_genre",
"DRAMA"
],
[
"NOISE",
"has_genre",
"COMEDY"
],
[
"NOISE",
"has_genre",
"DRAMA"
],
[
"NOISE",
"has_tags",
"COMEDY"
],
[
"ONE MAN UP",
"has_genre",
"COMEDY"
],
[
"ONE MAN UP",
"has_genre",
"DRAMA"
],
[
"PAULINE AND PAULETTE",
"has_genre",
"COMEDY"
],
[
"PAULINE AND PAULETTE",
"has_genre",
"DRAMA"
],
[
"PEEP WORLD",
"has_genre",
"COMEDY"
],
[
"PEEP WORLD",
"has_genre",
"DRAMA"
],
[
"PETER'S FRIENDS",
"has_genre",
"COMEDY"
],
[
"PETER'S FRIENDS",
"has_genre",
"DRAMA"
],
[
"PRETTY IN PINK",
"has_genre",
"COMEDY"
],
[
"PRETTY IN PINK",
"has_genre",
"DRAMA"
],
[
"PRETTY IN PINK",
"has_tags",
"COMEDY"
],
[
"RARE BIRDS",
"has_genre",
"COMEDY"
],
[
"RARE BIRDS",
"has_genre",
"DRAMA"
],
[
"REIGN OVER ME",
"has_genre",
"DRAMA"
],
[
"REIGN OVER ME",
"has_tags",
"COMEDY"
],
[
"REIGN OVER ME",
"has_tags",
"DRAMA"
],
[
"ROCK STAR",
"has_genre",
"COMEDY"
],
[
"ROCK STAR",
"has_genre",
"DRAMA"
],
[
"ROCKET SCIENCE",
"has_genre",
"COMEDY"
],
[
"ROCKET SCIENCE",
"has_genre",
"DRAMA"
],
[
"RUSHMORE",
"has_genre",
"COMEDY"
],
[
"RUSHMORE",
"has_genre",
"DRAMA"
],
[
"RUSHMORE",
"has_tags",
"COMEDY"
],
[
"SAY ANYTHING...",
"has_genre",
"COMEDY"
],
[
"SAY ANYTHING...",
"has_genre",
"DRAMA"
],
[
"SHORT CUTS",
"has_genre",
"COMEDY"
],
[
"SHORT CUTS",
"has_genre",
"DRAMA"
],
[
"SOMEWHERE",
"has_genre",
"COMEDY"
],
[
"SOMEWHERE",
"has_genre",
"DRAMA"
],
[
"SON OF THE BRIDE",
"has_genre",
"COMEDY"
],
[
"SON OF THE BRIDE",
"has_genre",
"DRAMA"
],
[
"SPIN",
"has_genre",
"COMEDY"
],
[
"SPIN",
"has_genre",
"DRAMA"
],
[
"STORYTELLING",
"has_genre",
"COMEDY"
],
[
"STORYTELLING",
"has_genre",
"DRAMA"
],
[
"STRICTLY BALLROOM",
"has_genre",
"COMEDY"
],
[
"STRICTLY BALLROOM",
"has_genre",
"DRAMA"
],
[
"STRUCK BY LIGHTNING",
"has_genre",
"COMEDY"
],
[
"STRUCK BY LIGHTNING",
"has_genre",
"DRAMA"
],
[
"SUBMARINE",
"has_genre",
"COMEDY"
],
[
"SUBMARINE",
"has_genre",
"DRAMA"
],
[
"SUBURBIA",
"has_genre",
"COMEDY"
],
[
"SUBURBIA",
"has_genre",
"DRAMA"
],
[
"SWEET NOVEMBER",
"has_genre",
"COMEDY"
],
[
"SWEET NOVEMBER",
"has_genre",
"DRAMA"
],
[
"SWING VOTE",
"has_genre",
"COMEDY"
],
[
"SWING VOTE",
"has_genre",
"DRAMA"
],
[
"TEACHERS",
"has_genre",
"COMEDY"
],
[
"TEACHERS",
"has_genre",
"DRAMA"
],
[
"THE ANNIVERSARY PARTY",
"has_genre",
"COMEDY"
],
[
"THE ANNIVERSARY PARTY",
"has_genre",
"DRAMA"
],
[
"THE BREAKFAST CLUB",
"has_genre",
"COMEDY"
],
[
"THE BREAKFAST CLUB",
"has_genre",
"DRAMA"
],
[
"THE BREAKFAST CLUB",
"has_tags",
"COMEDY"
],
[
"THE BREAKFAST CLUB",
"has_tags",
"DRAMA"
],
[
"THE BROTHERS",
"has_genre",
"COMEDY"
],
[
"THE BROTHERS",
"has_genre",
"DRAMA"
],
[
"THE BUCKET LIST",
"has_genre",
"COMEDY"
],
[
"THE BUCKET LIST",
"has_genre",
"DRAMA"
],
[
"THE CHOSEN ONE",
"has_genre",
"COMEDY"
],
[
"THE CHOSEN ONE",
"has_genre",
"DRAMA"
],
[
"THE DUKES",
"has_genre",
"COMEDY"
],
[
"THE DUKES",
"has_genre",
"DRAMA"
],
[
"THE FOUR-FACED LIAR",
"has_genre",
"COMEDY"
],
[
"THE FOUR-FACED LIAR",
"has_genre",
"DRAMA"
],
[
"THE KIDS ARE ALL RIGHT",
"has_genre",
"COMEDY"
],
[
"THE KIDS ARE ALL RIGHT",
"has_genre",
"DRAMA"
],
[
"THE KIDS ARE ALL RIGHT",
"has_tags",
"COMEDY"
],
[
"THE KIDS ARE ALL RIGHT",
"has_tags",
"DRAMA"
],
[
"THE LAST KISS",
"has_genre",
"COMEDY"
],
[
"THE LAST KISS",
"has_genre",
"DRAMA"
],
[
"THE MATRIARCH",
"has_genre",
"COMEDY"
],
[
"THE MATRIARCH",
"has_genre",
"DRAMA"
],
[
"THE MATRIARCH",
"has_tags",
"DRAMA"
],
[
"THE NANNY DIARIES",
"has_genre",
"COMEDY"
],
[
"THE NANNY DIARIES",
"has_genre",
"DRAMA"
],
[
"THE ROYAL TENENBAUMS",
"has_genre",
"COMEDY"
],
[
"THE ROYAL TENENBAUMS",
"has_genre",
"DRAMA"
],
[
"THE ROYAL TENENBAUMS",
"has_tags",
"COMEDY"
],
[
"THEN SHE FOUND ME",
"has_genre",
"COMEDY"
],
[
"THEN SHE FOUND ME",
"has_genre",
"DRAMA"
],
[
"THIS CHRISTMAS",
"has_genre",
"COMEDY"
],
[
"THIS CHRISTMAS",
"has_genre",
"DRAMA"
],
[
"TINY FURNITURE",
"has_genre",
"COMEDY"
],
[
"TINY FURNITURE",
"has_genre",
"DRAMA"
],
[
"TORTILLA SOUP",
"has_genre",
"COMEDY"
],
[
"TORTILLA SOUP",
"has_genre",
"DRAMA"
],
[
"TRUST",
"has_genre",
"COMEDY"
],
[
"TRUST",
"has_genre",
"DRAMA"
],
[
"TRUST ME",
"has_genre",
"COMEDY"
],
[
"TRUST ME",
"has_genre",
"DRAMA"
],
[
"VIVA",
"has_genre",
"COMEDY"
],
[
"VIVA",
"has_genre",
"DRAMA"
],
[
"VIZONTELE",
"has_genre",
"COMEDY"
],
[
"VIZONTELE",
"has_genre",
"DRAMA"
],
[
"VIZONTELE",
"has_tags",
"COMEDY"
],
[
"WAITRESS",
"has_genre",
"COMEDY"
],
[
"WAITRESS",
"has_genre",
"DRAMA"
],
[
"WEST IS WEST",
"has_genre",
"COMEDY"
],
[
"WEST IS WEST",
"has_genre",
"DRAMA"
],
[
"WHY DID I GET MARRIED TOO?",
"has_genre",
"COMEDY"
],
[
"WHY DID I GET MARRIED TOO?",
"has_genre",
"DRAMA"
],
[
"WHY DID I GET MARRIED?",
"has_genre",
"COMEDY"
],
[
"WHY DID I GET MARRIED?",
"has_genre",
"DRAMA"
],
[
"WILDER NAPALM",
"has_genre",
"COMEDY"
],
[
"YEAR OF THE DOG",
"has_genre",
"COMEDY"
],
[
"YEAR OF THE DOG",
"has_genre",
"DRAMA"
],
[
"YOU WILL MEET A TALL DARK STRANGER",
"has_genre",
"COMEDY"
],
[
"YOU WILL MEET A TALL DARK STRANGER",
"has_genre",
"DRAMA"
],
[
"YOU WILL MEET A TALL DARK STRANGER",
"has_tags",
"COMEDY"
],
[
"YOU WILL MEET A TALL DARK STRANGER",
"has_tags",
"DRAMA"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
35935, 2002
29424, 2011
28374, ANTWONE FISHER
23286, CARNAGE
12903, DISNEY
2670, FOOTLOOSE
3859, I AM NUMBER FOUR
3429, MISS BALA
14026, PINOCCHIO
21773, POLLYANNA
729, SLEEPING BEAUTY
3578, SMALL TOWN
19102, SUPER 8
7816, THE THREE MUSKETEERS
10921, TREASURE PLANET
37351, WINNIE THE POOH
src, edge_attr, dst
28374, release_year, 35935
28374, written_by, 28374
23286, release_year, 35935
23286, release_year, 29424
2670, has_tags, 3578
2670, release_year, 29424
3859, has_tags, 12903
3859, release_year, 29424
3429, release_year, 29424
14026, has_tags, 12903
14026, release_year, 35935
21773, has_tags, 12903
21773, has_tags, 3578
729, has_tags, 12903
729, release_year, 29424
19102, has_tags, 3578
19102, release_year, 29424
7816, has_tags, 12903
7816, release_year, 29424
10921, has_tags, 12903
10921, release_year, 35935
37351, has_tags, 12903
37351, release_year, 29424
Question: For what reason are ANTWONE FISHER, MISS BALA, and POLLYANNA associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"ANTWONE FISHER",
"MISS BALA",
"POLLYANNA"
],
"valid_edges": [
[
"ANTWONE FISHER",
"release_year",
"2002"
],
[
"ANTWONE FISHER",
"written_by",
"ANTWONE FISHER"
],
[
"CARNAGE",
"release_year",
"2002"
],
[
"CARNAGE",
"release_year",
"2011"
],
[
"FOOTLOOSE",
"has_tags",
"SMALL TOWN"
],
[
"FOOTLOOSE",
"release_year",
"2011"
],
[
"I AM NUMBER FOUR",
"has_tags",
"DISNEY"
],
[
"I AM NUMBER FOUR",
"release_year",
"2011"
],
[
"MISS BALA",
"release_year",
"2011"
],
[
"PINOCCHIO",
"has_tags",
"DISNEY"
],
[
"PINOCCHIO",
"release_year",
"2002"
],
[
"POLLYANNA",
"has_tags",
"DISNEY"
],
[
"POLLYANNA",
"has_tags",
"SMALL TOWN"
],
[
"SLEEPING BEAUTY",
"has_tags",
"DISNEY"
],
[
"SLEEPING BEAUTY",
"release_year",
"2011"
],
[
"SUPER 8",
"has_tags",
"SMALL TOWN"
],
[
"SUPER 8",
"release_year",
"2011"
],
[
"THE THREE MUSKETEERS",
"has_tags",
"DISNEY"
],
[
"THE THREE MUSKETEERS",
"release_year",
"2011"
],
[
"TREASURE PLANET",
"has_tags",
"DISNEY"
],
[
"TREASURE PLANET",
"release_year",
"2002"
],
[
"WINNIE THE POOH",
"has_tags",
"DISNEY"
],
[
"WINNIE THE POOH",
"release_year",
"2011"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
10702, 1991
15407, 29TH STREET
39705, A LITTLE STIFF
18051, AFTER HOURS
23683, ALL I WANT FOR CHRISTMAS
27592, ANIMAL HOUSE
30578, ANOTHER YOU
24301, ART SCHOOL CONFIDENTIAL
35639, BABY'S DAY OUT
26205, BEING JOHN MALKOVICH
9414, BINGO
35599, BURN AFTER READING
29437, CAN'T BUY ME LOVE
28295, CAREER OPPORTUNITIES
15585, CITY SLICKERS
30463, COMEDY
29148, CRAZY SAFARI
8100, CURLY SUE
31214, DEFENDING YOUR LIFE
29485, DELIRIOUS
37395, DEN OFRIVILLIGE GOLFAREN
3160, DOC HOLLYWOOD
21407, DOGMA
16978, DON'T TELL MOM THE BABYSITTER'S DEAD
20846, DROP DEAD FRED
31008, DUTCH
10757, EDDIE
36202, ERNEST SCARED STUPID
31630, EVIL TOONS
38250, FATHER OF THE BRIDE
25551, FAVORITE DEADLY SINS
3010, FORGET PARIS
30356, FRED OLEN RAY
35150, FRIED GREEN TOMATOES
28778, GOTCHA!
18119, HE SAID, SHE SAID
34320, HEAR MY SONG
25610, HIGH STRUNG
6546, HOT SHOTS!
39726, HUDSON HAWK
3909, IF LOOKS COULD KILL
25363, JERRY AND TOM
1841, JOE MANTEGNA
28149, JOHN MALKOVICH
37963, JOHNNY ENGLISH
528, JOHNNY STECCHINO
29911, KEVIN BACON
30015, KING RALPH
7439, L.A. STORY
29323, LIFE STINKS
23416, LINDA FIORENTINO
11652, LONELY STREET
22842, MAKING MR. RIGHT
32627, MYSTERY DATE
25620, NECESSARY ROUGHNESS
40059, ONCE AROUND
23735, ONLY THE LONELY
16225, ORDINARY DECENT CRIMINAL
30662, OSCAR
17667, OTHER PEOPLE'S MONEY
25824, PARADISE
32423, PERFECTLY NORMAL
10910, PICTURE PERFECT
23297, PROBLEM CHILD 2
39, PURE LUCK
25772, PYRATES
29601, QUEENS LOGIC
31731, R.I.P.D.
31600, RUBIN AND ED
28824, SENTA BERGER
33607, SEX AND ZEN
32127, SHE'S HAVING A BABY
8932, SLACKER
11883, SOAPDISH
38762, SPEAKING OF THE DEVIL
22375, STEVE RASH
29906, SUBURBAN COMMANDO
5700, SUPER
35064, SWITCH
30090, THE AIR UP THERE
35152, THE AMBUSHERS
32454, THE BIG PICTURE
8210, THE BUTCHER'S WIFE
4345, THE COMMITMENTS
252, THE DARK BACKWARD
20229, THE FISHER KING
25305, THE GREAT BUCK HOWARD
32102, THE HARD WAY
37565, THE LAST BOY SCOUT
12947, THE MARRYING MAN
1545, THE SUPER
21375, THINGS CHANGE
10238, UNDERWORLD
7593, WHAT ABOUT BOB?
src, edge_attr, dst
15407, has_genre, 30463
15407, release_year, 10702
39705, has_genre, 30463
39705, release_year, 10702
18051, has_genre, 30463
18051, has_tags, 23416
23683, has_genre, 30463
23683, release_year, 10702
27592, has_genre, 30463
27592, has_tags, 30463
27592, has_tags, 29911
30578, has_genre, 30463
30578, release_year, 10702
24301, has_genre, 30463
24301, has_tags, 28149
24301, starred_actors, 28149
35639, has_genre, 30463
35639, starred_actors, 1841
26205, has_genre, 30463
26205, has_tags, 30463
26205, has_tags, 28149
9414, has_genre, 30463
9414, release_year, 10702
35599, has_genre, 30463
35599, has_tags, 30463
35599, has_tags, 28149
35599, starred_actors, 28149
29437, directed_by, 22375
29437, has_genre, 30463
29437, has_tags, 22375
28295, has_genre, 30463
28295, release_year, 10702
15585, has_genre, 30463
15585, release_year, 10702
29148, has_genre, 30463
29148, release_year, 10702
8100, has_genre, 30463
8100, release_year, 10702
31214, has_genre, 30463
31214, release_year, 10702
29485, has_genre, 30463
29485, release_year, 10702
37395, has_genre, 30463
37395, release_year, 10702
3160, has_genre, 30463
3160, has_tags, 30463
3160, release_year, 10702
21407, has_genre, 30463
21407, has_tags, 30463
21407, has_tags, 23416
16978, has_genre, 30463
16978, release_year, 10702
20846, has_genre, 30463
20846, release_year, 10702
31008, has_genre, 30463
31008, release_year, 10702
10757, directed_by, 22375
10757, has_genre, 30463
10757, has_tags, 22375
36202, has_genre, 30463
36202, release_year, 10702
31630, directed_by, 30356
31630, has_genre, 30463
31630, written_by, 30356
38250, has_genre, 30463
38250, has_tags, 30463
38250, release_year, 10702
25551, has_genre, 30463
25551, starred_actors, 1841
3010, has_genre, 30463
3010, starred_actors, 1841
35150, has_genre, 30463
35150, release_year, 10702
28778, has_genre, 30463
28778, starred_actors, 23416
18119, has_genre, 30463
18119, release_year, 10702
18119, starred_actors, 29911
34320, has_genre, 30463
34320, release_year, 10702
25610, has_genre, 30463
25610, release_year, 10702
6546, has_genre, 30463
6546, has_tags, 30463
6546, release_year, 10702
39726, has_genre, 30463
39726, has_tags, 30463
39726, release_year, 10702
3909, has_genre, 30463
3909, release_year, 10702
25363, has_genre, 30463
25363, starred_actors, 1841
37963, has_genre, 30463
37963, has_tags, 30463
37963, has_tags, 28149
528, has_genre, 30463
528, release_year, 10702
30015, has_genre, 30463
30015, has_tags, 30463
30015, release_year, 10702
7439, has_genre, 30463
7439, release_year, 10702
29323, has_genre, 30463
29323, release_year, 10702
11652, has_genre, 30463
11652, starred_actors, 1841
22842, has_genre, 30463
22842, has_tags, 28149
22842, starred_actors, 28149
32627, has_genre, 30463
32627, release_year, 10702
25620, has_genre, 30463
25620, release_year, 10702
40059, has_genre, 30463
40059, release_year, 10702
23735, has_genre, 30463
23735, release_year, 10702
16225, has_genre, 30463
16225, starred_actors, 23416
30662, has_genre, 30463
30662, release_year, 10702
17667, has_genre, 30463
17667, release_year, 10702
25824, has_genre, 30463
25824, release_year, 10702
32423, has_genre, 30463
32423, release_year, 10702
10910, has_genre, 30463
10910, starred_actors, 29911
23297, has_genre, 30463
23297, release_year, 10702
39, has_genre, 30463
39, release_year, 10702
25772, has_genre, 30463
25772, release_year, 10702
25772, starred_actors, 29911
29601, directed_by, 22375
29601, has_genre, 30463
29601, has_tags, 28149
29601, release_year, 10702
29601, starred_actors, 1841
29601, starred_actors, 28149
29601, starred_actors, 29911
29601, starred_actors, 23416
31731, has_genre, 30463
31731, starred_actors, 29911
31600, has_genre, 30463
31600, release_year, 10702
33607, has_genre, 30463
33607, release_year, 10702
32127, has_genre, 30463
32127, starred_actors, 29911
8932, has_genre, 30463
8932, release_year, 10702
11883, has_genre, 30463
11883, has_tags, 30463
11883, release_year, 10702
38762, has_genre, 30463
38762, release_year, 10702
29906, has_genre, 30463
29906, release_year, 10702
5700, has_genre, 30463
5700, has_tags, 29911
5700, starred_actors, 29911
35064, has_genre, 30463
35064, release_year, 10702
30090, has_genre, 30463
30090, has_tags, 30463
30090, has_tags, 29911
30090, starred_actors, 29911
35152, has_genre, 30463
35152, starred_actors, 28824
32454, has_genre, 30463
32454, starred_actors, 29911
8210, has_genre, 30463
8210, release_year, 10702
4345, has_genre, 30463
4345, release_year, 10702
252, has_genre, 30463
252, release_year, 10702
20229, has_genre, 30463
20229, release_year, 10702
25305, has_genre, 30463
25305, starred_actors, 28149
32102, has_genre, 30463
32102, release_year, 10702
37565, has_genre, 30463
37565, release_year, 10702
12947, has_genre, 30463
12947, release_year, 10702
1545, has_genre, 30463
1545, release_year, 10702
21375, has_genre, 30463
21375, starred_actors, 1841
10238, has_genre, 30463
10238, starred_actors, 1841
7593, has_genre, 30463
7593, release_year, 10702
Question: How are FRED OLEN RAY, QUEENS LOGIC, and SENTA BERGER related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"FRED OLEN RAY",
"QUEENS LOGIC",
"SENTA BERGER"
],
"valid_edges": [
[
"29TH STREET",
"has_genre",
"COMEDY"
],
[
"29TH STREET",
"release_year",
"1991"
],
[
"A LITTLE STIFF",
"has_genre",
"COMEDY"
],
[
"A LITTLE STIFF",
"release_year",
"1991"
],
[
"AFTER HOURS",
"has_genre",
"COMEDY"
],
[
"AFTER HOURS",
"has_tags",
"LINDA FIORENTINO"
],
[
"ALL I WANT FOR CHRISTMAS",
"has_genre",
"COMEDY"
],
[
"ALL I WANT FOR CHRISTMAS",
"release_year",
"1991"
],
[
"ANIMAL HOUSE",
"has_genre",
"COMEDY"
],
[
"ANIMAL HOUSE",
"has_tags",
"COMEDY"
],
[
"ANIMAL HOUSE",
"has_tags",
"KEVIN BACON"
],
[
"ANOTHER YOU",
"has_genre",
"COMEDY"
],
[
"ANOTHER YOU",
"release_year",
"1991"
],
[
"ART SCHOOL CONFIDENTIAL",
"has_genre",
"COMEDY"
],
[
"ART SCHOOL CONFIDENTIAL",
"has_tags",
"JOHN MALKOVICH"
],
[
"ART SCHOOL CONFIDENTIAL",
"starred_actors",
"JOHN MALKOVICH"
],
[
"BABY'S DAY OUT",
"has_genre",
"COMEDY"
],
[
"BABY'S DAY OUT",
"starred_actors",
"JOE MANTEGNA"
],
[
"BEING JOHN MALKOVICH",
"has_genre",
"COMEDY"
],
[
"BEING JOHN MALKOVICH",
"has_tags",
"COMEDY"
],
[
"BEING JOHN MALKOVICH",
"has_tags",
"JOHN MALKOVICH"
],
[
"BINGO",
"has_genre",
"COMEDY"
],
[
"BINGO",
"release_year",
"1991"
],
[
"BURN AFTER READING",
"has_genre",
"COMEDY"
],
[
"BURN AFTER READING",
"has_tags",
"COMEDY"
],
[
"BURN AFTER READING",
"has_tags",
"JOHN MALKOVICH"
],
[
"BURN AFTER READING",
"starred_actors",
"JOHN MALKOVICH"
],
[
"CAN'T BUY ME LOVE",
"directed_by",
"STEVE RASH"
],
[
"CAN'T BUY ME LOVE",
"has_genre",
"COMEDY"
],
[
"CAN'T BUY ME LOVE",
"has_tags",
"STEVE RASH"
],
[
"CAREER OPPORTUNITIES",
"has_genre",
"COMEDY"
],
[
"CAREER OPPORTUNITIES",
"release_year",
"1991"
],
[
"CITY SLICKERS",
"has_genre",
"COMEDY"
],
[
"CITY SLICKERS",
"release_year",
"1991"
],
[
"CRAZY SAFARI",
"has_genre",
"COMEDY"
],
[
"CRAZY SAFARI",
"release_year",
"1991"
],
[
"CURLY SUE",
"has_genre",
"COMEDY"
],
[
"CURLY SUE",
"release_year",
"1991"
],
[
"DEFENDING YOUR LIFE",
"has_genre",
"COMEDY"
],
[
"DEFENDING YOUR LIFE",
"release_year",
"1991"
],
[
"DELIRIOUS",
"has_genre",
"COMEDY"
],
[
"DELIRIOUS",
"release_year",
"1991"
],
[
"DEN OFRIVILLIGE GOLFAREN",
"has_genre",
"COMEDY"
],
[
"DEN OFRIVILLIGE GOLFAREN",
"release_year",
"1991"
],
[
"DOC HOLLYWOOD",
"has_genre",
"COMEDY"
],
[
"DOC HOLLYWOOD",
"has_tags",
"COMEDY"
],
[
"DOC HOLLYWOOD",
"release_year",
"1991"
],
[
"DOGMA",
"has_genre",
"COMEDY"
],
[
"DOGMA",
"has_tags",
"COMEDY"
],
[
"DOGMA",
"has_tags",
"LINDA FIORENTINO"
],
[
"DON'T TELL MOM THE BABYSITTER'S DEAD",
"has_genre",
"COMEDY"
],
[
"DON'T TELL MOM THE BABYSITTER'S DEAD",
"release_year",
"1991"
],
[
"DROP DEAD FRED",
"has_genre",
"COMEDY"
],
[
"DROP DEAD FRED",
"release_year",
"1991"
],
[
"DUTCH",
"has_genre",
"COMEDY"
],
[
"DUTCH",
"release_year",
"1991"
],
[
"EDDIE",
"directed_by",
"STEVE RASH"
],
[
"EDDIE",
"has_genre",
"COMEDY"
],
[
"EDDIE",
"has_tags",
"STEVE RASH"
],
[
"ERNEST SCARED STUPID",
"has_genre",
"COMEDY"
],
[
"ERNEST SCARED STUPID",
"release_year",
"1991"
],
[
"EVIL TOONS",
"directed_by",
"FRED OLEN RAY"
],
[
"EVIL TOONS",
"has_genre",
"COMEDY"
],
[
"EVIL TOONS",
"written_by",
"FRED OLEN RAY"
],
[
"FATHER OF THE BRIDE",
"has_genre",
"COMEDY"
],
[
"FATHER OF THE BRIDE",
"has_tags",
"COMEDY"
],
[
"FATHER OF THE BRIDE",
"release_year",
"1991"
],
[
"FAVORITE DEADLY SINS",
"has_genre",
"COMEDY"
],
[
"FAVORITE DEADLY SINS",
"starred_actors",
"JOE MANTEGNA"
],
[
"FORGET PARIS",
"has_genre",
"COMEDY"
],
[
"FORGET PARIS",
"starred_actors",
"JOE MANTEGNA"
],
[
"FRIED GREEN TOMATOES",
"has_genre",
"COMEDY"
],
[
"FRIED GREEN TOMATOES",
"release_year",
"1991"
],
[
"GOTCHA!",
"has_genre",
"COMEDY"
],
[
"GOTCHA!",
"starred_actors",
"LINDA FIORENTINO"
],
[
"HE SAID, SHE SAID",
"has_genre",
"COMEDY"
],
[
"HE SAID, SHE SAID",
"release_year",
"1991"
],
[
"HE SAID, SHE SAID",
"starred_actors",
"KEVIN BACON"
],
[
"HEAR MY SONG",
"has_genre",
"COMEDY"
],
[
"HEAR MY SONG",
"release_year",
"1991"
],
[
"HIGH STRUNG",
"has_genre",
"COMEDY"
],
[
"HIGH STRUNG",
"release_year",
"1991"
],
[
"HOT SHOTS!",
"has_genre",
"COMEDY"
],
[
"HOT SHOTS!",
"has_tags",
"COMEDY"
],
[
"HOT SHOTS!",
"release_year",
"1991"
],
[
"HUDSON HAWK",
"has_genre",
"COMEDY"
],
[
"HUDSON HAWK",
"has_tags",
"COMEDY"
],
[
"HUDSON HAWK",
"release_year",
"1991"
],
[
"IF LOOKS COULD KILL",
"has_genre",
"COMEDY"
],
[
"IF LOOKS COULD KILL",
"release_year",
"1991"
],
[
"JERRY AND TOM",
"has_genre",
"COMEDY"
],
[
"JERRY AND TOM",
"starred_actors",
"JOE MANTEGNA"
],
[
"JOHNNY ENGLISH",
"has_genre",
"COMEDY"
],
[
"JOHNNY ENGLISH",
"has_tags",
"COMEDY"
],
[
"JOHNNY ENGLISH",
"has_tags",
"JOHN MALKOVICH"
],
[
"JOHNNY STECCHINO",
"has_genre",
"COMEDY"
],
[
"JOHNNY STECCHINO",
"release_year",
"1991"
],
[
"KING RALPH",
"has_genre",
"COMEDY"
],
[
"KING RALPH",
"has_tags",
"COMEDY"
],
[
"KING RALPH",
"release_year",
"1991"
],
[
"L.A. STORY",
"has_genre",
"COMEDY"
],
[
"L.A. STORY",
"release_year",
"1991"
],
[
"LIFE STINKS",
"has_genre",
"COMEDY"
],
[
"LIFE STINKS",
"release_year",
"1991"
],
[
"LONELY STREET",
"has_genre",
"COMEDY"
],
[
"LONELY STREET",
"starred_actors",
"JOE MANTEGNA"
],
[
"MAKING MR. RIGHT",
"has_genre",
"COMEDY"
],
[
"MAKING MR. RIGHT",
"has_tags",
"JOHN MALKOVICH"
],
[
"MAKING MR. RIGHT",
"starred_actors",
"JOHN MALKOVICH"
],
[
"MYSTERY DATE",
"has_genre",
"COMEDY"
],
[
"MYSTERY DATE",
"release_year",
"1991"
],
[
"NECESSARY ROUGHNESS",
"has_genre",
"COMEDY"
],
[
"NECESSARY ROUGHNESS",
"release_year",
"1991"
],
[
"ONCE AROUND",
"has_genre",
"COMEDY"
],
[
"ONCE AROUND",
"release_year",
"1991"
],
[
"ONLY THE LONELY",
"has_genre",
"COMEDY"
],
[
"ONLY THE LONELY",
"release_year",
"1991"
],
[
"ORDINARY DECENT CRIMINAL",
"has_genre",
"COMEDY"
],
[
"ORDINARY DECENT CRIMINAL",
"starred_actors",
"LINDA FIORENTINO"
],
[
"OSCAR",
"has_genre",
"COMEDY"
],
[
"OSCAR",
"release_year",
"1991"
],
[
"OTHER PEOPLE'S MONEY",
"has_genre",
"COMEDY"
],
[
"OTHER PEOPLE'S MONEY",
"release_year",
"1991"
],
[
"PARADISE",
"has_genre",
"COMEDY"
],
[
"PARADISE",
"release_year",
"1991"
],
[
"PERFECTLY NORMAL",
"has_genre",
"COMEDY"
],
[
"PERFECTLY NORMAL",
"release_year",
"1991"
],
[
"PICTURE PERFECT",
"has_genre",
"COMEDY"
],
[
"PICTURE PERFECT",
"starred_actors",
"KEVIN BACON"
],
[
"PROBLEM CHILD 2",
"has_genre",
"COMEDY"
],
[
"PROBLEM CHILD 2",
"release_year",
"1991"
],
[
"PURE LUCK",
"has_genre",
"COMEDY"
],
[
"PURE LUCK",
"release_year",
"1991"
],
[
"PYRATES",
"has_genre",
"COMEDY"
],
[
"PYRATES",
"release_year",
"1991"
],
[
"PYRATES",
"starred_actors",
"KEVIN BACON"
],
[
"QUEENS LOGIC",
"directed_by",
"STEVE RASH"
],
[
"QUEENS LOGIC",
"has_genre",
"COMEDY"
],
[
"QUEENS LOGIC",
"has_tags",
"JOHN MALKOVICH"
],
[
"QUEENS LOGIC",
"release_year",
"1991"
],
[
"QUEENS LOGIC",
"starred_actors",
"JOE MANTEGNA"
],
[
"QUEENS LOGIC",
"starred_actors",
"JOHN MALKOVICH"
],
[
"QUEENS LOGIC",
"starred_actors",
"KEVIN BACON"
],
[
"QUEENS LOGIC",
"starred_actors",
"LINDA FIORENTINO"
],
[
"R.I.P.D.",
"has_genre",
"COMEDY"
],
[
"R.I.P.D.",
"starred_actors",
"KEVIN BACON"
],
[
"RUBIN AND ED",
"has_genre",
"COMEDY"
],
[
"RUBIN AND ED",
"release_year",
"1991"
],
[
"SEX AND ZEN",
"has_genre",
"COMEDY"
],
[
"SEX AND ZEN",
"release_year",
"1991"
],
[
"SHE'S HAVING A BABY",
"has_genre",
"COMEDY"
],
[
"SHE'S HAVING A BABY",
"starred_actors",
"KEVIN BACON"
],
[
"SLACKER",
"has_genre",
"COMEDY"
],
[
"SLACKER",
"release_year",
"1991"
],
[
"SOAPDISH",
"has_genre",
"COMEDY"
],
[
"SOAPDISH",
"has_tags",
"COMEDY"
],
[
"SOAPDISH",
"release_year",
"1991"
],
[
"SPEAKING OF THE DEVIL",
"has_genre",
"COMEDY"
],
[
"SPEAKING OF THE DEVIL",
"release_year",
"1991"
],
[
"SUBURBAN COMMANDO",
"has_genre",
"COMEDY"
],
[
"SUBURBAN COMMANDO",
"release_year",
"1991"
],
[
"SUPER",
"has_genre",
"COMEDY"
],
[
"SUPER",
"has_tags",
"KEVIN BACON"
],
[
"SUPER",
"starred_actors",
"KEVIN BACON"
],
[
"SWITCH",
"has_genre",
"COMEDY"
],
[
"SWITCH",
"release_year",
"1991"
],
[
"THE AIR UP THERE",
"has_genre",
"COMEDY"
],
[
"THE AIR UP THERE",
"has_tags",
"COMEDY"
],
[
"THE AIR UP THERE",
"has_tags",
"KEVIN BACON"
],
[
"THE AIR UP THERE",
"starred_actors",
"KEVIN BACON"
],
[
"THE AMBUSHERS",
"has_genre",
"COMEDY"
],
[
"THE AMBUSHERS",
"starred_actors",
"SENTA BERGER"
],
[
"THE BIG PICTURE",
"has_genre",
"COMEDY"
],
[
"THE BIG PICTURE",
"starred_actors",
"KEVIN BACON"
],
[
"THE BUTCHER'S WIFE",
"has_genre",
"COMEDY"
],
[
"THE BUTCHER'S WIFE",
"release_year",
"1991"
],
[
"THE COMMITMENTS",
"has_genre",
"COMEDY"
],
[
"THE COMMITMENTS",
"release_year",
"1991"
],
[
"THE DARK BACKWARD",
"has_genre",
"COMEDY"
],
[
"THE DARK BACKWARD",
"release_year",
"1991"
],
[
"THE FISHER KING",
"has_genre",
"COMEDY"
],
[
"THE FISHER KING",
"release_year",
"1991"
],
[
"THE GREAT BUCK HOWARD",
"has_genre",
"COMEDY"
],
[
"THE GREAT BUCK HOWARD",
"starred_actors",
"JOHN MALKOVICH"
],
[
"THE HARD WAY",
"has_genre",
"COMEDY"
],
[
"THE HARD WAY",
"release_year",
"1991"
],
[
"THE LAST BOY SCOUT",
"has_genre",
"COMEDY"
],
[
"THE LAST BOY SCOUT",
"release_year",
"1991"
],
[
"THE MARRYING MAN",
"has_genre",
"COMEDY"
],
[
"THE MARRYING MAN",
"release_year",
"1991"
],
[
"THE SUPER",
"has_genre",
"COMEDY"
],
[
"THE SUPER",
"release_year",
"1991"
],
[
"THINGS CHANGE",
"has_genre",
"COMEDY"
],
[
"THINGS CHANGE",
"starred_actors",
"JOE MANTEGNA"
],
[
"UNDERWORLD",
"has_genre",
"COMEDY"
],
[
"UNDERWORLD",
"starred_actors",
"JOE MANTEGNA"
],
[
"WHAT ABOUT BOB?",
"has_genre",
"COMEDY"
],
[
"WHAT ABOUT BOB?",
"release_year",
"1991"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
1421, 2013
20629, A SINGLE SHOT
30769, AIN'T THEM BODIES SAINTS
1824, ALL GOOD THINGS
26048, AMERICAN HUSTLE
18880, BANGKOK
8402, BANGKOK DANGEROUS
30870, BEAUTIFUL CREATURES
6809, BLOOD OF REDEMPTION
7483, BLOOD TIES
31203, BRAZILIAN WESTERN
38211, BROKEN CITY
12604, CIRCUS OF HORRORS
33784, CLOSED CIRCUIT
25131, COLD COMES THE NIGHT
38680, COMPULSION
8511, COTTAGE COUNTRY
14724, CRIME
17284, DEAD MAN DOWN
20056, DEBRA HILL
31232, DEVIL'S KNOT
33382, DOM HEMINGWAY
14268, DONALD PLEASENCE
30262, DRACULA
21021, DRIVE
13986, EMPIRE STATE
28256, FILTH
4372, FORCE OF EXECUTION
1033, FRACTURE
24481, FRANCHISE
35657, GLORIA
4830, HALLOWEEN
15753, HALLOWEEN II
12915, HELI
5870, HORROR
39037, HUNTING ELEPHANTS
8667, IDENTITY THIEF
4472, JAMIE LEE CURTIS
24988, JOHN CARPENTER
23224, KRISTIN SCOTT THOMAS
29765, LIFE OF CRIME
9792, LOVE CRIME
31769, MALCOLM MCDOWELL
16074, METRO MANILA
25918, MICHAEL MYERS
7925, MYSTERY ROAD
34844, NICOLAS WINDING REFN
24110, ONLY GOD FORGIVES
32279, PARKER
29586, PAWN SHOP CHRONICLES
38043, PUSHER
35405, ROB ZOMBIE
22512, RUNNER RUNNER
11468, RUSH
20331, RYAN GOSLING
5409, SLASHER
13712, TAMMY LAUREN
13090, THAI
13431, THE BLING RING
16900, THE CALL
38918, THE FAMILY
30294, THE NIGHT OF THE GENERALS
40086, THE PLACE BEYOND THE PINES
12738, TRAFFIC DEPARTMENT
5750, VAMPIRE
919, VAMPIRE IN VENICE
13357, WISHMASTER
17777, ZULU
src, edge_attr, dst
20629, has_genre, 14724
20629, release_year, 1421
30769, has_genre, 14724
30769, release_year, 1421
1824, has_genre, 14724
1824, has_tags, 20331
1824, starred_actors, 20331
26048, has_genre, 14724
26048, release_year, 1421
8402, has_genre, 14724
8402, has_tags, 18880
8402, has_tags, 14724
8402, in_language, 13090
30870, has_genre, 14724
30870, release_year, 1421
6809, has_genre, 14724
6809, release_year, 1421
7483, has_genre, 14724
7483, release_year, 1421
31203, has_genre, 14724
31203, release_year, 1421
38211, has_genre, 14724
38211, release_year, 1421
12604, has_genre, 5870
12604, starred_actors, 14268
33784, has_genre, 14724
33784, release_year, 1421
25131, has_genre, 14724
25131, release_year, 1421
38680, has_genre, 14724
38680, release_year, 1421
8511, has_genre, 14724
8511, release_year, 1421
17284, has_genre, 14724
17284, release_year, 1421
31232, has_genre, 14724
31232, release_year, 1421
33382, has_genre, 14724
33382, release_year, 1421
30262, has_genre, 5870
30262, has_tags, 30262
30262, has_tags, 5870
30262, has_tags, 5750
30262, starred_actors, 14268
21021, directed_by, 34844
21021, has_genre, 14724
21021, has_tags, 14724
21021, has_tags, 34844
21021, has_tags, 20331
21021, starred_actors, 20331
13986, has_genre, 14724
13986, release_year, 1421
28256, has_genre, 14724
28256, release_year, 1421
4372, has_genre, 14724
4372, release_year, 1421
1033, has_genre, 14724
1033, has_tags, 20331
1033, starred_actors, 20331
35657, has_genre, 14724
35657, release_year, 1421
4830, directed_by, 24988
4830, directed_by, 35405
4830, has_genre, 5870
4830, has_tags, 14268
4830, has_tags, 24481
4830, has_tags, 4830
4830, has_tags, 5870
4830, has_tags, 4472
4830, has_tags, 24988
4830, has_tags, 31769
4830, has_tags, 25918
4830, has_tags, 35405
4830, has_tags, 5409
4830, starred_actors, 14268
4830, starred_actors, 4472
4830, starred_actors, 31769
4830, written_by, 20056
4830, written_by, 24988
4830, written_by, 35405
15753, directed_by, 35405
15753, has_genre, 5870
15753, has_tags, 14268
15753, has_tags, 24481
15753, has_tags, 4830
15753, has_tags, 5870
15753, has_tags, 4472
15753, has_tags, 31769
15753, has_tags, 25918
15753, has_tags, 5409
15753, starred_actors, 14268
15753, starred_actors, 4472
15753, written_by, 20056
15753, written_by, 24988
15753, written_by, 35405
12915, has_genre, 14724
12915, release_year, 1421
39037, has_genre, 14724
39037, release_year, 1421
8667, has_genre, 14724
8667, has_tags, 14724
8667, release_year, 1421
29765, has_genre, 14724
29765, release_year, 1421
9792, has_genre, 14724
9792, starred_actors, 23224
16074, has_genre, 14724
16074, release_year, 1421
7925, has_genre, 14724
7925, release_year, 1421
24110, directed_by, 34844
24110, has_genre, 14724
24110, has_tags, 18880
24110, has_tags, 34844
24110, has_tags, 20331
24110, in_language, 13090
24110, release_year, 1421
24110, starred_actors, 23224
24110, starred_actors, 20331
24110, written_by, 34844
32279, has_genre, 14724
32279, has_tags, 14724
32279, release_year, 1421
29586, has_genre, 14724
29586, release_year, 1421
38043, directed_by, 34844
38043, has_genre, 14724
38043, has_tags, 34844
38043, written_by, 34844
22512, has_genre, 14724
22512, release_year, 1421
11468, has_genre, 14724
11468, release_year, 1421
13431, has_genre, 14724
13431, has_tags, 14724
13431, release_year, 1421
16900, has_genre, 14724
16900, release_year, 1421
38918, has_genre, 14724
38918, release_year, 1421
30294, has_genre, 14724
30294, starred_actors, 14268
40086, has_genre, 14724
40086, has_tags, 20331
40086, starred_actors, 20331
12738, has_genre, 14724
12738, release_year, 1421
919, has_genre, 5870
919, has_tags, 5750
919, starred_actors, 14268
13357, has_genre, 5870
13357, has_tags, 5870
13357, starred_actors, 13712
17777, has_genre, 14724
17777, release_year, 1421
Question: In what context are DONALD PLEASENCE, ONLY GOD FORGIVES, and TAMMY LAUREN connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"DONALD PLEASENCE",
"ONLY GOD FORGIVES",
"TAMMY LAUREN"
],
"valid_edges": [
[
"A SINGLE SHOT",
"has_genre",
"CRIME"
],
[
"A SINGLE SHOT",
"release_year",
"2013"
],
[
"AIN'T THEM BODIES SAINTS",
"has_genre",
"CRIME"
],
[
"AIN'T THEM BODIES SAINTS",
"release_year",
"2013"
],
[
"ALL GOOD THINGS",
"has_genre",
"CRIME"
],
[
"ALL GOOD THINGS",
"has_tags",
"RYAN GOSLING"
],
[
"ALL GOOD THINGS",
"starred_actors",
"RYAN GOSLING"
],
[
"AMERICAN HUSTLE",
"has_genre",
"CRIME"
],
[
"AMERICAN HUSTLE",
"release_year",
"2013"
],
[
"BANGKOK DANGEROUS",
"has_genre",
"CRIME"
],
[
"BANGKOK DANGEROUS",
"has_tags",
"BANGKOK"
],
[
"BANGKOK DANGEROUS",
"has_tags",
"CRIME"
],
[
"BANGKOK DANGEROUS",
"in_language",
"THAI"
],
[
"BEAUTIFUL CREATURES",
"has_genre",
"CRIME"
],
[
"BEAUTIFUL CREATURES",
"release_year",
"2013"
],
[
"BLOOD OF REDEMPTION",
"has_genre",
"CRIME"
],
[
"BLOOD OF REDEMPTION",
"release_year",
"2013"
],
[
"BLOOD TIES",
"has_genre",
"CRIME"
],
[
"BLOOD TIES",
"release_year",
"2013"
],
[
"BRAZILIAN WESTERN",
"has_genre",
"CRIME"
],
[
"BRAZILIAN WESTERN",
"release_year",
"2013"
],
[
"BROKEN CITY",
"has_genre",
"CRIME"
],
[
"BROKEN CITY",
"release_year",
"2013"
],
[
"CIRCUS OF HORRORS",
"has_genre",
"HORROR"
],
[
"CIRCUS OF HORRORS",
"starred_actors",
"DONALD PLEASENCE"
],
[
"CLOSED CIRCUIT",
"has_genre",
"CRIME"
],
[
"CLOSED CIRCUIT",
"release_year",
"2013"
],
[
"COLD COMES THE NIGHT",
"has_genre",
"CRIME"
],
[
"COLD COMES THE NIGHT",
"release_year",
"2013"
],
[
"COMPULSION",
"has_genre",
"CRIME"
],
[
"COMPULSION",
"release_year",
"2013"
],
[
"COTTAGE COUNTRY",
"has_genre",
"CRIME"
],
[
"COTTAGE COUNTRY",
"release_year",
"2013"
],
[
"DEAD MAN DOWN",
"has_genre",
"CRIME"
],
[
"DEAD MAN DOWN",
"release_year",
"2013"
],
[
"DEVIL'S KNOT",
"has_genre",
"CRIME"
],
[
"DEVIL'S KNOT",
"release_year",
"2013"
],
[
"DOM HEMINGWAY",
"has_genre",
"CRIME"
],
[
"DOM HEMINGWAY",
"release_year",
"2013"
],
[
"DRACULA",
"has_genre",
"HORROR"
],
[
"DRACULA",
"has_tags",
"DRACULA"
],
[
"DRACULA",
"has_tags",
"HORROR"
],
[
"DRACULA",
"has_tags",
"VAMPIRE"
],
[
"DRACULA",
"starred_actors",
"DONALD PLEASENCE"
],
[
"DRIVE",
"directed_by",
"NICOLAS WINDING REFN"
],
[
"DRIVE",
"has_genre",
"CRIME"
],
[
"DRIVE",
"has_tags",
"CRIME"
],
[
"DRIVE",
"has_tags",
"NICOLAS WINDING REFN"
],
[
"DRIVE",
"has_tags",
"RYAN GOSLING"
],
[
"DRIVE",
"starred_actors",
"RYAN GOSLING"
],
[
"EMPIRE STATE",
"has_genre",
"CRIME"
],
[
"EMPIRE STATE",
"release_year",
"2013"
],
[
"FILTH",
"has_genre",
"CRIME"
],
[
"FILTH",
"release_year",
"2013"
],
[
"FORCE OF EXECUTION",
"has_genre",
"CRIME"
],
[
"FORCE OF EXECUTION",
"release_year",
"2013"
],
[
"FRACTURE",
"has_genre",
"CRIME"
],
[
"FRACTURE",
"has_tags",
"RYAN GOSLING"
],
[
"FRACTURE",
"starred_actors",
"RYAN GOSLING"
],
[
"GLORIA",
"has_genre",
"CRIME"
],
[
"GLORIA",
"release_year",
"2013"
],
[
"HALLOWEEN",
"directed_by",
"JOHN CARPENTER"
],
[
"HALLOWEEN",
"directed_by",
"ROB ZOMBIE"
],
[
"HALLOWEEN",
"has_genre",
"HORROR"
],
[
"HALLOWEEN",
"has_tags",
"DONALD PLEASENCE"
],
[
"HALLOWEEN",
"has_tags",
"FRANCHISE"
],
[
"HALLOWEEN",
"has_tags",
"HALLOWEEN"
],
[
"HALLOWEEN",
"has_tags",
"HORROR"
],
[
"HALLOWEEN",
"has_tags",
"JAMIE LEE CURTIS"
],
[
"HALLOWEEN",
"has_tags",
"JOHN CARPENTER"
],
[
"HALLOWEEN",
"has_tags",
"MALCOLM MCDOWELL"
],
[
"HALLOWEEN",
"has_tags",
"MICHAEL MYERS"
],
[
"HALLOWEEN",
"has_tags",
"ROB ZOMBIE"
],
[
"HALLOWEEN",
"has_tags",
"SLASHER"
],
[
"HALLOWEEN",
"starred_actors",
"DONALD PLEASENCE"
],
[
"HALLOWEEN",
"starred_actors",
"JAMIE LEE CURTIS"
],
[
"HALLOWEEN",
"starred_actors",
"MALCOLM MCDOWELL"
],
[
"HALLOWEEN",
"written_by",
"DEBRA HILL"
],
[
"HALLOWEEN",
"written_by",
"JOHN CARPENTER"
],
[
"HALLOWEEN",
"written_by",
"ROB ZOMBIE"
],
[
"HALLOWEEN II",
"directed_by",
"ROB ZOMBIE"
],
[
"HALLOWEEN II",
"has_genre",
"HORROR"
],
[
"HALLOWEEN II",
"has_tags",
"DONALD PLEASENCE"
],
[
"HALLOWEEN II",
"has_tags",
"FRANCHISE"
],
[
"HALLOWEEN II",
"has_tags",
"HALLOWEEN"
],
[
"HALLOWEEN II",
"has_tags",
"HORROR"
],
[
"HALLOWEEN II",
"has_tags",
"JAMIE LEE CURTIS"
],
[
"HALLOWEEN II",
"has_tags",
"MALCOLM MCDOWELL"
],
[
"HALLOWEEN II",
"has_tags",
"MICHAEL MYERS"
],
[
"HALLOWEEN II",
"has_tags",
"SLASHER"
],
[
"HALLOWEEN II",
"starred_actors",
"DONALD PLEASENCE"
],
[
"HALLOWEEN II",
"starred_actors",
"JAMIE LEE CURTIS"
],
[
"HALLOWEEN II",
"written_by",
"DEBRA HILL"
],
[
"HALLOWEEN II",
"written_by",
"JOHN CARPENTER"
],
[
"HALLOWEEN II",
"written_by",
"ROB ZOMBIE"
],
[
"HELI",
"has_genre",
"CRIME"
],
[
"HELI",
"release_year",
"2013"
],
[
"HUNTING ELEPHANTS",
"has_genre",
"CRIME"
],
[
"HUNTING ELEPHANTS",
"release_year",
"2013"
],
[
"IDENTITY THIEF",
"has_genre",
"CRIME"
],
[
"IDENTITY THIEF",
"has_tags",
"CRIME"
],
[
"IDENTITY THIEF",
"release_year",
"2013"
],
[
"LIFE OF CRIME",
"has_genre",
"CRIME"
],
[
"LIFE OF CRIME",
"release_year",
"2013"
],
[
"LOVE CRIME",
"has_genre",
"CRIME"
],
[
"LOVE CRIME",
"starred_actors",
"KRISTIN SCOTT THOMAS"
],
[
"METRO MANILA",
"has_genre",
"CRIME"
],
[
"METRO MANILA",
"release_year",
"2013"
],
[
"MYSTERY ROAD",
"has_genre",
"CRIME"
],
[
"MYSTERY ROAD",
"release_year",
"2013"
],
[
"ONLY GOD FORGIVES",
"directed_by",
"NICOLAS WINDING REFN"
],
[
"ONLY GOD FORGIVES",
"has_genre",
"CRIME"
],
[
"ONLY GOD FORGIVES",
"has_tags",
"BANGKOK"
],
[
"ONLY GOD FORGIVES",
"has_tags",
"NICOLAS WINDING REFN"
],
[
"ONLY GOD FORGIVES",
"has_tags",
"RYAN GOSLING"
],
[
"ONLY GOD FORGIVES",
"in_language",
"THAI"
],
[
"ONLY GOD FORGIVES",
"release_year",
"2013"
],
[
"ONLY GOD FORGIVES",
"starred_actors",
"KRISTIN SCOTT THOMAS"
],
[
"ONLY GOD FORGIVES",
"starred_actors",
"RYAN GOSLING"
],
[
"ONLY GOD FORGIVES",
"written_by",
"NICOLAS WINDING REFN"
],
[
"PARKER",
"has_genre",
"CRIME"
],
[
"PARKER",
"has_tags",
"CRIME"
],
[
"PARKER",
"release_year",
"2013"
],
[
"PAWN SHOP CHRONICLES",
"has_genre",
"CRIME"
],
[
"PAWN SHOP CHRONICLES",
"release_year",
"2013"
],
[
"PUSHER",
"directed_by",
"NICOLAS WINDING REFN"
],
[
"PUSHER",
"has_genre",
"CRIME"
],
[
"PUSHER",
"has_tags",
"NICOLAS WINDING REFN"
],
[
"PUSHER",
"written_by",
"NICOLAS WINDING REFN"
],
[
"RUNNER RUNNER",
"has_genre",
"CRIME"
],
[
"RUNNER RUNNER",
"release_year",
"2013"
],
[
"RUSH",
"has_genre",
"CRIME"
],
[
"RUSH",
"release_year",
"2013"
],
[
"THE BLING RING",
"has_genre",
"CRIME"
],
[
"THE BLING RING",
"has_tags",
"CRIME"
],
[
"THE BLING RING",
"release_year",
"2013"
],
[
"THE CALL",
"has_genre",
"CRIME"
],
[
"THE CALL",
"release_year",
"2013"
],
[
"THE FAMILY",
"has_genre",
"CRIME"
],
[
"THE FAMILY",
"release_year",
"2013"
],
[
"THE NIGHT OF THE GENERALS",
"has_genre",
"CRIME"
],
[
"THE NIGHT OF THE GENERALS",
"starred_actors",
"DONALD PLEASENCE"
],
[
"THE PLACE BEYOND THE PINES",
"has_genre",
"CRIME"
],
[
"THE PLACE BEYOND THE PINES",
"has_tags",
"RYAN GOSLING"
],
[
"THE PLACE BEYOND THE PINES",
"starred_actors",
"RYAN GOSLING"
],
[
"TRAFFIC DEPARTMENT",
"has_genre",
"CRIME"
],
[
"TRAFFIC DEPARTMENT",
"release_year",
"2013"
],
[
"VAMPIRE IN VENICE",
"has_genre",
"HORROR"
],
[
"VAMPIRE IN VENICE",
"has_tags",
"VAMPIRE"
],
[
"VAMPIRE IN VENICE",
"starred_actors",
"DONALD PLEASENCE"
],
[
"WISHMASTER",
"has_genre",
"HORROR"
],
[
"WISHMASTER",
"has_tags",
"HORROR"
],
[
"WISHMASTER",
"starred_actors",
"TAMMY LAUREN"
],
[
"ZULU",
"has_genre",
"CRIME"
],
[
"ZULU",
"release_year",
"2013"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
2452, 13 ASSASSINS
11, 1940
19543, 2001 MANIACS
37484, 2004
6314, A DAMSEL IN DISTRESS
24480, A NIGHTMARE ON ELM STREET
25465, APARTMENT 1303
7908, AUDITION
23324, BATTLEFIELD BASEBALL
4445, BITTER SWEET
36593, BLACK CHRISTMAS
3506, BLUE SKIES
25126, BODY SNATCHERS
16011, BROADWAY MELODY OF 1940
7381, CALVAIRE
8079, CAREFREE
38311, CHAOS
1551, CLUB DREAD
32408, CREEP
26635, CROWS ZERO
12155, DADDY LONG LEGS
24400, DARK WATER
21942, DAWN OF THE DEAD
5547, DEAD BIRDS
1353, DECOYS
25528, DEVIL'S PASS
23612, DOLLS
13272, DON'T BE AFRAID OF THE DARK
15286, DOWN ARGENTINE WAY
25662, DR. CYCLOPS
6662, DUMPLINGS
5799, EASTER PARADE
23129, EVIL DEAD
19728, EVILENKO
5038, FINIAN'S RAINBOW
16485, FOLLOW THE FLEET
29924, FRED ASTAIRE
22215, FRIDAY THE 13TH
31648, FRIGHT NIGHT
1578, FUNNY FACE
32864, GHOST STORY
3553, GODZILLA
4830, HALLOWEEN
11997, HELLBENT
23534, HOLIDAY INN
14279, HOLLY GOSS
5870, HORROR
10147, HOUSE
9686, HOUSE OF WAX
31551, HOUSE ON HAUNTED HILL
15439, I SPIT ON YOUR GRAVE
13174, INFECTION
25576, INNOCENCE
13070, INVADERS FROM MARS
14910, IT'S ALIVE
8164, IZO
8248, JAPAN
36874, JAPANESE
4418, KWAIDAN
29987, LET ME IN
8851, LITTLE SHOP OF HORRORS
20189, LOFT
26370, MADHOUSE
2461, MEMOIRS OF A GEISHA
35621, MILLENNIUM ACTRESS
21686, MOONLIGHT SERENADE
24593, MUSICAL
32988, NIGHT OF THE LIVING DEAD
11340, NIGHT OF THE LIVING DEAD 3D
18722, NOSFERATU THE VAMPYRE
3089, NOT OF THIS EARTH
36326, ONE MISSED CALL
6302, ONIBABA
36532, OVER YOUR DEAD BODY
234, PEARL HARBOR
14026, PINOCCHIO
6035, PRINCESS RACCOON
28091, PSYCHO
13237, PULSE
199, PUPPET MASTER VS DEMONIC TOYS
6175, QUARANTINE
28729, REMAKE
30416, REPO! THE GENETIC OPERA
32894, RIDING THE BULLET
28, RING
35249, RING 2
38241, RING OF DARKNESS
27308, ROBERTA
38307, ROYAL WEDDING
34022, SATAN'S LITTLE HELPER
36247, SAW
12071, SECOND CHORUS
2186, SEED OF CHUCKY
30996, SHUTTER
16848, SILK STOCKINGS
6260, SPIRITED AWAY
32367, STAGE FRIGHT
1584, STEPHEN SUSCO
13333, STRIKE UP THE BAND
7170, SWEET HOME
8998, SWING TIME
18903, TAKASHI SHIMIZU
20069, THAT'S ENTERTAINMENT!
31138, THAT'S ENTERTAINMENT, PART II
9015, THE AMITYVILLE HORROR
16069, THE APE
32851, THE BAND WAGON
3223, THE BARKLEYS OF BROADWAY
3543, THE BLOB
25463, THE CRAZIES
4694, THE CREATURE WASN'T NICE
3273, THE DEVIL BAT
7153, THE DEVIL'S CARNIVAL
20931, THE EYE
38052, THE GAY DIVORCEE
28048, THE GHOST BREAKERS
786, THE GRUDGE
9129, THE GRUDGE 2
19342, THE GRUDGE 3
17778, THE HAPPINESS OF THE KATAKURIS
11787, THE HAUNTING
15462, THE HILLS HAVE EYES
26776, THE INVISIBLE MAN RETURNS
15202, THE LAST HOUSE ON THE LEFT
29109, THE LODGER
17910, THE OMEN
2492, THE RING
12654, THE RING TWO
9923, THE SKY'S THE LIMIT
23847, THE STEPFORD WIVES
30082, THE STORY OF VERNON AND IRENE CASTLE
21548, THE SUN
9665, THE TEXAS CHAINSAW MASSACRE
22751, THE WICKER MAN
24040, THREE LITTLE WORDS
29819, TIN PAN ALLEY
19710, TOKYO ZOMBIE
12856, TOOLBOX MURDERS
32505, TOP HAT
19088, VAN HELSING
36374, VILLAGE OF THE DAMNED
29077, WASABI
8589, WICKED CITY
12029, WILD ZERO
38538, WILLARD
15472, YOLANDA AND THE THIEF
19677, YOU WERE NEVER LOVELIER
38863, YOU'LL NEVER GET RICH
14841, ZIEGFELD FOLLIES
38978, ZOMBIE HONEYMOON
src, edge_attr, dst
2452, has_tags, 8248
2452, in_language, 36874
19543, has_genre, 5870
19543, has_tags, 28729
6314, has_genre, 24593
6314, starred_actors, 29924
24480, has_genre, 5870
24480, has_tags, 5870
24480, has_tags, 28729
25465, has_genre, 5870
25465, in_language, 36874
7908, has_genre, 5870
7908, in_language, 36874
23324, has_genre, 5870
23324, in_language, 36874
4445, has_genre, 24593
4445, release_year, 11
36593, has_genre, 5870
36593, has_tags, 5870
36593, has_tags, 28729
3506, has_genre, 24593
3506, starred_actors, 29924
25126, has_genre, 5870
25126, has_tags, 28729
16011, has_genre, 24593
16011, release_year, 11
16011, starred_actors, 29924
7381, has_genre, 5870
7381, has_tags, 5870
7381, release_year, 37484
8079, has_genre, 24593
8079, starred_actors, 29924
38311, has_genre, 5870
38311, in_language, 36874
1551, has_genre, 5870
1551, release_year, 37484
32408, has_genre, 5870
32408, release_year, 37484
26635, has_tags, 8248
26635, in_language, 36874
12155, has_genre, 24593
12155, has_tags, 29924
12155, has_tags, 24593
12155, starred_actors, 29924
24400, has_genre, 5870
24400, has_tags, 5870
24400, has_tags, 28729
24400, in_language, 36874
21942, has_genre, 5870
21942, has_tags, 5870
21942, has_tags, 28729
21942, release_year, 37484
5547, has_genre, 5870
5547, release_year, 37484
1353, has_genre, 5870
1353, release_year, 37484
25528, has_genre, 5870
25528, starred_actors, 14279
23612, has_genre, 5870
23612, has_tags, 8248
23612, in_language, 36874
13272, has_genre, 5870
13272, has_tags, 28729
15286, has_genre, 24593
15286, release_year, 11
25662, has_genre, 5870
25662, release_year, 11
6662, has_genre, 5870
6662, release_year, 37484
5799, has_genre, 24593
5799, has_tags, 29924
5799, starred_actors, 29924
23129, has_genre, 5870
23129, has_tags, 5870
23129, has_tags, 28729
19728, has_genre, 5870
19728, release_year, 37484
5038, has_genre, 24593
5038, has_tags, 29924
5038, has_tags, 24593
5038, starred_actors, 29924
16485, has_genre, 24593
16485, starred_actors, 29924
22215, has_genre, 5870
22215, has_tags, 28729
31648, has_genre, 5870
31648, has_tags, 28729
1578, has_genre, 24593
1578, has_tags, 29924
1578, has_tags, 24593
1578, starred_actors, 29924
32864, has_genre, 5870
32864, starred_actors, 29924
3553, has_genre, 5870
3553, has_tags, 8248
3553, in_language, 36874
4830, has_genre, 5870
4830, has_tags, 5870
4830, has_tags, 28729
11997, has_genre, 5870
11997, has_tags, 5870
11997, release_year, 37484
23534, has_genre, 24593
23534, has_tags, 29924
23534, starred_actors, 29924
10147, has_genre, 5870
10147, has_tags, 36874
10147, in_language, 36874
9686, has_genre, 5870
9686, has_tags, 28729
31551, has_genre, 5870
31551, has_tags, 28729
15439, has_genre, 5870
15439, has_tags, 28729
13174, has_genre, 5870
13174, in_language, 36874
13174, release_year, 37484
25576, has_genre, 5870
25576, release_year, 37484
13070, has_genre, 5870
13070, has_tags, 28729
14910, has_genre, 5870
14910, has_tags, 28729
8164, in_language, 36874
8164, release_year, 37484
4418, has_genre, 5870
4418, has_tags, 8248
4418, in_language, 36874
29987, has_genre, 5870
29987, has_tags, 5870
29987, has_tags, 28729
8851, has_genre, 5870
8851, has_genre, 24593
8851, has_tags, 24593
20189, has_genre, 5870
20189, in_language, 36874
26370, has_genre, 5870
26370, release_year, 37484
2461, has_tags, 8248
2461, has_tags, 36874
2461, in_language, 36874
35621, has_tags, 8248
35621, in_language, 36874
21686, has_genre, 24593
21686, in_language, 36874
32988, has_genre, 5870
32988, has_tags, 5870
32988, has_tags, 28729
11340, has_genre, 5870
11340, has_tags, 28729
18722, has_genre, 5870
18722, has_tags, 28729
3089, has_genre, 5870
3089, has_tags, 28729
36326, has_genre, 5870
36326, in_language, 36874
6302, has_genre, 5870
6302, in_language, 36874
36532, has_genre, 5870
36532, has_tags, 5870
36532, in_language, 36874
234, has_tags, 8248
234, in_language, 36874
14026, has_tags, 24593
14026, release_year, 11
6035, has_genre, 24593
6035, in_language, 36874
28091, has_genre, 5870
28091, has_tags, 5870
28091, has_tags, 28729
13237, has_genre, 5870
13237, has_tags, 5870
13237, has_tags, 36874
13237, in_language, 36874
199, has_genre, 5870
199, release_year, 37484
6175, has_genre, 5870
6175, has_tags, 28729
30416, has_genre, 5870
30416, has_genre, 24593
30416, has_tags, 24593
32894, has_genre, 5870
32894, release_year, 37484
28, has_genre, 5870
28, in_language, 36874
35249, has_genre, 5870
35249, has_tags, 5870
35249, in_language, 36874
38241, has_genre, 5870
38241, release_year, 37484
27308, has_genre, 24593
27308, has_tags, 29924
27308, starred_actors, 29924
38307, has_genre, 24593
38307, has_tags, 29924
38307, starred_actors, 29924
34022, has_genre, 5870
34022, release_year, 37484
36247, has_genre, 5870
36247, has_tags, 5870
36247, release_year, 37484
12071, has_genre, 24593
12071, release_year, 11
12071, starred_actors, 29924
2186, has_genre, 5870
2186, release_year, 37484
30996, has_genre, 5870
30996, has_tags, 5870
30996, has_tags, 28729
30996, release_year, 37484
16848, has_genre, 24593
16848, starred_actors, 29924
6260, has_tags, 8248
6260, has_tags, 36874
6260, in_language, 36874
32367, has_genre, 5870
32367, has_genre, 24593
13333, has_genre, 24593
13333, release_year, 11
7170, has_genre, 5870
7170, in_language, 36874
8998, has_genre, 24593
8998, starred_actors, 29924
20069, has_genre, 24593
20069, starred_actors, 29924
31138, has_genre, 24593
31138, starred_actors, 29924
9015, has_genre, 5870
9015, has_tags, 28729
16069, has_genre, 5870
16069, release_year, 11
32851, has_genre, 24593
32851, starred_actors, 29924
3223, has_genre, 24593
3223, has_tags, 29924
3223, starred_actors, 29924
3543, has_genre, 5870
3543, has_tags, 28729
25463, has_genre, 5870
25463, has_tags, 28729
4694, has_genre, 5870
4694, has_genre, 24593
3273, has_genre, 5870
3273, release_year, 11
7153, has_genre, 5870
7153, has_genre, 24593
20931, has_genre, 5870
20931, has_tags, 5870
20931, has_tags, 28729
38052, has_genre, 24593
38052, starred_actors, 29924
28048, has_genre, 5870
28048, release_year, 11
786, directed_by, 18903
786, has_genre, 5870
786, has_tags, 8248
786, has_tags, 28729
786, in_language, 36874
786, release_year, 37484
786, written_by, 1584
786, written_by, 18903
9129, directed_by, 18903
9129, has_genre, 5870
9129, written_by, 1584
9129, written_by, 18903
19342, has_genre, 5870
19342, written_by, 18903
17778, has_genre, 5870
17778, has_genre, 24593
17778, has_tags, 24593
11787, has_genre, 5870
11787, has_tags, 5870
11787, has_tags, 28729
15462, has_genre, 5870
15462, has_tags, 5870
15462, has_tags, 28729
26776, has_genre, 5870
26776, release_year, 11
15202, has_genre, 5870
15202, has_tags, 28729
29109, has_genre, 5870
29109, has_tags, 28729
17910, has_genre, 5870
17910, has_tags, 5870
17910, has_tags, 28729
2492, has_genre, 5870
2492, has_tags, 5870
2492, has_tags, 36874
2492, has_tags, 28729
12654, has_genre, 5870
12654, has_tags, 28729
9923, has_genre, 24593
9923, starred_actors, 29924
23847, has_genre, 5870
23847, has_tags, 28729
23847, release_year, 37484
30082, has_genre, 24593
30082, starred_actors, 29924
21548, has_tags, 8248
21548, in_language, 36874
9665, has_genre, 5870
9665, has_tags, 28729
22751, has_genre, 5870
22751, has_tags, 28729
24040, has_genre, 24593
24040, starred_actors, 29924
29819, has_genre, 24593
29819, release_year, 11
19710, has_tags, 8248
19710, in_language, 36874
12856, has_genre, 5870
12856, has_tags, 5870
12856, release_year, 37484
32505, has_genre, 24593
32505, has_tags, 29924
32505, starred_actors, 29924
19088, has_tags, 5870
19088, release_year, 37484
36374, has_genre, 5870
36374, has_tags, 28729
29077, has_tags, 8248
29077, in_language, 36874
8589, has_genre, 5870
8589, in_language, 36874
12029, has_genre, 5870
12029, in_language, 36874
38538, has_genre, 5870
38538, has_tags, 28729
15472, has_genre, 24593
15472, starred_actors, 29924
19677, has_genre, 24593
19677, has_tags, 29924
19677, starred_actors, 29924
38863, has_genre, 24593
38863, starred_actors, 29924
14841, has_genre, 24593
14841, starred_actors, 29924
38978, has_genre, 5870
38978, release_year, 37484
Question: How are BROADWAY MELODY OF 1940, HOLLY GOSS, and THE GRUDGE related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"BROADWAY MELODY OF 1940",
"HOLLY GOSS",
"THE GRUDGE"
],
"valid_edges": [
[
"13 ASSASSINS",
"has_tags",
"JAPAN"
],
[
"13 ASSASSINS",
"in_language",
"JAPANESE"
],
[
"2001 MANIACS",
"has_genre",
"HORROR"
],
[
"2001 MANIACS",
"has_tags",
"REMAKE"
],
[
"A DAMSEL IN DISTRESS",
"has_genre",
"MUSICAL"
],
[
"A DAMSEL IN DISTRESS",
"starred_actors",
"FRED ASTAIRE"
],
[
"A NIGHTMARE ON ELM STREET",
"has_genre",
"HORROR"
],
[
"A NIGHTMARE ON ELM STREET",
"has_tags",
"HORROR"
],
[
"A NIGHTMARE ON ELM STREET",
"has_tags",
"REMAKE"
],
[
"APARTMENT 1303",
"has_genre",
"HORROR"
],
[
"APARTMENT 1303",
"in_language",
"JAPANESE"
],
[
"AUDITION",
"has_genre",
"HORROR"
],
[
"AUDITION",
"in_language",
"JAPANESE"
],
[
"BATTLEFIELD BASEBALL",
"has_genre",
"HORROR"
],
[
"BATTLEFIELD BASEBALL",
"in_language",
"JAPANESE"
],
[
"BITTER SWEET",
"has_genre",
"MUSICAL"
],
[
"BITTER SWEET",
"release_year",
"1940"
],
[
"BLACK CHRISTMAS",
"has_genre",
"HORROR"
],
[
"BLACK CHRISTMAS",
"has_tags",
"HORROR"
],
[
"BLACK CHRISTMAS",
"has_tags",
"REMAKE"
],
[
"BLUE SKIES",
"has_genre",
"MUSICAL"
],
[
"BLUE SKIES",
"starred_actors",
"FRED ASTAIRE"
],
[
"BODY SNATCHERS",
"has_genre",
"HORROR"
],
[
"BODY SNATCHERS",
"has_tags",
"REMAKE"
],
[
"BROADWAY MELODY OF 1940",
"has_genre",
"MUSICAL"
],
[
"BROADWAY MELODY OF 1940",
"release_year",
"1940"
],
[
"BROADWAY MELODY OF 1940",
"starred_actors",
"FRED ASTAIRE"
],
[
"CALVAIRE",
"has_genre",
"HORROR"
],
[
"CALVAIRE",
"has_tags",
"HORROR"
],
[
"CALVAIRE",
"release_year",
"2004"
],
[
"CAREFREE",
"has_genre",
"MUSICAL"
],
[
"CAREFREE",
"starred_actors",
"FRED ASTAIRE"
],
[
"CHAOS",
"has_genre",
"HORROR"
],
[
"CHAOS",
"in_language",
"JAPANESE"
],
[
"CLUB DREAD",
"has_genre",
"HORROR"
],
[
"CLUB DREAD",
"release_year",
"2004"
],
[
"CREEP",
"has_genre",
"HORROR"
],
[
"CREEP",
"release_year",
"2004"
],
[
"CROWS ZERO",
"has_tags",
"JAPAN"
],
[
"CROWS ZERO",
"in_language",
"JAPANESE"
],
[
"DADDY LONG LEGS",
"has_genre",
"MUSICAL"
],
[
"DADDY LONG LEGS",
"has_tags",
"FRED ASTAIRE"
],
[
"DADDY LONG LEGS",
"has_tags",
"MUSICAL"
],
[
"DADDY LONG LEGS",
"starred_actors",
"FRED ASTAIRE"
],
[
"DARK WATER",
"has_genre",
"HORROR"
],
[
"DARK WATER",
"has_tags",
"HORROR"
],
[
"DARK WATER",
"has_tags",
"REMAKE"
],
[
"DARK WATER",
"in_language",
"JAPANESE"
],
[
"DAWN OF THE DEAD",
"has_genre",
"HORROR"
],
[
"DAWN OF THE DEAD",
"has_tags",
"HORROR"
],
[
"DAWN OF THE DEAD",
"has_tags",
"REMAKE"
],
[
"DAWN OF THE DEAD",
"release_year",
"2004"
],
[
"DEAD BIRDS",
"has_genre",
"HORROR"
],
[
"DEAD BIRDS",
"release_year",
"2004"
],
[
"DECOYS",
"has_genre",
"HORROR"
],
[
"DECOYS",
"release_year",
"2004"
],
[
"DEVIL'S PASS",
"has_genre",
"HORROR"
],
[
"DEVIL'S PASS",
"starred_actors",
"HOLLY GOSS"
],
[
"DOLLS",
"has_genre",
"HORROR"
],
[
"DOLLS",
"has_tags",
"JAPAN"
],
[
"DOLLS",
"in_language",
"JAPANESE"
],
[
"DON'T BE AFRAID OF THE DARK",
"has_genre",
"HORROR"
],
[
"DON'T BE AFRAID OF THE DARK",
"has_tags",
"REMAKE"
],
[
"DOWN ARGENTINE WAY",
"has_genre",
"MUSICAL"
],
[
"DOWN ARGENTINE WAY",
"release_year",
"1940"
],
[
"DR. CYCLOPS",
"has_genre",
"HORROR"
],
[
"DR. CYCLOPS",
"release_year",
"1940"
],
[
"DUMPLINGS",
"has_genre",
"HORROR"
],
[
"DUMPLINGS",
"release_year",
"2004"
],
[
"EASTER PARADE",
"has_genre",
"MUSICAL"
],
[
"EASTER PARADE",
"has_tags",
"FRED ASTAIRE"
],
[
"EASTER PARADE",
"starred_actors",
"FRED ASTAIRE"
],
[
"EVIL DEAD",
"has_genre",
"HORROR"
],
[
"EVIL DEAD",
"has_tags",
"HORROR"
],
[
"EVIL DEAD",
"has_tags",
"REMAKE"
],
[
"EVILENKO",
"has_genre",
"HORROR"
],
[
"EVILENKO",
"release_year",
"2004"
],
[
"FINIAN'S RAINBOW",
"has_genre",
"MUSICAL"
],
[
"FINIAN'S RAINBOW",
"has_tags",
"FRED ASTAIRE"
],
[
"FINIAN'S RAINBOW",
"has_tags",
"MUSICAL"
],
[
"FINIAN'S RAINBOW",
"starred_actors",
"FRED ASTAIRE"
],
[
"FOLLOW THE FLEET",
"has_genre",
"MUSICAL"
],
[
"FOLLOW THE FLEET",
"starred_actors",
"FRED ASTAIRE"
],
[
"FRIDAY THE 13TH",
"has_genre",
"HORROR"
],
[
"FRIDAY THE 13TH",
"has_tags",
"REMAKE"
],
[
"FRIGHT NIGHT",
"has_genre",
"HORROR"
],
[
"FRIGHT NIGHT",
"has_tags",
"REMAKE"
],
[
"FUNNY FACE",
"has_genre",
"MUSICAL"
],
[
"FUNNY FACE",
"has_tags",
"FRED ASTAIRE"
],
[
"FUNNY FACE",
"has_tags",
"MUSICAL"
],
[
"FUNNY FACE",
"starred_actors",
"FRED ASTAIRE"
],
[
"GHOST STORY",
"has_genre",
"HORROR"
],
[
"GHOST STORY",
"starred_actors",
"FRED ASTAIRE"
],
[
"GODZILLA",
"has_genre",
"HORROR"
],
[
"GODZILLA",
"has_tags",
"JAPAN"
],
[
"GODZILLA",
"in_language",
"JAPANESE"
],
[
"HALLOWEEN",
"has_genre",
"HORROR"
],
[
"HALLOWEEN",
"has_tags",
"HORROR"
],
[
"HALLOWEEN",
"has_tags",
"REMAKE"
],
[
"HELLBENT",
"has_genre",
"HORROR"
],
[
"HELLBENT",
"has_tags",
"HORROR"
],
[
"HELLBENT",
"release_year",
"2004"
],
[
"HOLIDAY INN",
"has_genre",
"MUSICAL"
],
[
"HOLIDAY INN",
"has_tags",
"FRED ASTAIRE"
],
[
"HOLIDAY INN",
"starred_actors",
"FRED ASTAIRE"
],
[
"HOUSE",
"has_genre",
"HORROR"
],
[
"HOUSE",
"has_tags",
"JAPANESE"
],
[
"HOUSE",
"in_language",
"JAPANESE"
],
[
"HOUSE OF WAX",
"has_genre",
"HORROR"
],
[
"HOUSE OF WAX",
"has_tags",
"REMAKE"
],
[
"HOUSE ON HAUNTED HILL",
"has_genre",
"HORROR"
],
[
"HOUSE ON HAUNTED HILL",
"has_tags",
"REMAKE"
],
[
"I SPIT ON YOUR GRAVE",
"has_genre",
"HORROR"
],
[
"I SPIT ON YOUR GRAVE",
"has_tags",
"REMAKE"
],
[
"INFECTION",
"has_genre",
"HORROR"
],
[
"INFECTION",
"in_language",
"JAPANESE"
],
[
"INFECTION",
"release_year",
"2004"
],
[
"INNOCENCE",
"has_genre",
"HORROR"
],
[
"INNOCENCE",
"release_year",
"2004"
],
[
"INVADERS FROM MARS",
"has_genre",
"HORROR"
],
[
"INVADERS FROM MARS",
"has_tags",
"REMAKE"
],
[
"IT'S ALIVE",
"has_genre",
"HORROR"
],
[
"IT'S ALIVE",
"has_tags",
"REMAKE"
],
[
"IZO",
"in_language",
"JAPANESE"
],
[
"IZO",
"release_year",
"2004"
],
[
"KWAIDAN",
"has_genre",
"HORROR"
],
[
"KWAIDAN",
"has_tags",
"JAPAN"
],
[
"KWAIDAN",
"in_language",
"JAPANESE"
],
[
"LET ME IN",
"has_genre",
"HORROR"
],
[
"LET ME IN",
"has_tags",
"HORROR"
],
[
"LET ME IN",
"has_tags",
"REMAKE"
],
[
"LITTLE SHOP OF HORRORS",
"has_genre",
"HORROR"
],
[
"LITTLE SHOP OF HORRORS",
"has_genre",
"MUSICAL"
],
[
"LITTLE SHOP OF HORRORS",
"has_tags",
"MUSICAL"
],
[
"LOFT",
"has_genre",
"HORROR"
],
[
"LOFT",
"in_language",
"JAPANESE"
],
[
"MADHOUSE",
"has_genre",
"HORROR"
],
[
"MADHOUSE",
"release_year",
"2004"
],
[
"MEMOIRS OF A GEISHA",
"has_tags",
"JAPAN"
],
[
"MEMOIRS OF A GEISHA",
"has_tags",
"JAPANESE"
],
[
"MEMOIRS OF A GEISHA",
"in_language",
"JAPANESE"
],
[
"MILLENNIUM ACTRESS",
"has_tags",
"JAPAN"
],
[
"MILLENNIUM ACTRESS",
"in_language",
"JAPANESE"
],
[
"MOONLIGHT SERENADE",
"has_genre",
"MUSICAL"
],
[
"MOONLIGHT SERENADE",
"in_language",
"JAPANESE"
],
[
"NIGHT OF THE LIVING DEAD",
"has_genre",
"HORROR"
],
[
"NIGHT OF THE LIVING DEAD",
"has_tags",
"HORROR"
],
[
"NIGHT OF THE LIVING DEAD",
"has_tags",
"REMAKE"
],
[
"NIGHT OF THE LIVING DEAD 3D",
"has_genre",
"HORROR"
],
[
"NIGHT OF THE LIVING DEAD 3D",
"has_tags",
"REMAKE"
],
[
"NOSFERATU THE VAMPYRE",
"has_genre",
"HORROR"
],
[
"NOSFERATU THE VAMPYRE",
"has_tags",
"REMAKE"
],
[
"NOT OF THIS EARTH",
"has_genre",
"HORROR"
],
[
"NOT OF THIS EARTH",
"has_tags",
"REMAKE"
],
[
"ONE MISSED CALL",
"has_genre",
"HORROR"
],
[
"ONE MISSED CALL",
"in_language",
"JAPANESE"
],
[
"ONIBABA",
"has_genre",
"HORROR"
],
[
"ONIBABA",
"in_language",
"JAPANESE"
],
[
"OVER YOUR DEAD BODY",
"has_genre",
"HORROR"
],
[
"OVER YOUR DEAD BODY",
"has_tags",
"HORROR"
],
[
"OVER YOUR DEAD BODY",
"in_language",
"JAPANESE"
],
[
"PEARL HARBOR",
"has_tags",
"JAPAN"
],
[
"PEARL HARBOR",
"in_language",
"JAPANESE"
],
[
"PINOCCHIO",
"has_tags",
"MUSICAL"
],
[
"PINOCCHIO",
"release_year",
"1940"
],
[
"PRINCESS RACCOON",
"has_genre",
"MUSICAL"
],
[
"PRINCESS RACCOON",
"in_language",
"JAPANESE"
],
[
"PSYCHO",
"has_genre",
"HORROR"
],
[
"PSYCHO",
"has_tags",
"HORROR"
],
[
"PSYCHO",
"has_tags",
"REMAKE"
],
[
"PULSE",
"has_genre",
"HORROR"
],
[
"PULSE",
"has_tags",
"HORROR"
],
[
"PULSE",
"has_tags",
"JAPANESE"
],
[
"PULSE",
"in_language",
"JAPANESE"
],
[
"PUPPET MASTER VS DEMONIC TOYS",
"has_genre",
"HORROR"
],
[
"PUPPET MASTER VS DEMONIC TOYS",
"release_year",
"2004"
],
[
"QUARANTINE",
"has_genre",
"HORROR"
],
[
"QUARANTINE",
"has_tags",
"REMAKE"
],
[
"REPO! THE GENETIC OPERA",
"has_genre",
"HORROR"
],
[
"REPO! THE GENETIC OPERA",
"has_genre",
"MUSICAL"
],
[
"REPO! THE GENETIC OPERA",
"has_tags",
"MUSICAL"
],
[
"RIDING THE BULLET",
"has_genre",
"HORROR"
],
[
"RIDING THE BULLET",
"release_year",
"2004"
],
[
"RING",
"has_genre",
"HORROR"
],
[
"RING",
"in_language",
"JAPANESE"
],
[
"RING 2",
"has_genre",
"HORROR"
],
[
"RING 2",
"has_tags",
"HORROR"
],
[
"RING 2",
"in_language",
"JAPANESE"
],
[
"RING OF DARKNESS",
"has_genre",
"HORROR"
],
[
"RING OF DARKNESS",
"release_year",
"2004"
],
[
"ROBERTA",
"has_genre",
"MUSICAL"
],
[
"ROBERTA",
"has_tags",
"FRED ASTAIRE"
],
[
"ROBERTA",
"starred_actors",
"FRED ASTAIRE"
],
[
"ROYAL WEDDING",
"has_genre",
"MUSICAL"
],
[
"ROYAL WEDDING",
"has_tags",
"FRED ASTAIRE"
],
[
"ROYAL WEDDING",
"starred_actors",
"FRED ASTAIRE"
],
[
"SATAN'S LITTLE HELPER",
"has_genre",
"HORROR"
],
[
"SATAN'S LITTLE HELPER",
"release_year",
"2004"
],
[
"SAW",
"has_genre",
"HORROR"
],
[
"SAW",
"has_tags",
"HORROR"
],
[
"SAW",
"release_year",
"2004"
],
[
"SECOND CHORUS",
"has_genre",
"MUSICAL"
],
[
"SECOND CHORUS",
"release_year",
"1940"
],
[
"SECOND CHORUS",
"starred_actors",
"FRED ASTAIRE"
],
[
"SEED OF CHUCKY",
"has_genre",
"HORROR"
],
[
"SEED OF CHUCKY",
"release_year",
"2004"
],
[
"SHUTTER",
"has_genre",
"HORROR"
],
[
"SHUTTER",
"has_tags",
"HORROR"
],
[
"SHUTTER",
"has_tags",
"REMAKE"
],
[
"SHUTTER",
"release_year",
"2004"
],
[
"SILK STOCKINGS",
"has_genre",
"MUSICAL"
],
[
"SILK STOCKINGS",
"starred_actors",
"FRED ASTAIRE"
],
[
"SPIRITED AWAY",
"has_tags",
"JAPAN"
],
[
"SPIRITED AWAY",
"has_tags",
"JAPANESE"
],
[
"SPIRITED AWAY",
"in_language",
"JAPANESE"
],
[
"STAGE FRIGHT",
"has_genre",
"HORROR"
],
[
"STAGE FRIGHT",
"has_genre",
"MUSICAL"
],
[
"STRIKE UP THE BAND",
"has_genre",
"MUSICAL"
],
[
"STRIKE UP THE BAND",
"release_year",
"1940"
],
[
"SWEET HOME",
"has_genre",
"HORROR"
],
[
"SWEET HOME",
"in_language",
"JAPANESE"
],
[
"SWING TIME",
"has_genre",
"MUSICAL"
],
[
"SWING TIME",
"starred_actors",
"FRED ASTAIRE"
],
[
"THAT'S ENTERTAINMENT!",
"has_genre",
"MUSICAL"
],
[
"THAT'S ENTERTAINMENT!",
"starred_actors",
"FRED ASTAIRE"
],
[
"THAT'S ENTERTAINMENT, PART II",
"has_genre",
"MUSICAL"
],
[
"THAT'S ENTERTAINMENT, PART II",
"starred_actors",
"FRED ASTAIRE"
],
[
"THE AMITYVILLE HORROR",
"has_genre",
"HORROR"
],
[
"THE AMITYVILLE HORROR",
"has_tags",
"REMAKE"
],
[
"THE APE",
"has_genre",
"HORROR"
],
[
"THE APE",
"release_year",
"1940"
],
[
"THE BAND WAGON",
"has_genre",
"MUSICAL"
],
[
"THE BAND WAGON",
"starred_actors",
"FRED ASTAIRE"
],
[
"THE BARKLEYS OF BROADWAY",
"has_genre",
"MUSICAL"
],
[
"THE BARKLEYS OF BROADWAY",
"has_tags",
"FRED ASTAIRE"
],
[
"THE BARKLEYS OF BROADWAY",
"starred_actors",
"FRED ASTAIRE"
],
[
"THE BLOB",
"has_genre",
"HORROR"
],
[
"THE BLOB",
"has_tags",
"REMAKE"
],
[
"THE CRAZIES",
"has_genre",
"HORROR"
],
[
"THE CRAZIES",
"has_tags",
"REMAKE"
],
[
"THE CREATURE WASN'T NICE",
"has_genre",
"HORROR"
],
[
"THE CREATURE WASN'T NICE",
"has_genre",
"MUSICAL"
],
[
"THE DEVIL BAT",
"has_genre",
"HORROR"
],
[
"THE DEVIL BAT",
"release_year",
"1940"
],
[
"THE DEVIL'S CARNIVAL",
"has_genre",
"HORROR"
],
[
"THE DEVIL'S CARNIVAL",
"has_genre",
"MUSICAL"
],
[
"THE EYE",
"has_genre",
"HORROR"
],
[
"THE EYE",
"has_tags",
"HORROR"
],
[
"THE EYE",
"has_tags",
"REMAKE"
],
[
"THE GAY DIVORCEE",
"has_genre",
"MUSICAL"
],
[
"THE GAY DIVORCEE",
"starred_actors",
"FRED ASTAIRE"
],
[
"THE GHOST BREAKERS",
"has_genre",
"HORROR"
],
[
"THE GHOST BREAKERS",
"release_year",
"1940"
],
[
"THE GRUDGE",
"directed_by",
"TAKASHI SHIMIZU"
],
[
"THE GRUDGE",
"has_genre",
"HORROR"
],
[
"THE GRUDGE",
"has_tags",
"JAPAN"
],
[
"THE GRUDGE",
"has_tags",
"REMAKE"
],
[
"THE GRUDGE",
"in_language",
"JAPANESE"
],
[
"THE GRUDGE",
"release_year",
"2004"
],
[
"THE GRUDGE",
"written_by",
"STEPHEN SUSCO"
],
[
"THE GRUDGE",
"written_by",
"TAKASHI SHIMIZU"
],
[
"THE GRUDGE 2",
"directed_by",
"TAKASHI SHIMIZU"
],
[
"THE GRUDGE 2",
"has_genre",
"HORROR"
],
[
"THE GRUDGE 2",
"written_by",
"STEPHEN SUSCO"
],
[
"THE GRUDGE 2",
"written_by",
"TAKASHI SHIMIZU"
],
[
"THE GRUDGE 3",
"has_genre",
"HORROR"
],
[
"THE GRUDGE 3",
"written_by",
"TAKASHI SHIMIZU"
],
[
"THE HAPPINESS OF THE KATAKURIS",
"has_genre",
"HORROR"
],
[
"THE HAPPINESS OF THE KATAKURIS",
"has_genre",
"MUSICAL"
],
[
"THE HAPPINESS OF THE KATAKURIS",
"has_tags",
"MUSICAL"
],
[
"THE HAUNTING",
"has_genre",
"HORROR"
],
[
"THE HAUNTING",
"has_tags",
"HORROR"
],
[
"THE HAUNTING",
"has_tags",
"REMAKE"
],
[
"THE HILLS HAVE EYES",
"has_genre",
"HORROR"
],
[
"THE HILLS HAVE EYES",
"has_tags",
"HORROR"
],
[
"THE HILLS HAVE EYES",
"has_tags",
"REMAKE"
],
[
"THE INVISIBLE MAN RETURNS",
"has_genre",
"HORROR"
],
[
"THE INVISIBLE MAN RETURNS",
"release_year",
"1940"
],
[
"THE LAST HOUSE ON THE LEFT",
"has_genre",
"HORROR"
],
[
"THE LAST HOUSE ON THE LEFT",
"has_tags",
"REMAKE"
],
[
"THE LODGER",
"has_genre",
"HORROR"
],
[
"THE LODGER",
"has_tags",
"REMAKE"
],
[
"THE OMEN",
"has_genre",
"HORROR"
],
[
"THE OMEN",
"has_tags",
"HORROR"
],
[
"THE OMEN",
"has_tags",
"REMAKE"
],
[
"THE RING",
"has_genre",
"HORROR"
],
[
"THE RING",
"has_tags",
"HORROR"
],
[
"THE RING",
"has_tags",
"JAPANESE"
],
[
"THE RING",
"has_tags",
"REMAKE"
],
[
"THE RING TWO",
"has_genre",
"HORROR"
],
[
"THE RING TWO",
"has_tags",
"REMAKE"
],
[
"THE SKY'S THE LIMIT",
"has_genre",
"MUSICAL"
],
[
"THE SKY'S THE LIMIT",
"starred_actors",
"FRED ASTAIRE"
],
[
"THE STEPFORD WIVES",
"has_genre",
"HORROR"
],
[
"THE STEPFORD WIVES",
"has_tags",
"REMAKE"
],
[
"THE STEPFORD WIVES",
"release_year",
"2004"
],
[
"THE STORY OF VERNON AND IRENE CASTLE",
"has_genre",
"MUSICAL"
],
[
"THE STORY OF VERNON AND IRENE CASTLE",
"starred_actors",
"FRED ASTAIRE"
],
[
"THE SUN",
"has_tags",
"JAPAN"
],
[
"THE SUN",
"in_language",
"JAPANESE"
],
[
"THE TEXAS CHAINSAW MASSACRE",
"has_genre",
"HORROR"
],
[
"THE TEXAS CHAINSAW MASSACRE",
"has_tags",
"REMAKE"
],
[
"THE WICKER MAN",
"has_genre",
"HORROR"
],
[
"THE WICKER MAN",
"has_tags",
"REMAKE"
],
[
"THREE LITTLE WORDS",
"has_genre",
"MUSICAL"
],
[
"THREE LITTLE WORDS",
"starred_actors",
"FRED ASTAIRE"
],
[
"TIN PAN ALLEY",
"has_genre",
"MUSICAL"
],
[
"TIN PAN ALLEY",
"release_year",
"1940"
],
[
"TOKYO ZOMBIE",
"has_tags",
"JAPAN"
],
[
"TOKYO ZOMBIE",
"in_language",
"JAPANESE"
],
[
"TOOLBOX MURDERS",
"has_genre",
"HORROR"
],
[
"TOOLBOX MURDERS",
"has_tags",
"HORROR"
],
[
"TOOLBOX MURDERS",
"release_year",
"2004"
],
[
"TOP HAT",
"has_genre",
"MUSICAL"
],
[
"TOP HAT",
"has_tags",
"FRED ASTAIRE"
],
[
"TOP HAT",
"starred_actors",
"FRED ASTAIRE"
],
[
"VAN HELSING",
"has_tags",
"HORROR"
],
[
"VAN HELSING",
"release_year",
"2004"
],
[
"VILLAGE OF THE DAMNED",
"has_genre",
"HORROR"
],
[
"VILLAGE OF THE DAMNED",
"has_tags",
"REMAKE"
],
[
"WASABI",
"has_tags",
"JAPAN"
],
[
"WASABI",
"in_language",
"JAPANESE"
],
[
"WICKED CITY",
"has_genre",
"HORROR"
],
[
"WICKED CITY",
"in_language",
"JAPANESE"
],
[
"WILD ZERO",
"has_genre",
"HORROR"
],
[
"WILD ZERO",
"in_language",
"JAPANESE"
],
[
"WILLARD",
"has_genre",
"HORROR"
],
[
"WILLARD",
"has_tags",
"REMAKE"
],
[
"YOLANDA AND THE THIEF",
"has_genre",
"MUSICAL"
],
[
"YOLANDA AND THE THIEF",
"starred_actors",
"FRED ASTAIRE"
],
[
"YOU WERE NEVER LOVELIER",
"has_genre",
"MUSICAL"
],
[
"YOU WERE NEVER LOVELIER",
"has_tags",
"FRED ASTAIRE"
],
[
"YOU WERE NEVER LOVELIER",
"starred_actors",
"FRED ASTAIRE"
],
[
"YOU'LL NEVER GET RICH",
"has_genre",
"MUSICAL"
],
[
"YOU'LL NEVER GET RICH",
"starred_actors",
"FRED ASTAIRE"
],
[
"ZIEGFELD FOLLIES",
"has_genre",
"MUSICAL"
],
[
"ZIEGFELD FOLLIES",
"starred_actors",
"FRED ASTAIRE"
],
[
"ZOMBIE HONEYMOON",
"has_genre",
"HORROR"
],
[
"ZOMBIE HONEYMOON",
"release_year",
"2004"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
2133, 1998
6776, 2000
4476, CHOCOLAT
7091, FRANCE
32434, GEORGE WASHINGTON
22006, I WANT YOU
14601, LES MISÉRABLES
4182, THE MAN IN THE IRON MASK
12691, THE PATRIOT
23150, THE WOMEN ON THE 6TH FLOOR
src, edge_attr, dst
4476, has_tags, 7091
4476, release_year, 6776
32434, release_year, 6776
22006, release_year, 2133
14601, has_tags, 7091
14601, release_year, 2133
4182, has_tags, 7091
4182, release_year, 2133
12691, release_year, 2133
12691, release_year, 6776
23150, has_tags, 7091
Question: For what reason are GEORGE WASHINGTON, I WANT YOU, and THE WOMEN ON THE 6TH FLOOR associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"GEORGE WASHINGTON",
"I WANT YOU",
"THE WOMEN ON THE 6TH FLOOR"
],
"valid_edges": [
[
"CHOCOLAT",
"has_tags",
"FRANCE"
],
[
"CHOCOLAT",
"release_year",
"2000"
],
[
"GEORGE WASHINGTON",
"release_year",
"2000"
],
[
"I WANT YOU",
"release_year",
"1998"
],
[
"LES MISÉRABLES",
"has_tags",
"FRANCE"
],
[
"LES MISÉRABLES",
"release_year",
"1998"
],
[
"THE MAN IN THE IRON MASK",
"has_tags",
"FRANCE"
],
[
"THE MAN IN THE IRON MASK",
"release_year",
"1998"
],
[
"THE PATRIOT",
"release_year",
"1998"
],
[
"THE PATRIOT",
"release_year",
"2000"
],
[
"THE WOMEN ON THE 6TH FLOOR",
"has_tags",
"FRANCE"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
14588, CHRIS COLFER
14129, DIRTY DANCING
36212, DRAMA
14520, JENNIFER GREY
29961, PARKLAND
25002, STRUCK BY LIGHTNING
30391, VINCENT BUGLIOSI
src, edge_attr, dst
14129, has_genre, 36212
14129, has_tags, 14520
14129, starred_actors, 14520
29961, has_genre, 36212
29961, written_by, 30391
25002, has_genre, 36212
25002, starred_actors, 14588
25002, written_by, 14588
Question: How are CHRIS COLFER, JENNIFER GREY, and VINCENT BUGLIOSI related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"CHRIS COLFER",
"JENNIFER GREY",
"VINCENT BUGLIOSI"
],
"valid_edges": [
[
"DIRTY DANCING",
"has_genre",
"DRAMA"
],
[
"DIRTY DANCING",
"has_tags",
"JENNIFER GREY"
],
[
"DIRTY DANCING",
"starred_actors",
"JENNIFER GREY"
],
[
"PARKLAND",
"has_genre",
"DRAMA"
],
[
"PARKLAND",
"written_by",
"VINCENT BUGLIOSI"
],
[
"STRUCK BY LIGHTNING",
"has_genre",
"DRAMA"
],
[
"STRUCK BY LIGHTNING",
"starred_actors",
"CHRIS COLFER"
],
[
"STRUCK BY LIGHTNING",
"written_by",
"CHRIS COLFER"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
25354, $9.99
26762, 2008
16060, 27 DRESSES
37783, A BUNCH OF AMATEURS
9698, A CHRISTMAS TALE
955, A FILM WITH ME IN IT
6602, A MATTER OF LOAF AND DEATH
38059, ABSURDISTAN
30643, ACROSS THE UNIVERSE
37010, AGE OF CONSENT
28540, AN AMERICAN CAROL
26658, ANOTHER CINDERELLA STORY
6336, ANTHONY LAPAGLIA
18169, APRIL FOOL'S DAY
28274, ASSASSINATION OF A HIGH SCHOOL PRESIDENT
37608, AUSTRALIA
9340, BABY MAMA
24827, BAGHEAD
10673, BART GOT A ROOM
26783, BE KIND REWIND
25639, BEDTIME STORIES
19159, BEER FOR MY HORSES
13412, BERLIN CALLING
25846, BEVERLY HILLS CHIHUAHUA
4902, BIRDS OF AMERICA
7314, BOLT
10081, BOTTLE SHOCK
35599, BURN AFTER READING
33360, CANDY
15437, CHAOS THEORY
33927, CHOKE
24116, COLLEGE
21862, COLLEGE ROAD TRIP
30463, COMEDY
22452, COMMANDMENTS
24877, DANCE OF THE DEAD
9709, DE L'AUTRE CÔTÉ DU LIT
35428, DEAD FURY
12702, DEFINITELY, MAYBE
18106, DIMINISHED CAPACITY
36212, DRAMA
19245, DRILLBIT TAYLOR
29521, EASY VIRTUE
25559, EXTREME MOVIE
22541, FATSO
14303, FINDING AMANDA
17653, FINE, TOTALLY FINE
17405, FIRST SUNDAY
6219, FORGETTING SARAH MARSHALL
22005, FOUR CHRISTMASES
25086, FRENCH FILM
21839, GEOFFREY RUSH
17416, GET SMART
2159, GHOST TOWN
31060, GIGANTIC
19912, GRIFF THE INVISIBLE
13778, HAMLET 2
9852, HANK AND MIKE
36942, HAPPY-GO-LUCKY
31330, HOME
7811, HORTON HEARS A WHO!
10147, HOUSE
31549, HOW TO BE
33499, HOW TO BE A SERIAL KILLER
3508, HUMBOLDT COUNTY
17763, I SELL THE DEAD
21265, IGOR
33279, IN BRUGES
25088, JUST ADD WATER
11089, KILLER MOVIE
35095, KILLER PAD
19602, KUNG FU PANDA
39347, LEATHERHEADS
31011, LYMELIFE
16378, MAD MONEY
24627, MADE OF HONOR
5163, MAMMA MIA!
3844, MANAGEMENT
7813, MARY AND MAX
20844, MEET DAVE
9678, MEET THE BROWNS
19216, MID-AUGUST LUNCH
31735, MIDDLE OF NOWHERE
20418, MISS PETTIGREW LIVES FOR A DAY
25796, MURIEL'S WEDDING
15428, MY BEST FRIEND'S GIRL
27683, MY SASSY GIRL
33751, NEW YORK, I LOVE YOU
34872, NINJA CHEERLEADERS
27725, ONE-EYED MONSTER
16554, OPEN SEASON 2
15037, OTIS
292, OVER HER DEAD BODY
1697, PINEAPPLE EXPRESS
30478, PRIVATE LESSONS
17627, RAB NE BANA DI JODI
34313, REMARKABLE POWER
9633, ROLE MODELS
28099, RUDO Y CURSI
37850, SEMI-PRO
7015, SEX AND THE CITY
12676, SEX DRIVE
2024, SHINE
10415, SILENT WEDDING
11074, SINGH IS KINNG
30145, SMART PEOPLE
25151, SNOW DOGS
22068, SOUL MEN
24506, SPACE CHIMPS
15449, STEP BROTHERS
31154, STRANGE WILDERNESS
1432, STRICTLY BALLROOM
13322, STRICTLY SEXUAL
29231, SUNSHINE CLEANING
21445, SUPERHERO MOVIE
19488, SURFER, DUDE
17992, SWING VOTE
10020, THE ACCIDENTAL HUSBAND
34206, THE ADVENTURES OF FOOD BOY
33436, THE BANK
11158, THE BEATLES
39238, THE BROTHERS BLOOM
33457, THE DEAL
25305, THE GREAT BUCK HOWARD
25624, THE HOUSE BUNNY
31058, THE LONGSHOTS
14591, THE LOVE GURU
7303, THE LUCKY ONES
39053, THE ONION MOVIE
3558, THE OTHER END OF THE LINE
6703, THE RAMEN GIRL
5156, THE ROCKER
2739, THE SAPPHIRES
20210, THE WOMEN
8393, TROPIC THUNDER
9639, UNDEAD
20713, VISIONEERS
10231, WHAT HAPPENS IN VEGAS
27612, WHAT JUST HAPPENED
1547, WIENERS
32981, WILD CHILD
33110, WITLESS PROTECTION
1945, YES MAN
23774, YOU DON'T MESS WITH THE ZOHAN
16999, ZACK AND MIRI MAKE A PORNO
src, edge_attr, dst
25354, has_tags, 37608
25354, release_year, 26762
25354, starred_actors, 6336
25354, starred_actors, 21839
16060, has_genre, 30463
16060, release_year, 26762
37783, has_genre, 30463
37783, release_year, 26762
9698, has_genre, 30463
9698, release_year, 26762
955, has_genre, 30463
955, release_year, 26762
6602, has_genre, 30463
6602, has_tags, 30463
6602, release_year, 26762
38059, has_genre, 30463
38059, release_year, 26762
30643, has_genre, 36212
30643, has_tags, 11158
37010, has_genre, 30463
37010, has_tags, 37608
28540, has_genre, 30463
28540, release_year, 26762
26658, has_genre, 30463
26658, release_year, 26762
18169, has_genre, 30463
18169, release_year, 26762
28274, has_genre, 30463
28274, release_year, 26762
37608, has_genre, 36212
37608, has_tags, 37608
37608, release_year, 26762
9340, has_genre, 30463
9340, release_year, 26762
24827, has_genre, 30463
24827, release_year, 26762
10673, has_genre, 30463
10673, release_year, 26762
26783, has_genre, 30463
26783, release_year, 26762
25639, has_genre, 30463
25639, release_year, 26762
19159, has_genre, 30463
19159, release_year, 26762
13412, has_genre, 30463
13412, release_year, 26762
25846, has_genre, 30463
25846, has_tags, 30463
25846, release_year, 26762
4902, has_genre, 30463
4902, release_year, 26762
7314, has_genre, 30463
7314, release_year, 26762
10081, has_genre, 30463
10081, release_year, 26762
35599, has_genre, 30463
35599, has_tags, 30463
35599, release_year, 26762
33360, has_tags, 37608
33360, has_tags, 21839
33360, starred_actors, 21839
15437, has_genre, 30463
15437, release_year, 26762
33927, has_genre, 30463
33927, has_tags, 30463
33927, release_year, 26762
24116, has_genre, 30463
24116, release_year, 26762
21862, has_genre, 30463
21862, has_tags, 30463
21862, release_year, 26762
22452, has_genre, 30463
22452, starred_actors, 6336
24877, has_genre, 30463
24877, release_year, 26762
9709, has_genre, 30463
9709, release_year, 26762
35428, has_genre, 30463
35428, release_year, 26762
12702, has_genre, 30463
12702, release_year, 26762
18106, has_genre, 30463
18106, release_year, 26762
19245, has_genre, 30463
19245, release_year, 26762
29521, has_genre, 30463
29521, has_tags, 30463
29521, release_year, 26762
25559, has_genre, 30463
25559, release_year, 26762
22541, has_genre, 30463
22541, release_year, 26762
14303, has_genre, 30463
14303, release_year, 26762
17653, has_genre, 30463
17653, release_year, 26762
17405, has_genre, 30463
17405, release_year, 26762
6219, has_genre, 30463
6219, has_tags, 30463
6219, release_year, 26762
22005, has_genre, 30463
22005, release_year, 26762
25086, has_genre, 30463
25086, release_year, 26762
17416, has_genre, 30463
17416, release_year, 26762
2159, has_genre, 30463
2159, release_year, 26762
31060, has_genre, 30463
31060, release_year, 26762
19912, has_genre, 30463
19912, has_tags, 37608
13778, has_genre, 30463
13778, release_year, 26762
9852, has_genre, 30463
9852, release_year, 26762
36942, has_genre, 30463
36942, release_year, 26762
31330, has_genre, 30463
31330, release_year, 26762
7811, has_genre, 30463
7811, has_tags, 30463
7811, release_year, 26762
10147, has_genre, 30463
10147, release_year, 26762
31549, has_genre, 30463
31549, release_year, 26762
33499, has_genre, 30463
33499, release_year, 26762
3508, has_genre, 30463
3508, release_year, 26762
17763, has_genre, 30463
17763, release_year, 26762
21265, has_genre, 30463
21265, release_year, 26762
33279, has_genre, 30463
33279, has_tags, 30463
33279, release_year, 26762
25088, has_genre, 30463
25088, release_year, 26762
11089, has_genre, 30463
11089, release_year, 26762
35095, has_genre, 30463
35095, release_year, 26762
19602, has_tags, 30463
19602, release_year, 26762
39347, has_genre, 30463
39347, has_tags, 30463
39347, release_year, 26762
31011, has_genre, 30463
31011, release_year, 26762
16378, has_genre, 30463
16378, release_year, 26762
24627, has_genre, 30463
24627, release_year, 26762
5163, has_genre, 30463
5163, release_year, 26762
3844, has_genre, 30463
3844, release_year, 26762
7813, has_genre, 30463
7813, has_tags, 37608
20844, has_genre, 30463
20844, release_year, 26762
9678, has_genre, 30463
9678, release_year, 26762
19216, has_genre, 30463
19216, release_year, 26762
31735, has_genre, 30463
31735, release_year, 26762
20418, has_genre, 30463
20418, release_year, 26762
25796, has_genre, 30463
25796, has_tags, 37608
25796, has_tags, 30463
15428, has_genre, 30463
15428, release_year, 26762
27683, has_genre, 30463
27683, release_year, 26762
33751, has_genre, 30463
33751, release_year, 26762
34872, has_genre, 30463
34872, release_year, 26762
27725, has_genre, 30463
27725, release_year, 26762
16554, has_genre, 30463
16554, release_year, 26762
15037, has_genre, 30463
15037, release_year, 26762
292, has_genre, 30463
292, release_year, 26762
1697, has_genre, 30463
1697, has_tags, 30463
1697, release_year, 26762
30478, has_genre, 30463
30478, release_year, 26762
17627, has_genre, 30463
17627, release_year, 26762
34313, has_genre, 30463
34313, release_year, 26762
9633, has_genre, 30463
9633, has_tags, 30463
9633, release_year, 26762
28099, has_genre, 30463
28099, release_year, 26762
37850, has_genre, 30463
37850, release_year, 26762
7015, has_genre, 30463
7015, release_year, 26762
12676, has_genre, 30463
12676, has_tags, 30463
12676, release_year, 26762
2024, has_tags, 37608
2024, has_tags, 21839
2024, starred_actors, 21839
10415, has_genre, 30463
10415, release_year, 26762
11074, has_genre, 30463
11074, release_year, 26762
30145, has_genre, 30463
30145, release_year, 26762
25151, has_genre, 30463
22068, has_genre, 30463
22068, release_year, 26762
24506, has_genre, 30463
24506, release_year, 26762
15449, has_genre, 30463
15449, has_tags, 30463
15449, release_year, 26762
31154, has_genre, 30463
31154, release_year, 26762
1432, has_genre, 30463
1432, has_tags, 37608
13322, has_genre, 30463
13322, release_year, 26762
29231, has_genre, 30463
29231, release_year, 26762
21445, has_genre, 30463
21445, release_year, 26762
19488, has_genre, 30463
19488, release_year, 26762
17992, has_genre, 30463
17992, release_year, 26762
10020, has_genre, 30463
10020, release_year, 26762
34206, has_genre, 30463
34206, release_year, 26762
33436, has_tags, 37608
33436, starred_actors, 6336
39238, has_genre, 30463
39238, release_year, 26762
33457, has_genre, 30463
33457, release_year, 26762
25305, has_genre, 30463
25305, release_year, 26762
25624, has_genre, 30463
25624, has_tags, 30463
25624, release_year, 26762
31058, has_genre, 30463
31058, release_year, 26762
14591, has_genre, 30463
14591, release_year, 26762
7303, has_genre, 30463
7303, release_year, 26762
39053, has_genre, 30463
39053, has_tags, 30463
39053, release_year, 26762
3558, has_genre, 30463
3558, release_year, 26762
6703, has_genre, 30463
6703, release_year, 26762
5156, has_genre, 30463
5156, release_year, 26762
2739, has_genre, 30463
2739, has_tags, 37608
20210, has_genre, 30463
20210, release_year, 26762
8393, has_genre, 30463
8393, release_year, 26762
9639, has_genre, 30463
9639, has_tags, 37608
20713, has_genre, 30463
20713, release_year, 26762
10231, has_genre, 30463
10231, has_tags, 30463
10231, release_year, 26762
27612, has_genre, 30463
27612, release_year, 26762
1547, has_genre, 30463
1547, release_year, 26762
32981, has_genre, 30463
32981, release_year, 26762
33110, has_genre, 30463
33110, release_year, 26762
1945, has_genre, 30463
1945, release_year, 26762
23774, has_genre, 30463
23774, has_tags, 30463
23774, release_year, 26762
16999, has_genre, 30463
16999, release_year, 26762
Question: How are $9.99, SNOW DOGS, and THE BEATLES related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"$9.99",
"SNOW DOGS",
"THE BEATLES"
],
"valid_edges": [
[
"$9.99",
"has_tags",
"AUSTRALIA"
],
[
"$9.99",
"release_year",
"2008"
],
[
"$9.99",
"starred_actors",
"ANTHONY LAPAGLIA"
],
[
"$9.99",
"starred_actors",
"GEOFFREY RUSH"
],
[
"27 DRESSES",
"has_genre",
"COMEDY"
],
[
"27 DRESSES",
"release_year",
"2008"
],
[
"A BUNCH OF AMATEURS",
"has_genre",
"COMEDY"
],
[
"A BUNCH OF AMATEURS",
"release_year",
"2008"
],
[
"A CHRISTMAS TALE",
"has_genre",
"COMEDY"
],
[
"A CHRISTMAS TALE",
"release_year",
"2008"
],
[
"A FILM WITH ME IN IT",
"has_genre",
"COMEDY"
],
[
"A FILM WITH ME IN IT",
"release_year",
"2008"
],
[
"A MATTER OF LOAF AND DEATH",
"has_genre",
"COMEDY"
],
[
"A MATTER OF LOAF AND DEATH",
"has_tags",
"COMEDY"
],
[
"A MATTER OF LOAF AND DEATH",
"release_year",
"2008"
],
[
"ABSURDISTAN",
"has_genre",
"COMEDY"
],
[
"ABSURDISTAN",
"release_year",
"2008"
],
[
"ACROSS THE UNIVERSE",
"has_genre",
"DRAMA"
],
[
"ACROSS THE UNIVERSE",
"has_tags",
"THE BEATLES"
],
[
"AGE OF CONSENT",
"has_genre",
"COMEDY"
],
[
"AGE OF CONSENT",
"has_tags",
"AUSTRALIA"
],
[
"AN AMERICAN CAROL",
"has_genre",
"COMEDY"
],
[
"AN AMERICAN CAROL",
"release_year",
"2008"
],
[
"ANOTHER CINDERELLA STORY",
"has_genre",
"COMEDY"
],
[
"ANOTHER CINDERELLA STORY",
"release_year",
"2008"
],
[
"APRIL FOOL'S DAY",
"has_genre",
"COMEDY"
],
[
"APRIL FOOL'S DAY",
"release_year",
"2008"
],
[
"ASSASSINATION OF A HIGH SCHOOL PRESIDENT",
"has_genre",
"COMEDY"
],
[
"ASSASSINATION OF A HIGH SCHOOL PRESIDENT",
"release_year",
"2008"
],
[
"AUSTRALIA",
"has_genre",
"DRAMA"
],
[
"AUSTRALIA",
"has_tags",
"AUSTRALIA"
],
[
"AUSTRALIA",
"release_year",
"2008"
],
[
"BABY MAMA",
"has_genre",
"COMEDY"
],
[
"BABY MAMA",
"release_year",
"2008"
],
[
"BAGHEAD",
"has_genre",
"COMEDY"
],
[
"BAGHEAD",
"release_year",
"2008"
],
[
"BART GOT A ROOM",
"has_genre",
"COMEDY"
],
[
"BART GOT A ROOM",
"release_year",
"2008"
],
[
"BE KIND REWIND",
"has_genre",
"COMEDY"
],
[
"BE KIND REWIND",
"release_year",
"2008"
],
[
"BEDTIME STORIES",
"has_genre",
"COMEDY"
],
[
"BEDTIME STORIES",
"release_year",
"2008"
],
[
"BEER FOR MY HORSES",
"has_genre",
"COMEDY"
],
[
"BEER FOR MY HORSES",
"release_year",
"2008"
],
[
"BERLIN CALLING",
"has_genre",
"COMEDY"
],
[
"BERLIN CALLING",
"release_year",
"2008"
],
[
"BEVERLY HILLS CHIHUAHUA",
"has_genre",
"COMEDY"
],
[
"BEVERLY HILLS CHIHUAHUA",
"has_tags",
"COMEDY"
],
[
"BEVERLY HILLS CHIHUAHUA",
"release_year",
"2008"
],
[
"BIRDS OF AMERICA",
"has_genre",
"COMEDY"
],
[
"BIRDS OF AMERICA",
"release_year",
"2008"
],
[
"BOLT",
"has_genre",
"COMEDY"
],
[
"BOLT",
"release_year",
"2008"
],
[
"BOTTLE SHOCK",
"has_genre",
"COMEDY"
],
[
"BOTTLE SHOCK",
"release_year",
"2008"
],
[
"BURN AFTER READING",
"has_genre",
"COMEDY"
],
[
"BURN AFTER READING",
"has_tags",
"COMEDY"
],
[
"BURN AFTER READING",
"release_year",
"2008"
],
[
"CANDY",
"has_tags",
"AUSTRALIA"
],
[
"CANDY",
"has_tags",
"GEOFFREY RUSH"
],
[
"CANDY",
"starred_actors",
"GEOFFREY RUSH"
],
[
"CHAOS THEORY",
"has_genre",
"COMEDY"
],
[
"CHAOS THEORY",
"release_year",
"2008"
],
[
"CHOKE",
"has_genre",
"COMEDY"
],
[
"CHOKE",
"has_tags",
"COMEDY"
],
[
"CHOKE",
"release_year",
"2008"
],
[
"COLLEGE",
"has_genre",
"COMEDY"
],
[
"COLLEGE",
"release_year",
"2008"
],
[
"COLLEGE ROAD TRIP",
"has_genre",
"COMEDY"
],
[
"COLLEGE ROAD TRIP",
"has_tags",
"COMEDY"
],
[
"COLLEGE ROAD TRIP",
"release_year",
"2008"
],
[
"COMMANDMENTS",
"has_genre",
"COMEDY"
],
[
"COMMANDMENTS",
"starred_actors",
"ANTHONY LAPAGLIA"
],
[
"DANCE OF THE DEAD",
"has_genre",
"COMEDY"
],
[
"DANCE OF THE DEAD",
"release_year",
"2008"
],
[
"DE L'AUTRE CÔTÉ DU LIT",
"has_genre",
"COMEDY"
],
[
"DE L'AUTRE CÔTÉ DU LIT",
"release_year",
"2008"
],
[
"DEAD FURY",
"has_genre",
"COMEDY"
],
[
"DEAD FURY",
"release_year",
"2008"
],
[
"DEFINITELY, MAYBE",
"has_genre",
"COMEDY"
],
[
"DEFINITELY, MAYBE",
"release_year",
"2008"
],
[
"DIMINISHED CAPACITY",
"has_genre",
"COMEDY"
],
[
"DIMINISHED CAPACITY",
"release_year",
"2008"
],
[
"DRILLBIT TAYLOR",
"has_genre",
"COMEDY"
],
[
"DRILLBIT TAYLOR",
"release_year",
"2008"
],
[
"EASY VIRTUE",
"has_genre",
"COMEDY"
],
[
"EASY VIRTUE",
"has_tags",
"COMEDY"
],
[
"EASY VIRTUE",
"release_year",
"2008"
],
[
"EXTREME MOVIE",
"has_genre",
"COMEDY"
],
[
"EXTREME MOVIE",
"release_year",
"2008"
],
[
"FATSO",
"has_genre",
"COMEDY"
],
[
"FATSO",
"release_year",
"2008"
],
[
"FINDING AMANDA",
"has_genre",
"COMEDY"
],
[
"FINDING AMANDA",
"release_year",
"2008"
],
[
"FINE, TOTALLY FINE",
"has_genre",
"COMEDY"
],
[
"FINE, TOTALLY FINE",
"release_year",
"2008"
],
[
"FIRST SUNDAY",
"has_genre",
"COMEDY"
],
[
"FIRST SUNDAY",
"release_year",
"2008"
],
[
"FORGETTING SARAH MARSHALL",
"has_genre",
"COMEDY"
],
[
"FORGETTING SARAH MARSHALL",
"has_tags",
"COMEDY"
],
[
"FORGETTING SARAH MARSHALL",
"release_year",
"2008"
],
[
"FOUR CHRISTMASES",
"has_genre",
"COMEDY"
],
[
"FOUR CHRISTMASES",
"release_year",
"2008"
],
[
"FRENCH FILM",
"has_genre",
"COMEDY"
],
[
"FRENCH FILM",
"release_year",
"2008"
],
[
"GET SMART",
"has_genre",
"COMEDY"
],
[
"GET SMART",
"release_year",
"2008"
],
[
"GHOST TOWN",
"has_genre",
"COMEDY"
],
[
"GHOST TOWN",
"release_year",
"2008"
],
[
"GIGANTIC",
"has_genre",
"COMEDY"
],
[
"GIGANTIC",
"release_year",
"2008"
],
[
"GRIFF THE INVISIBLE",
"has_genre",
"COMEDY"
],
[
"GRIFF THE INVISIBLE",
"has_tags",
"AUSTRALIA"
],
[
"HAMLET 2",
"has_genre",
"COMEDY"
],
[
"HAMLET 2",
"release_year",
"2008"
],
[
"HANK AND MIKE",
"has_genre",
"COMEDY"
],
[
"HANK AND MIKE",
"release_year",
"2008"
],
[
"HAPPY-GO-LUCKY",
"has_genre",
"COMEDY"
],
[
"HAPPY-GO-LUCKY",
"release_year",
"2008"
],
[
"HOME",
"has_genre",
"COMEDY"
],
[
"HOME",
"release_year",
"2008"
],
[
"HORTON HEARS A WHO!",
"has_genre",
"COMEDY"
],
[
"HORTON HEARS A WHO!",
"has_tags",
"COMEDY"
],
[
"HORTON HEARS A WHO!",
"release_year",
"2008"
],
[
"HOUSE",
"has_genre",
"COMEDY"
],
[
"HOUSE",
"release_year",
"2008"
],
[
"HOW TO BE",
"has_genre",
"COMEDY"
],
[
"HOW TO BE",
"release_year",
"2008"
],
[
"HOW TO BE A SERIAL KILLER",
"has_genre",
"COMEDY"
],
[
"HOW TO BE A SERIAL KILLER",
"release_year",
"2008"
],
[
"HUMBOLDT COUNTY",
"has_genre",
"COMEDY"
],
[
"HUMBOLDT COUNTY",
"release_year",
"2008"
],
[
"I SELL THE DEAD",
"has_genre",
"COMEDY"
],
[
"I SELL THE DEAD",
"release_year",
"2008"
],
[
"IGOR",
"has_genre",
"COMEDY"
],
[
"IGOR",
"release_year",
"2008"
],
[
"IN BRUGES",
"has_genre",
"COMEDY"
],
[
"IN BRUGES",
"has_tags",
"COMEDY"
],
[
"IN BRUGES",
"release_year",
"2008"
],
[
"JUST ADD WATER",
"has_genre",
"COMEDY"
],
[
"JUST ADD WATER",
"release_year",
"2008"
],
[
"KILLER MOVIE",
"has_genre",
"COMEDY"
],
[
"KILLER MOVIE",
"release_year",
"2008"
],
[
"KILLER PAD",
"has_genre",
"COMEDY"
],
[
"KILLER PAD",
"release_year",
"2008"
],
[
"KUNG FU PANDA",
"has_tags",
"COMEDY"
],
[
"KUNG FU PANDA",
"release_year",
"2008"
],
[
"LEATHERHEADS",
"has_genre",
"COMEDY"
],
[
"LEATHERHEADS",
"has_tags",
"COMEDY"
],
[
"LEATHERHEADS",
"release_year",
"2008"
],
[
"LYMELIFE",
"has_genre",
"COMEDY"
],
[
"LYMELIFE",
"release_year",
"2008"
],
[
"MAD MONEY",
"has_genre",
"COMEDY"
],
[
"MAD MONEY",
"release_year",
"2008"
],
[
"MADE OF HONOR",
"has_genre",
"COMEDY"
],
[
"MADE OF HONOR",
"release_year",
"2008"
],
[
"MAMMA MIA!",
"has_genre",
"COMEDY"
],
[
"MAMMA MIA!",
"release_year",
"2008"
],
[
"MANAGEMENT",
"has_genre",
"COMEDY"
],
[
"MANAGEMENT",
"release_year",
"2008"
],
[
"MARY AND MAX",
"has_genre",
"COMEDY"
],
[
"MARY AND MAX",
"has_tags",
"AUSTRALIA"
],
[
"MEET DAVE",
"has_genre",
"COMEDY"
],
[
"MEET DAVE",
"release_year",
"2008"
],
[
"MEET THE BROWNS",
"has_genre",
"COMEDY"
],
[
"MEET THE BROWNS",
"release_year",
"2008"
],
[
"MID-AUGUST LUNCH",
"has_genre",
"COMEDY"
],
[
"MID-AUGUST LUNCH",
"release_year",
"2008"
],
[
"MIDDLE OF NOWHERE",
"has_genre",
"COMEDY"
],
[
"MIDDLE OF NOWHERE",
"release_year",
"2008"
],
[
"MISS PETTIGREW LIVES FOR A DAY",
"has_genre",
"COMEDY"
],
[
"MISS PETTIGREW LIVES FOR A DAY",
"release_year",
"2008"
],
[
"MURIEL'S WEDDING",
"has_genre",
"COMEDY"
],
[
"MURIEL'S WEDDING",
"has_tags",
"AUSTRALIA"
],
[
"MURIEL'S WEDDING",
"has_tags",
"COMEDY"
],
[
"MY BEST FRIEND'S GIRL",
"has_genre",
"COMEDY"
],
[
"MY BEST FRIEND'S GIRL",
"release_year",
"2008"
],
[
"MY SASSY GIRL",
"has_genre",
"COMEDY"
],
[
"MY SASSY GIRL",
"release_year",
"2008"
],
[
"NEW YORK, I LOVE YOU",
"has_genre",
"COMEDY"
],
[
"NEW YORK, I LOVE YOU",
"release_year",
"2008"
],
[
"NINJA CHEERLEADERS",
"has_genre",
"COMEDY"
],
[
"NINJA CHEERLEADERS",
"release_year",
"2008"
],
[
"ONE-EYED MONSTER",
"has_genre",
"COMEDY"
],
[
"ONE-EYED MONSTER",
"release_year",
"2008"
],
[
"OPEN SEASON 2",
"has_genre",
"COMEDY"
],
[
"OPEN SEASON 2",
"release_year",
"2008"
],
[
"OTIS",
"has_genre",
"COMEDY"
],
[
"OTIS",
"release_year",
"2008"
],
[
"OVER HER DEAD BODY",
"has_genre",
"COMEDY"
],
[
"OVER HER DEAD BODY",
"release_year",
"2008"
],
[
"PINEAPPLE EXPRESS",
"has_genre",
"COMEDY"
],
[
"PINEAPPLE EXPRESS",
"has_tags",
"COMEDY"
],
[
"PINEAPPLE EXPRESS",
"release_year",
"2008"
],
[
"PRIVATE LESSONS",
"has_genre",
"COMEDY"
],
[
"PRIVATE LESSONS",
"release_year",
"2008"
],
[
"RAB NE BANA DI JODI",
"has_genre",
"COMEDY"
],
[
"RAB NE BANA DI JODI",
"release_year",
"2008"
],
[
"REMARKABLE POWER",
"has_genre",
"COMEDY"
],
[
"REMARKABLE POWER",
"release_year",
"2008"
],
[
"ROLE MODELS",
"has_genre",
"COMEDY"
],
[
"ROLE MODELS",
"has_tags",
"COMEDY"
],
[
"ROLE MODELS",
"release_year",
"2008"
],
[
"RUDO Y CURSI",
"has_genre",
"COMEDY"
],
[
"RUDO Y CURSI",
"release_year",
"2008"
],
[
"SEMI-PRO",
"has_genre",
"COMEDY"
],
[
"SEMI-PRO",
"release_year",
"2008"
],
[
"SEX AND THE CITY",
"has_genre",
"COMEDY"
],
[
"SEX AND THE CITY",
"release_year",
"2008"
],
[
"SEX DRIVE",
"has_genre",
"COMEDY"
],
[
"SEX DRIVE",
"has_tags",
"COMEDY"
],
[
"SEX DRIVE",
"release_year",
"2008"
],
[
"SHINE",
"has_tags",
"AUSTRALIA"
],
[
"SHINE",
"has_tags",
"GEOFFREY RUSH"
],
[
"SHINE",
"starred_actors",
"GEOFFREY RUSH"
],
[
"SILENT WEDDING",
"has_genre",
"COMEDY"
],
[
"SILENT WEDDING",
"release_year",
"2008"
],
[
"SINGH IS KINNG",
"has_genre",
"COMEDY"
],
[
"SINGH IS KINNG",
"release_year",
"2008"
],
[
"SMART PEOPLE",
"has_genre",
"COMEDY"
],
[
"SMART PEOPLE",
"release_year",
"2008"
],
[
"SNOW DOGS",
"has_genre",
"COMEDY"
],
[
"SOUL MEN",
"has_genre",
"COMEDY"
],
[
"SOUL MEN",
"release_year",
"2008"
],
[
"SPACE CHIMPS",
"has_genre",
"COMEDY"
],
[
"SPACE CHIMPS",
"release_year",
"2008"
],
[
"STEP BROTHERS",
"has_genre",
"COMEDY"
],
[
"STEP BROTHERS",
"has_tags",
"COMEDY"
],
[
"STEP BROTHERS",
"release_year",
"2008"
],
[
"STRANGE WILDERNESS",
"has_genre",
"COMEDY"
],
[
"STRANGE WILDERNESS",
"release_year",
"2008"
],
[
"STRICTLY BALLROOM",
"has_genre",
"COMEDY"
],
[
"STRICTLY BALLROOM",
"has_tags",
"AUSTRALIA"
],
[
"STRICTLY SEXUAL",
"has_genre",
"COMEDY"
],
[
"STRICTLY SEXUAL",
"release_year",
"2008"
],
[
"SUNSHINE CLEANING",
"has_genre",
"COMEDY"
],
[
"SUNSHINE CLEANING",
"release_year",
"2008"
],
[
"SUPERHERO MOVIE",
"has_genre",
"COMEDY"
],
[
"SUPERHERO MOVIE",
"release_year",
"2008"
],
[
"SURFER, DUDE",
"has_genre",
"COMEDY"
],
[
"SURFER, DUDE",
"release_year",
"2008"
],
[
"SWING VOTE",
"has_genre",
"COMEDY"
],
[
"SWING VOTE",
"release_year",
"2008"
],
[
"THE ACCIDENTAL HUSBAND",
"has_genre",
"COMEDY"
],
[
"THE ACCIDENTAL HUSBAND",
"release_year",
"2008"
],
[
"THE ADVENTURES OF FOOD BOY",
"has_genre",
"COMEDY"
],
[
"THE ADVENTURES OF FOOD BOY",
"release_year",
"2008"
],
[
"THE BANK",
"has_tags",
"AUSTRALIA"
],
[
"THE BANK",
"starred_actors",
"ANTHONY LAPAGLIA"
],
[
"THE BROTHERS BLOOM",
"has_genre",
"COMEDY"
],
[
"THE BROTHERS BLOOM",
"release_year",
"2008"
],
[
"THE DEAL",
"has_genre",
"COMEDY"
],
[
"THE DEAL",
"release_year",
"2008"
],
[
"THE GREAT BUCK HOWARD",
"has_genre",
"COMEDY"
],
[
"THE GREAT BUCK HOWARD",
"release_year",
"2008"
],
[
"THE HOUSE BUNNY",
"has_genre",
"COMEDY"
],
[
"THE HOUSE BUNNY",
"has_tags",
"COMEDY"
],
[
"THE HOUSE BUNNY",
"release_year",
"2008"
],
[
"THE LONGSHOTS",
"has_genre",
"COMEDY"
],
[
"THE LONGSHOTS",
"release_year",
"2008"
],
[
"THE LOVE GURU",
"has_genre",
"COMEDY"
],
[
"THE LOVE GURU",
"release_year",
"2008"
],
[
"THE LUCKY ONES",
"has_genre",
"COMEDY"
],
[
"THE LUCKY ONES",
"release_year",
"2008"
],
[
"THE ONION MOVIE",
"has_genre",
"COMEDY"
],
[
"THE ONION MOVIE",
"has_tags",
"COMEDY"
],
[
"THE ONION MOVIE",
"release_year",
"2008"
],
[
"THE OTHER END OF THE LINE",
"has_genre",
"COMEDY"
],
[
"THE OTHER END OF THE LINE",
"release_year",
"2008"
],
[
"THE RAMEN GIRL",
"has_genre",
"COMEDY"
],
[
"THE RAMEN GIRL",
"release_year",
"2008"
],
[
"THE ROCKER",
"has_genre",
"COMEDY"
],
[
"THE ROCKER",
"release_year",
"2008"
],
[
"THE SAPPHIRES",
"has_genre",
"COMEDY"
],
[
"THE SAPPHIRES",
"has_tags",
"AUSTRALIA"
],
[
"THE WOMEN",
"has_genre",
"COMEDY"
],
[
"THE WOMEN",
"release_year",
"2008"
],
[
"TROPIC THUNDER",
"has_genre",
"COMEDY"
],
[
"TROPIC THUNDER",
"release_year",
"2008"
],
[
"UNDEAD",
"has_genre",
"COMEDY"
],
[
"UNDEAD",
"has_tags",
"AUSTRALIA"
],
[
"VISIONEERS",
"has_genre",
"COMEDY"
],
[
"VISIONEERS",
"release_year",
"2008"
],
[
"WHAT HAPPENS IN VEGAS",
"has_genre",
"COMEDY"
],
[
"WHAT HAPPENS IN VEGAS",
"has_tags",
"COMEDY"
],
[
"WHAT HAPPENS IN VEGAS",
"release_year",
"2008"
],
[
"WHAT JUST HAPPENED",
"has_genre",
"COMEDY"
],
[
"WHAT JUST HAPPENED",
"release_year",
"2008"
],
[
"WIENERS",
"has_genre",
"COMEDY"
],
[
"WIENERS",
"release_year",
"2008"
],
[
"WILD CHILD",
"has_genre",
"COMEDY"
],
[
"WILD CHILD",
"release_year",
"2008"
],
[
"WITLESS PROTECTION",
"has_genre",
"COMEDY"
],
[
"WITLESS PROTECTION",
"release_year",
"2008"
],
[
"YES MAN",
"has_genre",
"COMEDY"
],
[
"YES MAN",
"release_year",
"2008"
],
[
"YOU DON'T MESS WITH THE ZOHAN",
"has_genre",
"COMEDY"
],
[
"YOU DON'T MESS WITH THE ZOHAN",
"has_tags",
"COMEDY"
],
[
"YOU DON'T MESS WITH THE ZOHAN",
"release_year",
"2008"
],
[
"ZACK AND MIRI MAKE A PORNO",
"has_genre",
"COMEDY"
],
[
"ZACK AND MIRI MAKE A PORNO",
"release_year",
"2008"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
32043, BROADCAST NEWS
30463, COMEDY
36212, DRAMA
24940, HOPE AND GLORY
23849, HOUSEKEEPING
19498, MERMAIDS
40064, MY OLD LADY
30044, PETER NELSON
1687, PURELY BELTER
25023, QUARTET
23599, THE BEST EXOTIC MARIGOLD HOTEL
33050, THE CAMPAIGN
1371, THE LONELY PASSION OF JUDITH HEARNE
8791, THE SECOND BEST EXOTIC MARIGOLD HOTEL
36468, TOUGH GUYS DON'T DANCE
6981, WISH YOU WERE HERE
src, edge_attr, dst
32043, has_genre, 30463
32043, has_genre, 36212
24940, has_genre, 30463
24940, has_genre, 36212
23849, has_genre, 30463
23849, has_genre, 36212
19498, has_genre, 30463
19498, has_genre, 36212
19498, has_tags, 30463
19498, has_tags, 36212
40064, has_genre, 30463
40064, has_genre, 36212
1687, has_genre, 30463
1687, has_genre, 36212
25023, has_genre, 30463
25023, has_genre, 36212
25023, has_tags, 30463
23599, has_genre, 30463
23599, has_genre, 36212
33050, has_genre, 30463
1371, has_genre, 36212
1371, written_by, 30044
8791, has_genre, 30463
8791, has_genre, 36212
36468, has_genre, 30463
36468, has_genre, 36212
6981, has_genre, 30463
6981, has_genre, 36212
Question: For what reason are PETER NELSON, PURELY BELTER, and THE CAMPAIGN associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"PETER NELSON",
"PURELY BELTER",
"THE CAMPAIGN"
],
"valid_edges": [
[
"BROADCAST NEWS",
"has_genre",
"COMEDY"
],
[
"BROADCAST NEWS",
"has_genre",
"DRAMA"
],
[
"HOPE AND GLORY",
"has_genre",
"COMEDY"
],
[
"HOPE AND GLORY",
"has_genre",
"DRAMA"
],
[
"HOUSEKEEPING",
"has_genre",
"COMEDY"
],
[
"HOUSEKEEPING",
"has_genre",
"DRAMA"
],
[
"MERMAIDS",
"has_genre",
"COMEDY"
],
[
"MERMAIDS",
"has_genre",
"DRAMA"
],
[
"MERMAIDS",
"has_tags",
"COMEDY"
],
[
"MERMAIDS",
"has_tags",
"DRAMA"
],
[
"MY OLD LADY",
"has_genre",
"COMEDY"
],
[
"MY OLD LADY",
"has_genre",
"DRAMA"
],
[
"PURELY BELTER",
"has_genre",
"COMEDY"
],
[
"PURELY BELTER",
"has_genre",
"DRAMA"
],
[
"QUARTET",
"has_genre",
"COMEDY"
],
[
"QUARTET",
"has_genre",
"DRAMA"
],
[
"QUARTET",
"has_tags",
"COMEDY"
],
[
"THE BEST EXOTIC MARIGOLD HOTEL",
"has_genre",
"COMEDY"
],
[
"THE BEST EXOTIC MARIGOLD HOTEL",
"has_genre",
"DRAMA"
],
[
"THE CAMPAIGN",
"has_genre",
"COMEDY"
],
[
"THE LONELY PASSION OF JUDITH HEARNE",
"has_genre",
"DRAMA"
],
[
"THE LONELY PASSION OF JUDITH HEARNE",
"written_by",
"PETER NELSON"
],
[
"THE SECOND BEST EXOTIC MARIGOLD HOTEL",
"has_genre",
"COMEDY"
],
[
"THE SECOND BEST EXOTIC MARIGOLD HOTEL",
"has_genre",
"DRAMA"
],
[
"TOUGH GUYS DON'T DANCE",
"has_genre",
"COMEDY"
],
[
"TOUGH GUYS DON'T DANCE",
"has_genre",
"DRAMA"
],
[
"WISH YOU WERE HERE",
"has_genre",
"COMEDY"
],
[
"WISH YOU WERE HERE",
"has_genre",
"DRAMA"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
2452, 13 ASSASSINS
33013, A LETTER TO MOMO
29800, ACE ATTORNEY
29816, AIR DOLL
31491, AN AUTUMN AFTERNOON
35497, ANTARCTICA
7421, APART FROM YOU
7908, AUDITION
30907, BAREFOOT GEN
39878, BRIGHT FUTURE
5376, CAPE NO. 7
21907, COME SEE THE PARADISE
1148, CONFESSIONS
24410, DEMONLOVER
2710, DEPARTURES
38714, DOUBLE SUICIDE
36212, DRAMA
16970, EUREKA
18312, FABIÁN BIELINSKY
5931, FLOATING CLOUDS
1612, FROM UP ON POPPY HILL
38222, FUNERAL PARADE OF ROSES
14853, GO FOR BROKE!
22091, GRAVE OF THE FIREFLIES
12994, HARAKIRI
20207, HELENA BERGSTRÖM
22180, HIMIZU
9849, HOUSE OF ANGELS
11051, I AM WAITING
36874, JAPANESE
21614, JAPANESE STORY
28036, KAN SHIMOZAWA
21224, KIKUJIRO
1859, LATE AUTUMN
19809, LATE SPRING
25019, LIKE FATHER, LIKE SON
36020, LIKE SOMEONE IN LOVE
39818, MACHIBUSE
21686, MOONLIGHT SERENADE
21030, NANA
1922, NINE QUEENS
25709, NOBODY KNOWS
16592, NORWEGIAN WOOD
12009, ODD OBSESSION
34288, ONLY YESTERDAY
234, PEARL HARBOR
34639, POSTMAN BLUES
18584, PRINCESS MONONOKE
11570, RASHOMON
27361, RIDING ALONE FOR THOUSANDS OF MILES
35944, SAMURAI
33216, SAMURAI BANNERS
20932, SEVEN SAMURAI
4027, SHARA
9448, SILENCE
26949, SISTERS OF THE GION
32584, SUSPECT X
12462, THE ADVENTURES OF MILO AND OTIS
14688, THE FLOATING CASTLE
34462, THE FLOWERS OF WAR
24493, THE FUNERAL
31571, THE LOYAL 47 RONIN
25054, THE PILLOW BOOK
21548, THE SUN
8873, THE TALE OF ZATOICHI
18076, THE WIND RISES
13374, THRONE OF BLOOD
34804, TOKYO FIST
16940, TORA! TORA! TORA!
4527, UGETSU
14956, VOICES OF A DISTANT STAR
22783, WHEN A WOMAN ASCENDS THE STAIRS
24623, WHISPER OF THE HEART
54, YOJIMBO
29857, ZATOICHI MEETS YOJIMBO
src, edge_attr, dst
2452, has_genre, 36212
2452, has_tags, 35944
2452, in_language, 36874
33013, has_genre, 36212
33013, in_language, 36874
29800, has_genre, 36212
29800, in_language, 36874
29816, has_genre, 36212
29816, in_language, 36874
31491, has_genre, 36212
31491, has_tags, 36874
31491, in_language, 36874
35497, has_genre, 36212
35497, in_language, 36874
7421, has_genre, 36212
7421, in_language, 36874
7908, has_genre, 36212
7908, in_language, 36874
30907, has_genre, 36212
30907, in_language, 36874
39878, has_genre, 36212
39878, in_language, 36874
5376, has_genre, 36212
5376, in_language, 36874
21907, has_genre, 36212
21907, in_language, 36874
1148, has_genre, 36212
1148, has_tags, 36874
1148, in_language, 36874
24410, has_genre, 36212
24410, in_language, 36874
2710, has_genre, 36212
2710, in_language, 36874
38714, has_genre, 36212
38714, in_language, 36874
16970, has_genre, 36212
16970, in_language, 36874
5931, has_genre, 36212
5931, in_language, 36874
1612, has_genre, 36212
1612, in_language, 36874
38222, has_genre, 36212
38222, in_language, 36874
14853, has_genre, 36212
14853, in_language, 36874
22091, has_genre, 36212
22091, in_language, 36874
12994, has_genre, 36212
12994, has_tags, 36874
12994, in_language, 36874
22180, has_genre, 36212
22180, in_language, 36874
9849, has_genre, 36212
9849, starred_actors, 20207
11051, has_genre, 36212
11051, in_language, 36874
21614, has_genre, 36212
21614, in_language, 36874
21224, has_genre, 36212
21224, in_language, 36874
1859, has_genre, 36212
1859, in_language, 36874
19809, has_genre, 36212
19809, in_language, 36874
25019, has_genre, 36212
25019, in_language, 36874
36020, has_genre, 36212
36020, in_language, 36874
39818, has_genre, 36212
39818, in_language, 36874
21686, has_genre, 36212
21686, in_language, 36874
21030, has_genre, 36212
21030, in_language, 36874
1922, directed_by, 18312
1922, has_genre, 36212
1922, written_by, 18312
25709, has_genre, 36212
25709, in_language, 36874
16592, has_genre, 36212
16592, has_tags, 36874
16592, in_language, 36874
12009, has_genre, 36212
12009, in_language, 36874
34288, has_genre, 36212
34288, in_language, 36874
234, has_genre, 36212
234, has_tags, 36212
234, in_language, 36874
34639, has_genre, 36212
34639, in_language, 36874
18584, has_tags, 36212
18584, has_tags, 36874
18584, in_language, 36874
11570, has_genre, 36212
11570, in_language, 36874
27361, has_genre, 36212
27361, in_language, 36874
33216, has_genre, 36212
33216, in_language, 36874
20932, has_genre, 36212
20932, has_tags, 36212
20932, has_tags, 35944
20932, in_language, 36874
4027, has_genre, 36212
4027, in_language, 36874
9448, has_genre, 36212
9448, in_language, 36874
26949, has_genre, 36212
26949, in_language, 36874
32584, has_genre, 36212
32584, in_language, 36874
12462, has_genre, 36212
12462, in_language, 36874
14688, has_genre, 36212
14688, in_language, 36874
34462, has_genre, 36212
34462, in_language, 36874
24493, has_genre, 36212
24493, in_language, 36874
31571, has_genre, 36212
31571, in_language, 36874
25054, has_genre, 36212
25054, in_language, 36874
21548, has_genre, 36212
21548, in_language, 36874
8873, has_genre, 36212
8873, has_tags, 35944
8873, in_language, 36874
8873, written_by, 28036
18076, has_genre, 36212
18076, in_language, 36874
13374, has_genre, 36212
13374, has_tags, 36874
13374, in_language, 36874
34804, has_genre, 36212
34804, in_language, 36874
16940, has_genre, 36212
16940, has_tags, 36874
16940, in_language, 36874
4527, has_genre, 36212
4527, in_language, 36874
14956, has_genre, 36212
14956, in_language, 36874
22783, has_genre, 36212
22783, in_language, 36874
24623, has_genre, 36212
24623, in_language, 36874
54, has_genre, 36212
54, in_language, 36874
29857, has_genre, 36212
29857, in_language, 36874
29857, written_by, 28036
Question: How are FABIÁN BIELINSKY, HELENA BERGSTRÖM, and THE TALE OF ZATOICHI related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"FABIÁN BIELINSKY",
"HELENA BERGSTRÖM",
"THE TALE OF ZATOICHI"
],
"valid_edges": [
[
"13 ASSASSINS",
"has_genre",
"DRAMA"
],
[
"13 ASSASSINS",
"has_tags",
"SAMURAI"
],
[
"13 ASSASSINS",
"in_language",
"JAPANESE"
],
[
"A LETTER TO MOMO",
"has_genre",
"DRAMA"
],
[
"A LETTER TO MOMO",
"in_language",
"JAPANESE"
],
[
"ACE ATTORNEY",
"has_genre",
"DRAMA"
],
[
"ACE ATTORNEY",
"in_language",
"JAPANESE"
],
[
"AIR DOLL",
"has_genre",
"DRAMA"
],
[
"AIR DOLL",
"in_language",
"JAPANESE"
],
[
"AN AUTUMN AFTERNOON",
"has_genre",
"DRAMA"
],
[
"AN AUTUMN AFTERNOON",
"has_tags",
"JAPANESE"
],
[
"AN AUTUMN AFTERNOON",
"in_language",
"JAPANESE"
],
[
"ANTARCTICA",
"has_genre",
"DRAMA"
],
[
"ANTARCTICA",
"in_language",
"JAPANESE"
],
[
"APART FROM YOU",
"has_genre",
"DRAMA"
],
[
"APART FROM YOU",
"in_language",
"JAPANESE"
],
[
"AUDITION",
"has_genre",
"DRAMA"
],
[
"AUDITION",
"in_language",
"JAPANESE"
],
[
"BAREFOOT GEN",
"has_genre",
"DRAMA"
],
[
"BAREFOOT GEN",
"in_language",
"JAPANESE"
],
[
"BRIGHT FUTURE",
"has_genre",
"DRAMA"
],
[
"BRIGHT FUTURE",
"in_language",
"JAPANESE"
],
[
"CAPE NO. 7",
"has_genre",
"DRAMA"
],
[
"CAPE NO. 7",
"in_language",
"JAPANESE"
],
[
"COME SEE THE PARADISE",
"has_genre",
"DRAMA"
],
[
"COME SEE THE PARADISE",
"in_language",
"JAPANESE"
],
[
"CONFESSIONS",
"has_genre",
"DRAMA"
],
[
"CONFESSIONS",
"has_tags",
"JAPANESE"
],
[
"CONFESSIONS",
"in_language",
"JAPANESE"
],
[
"DEMONLOVER",
"has_genre",
"DRAMA"
],
[
"DEMONLOVER",
"in_language",
"JAPANESE"
],
[
"DEPARTURES",
"has_genre",
"DRAMA"
],
[
"DEPARTURES",
"in_language",
"JAPANESE"
],
[
"DOUBLE SUICIDE",
"has_genre",
"DRAMA"
],
[
"DOUBLE SUICIDE",
"in_language",
"JAPANESE"
],
[
"EUREKA",
"has_genre",
"DRAMA"
],
[
"EUREKA",
"in_language",
"JAPANESE"
],
[
"FLOATING CLOUDS",
"has_genre",
"DRAMA"
],
[
"FLOATING CLOUDS",
"in_language",
"JAPANESE"
],
[
"FROM UP ON POPPY HILL",
"has_genre",
"DRAMA"
],
[
"FROM UP ON POPPY HILL",
"in_language",
"JAPANESE"
],
[
"FUNERAL PARADE OF ROSES",
"has_genre",
"DRAMA"
],
[
"FUNERAL PARADE OF ROSES",
"in_language",
"JAPANESE"
],
[
"GO FOR BROKE!",
"has_genre",
"DRAMA"
],
[
"GO FOR BROKE!",
"in_language",
"JAPANESE"
],
[
"GRAVE OF THE FIREFLIES",
"has_genre",
"DRAMA"
],
[
"GRAVE OF THE FIREFLIES",
"in_language",
"JAPANESE"
],
[
"HARAKIRI",
"has_genre",
"DRAMA"
],
[
"HARAKIRI",
"has_tags",
"JAPANESE"
],
[
"HARAKIRI",
"in_language",
"JAPANESE"
],
[
"HIMIZU",
"has_genre",
"DRAMA"
],
[
"HIMIZU",
"in_language",
"JAPANESE"
],
[
"HOUSE OF ANGELS",
"has_genre",
"DRAMA"
],
[
"HOUSE OF ANGELS",
"starred_actors",
"HELENA BERGSTRÖM"
],
[
"I AM WAITING",
"has_genre",
"DRAMA"
],
[
"I AM WAITING",
"in_language",
"JAPANESE"
],
[
"JAPANESE STORY",
"has_genre",
"DRAMA"
],
[
"JAPANESE STORY",
"in_language",
"JAPANESE"
],
[
"KIKUJIRO",
"has_genre",
"DRAMA"
],
[
"KIKUJIRO",
"in_language",
"JAPANESE"
],
[
"LATE AUTUMN",
"has_genre",
"DRAMA"
],
[
"LATE AUTUMN",
"in_language",
"JAPANESE"
],
[
"LATE SPRING",
"has_genre",
"DRAMA"
],
[
"LATE SPRING",
"in_language",
"JAPANESE"
],
[
"LIKE FATHER, LIKE SON",
"has_genre",
"DRAMA"
],
[
"LIKE FATHER, LIKE SON",
"in_language",
"JAPANESE"
],
[
"LIKE SOMEONE IN LOVE",
"has_genre",
"DRAMA"
],
[
"LIKE SOMEONE IN LOVE",
"in_language",
"JAPANESE"
],
[
"MACHIBUSE",
"has_genre",
"DRAMA"
],
[
"MACHIBUSE",
"in_language",
"JAPANESE"
],
[
"MOONLIGHT SERENADE",
"has_genre",
"DRAMA"
],
[
"MOONLIGHT SERENADE",
"in_language",
"JAPANESE"
],
[
"NANA",
"has_genre",
"DRAMA"
],
[
"NANA",
"in_language",
"JAPANESE"
],
[
"NINE QUEENS",
"directed_by",
"FABIÁN BIELINSKY"
],
[
"NINE QUEENS",
"has_genre",
"DRAMA"
],
[
"NINE QUEENS",
"written_by",
"FABIÁN BIELINSKY"
],
[
"NOBODY KNOWS",
"has_genre",
"DRAMA"
],
[
"NOBODY KNOWS",
"in_language",
"JAPANESE"
],
[
"NORWEGIAN WOOD",
"has_genre",
"DRAMA"
],
[
"NORWEGIAN WOOD",
"has_tags",
"JAPANESE"
],
[
"NORWEGIAN WOOD",
"in_language",
"JAPANESE"
],
[
"ODD OBSESSION",
"has_genre",
"DRAMA"
],
[
"ODD OBSESSION",
"in_language",
"JAPANESE"
],
[
"ONLY YESTERDAY",
"has_genre",
"DRAMA"
],
[
"ONLY YESTERDAY",
"in_language",
"JAPANESE"
],
[
"PEARL HARBOR",
"has_genre",
"DRAMA"
],
[
"PEARL HARBOR",
"has_tags",
"DRAMA"
],
[
"PEARL HARBOR",
"in_language",
"JAPANESE"
],
[
"POSTMAN BLUES",
"has_genre",
"DRAMA"
],
[
"POSTMAN BLUES",
"in_language",
"JAPANESE"
],
[
"PRINCESS MONONOKE",
"has_tags",
"DRAMA"
],
[
"PRINCESS MONONOKE",
"has_tags",
"JAPANESE"
],
[
"PRINCESS MONONOKE",
"in_language",
"JAPANESE"
],
[
"RASHOMON",
"has_genre",
"DRAMA"
],
[
"RASHOMON",
"in_language",
"JAPANESE"
],
[
"RIDING ALONE FOR THOUSANDS OF MILES",
"has_genre",
"DRAMA"
],
[
"RIDING ALONE FOR THOUSANDS OF MILES",
"in_language",
"JAPANESE"
],
[
"SAMURAI BANNERS",
"has_genre",
"DRAMA"
],
[
"SAMURAI BANNERS",
"in_language",
"JAPANESE"
],
[
"SEVEN SAMURAI",
"has_genre",
"DRAMA"
],
[
"SEVEN SAMURAI",
"has_tags",
"DRAMA"
],
[
"SEVEN SAMURAI",
"has_tags",
"SAMURAI"
],
[
"SEVEN SAMURAI",
"in_language",
"JAPANESE"
],
[
"SHARA",
"has_genre",
"DRAMA"
],
[
"SHARA",
"in_language",
"JAPANESE"
],
[
"SILENCE",
"has_genre",
"DRAMA"
],
[
"SILENCE",
"in_language",
"JAPANESE"
],
[
"SISTERS OF THE GION",
"has_genre",
"DRAMA"
],
[
"SISTERS OF THE GION",
"in_language",
"JAPANESE"
],
[
"SUSPECT X",
"has_genre",
"DRAMA"
],
[
"SUSPECT X",
"in_language",
"JAPANESE"
],
[
"THE ADVENTURES OF MILO AND OTIS",
"has_genre",
"DRAMA"
],
[
"THE ADVENTURES OF MILO AND OTIS",
"in_language",
"JAPANESE"
],
[
"THE FLOATING CASTLE",
"has_genre",
"DRAMA"
],
[
"THE FLOATING CASTLE",
"in_language",
"JAPANESE"
],
[
"THE FLOWERS OF WAR",
"has_genre",
"DRAMA"
],
[
"THE FLOWERS OF WAR",
"in_language",
"JAPANESE"
],
[
"THE FUNERAL",
"has_genre",
"DRAMA"
],
[
"THE FUNERAL",
"in_language",
"JAPANESE"
],
[
"THE LOYAL 47 RONIN",
"has_genre",
"DRAMA"
],
[
"THE LOYAL 47 RONIN",
"in_language",
"JAPANESE"
],
[
"THE PILLOW BOOK",
"has_genre",
"DRAMA"
],
[
"THE PILLOW BOOK",
"in_language",
"JAPANESE"
],
[
"THE SUN",
"has_genre",
"DRAMA"
],
[
"THE SUN",
"in_language",
"JAPANESE"
],
[
"THE TALE OF ZATOICHI",
"has_genre",
"DRAMA"
],
[
"THE TALE OF ZATOICHI",
"has_tags",
"SAMURAI"
],
[
"THE TALE OF ZATOICHI",
"in_language",
"JAPANESE"
],
[
"THE TALE OF ZATOICHI",
"written_by",
"KAN SHIMOZAWA"
],
[
"THE WIND RISES",
"has_genre",
"DRAMA"
],
[
"THE WIND RISES",
"in_language",
"JAPANESE"
],
[
"THRONE OF BLOOD",
"has_genre",
"DRAMA"
],
[
"THRONE OF BLOOD",
"has_tags",
"JAPANESE"
],
[
"THRONE OF BLOOD",
"in_language",
"JAPANESE"
],
[
"TOKYO FIST",
"has_genre",
"DRAMA"
],
[
"TOKYO FIST",
"in_language",
"JAPANESE"
],
[
"TORA! TORA! TORA!",
"has_genre",
"DRAMA"
],
[
"TORA! TORA! TORA!",
"has_tags",
"JAPANESE"
],
[
"TORA! TORA! TORA!",
"in_language",
"JAPANESE"
],
[
"UGETSU",
"has_genre",
"DRAMA"
],
[
"UGETSU",
"in_language",
"JAPANESE"
],
[
"VOICES OF A DISTANT STAR",
"has_genre",
"DRAMA"
],
[
"VOICES OF A DISTANT STAR",
"in_language",
"JAPANESE"
],
[
"WHEN A WOMAN ASCENDS THE STAIRS",
"has_genre",
"DRAMA"
],
[
"WHEN A WOMAN ASCENDS THE STAIRS",
"in_language",
"JAPANESE"
],
[
"WHISPER OF THE HEART",
"has_genre",
"DRAMA"
],
[
"WHISPER OF THE HEART",
"in_language",
"JAPANESE"
],
[
"YOJIMBO",
"has_genre",
"DRAMA"
],
[
"YOJIMBO",
"in_language",
"JAPANESE"
],
[
"ZATOICHI MEETS YOJIMBO",
"has_genre",
"DRAMA"
],
[
"ZATOICHI MEETS YOJIMBO",
"in_language",
"JAPANESE"
],
[
"ZATOICHI MEETS YOJIMBO",
"written_by",
"KAN SHIMOZAWA"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
24438, 1993
1097, 2003
15174, AND STARRING PANCHO VILLA AS HIMSELF
21382, ANTONIO BANDERAS
37088, GLENN CLOSE
2957, ONCE UPON A TIME IN MEXICO
18917, SKYLARK
31584, SLIM SUSIE
34001, THE HOUSE OF THE SPIRITS
18569, ULF MALMROS
src, edge_attr, dst
15174, release_year, 1097
15174, starred_actors, 21382
2957, has_tags, 21382
2957, release_year, 1097
2957, starred_actors, 21382
18917, release_year, 24438
18917, starred_actors, 37088
31584, directed_by, 18569
31584, release_year, 1097
31584, written_by, 18569
34001, has_tags, 21382
34001, has_tags, 37088
34001, release_year, 24438
Question: How are ANTONIO BANDERAS, SKYLARK, and ULF MALMROS related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"ANTONIO BANDERAS",
"SKYLARK",
"ULF MALMROS"
],
"valid_edges": [
[
"AND STARRING PANCHO VILLA AS HIMSELF",
"release_year",
"2003"
],
[
"AND STARRING PANCHO VILLA AS HIMSELF",
"starred_actors",
"ANTONIO BANDERAS"
],
[
"ONCE UPON A TIME IN MEXICO",
"has_tags",
"ANTONIO BANDERAS"
],
[
"ONCE UPON A TIME IN MEXICO",
"release_year",
"2003"
],
[
"ONCE UPON A TIME IN MEXICO",
"starred_actors",
"ANTONIO BANDERAS"
],
[
"SKYLARK",
"release_year",
"1993"
],
[
"SKYLARK",
"starred_actors",
"GLENN CLOSE"
],
[
"SLIM SUSIE",
"directed_by",
"ULF MALMROS"
],
[
"SLIM SUSIE",
"release_year",
"2003"
],
[
"SLIM SUSIE",
"written_by",
"ULF MALMROS"
],
[
"THE HOUSE OF THE SPIRITS",
"has_tags",
"ANTONIO BANDERAS"
],
[
"THE HOUSE OF THE SPIRITS",
"has_tags",
"GLENN CLOSE"
],
[
"THE HOUSE OF THE SPIRITS",
"release_year",
"1993"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
27261, 2009
1421, 2013
26267, CINEMATOGRAPHY
6480, GERMAN
21573, GIRL ON A BICYCLE
34974, GOLD
31326, GRAVITY
20941, HAMLET
33460, HANS ZIMMER
2722, INSIDE LLEWYN DAVIS
848, OCULUS
13471, PRISONERS
11124, STALINGRAD
19442, THE BOOK THIEF
13153, THE GERMAN DOCTOR
2872, THE GREAT GATSBY
14478, THE LION KING
3104, THE WHITE RIBBON
37916, WETLANDS
src, edge_attr, dst
21573, in_language, 6480
21573, release_year, 1421
34974, in_language, 6480
34974, release_year, 1421
31326, has_tags, 26267
31326, release_year, 1421
20941, release_year, 27261
2722, has_tags, 26267
2722, release_year, 1421
848, release_year, 1421
13471, has_tags, 26267
13471, release_year, 1421
11124, has_tags, 6480
11124, in_language, 6480
11124, release_year, 1421
19442, in_language, 6480
19442, release_year, 1421
13153, in_language, 6480
13153, release_year, 1421
2872, has_tags, 26267
2872, release_year, 1421
14478, has_tags, 20941
14478, has_tags, 33460
3104, has_tags, 26267
3104, has_tags, 6480
3104, in_language, 6480
3104, release_year, 27261
37916, in_language, 6480
37916, release_year, 1421
Question: In what context are HANS ZIMMER, OCULUS, and THE WHITE RIBBON connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"HANS ZIMMER",
"OCULUS",
"THE WHITE RIBBON"
],
"valid_edges": [
[
"GIRL ON A BICYCLE",
"in_language",
"GERMAN"
],
[
"GIRL ON A BICYCLE",
"release_year",
"2013"
],
[
"GOLD",
"in_language",
"GERMAN"
],
[
"GOLD",
"release_year",
"2013"
],
[
"GRAVITY",
"has_tags",
"CINEMATOGRAPHY"
],
[
"GRAVITY",
"release_year",
"2013"
],
[
"HAMLET",
"release_year",
"2009"
],
[
"INSIDE LLEWYN DAVIS",
"has_tags",
"CINEMATOGRAPHY"
],
[
"INSIDE LLEWYN DAVIS",
"release_year",
"2013"
],
[
"OCULUS",
"release_year",
"2013"
],
[
"PRISONERS",
"has_tags",
"CINEMATOGRAPHY"
],
[
"PRISONERS",
"release_year",
"2013"
],
[
"STALINGRAD",
"has_tags",
"GERMAN"
],
[
"STALINGRAD",
"in_language",
"GERMAN"
],
[
"STALINGRAD",
"release_year",
"2013"
],
[
"THE BOOK THIEF",
"in_language",
"GERMAN"
],
[
"THE BOOK THIEF",
"release_year",
"2013"
],
[
"THE GERMAN DOCTOR",
"in_language",
"GERMAN"
],
[
"THE GERMAN DOCTOR",
"release_year",
"2013"
],
[
"THE GREAT GATSBY",
"has_tags",
"CINEMATOGRAPHY"
],
[
"THE GREAT GATSBY",
"release_year",
"2013"
],
[
"THE LION KING",
"has_tags",
"HAMLET"
],
[
"THE LION KING",
"has_tags",
"HANS ZIMMER"
],
[
"THE WHITE RIBBON",
"has_tags",
"CINEMATOGRAPHY"
],
[
"THE WHITE RIBBON",
"has_tags",
"GERMAN"
],
[
"THE WHITE RIBBON",
"in_language",
"GERMAN"
],
[
"THE WHITE RIBBON",
"release_year",
"2009"
],
[
"WETLANDS",
"in_language",
"GERMAN"
],
[
"WETLANDS",
"release_year",
"2013"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
15421, 100 BLOODY ACRES
24580, 2-HEADED SHARK ATTACK
658, 2012
38712, 30 DAYS OF NIGHT
18899, A BUCKET OF BLOOD
30586, A FANTASTIC FEAR OF EVERYTHING
25327, AFTERSHOCK
12146, ANNE BOBBY
34229, ANTIVIRAL
35584, ANY QUESTIONS FOR BEN?
3449, APARTMENT 1303 3D
22078, ARBITRAGE
10277, ARGO
36593, BLACK CHRISTMAS
13736, BLACK ROCK
2570, BLACK SUNDAY
31909, BLACK SWAN
5946, BLOODY BLOODY BIBLE CAMP
17899, BUG
21399, CABIN
27929, CABIN FEVER
38311, CHAOS
30191, CHERNOBYL DIARIES
6286, CHRIS HEMSWORTH
30339, CITADEL
38925, CLOUD ATLAS
38598, COME OUT AND PLAY
22349, CRAWLSPACE
30529, DARK SHADOWS
33477, DARKEST NIGHT
21942, DAWN OF THE DEAD
17466, DETENTION OF THE DEAD
31163, DIRECTORIAL DEBUT
16041, DJANGO UNCHAINED
28770, DRACULA 3D
32596, DREW GODDARD
6394, EXCISION
35384, FAT KID RULES THE WORLD
3785, FRAN KRANZ
1041, GALLOWWALKERS
24098, GRAVE ENCOUNTERS 2
2486, GRINDHOUSE
5870, HORROR
4823, HOUSE AT THE END OF THE STREET
36133, JOHN DIES AT THE END
8192, JOSS WHEDON
1000, LET THE RIGHT ONE IN
35217, LOOPER
24437, MANIAC
31377, MUCH ADO ABOUT NOTHING
11484, MUTANT CHRONICLES
33156, MY NAME IS BRUCE
22011, NIGHTBREED
25269, NINE LIVES
10573, NO ONE LIVES
36239, PARANORMAL ACTIVITY 4
35289, PARANORMAN
17916, PIRANHA 3DD
23588, PROMETHEUS
6175, QUARANTINE
25023, QUARTET
13081, R
27373, RED DAWN
38226, RESOLUTION
31339, RISE OF THE ZOMBIES
20664, ROB SITCH
38815, SADAKO 3D
33912, SANTO CILAURO
38572, SATIRE
24992, SCARY OR DIE
9373, SEVERANCE
15926, SILENT NIGHT
34584, SILVER LININGS PLAYBOOK
8359, SINISTER
13768, SLEEPY HOLLOW
26930, SLITHER
21148, SNOW WHITE AND THE HUNTSMAN
9247, STITCHES
39265, STORAGE 24
273, TED
31162, THE ABCS OF DEATH
39296, THE APPARITION
16103, THE AVENGERS
25250, THE BARRENS
19623, THE BATTERY
16753, THE BAY
19938, THE CABIN IN THE WOODS
13392, THE CASTLE
2974, THE COLLECTION
18592, THE DEVIL INSIDE
7153, THE DEVIL'S CARNIVAL
19064, THE HAUNTING OF HELENA
11861, THE LORDS OF SALEM
24652, THE MAN WHO LAUGHS
33919, THE MIST
956, THE ORPHANAGE
29525, THE PACT
2023, THE POSSESSION
22294, THE PROPHECY
18162, THE RAVEN
27427, THE STRANGERS
27003, THE THOMPSONS
3437, THE WOMAN IN BLACK
939, THIS IS 40
24359, TOM GLEISNER
31252, V/H/S
30621, VACANCY
24570, VAMPS
20105, WORLD WAR Z
39464, WOULD YOU RATHER
src, edge_attr, dst
15421, has_genre, 5870
15421, release_year, 658
24580, has_genre, 5870
24580, release_year, 658
38712, has_genre, 5870
38712, has_tags, 13081
18899, has_genre, 5870
18899, has_tags, 38572
30586, has_genre, 5870
30586, has_tags, 5870
30586, release_year, 658
25327, has_genre, 5870
25327, release_year, 658
34229, has_genre, 5870
34229, release_year, 658
35584, directed_by, 20664
35584, release_year, 658
35584, written_by, 20664
35584, written_by, 33912
35584, written_by, 24359
3449, has_genre, 5870
3449, release_year, 658
22078, has_tags, 13081
22078, release_year, 658
10277, has_tags, 13081
10277, release_year, 658
36593, has_genre, 5870
36593, has_tags, 5870
36593, has_tags, 13081
13736, has_genre, 5870
13736, release_year, 658
2570, has_genre, 5870
2570, has_tags, 31163
31909, has_tags, 5870
31909, has_tags, 13081
5946, has_genre, 5870
5946, release_year, 658
17899, has_genre, 5870
17899, has_tags, 13081
27929, has_genre, 5870
27929, has_tags, 21399
27929, has_tags, 5870
38311, has_genre, 5870
38311, has_tags, 13081
30191, has_genre, 5870
30191, release_year, 658
30339, has_genre, 5870
30339, release_year, 658
38925, has_tags, 13081
38925, release_year, 658
38598, has_genre, 5870
38598, release_year, 658
22349, has_genre, 5870
22349, release_year, 658
30529, has_genre, 5870
30529, release_year, 658
33477, has_genre, 5870
33477, has_tags, 5870
33477, release_year, 658
21942, has_genre, 5870
21942, has_tags, 31163
21942, has_tags, 5870
21942, has_tags, 13081
17466, has_genre, 5870
17466, release_year, 658
16041, has_tags, 13081
16041, release_year, 658
28770, has_genre, 5870
28770, release_year, 658
6394, has_genre, 5870
6394, release_year, 658
35384, has_tags, 31163
35384, release_year, 658
1041, has_genre, 5870
1041, release_year, 658
24098, has_genre, 5870
24098, release_year, 658
2486, has_genre, 5870
2486, has_tags, 13081
4823, has_genre, 5870
4823, release_year, 658
36133, has_genre, 5870
36133, release_year, 658
1000, has_genre, 5870
1000, has_tags, 5870
1000, has_tags, 13081
35217, has_tags, 13081
35217, release_year, 658
24437, has_genre, 5870
24437, release_year, 658
31377, directed_by, 8192
31377, has_tags, 3785
31377, has_tags, 8192
31377, release_year, 658
31377, written_by, 8192
11484, has_genre, 5870
11484, has_tags, 13081
33156, has_genre, 5870
33156, has_tags, 13081
22011, has_genre, 5870
22011, starred_actors, 12146
25269, has_genre, 5870
25269, has_tags, 13081
10573, has_genre, 5870
10573, release_year, 658
36239, has_genre, 5870
36239, release_year, 658
35289, has_tags, 5870
35289, release_year, 658
17916, has_genre, 5870
17916, release_year, 658
23588, has_tags, 13081
23588, release_year, 658
6175, has_genre, 5870
6175, has_tags, 13081
25023, has_tags, 31163
25023, release_year, 658
27373, has_tags, 6286
27373, release_year, 658
27373, starred_actors, 6286
38226, has_genre, 5870
38226, release_year, 658
31339, has_genre, 5870
31339, release_year, 658
38815, has_genre, 5870
38815, release_year, 658
24992, has_genre, 5870
24992, release_year, 658
9373, has_genre, 5870
9373, has_tags, 5870
9373, has_tags, 13081
15926, has_genre, 5870
15926, release_year, 658
34584, has_tags, 13081
34584, release_year, 658
8359, has_genre, 5870
8359, has_tags, 5870
8359, release_year, 658
13768, has_genre, 5870
13768, has_tags, 5870
13768, has_tags, 13081
26930, has_genre, 5870
26930, has_tags, 5870
26930, has_tags, 13081
21148, has_tags, 6286
21148, release_year, 658
21148, starred_actors, 6286
9247, has_genre, 5870
9247, release_year, 658
39265, has_genre, 5870
39265, release_year, 658
273, has_tags, 31163
273, release_year, 658
31162, has_genre, 5870
31162, release_year, 658
39296, has_genre, 5870
39296, release_year, 658
16103, directed_by, 8192
16103, has_tags, 6286
16103, has_tags, 8192
16103, release_year, 658
16103, starred_actors, 6286
16103, written_by, 8192
25250, has_genre, 5870
25250, release_year, 658
19623, has_genre, 5870
19623, release_year, 658
16753, has_genre, 5870
16753, release_year, 658
19938, directed_by, 32596
19938, has_genre, 5870
19938, has_tags, 21399
19938, has_tags, 6286
19938, has_tags, 31163
19938, has_tags, 32596
19938, has_tags, 3785
19938, has_tags, 5870
19938, has_tags, 8192
19938, has_tags, 13081
19938, has_tags, 38572
19938, release_year, 658
19938, starred_actors, 6286
19938, starred_actors, 3785
19938, written_by, 32596
19938, written_by, 8192
13392, directed_by, 20664
13392, has_tags, 20664
13392, written_by, 20664
13392, written_by, 33912
13392, written_by, 24359
2974, has_genre, 5870
2974, release_year, 658
18592, has_genre, 5870
18592, release_year, 658
7153, has_genre, 5870
7153, release_year, 658
19064, has_genre, 5870
19064, release_year, 658
11861, has_genre, 5870
11861, release_year, 658
24652, has_genre, 5870
24652, release_year, 658
33919, has_genre, 5870
33919, has_tags, 13081
956, has_tags, 5870
956, has_tags, 13081
29525, has_genre, 5870
29525, release_year, 658
2023, has_genre, 5870
2023, has_tags, 5870
2023, release_year, 658
22294, has_genre, 5870
22294, has_tags, 13081
18162, has_genre, 5870
18162, has_tags, 5870
18162, release_year, 658
27427, has_genre, 5870
27427, has_tags, 13081
27003, has_genre, 5870
27003, release_year, 658
3437, has_genre, 5870
3437, has_tags, 5870
3437, release_year, 658
939, has_tags, 13081
939, release_year, 658
31252, has_genre, 5870
31252, has_tags, 5870
31252, release_year, 658
30621, has_genre, 5870
30621, has_tags, 13081
24570, has_genre, 5870
24570, release_year, 658
20105, has_genre, 5870
20105, written_by, 32596
39464, has_genre, 5870
39464, has_tags, 5870
39464, release_year, 658
Question: In what context are ANNE BOBBY, THE CABIN IN THE WOODS, and TOM GLEISNER connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"ANNE BOBBY",
"THE CABIN IN THE WOODS",
"TOM GLEISNER"
],
"valid_edges": [
[
"100 BLOODY ACRES",
"has_genre",
"HORROR"
],
[
"100 BLOODY ACRES",
"release_year",
"2012"
],
[
"2-HEADED SHARK ATTACK",
"has_genre",
"HORROR"
],
[
"2-HEADED SHARK ATTACK",
"release_year",
"2012"
],
[
"30 DAYS OF NIGHT",
"has_genre",
"HORROR"
],
[
"30 DAYS OF NIGHT",
"has_tags",
"R"
],
[
"A BUCKET OF BLOOD",
"has_genre",
"HORROR"
],
[
"A BUCKET OF BLOOD",
"has_tags",
"SATIRE"
],
[
"A FANTASTIC FEAR OF EVERYTHING",
"has_genre",
"HORROR"
],
[
"A FANTASTIC FEAR OF EVERYTHING",
"has_tags",
"HORROR"
],
[
"A FANTASTIC FEAR OF EVERYTHING",
"release_year",
"2012"
],
[
"AFTERSHOCK",
"has_genre",
"HORROR"
],
[
"AFTERSHOCK",
"release_year",
"2012"
],
[
"ANTIVIRAL",
"has_genre",
"HORROR"
],
[
"ANTIVIRAL",
"release_year",
"2012"
],
[
"ANY QUESTIONS FOR BEN?",
"directed_by",
"ROB SITCH"
],
[
"ANY QUESTIONS FOR BEN?",
"release_year",
"2012"
],
[
"ANY QUESTIONS FOR BEN?",
"written_by",
"ROB SITCH"
],
[
"ANY QUESTIONS FOR BEN?",
"written_by",
"SANTO CILAURO"
],
[
"ANY QUESTIONS FOR BEN?",
"written_by",
"TOM GLEISNER"
],
[
"APARTMENT 1303 3D",
"has_genre",
"HORROR"
],
[
"APARTMENT 1303 3D",
"release_year",
"2012"
],
[
"ARBITRAGE",
"has_tags",
"R"
],
[
"ARBITRAGE",
"release_year",
"2012"
],
[
"ARGO",
"has_tags",
"R"
],
[
"ARGO",
"release_year",
"2012"
],
[
"BLACK CHRISTMAS",
"has_genre",
"HORROR"
],
[
"BLACK CHRISTMAS",
"has_tags",
"HORROR"
],
[
"BLACK CHRISTMAS",
"has_tags",
"R"
],
[
"BLACK ROCK",
"has_genre",
"HORROR"
],
[
"BLACK ROCK",
"release_year",
"2012"
],
[
"BLACK SUNDAY",
"has_genre",
"HORROR"
],
[
"BLACK SUNDAY",
"has_tags",
"DIRECTORIAL DEBUT"
],
[
"BLACK SWAN",
"has_tags",
"HORROR"
],
[
"BLACK SWAN",
"has_tags",
"R"
],
[
"BLOODY BLOODY BIBLE CAMP",
"has_genre",
"HORROR"
],
[
"BLOODY BLOODY BIBLE CAMP",
"release_year",
"2012"
],
[
"BUG",
"has_genre",
"HORROR"
],
[
"BUG",
"has_tags",
"R"
],
[
"CABIN FEVER",
"has_genre",
"HORROR"
],
[
"CABIN FEVER",
"has_tags",
"CABIN"
],
[
"CABIN FEVER",
"has_tags",
"HORROR"
],
[
"CHAOS",
"has_genre",
"HORROR"
],
[
"CHAOS",
"has_tags",
"R"
],
[
"CHERNOBYL DIARIES",
"has_genre",
"HORROR"
],
[
"CHERNOBYL DIARIES",
"release_year",
"2012"
],
[
"CITADEL",
"has_genre",
"HORROR"
],
[
"CITADEL",
"release_year",
"2012"
],
[
"CLOUD ATLAS",
"has_tags",
"R"
],
[
"CLOUD ATLAS",
"release_year",
"2012"
],
[
"COME OUT AND PLAY",
"has_genre",
"HORROR"
],
[
"COME OUT AND PLAY",
"release_year",
"2012"
],
[
"CRAWLSPACE",
"has_genre",
"HORROR"
],
[
"CRAWLSPACE",
"release_year",
"2012"
],
[
"DARK SHADOWS",
"has_genre",
"HORROR"
],
[
"DARK SHADOWS",
"release_year",
"2012"
],
[
"DARKEST NIGHT",
"has_genre",
"HORROR"
],
[
"DARKEST NIGHT",
"has_tags",
"HORROR"
],
[
"DARKEST NIGHT",
"release_year",
"2012"
],
[
"DAWN OF THE DEAD",
"has_genre",
"HORROR"
],
[
"DAWN OF THE DEAD",
"has_tags",
"DIRECTORIAL DEBUT"
],
[
"DAWN OF THE DEAD",
"has_tags",
"HORROR"
],
[
"DAWN OF THE DEAD",
"has_tags",
"R"
],
[
"DETENTION OF THE DEAD",
"has_genre",
"HORROR"
],
[
"DETENTION OF THE DEAD",
"release_year",
"2012"
],
[
"DJANGO UNCHAINED",
"has_tags",
"R"
],
[
"DJANGO UNCHAINED",
"release_year",
"2012"
],
[
"DRACULA 3D",
"has_genre",
"HORROR"
],
[
"DRACULA 3D",
"release_year",
"2012"
],
[
"EXCISION",
"has_genre",
"HORROR"
],
[
"EXCISION",
"release_year",
"2012"
],
[
"FAT KID RULES THE WORLD",
"has_tags",
"DIRECTORIAL DEBUT"
],
[
"FAT KID RULES THE WORLD",
"release_year",
"2012"
],
[
"GALLOWWALKERS",
"has_genre",
"HORROR"
],
[
"GALLOWWALKERS",
"release_year",
"2012"
],
[
"GRAVE ENCOUNTERS 2",
"has_genre",
"HORROR"
],
[
"GRAVE ENCOUNTERS 2",
"release_year",
"2012"
],
[
"GRINDHOUSE",
"has_genre",
"HORROR"
],
[
"GRINDHOUSE",
"has_tags",
"R"
],
[
"HOUSE AT THE END OF THE STREET",
"has_genre",
"HORROR"
],
[
"HOUSE AT THE END OF THE STREET",
"release_year",
"2012"
],
[
"JOHN DIES AT THE END",
"has_genre",
"HORROR"
],
[
"JOHN DIES AT THE END",
"release_year",
"2012"
],
[
"LET THE RIGHT ONE IN",
"has_genre",
"HORROR"
],
[
"LET THE RIGHT ONE IN",
"has_tags",
"HORROR"
],
[
"LET THE RIGHT ONE IN",
"has_tags",
"R"
],
[
"LOOPER",
"has_tags",
"R"
],
[
"LOOPER",
"release_year",
"2012"
],
[
"MANIAC",
"has_genre",
"HORROR"
],
[
"MANIAC",
"release_year",
"2012"
],
[
"MUCH ADO ABOUT NOTHING",
"directed_by",
"JOSS WHEDON"
],
[
"MUCH ADO ABOUT NOTHING",
"has_tags",
"FRAN KRANZ"
],
[
"MUCH ADO ABOUT NOTHING",
"has_tags",
"JOSS WHEDON"
],
[
"MUCH ADO ABOUT NOTHING",
"release_year",
"2012"
],
[
"MUCH ADO ABOUT NOTHING",
"written_by",
"JOSS WHEDON"
],
[
"MUTANT CHRONICLES",
"has_genre",
"HORROR"
],
[
"MUTANT CHRONICLES",
"has_tags",
"R"
],
[
"MY NAME IS BRUCE",
"has_genre",
"HORROR"
],
[
"MY NAME IS BRUCE",
"has_tags",
"R"
],
[
"NIGHTBREED",
"has_genre",
"HORROR"
],
[
"NIGHTBREED",
"starred_actors",
"ANNE BOBBY"
],
[
"NINE LIVES",
"has_genre",
"HORROR"
],
[
"NINE LIVES",
"has_tags",
"R"
],
[
"NO ONE LIVES",
"has_genre",
"HORROR"
],
[
"NO ONE LIVES",
"release_year",
"2012"
],
[
"PARANORMAL ACTIVITY 4",
"has_genre",
"HORROR"
],
[
"PARANORMAL ACTIVITY 4",
"release_year",
"2012"
],
[
"PARANORMAN",
"has_tags",
"HORROR"
],
[
"PARANORMAN",
"release_year",
"2012"
],
[
"PIRANHA 3DD",
"has_genre",
"HORROR"
],
[
"PIRANHA 3DD",
"release_year",
"2012"
],
[
"PROMETHEUS",
"has_tags",
"R"
],
[
"PROMETHEUS",
"release_year",
"2012"
],
[
"QUARANTINE",
"has_genre",
"HORROR"
],
[
"QUARANTINE",
"has_tags",
"R"
],
[
"QUARTET",
"has_tags",
"DIRECTORIAL DEBUT"
],
[
"QUARTET",
"release_year",
"2012"
],
[
"RED DAWN",
"has_tags",
"CHRIS HEMSWORTH"
],
[
"RED DAWN",
"release_year",
"2012"
],
[
"RED DAWN",
"starred_actors",
"CHRIS HEMSWORTH"
],
[
"RESOLUTION",
"has_genre",
"HORROR"
],
[
"RESOLUTION",
"release_year",
"2012"
],
[
"RISE OF THE ZOMBIES",
"has_genre",
"HORROR"
],
[
"RISE OF THE ZOMBIES",
"release_year",
"2012"
],
[
"SADAKO 3D",
"has_genre",
"HORROR"
],
[
"SADAKO 3D",
"release_year",
"2012"
],
[
"SCARY OR DIE",
"has_genre",
"HORROR"
],
[
"SCARY OR DIE",
"release_year",
"2012"
],
[
"SEVERANCE",
"has_genre",
"HORROR"
],
[
"SEVERANCE",
"has_tags",
"HORROR"
],
[
"SEVERANCE",
"has_tags",
"R"
],
[
"SILENT NIGHT",
"has_genre",
"HORROR"
],
[
"SILENT NIGHT",
"release_year",
"2012"
],
[
"SILVER LININGS PLAYBOOK",
"has_tags",
"R"
],
[
"SILVER LININGS PLAYBOOK",
"release_year",
"2012"
],
[
"SINISTER",
"has_genre",
"HORROR"
],
[
"SINISTER",
"has_tags",
"HORROR"
],
[
"SINISTER",
"release_year",
"2012"
],
[
"SLEEPY HOLLOW",
"has_genre",
"HORROR"
],
[
"SLEEPY HOLLOW",
"has_tags",
"HORROR"
],
[
"SLEEPY HOLLOW",
"has_tags",
"R"
],
[
"SLITHER",
"has_genre",
"HORROR"
],
[
"SLITHER",
"has_tags",
"HORROR"
],
[
"SLITHER",
"has_tags",
"R"
],
[
"SNOW WHITE AND THE HUNTSMAN",
"has_tags",
"CHRIS HEMSWORTH"
],
[
"SNOW WHITE AND THE HUNTSMAN",
"release_year",
"2012"
],
[
"SNOW WHITE AND THE HUNTSMAN",
"starred_actors",
"CHRIS HEMSWORTH"
],
[
"STITCHES",
"has_genre",
"HORROR"
],
[
"STITCHES",
"release_year",
"2012"
],
[
"STORAGE 24",
"has_genre",
"HORROR"
],
[
"STORAGE 24",
"release_year",
"2012"
],
[
"TED",
"has_tags",
"DIRECTORIAL DEBUT"
],
[
"TED",
"release_year",
"2012"
],
[
"THE ABCS OF DEATH",
"has_genre",
"HORROR"
],
[
"THE ABCS OF DEATH",
"release_year",
"2012"
],
[
"THE APPARITION",
"has_genre",
"HORROR"
],
[
"THE APPARITION",
"release_year",
"2012"
],
[
"THE AVENGERS",
"directed_by",
"JOSS WHEDON"
],
[
"THE AVENGERS",
"has_tags",
"CHRIS HEMSWORTH"
],
[
"THE AVENGERS",
"has_tags",
"JOSS WHEDON"
],
[
"THE AVENGERS",
"release_year",
"2012"
],
[
"THE AVENGERS",
"starred_actors",
"CHRIS HEMSWORTH"
],
[
"THE AVENGERS",
"written_by",
"JOSS WHEDON"
],
[
"THE BARRENS",
"has_genre",
"HORROR"
],
[
"THE BARRENS",
"release_year",
"2012"
],
[
"THE BATTERY",
"has_genre",
"HORROR"
],
[
"THE BATTERY",
"release_year",
"2012"
],
[
"THE BAY",
"has_genre",
"HORROR"
],
[
"THE BAY",
"release_year",
"2012"
],
[
"THE CABIN IN THE WOODS",
"directed_by",
"DREW GODDARD"
],
[
"THE CABIN IN THE WOODS",
"has_genre",
"HORROR"
],
[
"THE CABIN IN THE WOODS",
"has_tags",
"CABIN"
],
[
"THE CABIN IN THE WOODS",
"has_tags",
"CHRIS HEMSWORTH"
],
[
"THE CABIN IN THE WOODS",
"has_tags",
"DIRECTORIAL DEBUT"
],
[
"THE CABIN IN THE WOODS",
"has_tags",
"DREW GODDARD"
],
[
"THE CABIN IN THE WOODS",
"has_tags",
"FRAN KRANZ"
],
[
"THE CABIN IN THE WOODS",
"has_tags",
"HORROR"
],
[
"THE CABIN IN THE WOODS",
"has_tags",
"JOSS WHEDON"
],
[
"THE CABIN IN THE WOODS",
"has_tags",
"R"
],
[
"THE CABIN IN THE WOODS",
"has_tags",
"SATIRE"
],
[
"THE CABIN IN THE WOODS",
"release_year",
"2012"
],
[
"THE CABIN IN THE WOODS",
"starred_actors",
"CHRIS HEMSWORTH"
],
[
"THE CABIN IN THE WOODS",
"starred_actors",
"FRAN KRANZ"
],
[
"THE CABIN IN THE WOODS",
"written_by",
"DREW GODDARD"
],
[
"THE CABIN IN THE WOODS",
"written_by",
"JOSS WHEDON"
],
[
"THE CASTLE",
"directed_by",
"ROB SITCH"
],
[
"THE CASTLE",
"has_tags",
"ROB SITCH"
],
[
"THE CASTLE",
"written_by",
"ROB SITCH"
],
[
"THE CASTLE",
"written_by",
"SANTO CILAURO"
],
[
"THE CASTLE",
"written_by",
"TOM GLEISNER"
],
[
"THE COLLECTION",
"has_genre",
"HORROR"
],
[
"THE COLLECTION",
"release_year",
"2012"
],
[
"THE DEVIL INSIDE",
"has_genre",
"HORROR"
],
[
"THE DEVIL INSIDE",
"release_year",
"2012"
],
[
"THE DEVIL'S CARNIVAL",
"has_genre",
"HORROR"
],
[
"THE DEVIL'S CARNIVAL",
"release_year",
"2012"
],
[
"THE HAUNTING OF HELENA",
"has_genre",
"HORROR"
],
[
"THE HAUNTING OF HELENA",
"release_year",
"2012"
],
[
"THE LORDS OF SALEM",
"has_genre",
"HORROR"
],
[
"THE LORDS OF SALEM",
"release_year",
"2012"
],
[
"THE MAN WHO LAUGHS",
"has_genre",
"HORROR"
],
[
"THE MAN WHO LAUGHS",
"release_year",
"2012"
],
[
"THE MIST",
"has_genre",
"HORROR"
],
[
"THE MIST",
"has_tags",
"R"
],
[
"THE ORPHANAGE",
"has_tags",
"HORROR"
],
[
"THE ORPHANAGE",
"has_tags",
"R"
],
[
"THE PACT",
"has_genre",
"HORROR"
],
[
"THE PACT",
"release_year",
"2012"
],
[
"THE POSSESSION",
"has_genre",
"HORROR"
],
[
"THE POSSESSION",
"has_tags",
"HORROR"
],
[
"THE POSSESSION",
"release_year",
"2012"
],
[
"THE PROPHECY",
"has_genre",
"HORROR"
],
[
"THE PROPHECY",
"has_tags",
"R"
],
[
"THE RAVEN",
"has_genre",
"HORROR"
],
[
"THE RAVEN",
"has_tags",
"HORROR"
],
[
"THE RAVEN",
"release_year",
"2012"
],
[
"THE STRANGERS",
"has_genre",
"HORROR"
],
[
"THE STRANGERS",
"has_tags",
"R"
],
[
"THE THOMPSONS",
"has_genre",
"HORROR"
],
[
"THE THOMPSONS",
"release_year",
"2012"
],
[
"THE WOMAN IN BLACK",
"has_genre",
"HORROR"
],
[
"THE WOMAN IN BLACK",
"has_tags",
"HORROR"
],
[
"THE WOMAN IN BLACK",
"release_year",
"2012"
],
[
"THIS IS 40",
"has_tags",
"R"
],
[
"THIS IS 40",
"release_year",
"2012"
],
[
"V/H/S",
"has_genre",
"HORROR"
],
[
"V/H/S",
"has_tags",
"HORROR"
],
[
"V/H/S",
"release_year",
"2012"
],
[
"VACANCY",
"has_genre",
"HORROR"
],
[
"VACANCY",
"has_tags",
"R"
],
[
"VAMPS",
"has_genre",
"HORROR"
],
[
"VAMPS",
"release_year",
"2012"
],
[
"WORLD WAR Z",
"has_genre",
"HORROR"
],
[
"WORLD WAR Z",
"written_by",
"DREW GODDARD"
],
[
"WOULD YOU RATHER",
"has_genre",
"HORROR"
],
[
"WOULD YOU RATHER",
"has_tags",
"HORROR"
],
[
"WOULD YOU RATHER",
"release_year",
"2012"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
33013, A LETTER TO MOMO
24177, ANIMATION
6294, ANIME
30907, BAREFOOT GEN
7106, BROKEN VESSELS
36212, DRAMA
21774, GUNBUSTER
8248, JAPAN
36874, JAPANESE
18529, JOHN MCMAHON
34288, ONLY YESTERDAY
18584, PRINCESS MONONOKE
38976, STUDIO GHIBLI
1277, THE COLOR OF MONEY
14956, VOICES OF A DISTANT STAR
16901, WALTER TEVIS
src, edge_attr, dst
33013, has_genre, 24177
33013, has_genre, 36212
33013, has_tags, 6294
33013, in_language, 36874
30907, has_genre, 36212
30907, has_tags, 6294
30907, in_language, 36874
7106, has_genre, 36212
7106, written_by, 18529
21774, has_genre, 36212
21774, has_tags, 6294
34288, has_genre, 24177
34288, has_genre, 36212
34288, has_tags, 6294
34288, has_tags, 8248
34288, has_tags, 38976
34288, in_language, 36874
18584, has_tags, 6294
18584, has_tags, 36212
18584, has_tags, 8248
18584, has_tags, 36874
18584, has_tags, 38976
18584, in_language, 36874
1277, has_genre, 36212
1277, written_by, 16901
14956, has_genre, 24177
14956, has_genre, 36212
14956, has_tags, 6294
14956, in_language, 36874
Question: For what reason are ANIME, JOHN MCMAHON, and WALTER TEVIS associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"ANIME",
"JOHN MCMAHON",
"WALTER TEVIS"
],
"valid_edges": [
[
"A LETTER TO MOMO",
"has_genre",
"ANIMATION"
],
[
"A LETTER TO MOMO",
"has_genre",
"DRAMA"
],
[
"A LETTER TO MOMO",
"has_tags",
"ANIME"
],
[
"A LETTER TO MOMO",
"in_language",
"JAPANESE"
],
[
"BAREFOOT GEN",
"has_genre",
"DRAMA"
],
[
"BAREFOOT GEN",
"has_tags",
"ANIME"
],
[
"BAREFOOT GEN",
"in_language",
"JAPANESE"
],
[
"BROKEN VESSELS",
"has_genre",
"DRAMA"
],
[
"BROKEN VESSELS",
"written_by",
"JOHN MCMAHON"
],
[
"GUNBUSTER",
"has_genre",
"DRAMA"
],
[
"GUNBUSTER",
"has_tags",
"ANIME"
],
[
"ONLY YESTERDAY",
"has_genre",
"ANIMATION"
],
[
"ONLY YESTERDAY",
"has_genre",
"DRAMA"
],
[
"ONLY YESTERDAY",
"has_tags",
"ANIME"
],
[
"ONLY YESTERDAY",
"has_tags",
"JAPAN"
],
[
"ONLY YESTERDAY",
"has_tags",
"STUDIO GHIBLI"
],
[
"ONLY YESTERDAY",
"in_language",
"JAPANESE"
],
[
"PRINCESS MONONOKE",
"has_tags",
"ANIME"
],
[
"PRINCESS MONONOKE",
"has_tags",
"DRAMA"
],
[
"PRINCESS MONONOKE",
"has_tags",
"JAPAN"
],
[
"PRINCESS MONONOKE",
"has_tags",
"JAPANESE"
],
[
"PRINCESS MONONOKE",
"has_tags",
"STUDIO GHIBLI"
],
[
"PRINCESS MONONOKE",
"in_language",
"JAPANESE"
],
[
"THE COLOR OF MONEY",
"has_genre",
"DRAMA"
],
[
"THE COLOR OF MONEY",
"written_by",
"WALTER TEVIS"
],
[
"VOICES OF A DISTANT STAR",
"has_genre",
"ANIMATION"
],
[
"VOICES OF A DISTANT STAR",
"has_genre",
"DRAMA"
],
[
"VOICES OF A DISTANT STAR",
"has_tags",
"ANIME"
],
[
"VOICES OF A DISTANT STAR",
"in_language",
"JAPANESE"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
16426, BELLE DE JOUR
14724, CRIME
38279, CYBERPUNK
9542, DIARY OF A CHAMBERMAID
36212, DRAMA
11389, EDDY MORETTI
6012, FRENCH
1003, HACKERS
35505, LUIS BUÑUEL
26605, THE CRIMINAL LIFE OF ARCHIBALDO DE LA CRUZ
2049, WHITE LIGHTNIN'
src, edge_attr, dst
16426, directed_by, 35505
16426, has_genre, 36212
16426, has_tags, 36212
16426, has_tags, 35505
16426, in_language, 6012
16426, written_by, 35505
9542, directed_by, 35505
9542, has_genre, 36212
9542, has_tags, 35505
9542, in_language, 6012
9542, written_by, 35505
1003, has_genre, 14724
1003, has_tags, 38279
1003, has_tags, 1003
26605, directed_by, 35505
26605, has_genre, 14724
26605, has_tags, 35505
26605, written_by, 35505
2049, has_genre, 36212
2049, written_by, 11389
Question: How are CYBERPUNK, EDDY MORETTI, and LUIS BUÑUEL related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"CYBERPUNK",
"EDDY MORETTI",
"LUIS BUÑUEL"
],
"valid_edges": [
[
"BELLE DE JOUR",
"directed_by",
"LUIS BUÑUEL"
],
[
"BELLE DE JOUR",
"has_genre",
"DRAMA"
],
[
"BELLE DE JOUR",
"has_tags",
"DRAMA"
],
[
"BELLE DE JOUR",
"has_tags",
"LUIS BUÑUEL"
],
[
"BELLE DE JOUR",
"in_language",
"FRENCH"
],
[
"BELLE DE JOUR",
"written_by",
"LUIS BUÑUEL"
],
[
"DIARY OF A CHAMBERMAID",
"directed_by",
"LUIS BUÑUEL"
],
[
"DIARY OF A CHAMBERMAID",
"has_genre",
"DRAMA"
],
[
"DIARY OF A CHAMBERMAID",
"has_tags",
"LUIS BUÑUEL"
],
[
"DIARY OF A CHAMBERMAID",
"in_language",
"FRENCH"
],
[
"DIARY OF A CHAMBERMAID",
"written_by",
"LUIS BUÑUEL"
],
[
"HACKERS",
"has_genre",
"CRIME"
],
[
"HACKERS",
"has_tags",
"CYBERPUNK"
],
[
"HACKERS",
"has_tags",
"HACKERS"
],
[
"THE CRIMINAL LIFE OF ARCHIBALDO DE LA CRUZ",
"directed_by",
"LUIS BUÑUEL"
],
[
"THE CRIMINAL LIFE OF ARCHIBALDO DE LA CRUZ",
"has_genre",
"CRIME"
],
[
"THE CRIMINAL LIFE OF ARCHIBALDO DE LA CRUZ",
"has_tags",
"LUIS BUÑUEL"
],
[
"THE CRIMINAL LIFE OF ARCHIBALDO DE LA CRUZ",
"written_by",
"LUIS BUÑUEL"
],
[
"WHITE LIGHTNIN'",
"has_genre",
"DRAMA"
],
[
"WHITE LIGHTNIN'",
"written_by",
"EDDY MORETTI"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
7977, 1969
658, 2012
5423, A LATE QUARTET
32632, A ROYAL AFFAIR
20562, A THOUSAND WORDS
21800, ABOUT CHERRY
29800, ACE ATTORNEY
30332, AMOUR
36963, ANNA KARENINA
24708, ANY DAY NOW
22078, ARBITRAGE
10277, ARGO
13686, ARTHUR NEWMAN
9695, AT ANY PRICE
31449, BARABBAS
38263, BARBARA
23994, BARFI!
30581, BEASTS OF THE SOUTHERN WILD
37191, BEING FLYNN
28199, BEL AMI
32770, BEST MAN DOWN
14594, BEYOND THE HILLS
890, BIG MIRACLE
36071, BLACKBIRD
39848, BLUE LIKE JAZZ
18062, BOOTH TARKINGTON
22284, BOY EATING THE BIRD'S FOOD
27030, BROKEN
33711, CAESAR MUST DIE
32831, CALL GIRL
24707, CAMILLE REWINDS
12735, CHASING MAVERICKS
32450, CHEERFUL WEATHER FOR THE WEDDING
27338, CLIP
38925, CLOUD ATLAS
21016, COMPLIANCE
24757, CONSUMING SPIRITS
37589, COSMOPOLIS
19894, CRAVE
32797, DANGEROUS LIAISONS
10643, DARLING COMPANION
31694, DEADFALL
38977, DISCONNECT
36212, DRAMA
7480, EDEN
26106, END OF WATCH
32892, ENGLISH VINGLISH
6394, EXCISION
19570, FAREWELL, MY QUEEN
39636, FILL THE VOID
5563, FLIGHT
12314, FOR ELLEN
7740, FOREIGN LETTERS
15473, FORGETTING THE GIRL
6076, FRANCES HA
24535, GAME CHANGE
2427, GIRL IN PROGRESS
5647, HANNAH ARENDT
3917, HELLO HERMAN
22793, HEROINE
27350, HITCHCOCK
3030, HOLY MOTORS
35319, HOPE SPRINGS
37844, HYDE PARK ON HUDSON
19154, I BELONG
38589, I DO
32376, IMAGINE
26911, IN THE FOG
24025, INESCAPABLE
6301, JAYNE MANSFIELD'S CAR
5418, K-11
12835, KAUWBOY
26232, KEEP THE LIGHTS ON
2354, LADISLAV FUKS
3103, LAURENCE ANYWAYS
1418, LAWLESS
14601, LES MISÉRABLES
14931, LIBERAL ARTS
39727, LIFE OF PI
36020, LIKE SOMEONE IN LOVE
47, LINCOLN
17372, LOL
34517, LUV
35871, MAGIC MIKE
13801, MARFA GIRL
34611, ME AND YOU
31735, MIDDLE OF NOWHERE
39165, MUD
19118, MUSEUM HOURS
24915, MY WAY
26089, NAKED HARBOUR
25504, NEIGHBORING SOUNDS
8107, NO
20503, NOBODY WALKS
17532, NOT FADE AWAY
17263, NOW IS GOOD
21677, ON THE ROAD
38602, OUR CHILDREN
8523, OUT IN THE DARK
31312, PEOPLE LIKE US
15815, POST TENEBRAS LUX
11253, PROMISED LAND
11237, PURGE
25023, QUARTET
35746, REALITY
33501, RENOIR
11839, REVENGE FOR JOLLY!
12597, RUBY SPARKS
30316, RUST AND BONE
35808, SAFE
17168, SEEKING A FRIEND FOR THE END OF THE WORLD
25060, SEXUAL CHRONICLES OF A FRENCH FAMILY
28583, SHADOW DANCER
34584, SILVER LININGS PLAYBOOK
7174, SISTER
39426, SMASHED
28026, SOMEBODY UP THERE LIKES ME
33759, SOMETHING IN THE AIR
17346, SPRING BREAKERS
17608, STARLET
39286, STILL MINE
40067, STOLEN
25002, STRUCK BY LIGHTNING
3038, STUCK IN LOVE
18335, TABU
19501, THANKS FOR SHARING
3885, THE ARTIST AND THE MODEL
19623, THE BATTERY
24441, THE BROKEN CIRCLE BREAKDOWN
38175, THE CITIZEN
6644, THE COMEDY
24231, THE CREMATOR
2399, THE DEEP
10295, THE END OF LOVE
27103, THE FITZGERALD FAMILY CHRISTMAS
14688, THE FLOATING CASTLE
35267, THE FORGER
16929, THE GIRL
15980, THE GUILT TRIP
9328, THE HUNT
38614, THE IMPOSSIBLE
22800, THE LESSER BLESSED
33948, THE LETTER
4984, THE LUCKY ONE
23191, THE MAGIC OF BELLE ISLE
37370, THE MAGNIFICENT AMBERSONS
24652, THE MAN WHO LAUGHS
17964, THE MASTER
15798, THE ODD LIFE OF TIMOTHY GREEN
28735, THE OTHER SON
1195, THE PATIENCE STONE
7673, THE PERKS OF BEING A WALLFLOWER
2739, THE SAPPHIRES
27064, THE SCAPEGOAT
8650, THE SESSIONS
37915, THE STORY OF LUKE
14524, THE SWEENEY
12086, THE VOW
26797, THE WALL
4614, THE WE AND THE I
3437, THE WOMAN IN BLACK
15504, THE WORDS
266, THREE WORLDS
5352, THY WOMB
9918, TO THE WONDER
17451, TROUBLE WITH THE CURVE
13359, TWO LIVES
10305, UNCONDITIONAL
30056, WAR WITCH
7030, WHAT IF...
24333, WHAT MAISIE KNEW
34118, WHAT TO EXPECT WHEN YOU'RE EXPECTING
21183, WHITE ELEPHANT
18608, WHITE FROG
36174, WINNING STREAK
26337, WON'T BACK DOWN
31040, XINGU
9052, YOSSI
16849, ZERO DARK THIRTY
src, edge_attr, dst
7977, has_genre, 36212
5423, has_genre, 36212
5423, has_tags, 36212
5423, release_year, 658
32632, has_genre, 36212
32632, release_year, 658
20562, has_genre, 36212
20562, release_year, 658
21800, has_genre, 36212
21800, release_year, 658
29800, has_genre, 36212
29800, release_year, 658
30332, has_genre, 36212
30332, release_year, 658
36963, has_genre, 36212
36963, has_tags, 36212
36963, release_year, 658
24708, has_genre, 36212
24708, release_year, 658
22078, has_genre, 36212
22078, release_year, 658
10277, has_genre, 36212
10277, has_tags, 36212
10277, release_year, 658
13686, has_genre, 36212
13686, release_year, 658
9695, has_genre, 36212
9695, release_year, 658
31449, has_genre, 36212
31449, release_year, 658
38263, has_genre, 36212
38263, release_year, 658
23994, has_genre, 36212
23994, release_year, 658
30581, has_genre, 36212
30581, release_year, 658
37191, has_genre, 36212
37191, release_year, 658
28199, has_genre, 36212
28199, release_year, 658
32770, has_genre, 36212
32770, release_year, 658
14594, has_genre, 36212
14594, release_year, 658
890, has_genre, 36212
890, release_year, 658
36071, has_genre, 36212
36071, release_year, 658
39848, has_genre, 36212
39848, release_year, 658
22284, has_genre, 36212
22284, release_year, 658
27030, has_genre, 36212
27030, release_year, 658
33711, has_genre, 36212
33711, release_year, 658
32831, has_genre, 36212
32831, release_year, 658
24707, has_genre, 36212
24707, release_year, 658
12735, has_genre, 36212
12735, release_year, 658
32450, has_genre, 36212
32450, release_year, 658
27338, has_genre, 36212
27338, release_year, 658
38925, has_genre, 36212
38925, has_tags, 36212
38925, release_year, 658
21016, has_genre, 36212
21016, release_year, 658
24757, has_genre, 36212
24757, release_year, 658
37589, has_genre, 36212
37589, release_year, 658
19894, has_genre, 36212
19894, release_year, 658
32797, has_genre, 36212
32797, release_year, 658
10643, has_genre, 36212
10643, release_year, 658
31694, has_genre, 36212
31694, release_year, 658
38977, has_genre, 36212
38977, has_tags, 36212
38977, release_year, 658
7480, has_genre, 36212
7480, release_year, 658
26106, has_genre, 36212
26106, release_year, 658
32892, has_genre, 36212
32892, release_year, 658
6394, has_genre, 36212
6394, release_year, 658
19570, has_genre, 36212
19570, release_year, 658
39636, has_genre, 36212
39636, release_year, 658
5563, has_genre, 36212
5563, release_year, 658
12314, has_genre, 36212
12314, release_year, 658
7740, has_genre, 36212
7740, release_year, 658
15473, has_genre, 36212
15473, release_year, 658
6076, has_genre, 36212
6076, release_year, 658
24535, has_genre, 36212
24535, release_year, 658
2427, has_genre, 36212
2427, release_year, 658
5647, has_genre, 36212
5647, release_year, 658
3917, has_genre, 36212
3917, release_year, 658
22793, has_genre, 36212
22793, release_year, 658
27350, has_genre, 36212
27350, release_year, 658
3030, has_genre, 36212
3030, release_year, 658
35319, has_genre, 36212
35319, release_year, 658
37844, has_genre, 36212
37844, release_year, 658
19154, has_genre, 36212
19154, release_year, 658
38589, has_genre, 36212
38589, release_year, 658
32376, has_genre, 36212
32376, release_year, 658
26911, has_genre, 36212
26911, release_year, 658
24025, has_genre, 36212
24025, release_year, 658
6301, has_genre, 36212
6301, release_year, 658
5418, has_genre, 36212
5418, release_year, 658
12835, has_genre, 36212
12835, release_year, 658
26232, has_genre, 36212
26232, release_year, 658
3103, has_genre, 36212
3103, release_year, 658
1418, has_genre, 36212
1418, has_tags, 36212
1418, release_year, 658
14601, has_genre, 36212
14601, release_year, 658
14931, has_genre, 36212
14931, release_year, 658
39727, has_genre, 36212
39727, release_year, 658
36020, has_genre, 36212
36020, release_year, 658
47, has_genre, 36212
47, has_tags, 36212
47, release_year, 658
17372, has_genre, 36212
17372, release_year, 658
34517, has_genre, 36212
34517, release_year, 658
35871, has_genre, 36212
35871, release_year, 658
13801, has_genre, 36212
13801, release_year, 658
34611, has_genre, 36212
34611, release_year, 658
31735, has_genre, 36212
31735, release_year, 658
39165, has_genre, 36212
39165, release_year, 658
19118, has_genre, 36212
19118, release_year, 658
24915, has_genre, 36212
24915, release_year, 658
26089, has_genre, 36212
26089, release_year, 658
25504, has_genre, 36212
25504, release_year, 658
8107, has_genre, 36212
8107, release_year, 658
20503, has_genre, 36212
20503, release_year, 658
17532, has_genre, 36212
17532, release_year, 658
17263, has_genre, 36212
17263, release_year, 658
21677, has_genre, 36212
21677, release_year, 658
38602, has_genre, 36212
38602, release_year, 658
8523, has_genre, 36212
8523, release_year, 658
31312, has_genre, 36212
31312, has_tags, 36212
31312, release_year, 658
15815, has_genre, 36212
15815, release_year, 658
11253, has_genre, 36212
11253, release_year, 658
11237, has_genre, 36212
11237, release_year, 658
25023, has_genre, 36212
25023, release_year, 658
35746, has_genre, 36212
35746, release_year, 658
33501, has_genre, 36212
33501, release_year, 658
11839, has_genre, 36212
11839, release_year, 658
12597, has_genre, 36212
12597, release_year, 658
30316, has_genre, 36212
30316, release_year, 658
35808, has_genre, 36212
35808, release_year, 658
17168, has_genre, 36212
17168, release_year, 658
25060, has_genre, 36212
25060, release_year, 658
28583, has_genre, 36212
28583, release_year, 658
34584, has_genre, 36212
34584, has_tags, 36212
34584, release_year, 658
7174, has_genre, 36212
7174, release_year, 658
39426, has_genre, 36212
39426, release_year, 658
28026, has_genre, 36212
28026, release_year, 658
33759, has_genre, 36212
33759, release_year, 658
17346, has_genre, 36212
17346, release_year, 658
17608, has_genre, 36212
17608, release_year, 658
39286, has_genre, 36212
39286, release_year, 658
40067, has_genre, 36212
40067, release_year, 658
25002, has_genre, 36212
25002, release_year, 658
3038, has_genre, 36212
3038, release_year, 658
18335, has_genre, 36212
18335, release_year, 658
19501, has_genre, 36212
19501, release_year, 658
3885, has_genre, 36212
3885, release_year, 658
19623, has_genre, 36212
19623, release_year, 658
24441, has_genre, 36212
24441, has_tags, 36212
24441, release_year, 658
38175, has_genre, 36212
38175, release_year, 658
6644, has_genre, 36212
6644, release_year, 658
24231, has_genre, 36212
24231, release_year, 7977
24231, written_by, 2354
2399, has_genre, 36212
2399, release_year, 658
10295, has_genre, 36212
10295, release_year, 658
27103, has_genre, 36212
27103, release_year, 658
14688, has_genre, 36212
14688, release_year, 658
35267, has_genre, 36212
35267, release_year, 658
16929, has_genre, 36212
16929, release_year, 658
15980, has_genre, 36212
15980, release_year, 658
9328, has_genre, 36212
9328, has_tags, 36212
9328, release_year, 658
38614, has_genre, 36212
38614, has_tags, 36212
38614, release_year, 658
22800, has_genre, 36212
22800, release_year, 658
33948, has_genre, 36212
33948, release_year, 658
4984, has_genre, 36212
4984, release_year, 658
23191, has_genre, 36212
23191, release_year, 658
37370, has_genre, 36212
37370, written_by, 18062
24652, has_genre, 36212
24652, release_year, 658
17964, has_genre, 36212
17964, release_year, 658
15798, has_genre, 36212
15798, release_year, 658
28735, has_genre, 36212
28735, release_year, 658
1195, has_genre, 36212
1195, release_year, 658
7673, has_genre, 36212
7673, has_tags, 36212
7673, release_year, 658
2739, has_genre, 36212
2739, release_year, 658
27064, has_genre, 36212
27064, release_year, 658
8650, has_genre, 36212
8650, has_tags, 36212
8650, release_year, 658
37915, has_genre, 36212
37915, release_year, 658
14524, has_genre, 36212
14524, release_year, 658
12086, has_genre, 36212
12086, release_year, 658
26797, has_genre, 36212
26797, release_year, 658
4614, has_genre, 36212
4614, release_year, 658
3437, has_genre, 36212
3437, release_year, 658
15504, has_genre, 36212
15504, release_year, 658
266, has_genre, 36212
266, release_year, 658
5352, has_genre, 36212
5352, release_year, 658
9918, has_genre, 36212
9918, release_year, 658
17451, has_genre, 36212
17451, release_year, 658
13359, has_genre, 36212
13359, release_year, 658
10305, has_genre, 36212
10305, release_year, 658
30056, has_genre, 36212
30056, release_year, 658
7030, has_genre, 36212
7030, release_year, 658
24333, has_genre, 36212
24333, release_year, 658
34118, has_genre, 36212
34118, release_year, 658
21183, has_genre, 36212
21183, release_year, 658
18608, has_genre, 36212
18608, release_year, 658
36174, has_genre, 36212
36174, release_year, 658
26337, has_genre, 36212
26337, release_year, 658
31040, has_genre, 36212
31040, release_year, 658
9052, has_genre, 36212
9052, release_year, 658
16849, has_genre, 36212
16849, release_year, 658
Question: For what reason are BOOTH TARKINGTON, FORGETTING THE GIRL, and LADISLAV FUKS associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"BOOTH TARKINGTON",
"FORGETTING THE GIRL",
"LADISLAV FUKS"
],
"valid_edges": [
[
"1969",
"has_genre",
"DRAMA"
],
[
"A LATE QUARTET",
"has_genre",
"DRAMA"
],
[
"A LATE QUARTET",
"has_tags",
"DRAMA"
],
[
"A LATE QUARTET",
"release_year",
"2012"
],
[
"A ROYAL AFFAIR",
"has_genre",
"DRAMA"
],
[
"A ROYAL AFFAIR",
"release_year",
"2012"
],
[
"A THOUSAND WORDS",
"has_genre",
"DRAMA"
],
[
"A THOUSAND WORDS",
"release_year",
"2012"
],
[
"ABOUT CHERRY",
"has_genre",
"DRAMA"
],
[
"ABOUT CHERRY",
"release_year",
"2012"
],
[
"ACE ATTORNEY",
"has_genre",
"DRAMA"
],
[
"ACE ATTORNEY",
"release_year",
"2012"
],
[
"AMOUR",
"has_genre",
"DRAMA"
],
[
"AMOUR",
"release_year",
"2012"
],
[
"ANNA KARENINA",
"has_genre",
"DRAMA"
],
[
"ANNA KARENINA",
"has_tags",
"DRAMA"
],
[
"ANNA KARENINA",
"release_year",
"2012"
],
[
"ANY DAY NOW",
"has_genre",
"DRAMA"
],
[
"ANY DAY NOW",
"release_year",
"2012"
],
[
"ARBITRAGE",
"has_genre",
"DRAMA"
],
[
"ARBITRAGE",
"release_year",
"2012"
],
[
"ARGO",
"has_genre",
"DRAMA"
],
[
"ARGO",
"has_tags",
"DRAMA"
],
[
"ARGO",
"release_year",
"2012"
],
[
"ARTHUR NEWMAN",
"has_genre",
"DRAMA"
],
[
"ARTHUR NEWMAN",
"release_year",
"2012"
],
[
"AT ANY PRICE",
"has_genre",
"DRAMA"
],
[
"AT ANY PRICE",
"release_year",
"2012"
],
[
"BARABBAS",
"has_genre",
"DRAMA"
],
[
"BARABBAS",
"release_year",
"2012"
],
[
"BARBARA",
"has_genre",
"DRAMA"
],
[
"BARBARA",
"release_year",
"2012"
],
[
"BARFI!",
"has_genre",
"DRAMA"
],
[
"BARFI!",
"release_year",
"2012"
],
[
"BEASTS OF THE SOUTHERN WILD",
"has_genre",
"DRAMA"
],
[
"BEASTS OF THE SOUTHERN WILD",
"release_year",
"2012"
],
[
"BEING FLYNN",
"has_genre",
"DRAMA"
],
[
"BEING FLYNN",
"release_year",
"2012"
],
[
"BEL AMI",
"has_genre",
"DRAMA"
],
[
"BEL AMI",
"release_year",
"2012"
],
[
"BEST MAN DOWN",
"has_genre",
"DRAMA"
],
[
"BEST MAN DOWN",
"release_year",
"2012"
],
[
"BEYOND THE HILLS",
"has_genre",
"DRAMA"
],
[
"BEYOND THE HILLS",
"release_year",
"2012"
],
[
"BIG MIRACLE",
"has_genre",
"DRAMA"
],
[
"BIG MIRACLE",
"release_year",
"2012"
],
[
"BLACKBIRD",
"has_genre",
"DRAMA"
],
[
"BLACKBIRD",
"release_year",
"2012"
],
[
"BLUE LIKE JAZZ",
"has_genre",
"DRAMA"
],
[
"BLUE LIKE JAZZ",
"release_year",
"2012"
],
[
"BOY EATING THE BIRD'S FOOD",
"has_genre",
"DRAMA"
],
[
"BOY EATING THE BIRD'S FOOD",
"release_year",
"2012"
],
[
"BROKEN",
"has_genre",
"DRAMA"
],
[
"BROKEN",
"release_year",
"2012"
],
[
"CAESAR MUST DIE",
"has_genre",
"DRAMA"
],
[
"CAESAR MUST DIE",
"release_year",
"2012"
],
[
"CALL GIRL",
"has_genre",
"DRAMA"
],
[
"CALL GIRL",
"release_year",
"2012"
],
[
"CAMILLE REWINDS",
"has_genre",
"DRAMA"
],
[
"CAMILLE REWINDS",
"release_year",
"2012"
],
[
"CHASING MAVERICKS",
"has_genre",
"DRAMA"
],
[
"CHASING MAVERICKS",
"release_year",
"2012"
],
[
"CHEERFUL WEATHER FOR THE WEDDING",
"has_genre",
"DRAMA"
],
[
"CHEERFUL WEATHER FOR THE WEDDING",
"release_year",
"2012"
],
[
"CLIP",
"has_genre",
"DRAMA"
],
[
"CLIP",
"release_year",
"2012"
],
[
"CLOUD ATLAS",
"has_genre",
"DRAMA"
],
[
"CLOUD ATLAS",
"has_tags",
"DRAMA"
],
[
"CLOUD ATLAS",
"release_year",
"2012"
],
[
"COMPLIANCE",
"has_genre",
"DRAMA"
],
[
"COMPLIANCE",
"release_year",
"2012"
],
[
"CONSUMING SPIRITS",
"has_genre",
"DRAMA"
],
[
"CONSUMING SPIRITS",
"release_year",
"2012"
],
[
"COSMOPOLIS",
"has_genre",
"DRAMA"
],
[
"COSMOPOLIS",
"release_year",
"2012"
],
[
"CRAVE",
"has_genre",
"DRAMA"
],
[
"CRAVE",
"release_year",
"2012"
],
[
"DANGEROUS LIAISONS",
"has_genre",
"DRAMA"
],
[
"DANGEROUS LIAISONS",
"release_year",
"2012"
],
[
"DARLING COMPANION",
"has_genre",
"DRAMA"
],
[
"DARLING COMPANION",
"release_year",
"2012"
],
[
"DEADFALL",
"has_genre",
"DRAMA"
],
[
"DEADFALL",
"release_year",
"2012"
],
[
"DISCONNECT",
"has_genre",
"DRAMA"
],
[
"DISCONNECT",
"has_tags",
"DRAMA"
],
[
"DISCONNECT",
"release_year",
"2012"
],
[
"EDEN",
"has_genre",
"DRAMA"
],
[
"EDEN",
"release_year",
"2012"
],
[
"END OF WATCH",
"has_genre",
"DRAMA"
],
[
"END OF WATCH",
"release_year",
"2012"
],
[
"ENGLISH VINGLISH",
"has_genre",
"DRAMA"
],
[
"ENGLISH VINGLISH",
"release_year",
"2012"
],
[
"EXCISION",
"has_genre",
"DRAMA"
],
[
"EXCISION",
"release_year",
"2012"
],
[
"FAREWELL, MY QUEEN",
"has_genre",
"DRAMA"
],
[
"FAREWELL, MY QUEEN",
"release_year",
"2012"
],
[
"FILL THE VOID",
"has_genre",
"DRAMA"
],
[
"FILL THE VOID",
"release_year",
"2012"
],
[
"FLIGHT",
"has_genre",
"DRAMA"
],
[
"FLIGHT",
"release_year",
"2012"
],
[
"FOR ELLEN",
"has_genre",
"DRAMA"
],
[
"FOR ELLEN",
"release_year",
"2012"
],
[
"FOREIGN LETTERS",
"has_genre",
"DRAMA"
],
[
"FOREIGN LETTERS",
"release_year",
"2012"
],
[
"FORGETTING THE GIRL",
"has_genre",
"DRAMA"
],
[
"FORGETTING THE GIRL",
"release_year",
"2012"
],
[
"FRANCES HA",
"has_genre",
"DRAMA"
],
[
"FRANCES HA",
"release_year",
"2012"
],
[
"GAME CHANGE",
"has_genre",
"DRAMA"
],
[
"GAME CHANGE",
"release_year",
"2012"
],
[
"GIRL IN PROGRESS",
"has_genre",
"DRAMA"
],
[
"GIRL IN PROGRESS",
"release_year",
"2012"
],
[
"HANNAH ARENDT",
"has_genre",
"DRAMA"
],
[
"HANNAH ARENDT",
"release_year",
"2012"
],
[
"HELLO HERMAN",
"has_genre",
"DRAMA"
],
[
"HELLO HERMAN",
"release_year",
"2012"
],
[
"HEROINE",
"has_genre",
"DRAMA"
],
[
"HEROINE",
"release_year",
"2012"
],
[
"HITCHCOCK",
"has_genre",
"DRAMA"
],
[
"HITCHCOCK",
"release_year",
"2012"
],
[
"HOLY MOTORS",
"has_genre",
"DRAMA"
],
[
"HOLY MOTORS",
"release_year",
"2012"
],
[
"HOPE SPRINGS",
"has_genre",
"DRAMA"
],
[
"HOPE SPRINGS",
"release_year",
"2012"
],
[
"HYDE PARK ON HUDSON",
"has_genre",
"DRAMA"
],
[
"HYDE PARK ON HUDSON",
"release_year",
"2012"
],
[
"I BELONG",
"has_genre",
"DRAMA"
],
[
"I BELONG",
"release_year",
"2012"
],
[
"I DO",
"has_genre",
"DRAMA"
],
[
"I DO",
"release_year",
"2012"
],
[
"IMAGINE",
"has_genre",
"DRAMA"
],
[
"IMAGINE",
"release_year",
"2012"
],
[
"IN THE FOG",
"has_genre",
"DRAMA"
],
[
"IN THE FOG",
"release_year",
"2012"
],
[
"INESCAPABLE",
"has_genre",
"DRAMA"
],
[
"INESCAPABLE",
"release_year",
"2012"
],
[
"JAYNE MANSFIELD'S CAR",
"has_genre",
"DRAMA"
],
[
"JAYNE MANSFIELD'S CAR",
"release_year",
"2012"
],
[
"K-11",
"has_genre",
"DRAMA"
],
[
"K-11",
"release_year",
"2012"
],
[
"KAUWBOY",
"has_genre",
"DRAMA"
],
[
"KAUWBOY",
"release_year",
"2012"
],
[
"KEEP THE LIGHTS ON",
"has_genre",
"DRAMA"
],
[
"KEEP THE LIGHTS ON",
"release_year",
"2012"
],
[
"LAURENCE ANYWAYS",
"has_genre",
"DRAMA"
],
[
"LAURENCE ANYWAYS",
"release_year",
"2012"
],
[
"LAWLESS",
"has_genre",
"DRAMA"
],
[
"LAWLESS",
"has_tags",
"DRAMA"
],
[
"LAWLESS",
"release_year",
"2012"
],
[
"LES MISÉRABLES",
"has_genre",
"DRAMA"
],
[
"LES MISÉRABLES",
"release_year",
"2012"
],
[
"LIBERAL ARTS",
"has_genre",
"DRAMA"
],
[
"LIBERAL ARTS",
"release_year",
"2012"
],
[
"LIFE OF PI",
"has_genre",
"DRAMA"
],
[
"LIFE OF PI",
"release_year",
"2012"
],
[
"LIKE SOMEONE IN LOVE",
"has_genre",
"DRAMA"
],
[
"LIKE SOMEONE IN LOVE",
"release_year",
"2012"
],
[
"LINCOLN",
"has_genre",
"DRAMA"
],
[
"LINCOLN",
"has_tags",
"DRAMA"
],
[
"LINCOLN",
"release_year",
"2012"
],
[
"LOL",
"has_genre",
"DRAMA"
],
[
"LOL",
"release_year",
"2012"
],
[
"LUV",
"has_genre",
"DRAMA"
],
[
"LUV",
"release_year",
"2012"
],
[
"MAGIC MIKE",
"has_genre",
"DRAMA"
],
[
"MAGIC MIKE",
"release_year",
"2012"
],
[
"MARFA GIRL",
"has_genre",
"DRAMA"
],
[
"MARFA GIRL",
"release_year",
"2012"
],
[
"ME AND YOU",
"has_genre",
"DRAMA"
],
[
"ME AND YOU",
"release_year",
"2012"
],
[
"MIDDLE OF NOWHERE",
"has_genre",
"DRAMA"
],
[
"MIDDLE OF NOWHERE",
"release_year",
"2012"
],
[
"MUD",
"has_genre",
"DRAMA"
],
[
"MUD",
"release_year",
"2012"
],
[
"MUSEUM HOURS",
"has_genre",
"DRAMA"
],
[
"MUSEUM HOURS",
"release_year",
"2012"
],
[
"MY WAY",
"has_genre",
"DRAMA"
],
[
"MY WAY",
"release_year",
"2012"
],
[
"NAKED HARBOUR",
"has_genre",
"DRAMA"
],
[
"NAKED HARBOUR",
"release_year",
"2012"
],
[
"NEIGHBORING SOUNDS",
"has_genre",
"DRAMA"
],
[
"NEIGHBORING SOUNDS",
"release_year",
"2012"
],
[
"NO",
"has_genre",
"DRAMA"
],
[
"NO",
"release_year",
"2012"
],
[
"NOBODY WALKS",
"has_genre",
"DRAMA"
],
[
"NOBODY WALKS",
"release_year",
"2012"
],
[
"NOT FADE AWAY",
"has_genre",
"DRAMA"
],
[
"NOT FADE AWAY",
"release_year",
"2012"
],
[
"NOW IS GOOD",
"has_genre",
"DRAMA"
],
[
"NOW IS GOOD",
"release_year",
"2012"
],
[
"ON THE ROAD",
"has_genre",
"DRAMA"
],
[
"ON THE ROAD",
"release_year",
"2012"
],
[
"OUR CHILDREN",
"has_genre",
"DRAMA"
],
[
"OUR CHILDREN",
"release_year",
"2012"
],
[
"OUT IN THE DARK",
"has_genre",
"DRAMA"
],
[
"OUT IN THE DARK",
"release_year",
"2012"
],
[
"PEOPLE LIKE US",
"has_genre",
"DRAMA"
],
[
"PEOPLE LIKE US",
"has_tags",
"DRAMA"
],
[
"PEOPLE LIKE US",
"release_year",
"2012"
],
[
"POST TENEBRAS LUX",
"has_genre",
"DRAMA"
],
[
"POST TENEBRAS LUX",
"release_year",
"2012"
],
[
"PROMISED LAND",
"has_genre",
"DRAMA"
],
[
"PROMISED LAND",
"release_year",
"2012"
],
[
"PURGE",
"has_genre",
"DRAMA"
],
[
"PURGE",
"release_year",
"2012"
],
[
"QUARTET",
"has_genre",
"DRAMA"
],
[
"QUARTET",
"release_year",
"2012"
],
[
"REALITY",
"has_genre",
"DRAMA"
],
[
"REALITY",
"release_year",
"2012"
],
[
"RENOIR",
"has_genre",
"DRAMA"
],
[
"RENOIR",
"release_year",
"2012"
],
[
"REVENGE FOR JOLLY!",
"has_genre",
"DRAMA"
],
[
"REVENGE FOR JOLLY!",
"release_year",
"2012"
],
[
"RUBY SPARKS",
"has_genre",
"DRAMA"
],
[
"RUBY SPARKS",
"release_year",
"2012"
],
[
"RUST AND BONE",
"has_genre",
"DRAMA"
],
[
"RUST AND BONE",
"release_year",
"2012"
],
[
"SAFE",
"has_genre",
"DRAMA"
],
[
"SAFE",
"release_year",
"2012"
],
[
"SEEKING A FRIEND FOR THE END OF THE WORLD",
"has_genre",
"DRAMA"
],
[
"SEEKING A FRIEND FOR THE END OF THE WORLD",
"release_year",
"2012"
],
[
"SEXUAL CHRONICLES OF A FRENCH FAMILY",
"has_genre",
"DRAMA"
],
[
"SEXUAL CHRONICLES OF A FRENCH FAMILY",
"release_year",
"2012"
],
[
"SHADOW DANCER",
"has_genre",
"DRAMA"
],
[
"SHADOW DANCER",
"release_year",
"2012"
],
[
"SILVER LININGS PLAYBOOK",
"has_genre",
"DRAMA"
],
[
"SILVER LININGS PLAYBOOK",
"has_tags",
"DRAMA"
],
[
"SILVER LININGS PLAYBOOK",
"release_year",
"2012"
],
[
"SISTER",
"has_genre",
"DRAMA"
],
[
"SISTER",
"release_year",
"2012"
],
[
"SMASHED",
"has_genre",
"DRAMA"
],
[
"SMASHED",
"release_year",
"2012"
],
[
"SOMEBODY UP THERE LIKES ME",
"has_genre",
"DRAMA"
],
[
"SOMEBODY UP THERE LIKES ME",
"release_year",
"2012"
],
[
"SOMETHING IN THE AIR",
"has_genre",
"DRAMA"
],
[
"SOMETHING IN THE AIR",
"release_year",
"2012"
],
[
"SPRING BREAKERS",
"has_genre",
"DRAMA"
],
[
"SPRING BREAKERS",
"release_year",
"2012"
],
[
"STARLET",
"has_genre",
"DRAMA"
],
[
"STARLET",
"release_year",
"2012"
],
[
"STILL MINE",
"has_genre",
"DRAMA"
],
[
"STILL MINE",
"release_year",
"2012"
],
[
"STOLEN",
"has_genre",
"DRAMA"
],
[
"STOLEN",
"release_year",
"2012"
],
[
"STRUCK BY LIGHTNING",
"has_genre",
"DRAMA"
],
[
"STRUCK BY LIGHTNING",
"release_year",
"2012"
],
[
"STUCK IN LOVE",
"has_genre",
"DRAMA"
],
[
"STUCK IN LOVE",
"release_year",
"2012"
],
[
"TABU",
"has_genre",
"DRAMA"
],
[
"TABU",
"release_year",
"2012"
],
[
"THANKS FOR SHARING",
"has_genre",
"DRAMA"
],
[
"THANKS FOR SHARING",
"release_year",
"2012"
],
[
"THE ARTIST AND THE MODEL",
"has_genre",
"DRAMA"
],
[
"THE ARTIST AND THE MODEL",
"release_year",
"2012"
],
[
"THE BATTERY",
"has_genre",
"DRAMA"
],
[
"THE BATTERY",
"release_year",
"2012"
],
[
"THE BROKEN CIRCLE BREAKDOWN",
"has_genre",
"DRAMA"
],
[
"THE BROKEN CIRCLE BREAKDOWN",
"has_tags",
"DRAMA"
],
[
"THE BROKEN CIRCLE BREAKDOWN",
"release_year",
"2012"
],
[
"THE CITIZEN",
"has_genre",
"DRAMA"
],
[
"THE CITIZEN",
"release_year",
"2012"
],
[
"THE COMEDY",
"has_genre",
"DRAMA"
],
[
"THE COMEDY",
"release_year",
"2012"
],
[
"THE CREMATOR",
"has_genre",
"DRAMA"
],
[
"THE CREMATOR",
"release_year",
"1969"
],
[
"THE CREMATOR",
"written_by",
"LADISLAV FUKS"
],
[
"THE DEEP",
"has_genre",
"DRAMA"
],
[
"THE DEEP",
"release_year",
"2012"
],
[
"THE END OF LOVE",
"has_genre",
"DRAMA"
],
[
"THE END OF LOVE",
"release_year",
"2012"
],
[
"THE FITZGERALD FAMILY CHRISTMAS",
"has_genre",
"DRAMA"
],
[
"THE FITZGERALD FAMILY CHRISTMAS",
"release_year",
"2012"
],
[
"THE FLOATING CASTLE",
"has_genre",
"DRAMA"
],
[
"THE FLOATING CASTLE",
"release_year",
"2012"
],
[
"THE FORGER",
"has_genre",
"DRAMA"
],
[
"THE FORGER",
"release_year",
"2012"
],
[
"THE GIRL",
"has_genre",
"DRAMA"
],
[
"THE GIRL",
"release_year",
"2012"
],
[
"THE GUILT TRIP",
"has_genre",
"DRAMA"
],
[
"THE GUILT TRIP",
"release_year",
"2012"
],
[
"THE HUNT",
"has_genre",
"DRAMA"
],
[
"THE HUNT",
"has_tags",
"DRAMA"
],
[
"THE HUNT",
"release_year",
"2012"
],
[
"THE IMPOSSIBLE",
"has_genre",
"DRAMA"
],
[
"THE IMPOSSIBLE",
"has_tags",
"DRAMA"
],
[
"THE IMPOSSIBLE",
"release_year",
"2012"
],
[
"THE LESSER BLESSED",
"has_genre",
"DRAMA"
],
[
"THE LESSER BLESSED",
"release_year",
"2012"
],
[
"THE LETTER",
"has_genre",
"DRAMA"
],
[
"THE LETTER",
"release_year",
"2012"
],
[
"THE LUCKY ONE",
"has_genre",
"DRAMA"
],
[
"THE LUCKY ONE",
"release_year",
"2012"
],
[
"THE MAGIC OF BELLE ISLE",
"has_genre",
"DRAMA"
],
[
"THE MAGIC OF BELLE ISLE",
"release_year",
"2012"
],
[
"THE MAGNIFICENT AMBERSONS",
"has_genre",
"DRAMA"
],
[
"THE MAGNIFICENT AMBERSONS",
"written_by",
"BOOTH TARKINGTON"
],
[
"THE MAN WHO LAUGHS",
"has_genre",
"DRAMA"
],
[
"THE MAN WHO LAUGHS",
"release_year",
"2012"
],
[
"THE MASTER",
"has_genre",
"DRAMA"
],
[
"THE MASTER",
"release_year",
"2012"
],
[
"THE ODD LIFE OF TIMOTHY GREEN",
"has_genre",
"DRAMA"
],
[
"THE ODD LIFE OF TIMOTHY GREEN",
"release_year",
"2012"
],
[
"THE OTHER SON",
"has_genre",
"DRAMA"
],
[
"THE OTHER SON",
"release_year",
"2012"
],
[
"THE PATIENCE STONE",
"has_genre",
"DRAMA"
],
[
"THE PATIENCE STONE",
"release_year",
"2012"
],
[
"THE PERKS OF BEING A WALLFLOWER",
"has_genre",
"DRAMA"
],
[
"THE PERKS OF BEING A WALLFLOWER",
"has_tags",
"DRAMA"
],
[
"THE PERKS OF BEING A WALLFLOWER",
"release_year",
"2012"
],
[
"THE SAPPHIRES",
"has_genre",
"DRAMA"
],
[
"THE SAPPHIRES",
"release_year",
"2012"
],
[
"THE SCAPEGOAT",
"has_genre",
"DRAMA"
],
[
"THE SCAPEGOAT",
"release_year",
"2012"
],
[
"THE SESSIONS",
"has_genre",
"DRAMA"
],
[
"THE SESSIONS",
"has_tags",
"DRAMA"
],
[
"THE SESSIONS",
"release_year",
"2012"
],
[
"THE STORY OF LUKE",
"has_genre",
"DRAMA"
],
[
"THE STORY OF LUKE",
"release_year",
"2012"
],
[
"THE SWEENEY",
"has_genre",
"DRAMA"
],
[
"THE SWEENEY",
"release_year",
"2012"
],
[
"THE VOW",
"has_genre",
"DRAMA"
],
[
"THE VOW",
"release_year",
"2012"
],
[
"THE WALL",
"has_genre",
"DRAMA"
],
[
"THE WALL",
"release_year",
"2012"
],
[
"THE WE AND THE I",
"has_genre",
"DRAMA"
],
[
"THE WE AND THE I",
"release_year",
"2012"
],
[
"THE WOMAN IN BLACK",
"has_genre",
"DRAMA"
],
[
"THE WOMAN IN BLACK",
"release_year",
"2012"
],
[
"THE WORDS",
"has_genre",
"DRAMA"
],
[
"THE WORDS",
"release_year",
"2012"
],
[
"THREE WORLDS",
"has_genre",
"DRAMA"
],
[
"THREE WORLDS",
"release_year",
"2012"
],
[
"THY WOMB",
"has_genre",
"DRAMA"
],
[
"THY WOMB",
"release_year",
"2012"
],
[
"TO THE WONDER",
"has_genre",
"DRAMA"
],
[
"TO THE WONDER",
"release_year",
"2012"
],
[
"TROUBLE WITH THE CURVE",
"has_genre",
"DRAMA"
],
[
"TROUBLE WITH THE CURVE",
"release_year",
"2012"
],
[
"TWO LIVES",
"has_genre",
"DRAMA"
],
[
"TWO LIVES",
"release_year",
"2012"
],
[
"UNCONDITIONAL",
"has_genre",
"DRAMA"
],
[
"UNCONDITIONAL",
"release_year",
"2012"
],
[
"WAR WITCH",
"has_genre",
"DRAMA"
],
[
"WAR WITCH",
"release_year",
"2012"
],
[
"WHAT IF...",
"has_genre",
"DRAMA"
],
[
"WHAT IF...",
"release_year",
"2012"
],
[
"WHAT MAISIE KNEW",
"has_genre",
"DRAMA"
],
[
"WHAT MAISIE KNEW",
"release_year",
"2012"
],
[
"WHAT TO EXPECT WHEN YOU'RE EXPECTING",
"has_genre",
"DRAMA"
],
[
"WHAT TO EXPECT WHEN YOU'RE EXPECTING",
"release_year",
"2012"
],
[
"WHITE ELEPHANT",
"has_genre",
"DRAMA"
],
[
"WHITE ELEPHANT",
"release_year",
"2012"
],
[
"WHITE FROG",
"has_genre",
"DRAMA"
],
[
"WHITE FROG",
"release_year",
"2012"
],
[
"WINNING STREAK",
"has_genre",
"DRAMA"
],
[
"WINNING STREAK",
"release_year",
"2012"
],
[
"WON'T BACK DOWN",
"has_genre",
"DRAMA"
],
[
"WON'T BACK DOWN",
"release_year",
"2012"
],
[
"XINGU",
"has_genre",
"DRAMA"
],
[
"XINGU",
"release_year",
"2012"
],
[
"YOSSI",
"has_genre",
"DRAMA"
],
[
"YOSSI",
"release_year",
"2012"
],
[
"ZERO DARK THIRTY",
"has_genre",
"DRAMA"
],
[
"ZERO DARK THIRTY",
"release_year",
"2012"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
35845, 2006
6378, ANDREA ARNOLD
24510, CANVAS
26721, DAVID KROSS
14586, RED ROAD
39122, TOUGH ENOUGH
src, edge_attr, dst
24510, release_year, 35845
14586, directed_by, 6378
14586, has_tags, 6378
14586, release_year, 35845
14586, written_by, 6378
39122, release_year, 35845
39122, starred_actors, 26721
Question: In what context are ANDREA ARNOLD, CANVAS, and DAVID KROSS connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"ANDREA ARNOLD",
"CANVAS",
"DAVID KROSS"
],
"valid_edges": [
[
"CANVAS",
"release_year",
"2006"
],
[
"RED ROAD",
"directed_by",
"ANDREA ARNOLD"
],
[
"RED ROAD",
"has_tags",
"ANDREA ARNOLD"
],
[
"RED ROAD",
"release_year",
"2006"
],
[
"RED ROAD",
"written_by",
"ANDREA ARNOLD"
],
[
"TOUGH ENOUGH",
"release_year",
"2006"
],
[
"TOUGH ENOUGH",
"starred_actors",
"DAVID KROSS"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
36522, 1934
1006, 1996
10251, ARIZONA
24896, CLAUDETTE COLBERT
19510, CLEOPATRA
15436, EPIC
4803, FEAR
31865, FINAL DESTINATION 2
29375, GENERATION X
11565, GOOD
5921, IMITATION OF LIFE
7575, INTIMATE RELATIONS
802, IT'S MY PARTY
25290, JERRY MAGUIRE
5127, MOTHER NIGHT
19341, RACE
21462, RAISING ARIZONA
20393, THE LONG KISS GOODNIGHT
1993, WARREN WILLIAM
src, edge_attr, dst
10251, starred_actors, 1993
19510, has_tags, 15436
19510, release_year, 36522
19510, starred_actors, 24896
19510, starred_actors, 1993
15436, has_imdb_rating, 11565
4803, has_imdb_rating, 11565
4803, release_year, 1006
31865, has_imdb_rating, 11565
29375, release_year, 1006
11565, has_imdb_rating, 11565
5921, has_tags, 19341
5921, release_year, 36522
5921, starred_actors, 24896
5921, starred_actors, 1993
7575, has_imdb_rating, 11565
7575, release_year, 1006
802, has_imdb_rating, 11565
802, release_year, 1006
25290, has_imdb_rating, 11565
25290, release_year, 1006
5127, has_imdb_rating, 11565
5127, release_year, 1006
19341, has_imdb_rating, 11565
21462, has_imdb_rating, 11565
21462, has_tags, 10251
20393, has_imdb_rating, 11565
20393, release_year, 1006
Question: For what reason are FINAL DESTINATION 2, GENERATION X, and WARREN WILLIAM associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"FINAL DESTINATION 2",
"GENERATION X",
"WARREN WILLIAM"
],
"valid_edges": [
[
"ARIZONA",
"starred_actors",
"WARREN WILLIAM"
],
[
"CLEOPATRA",
"has_tags",
"EPIC"
],
[
"CLEOPATRA",
"release_year",
"1934"
],
[
"CLEOPATRA",
"starred_actors",
"CLAUDETTE COLBERT"
],
[
"CLEOPATRA",
"starred_actors",
"WARREN WILLIAM"
],
[
"EPIC",
"has_imdb_rating",
"GOOD"
],
[
"FEAR",
"has_imdb_rating",
"GOOD"
],
[
"FEAR",
"release_year",
"1996"
],
[
"FINAL DESTINATION 2",
"has_imdb_rating",
"GOOD"
],
[
"GENERATION X",
"release_year",
"1996"
],
[
"GOOD",
"has_imdb_rating",
"GOOD"
],
[
"IMITATION OF LIFE",
"has_tags",
"RACE"
],
[
"IMITATION OF LIFE",
"release_year",
"1934"
],
[
"IMITATION OF LIFE",
"starred_actors",
"CLAUDETTE COLBERT"
],
[
"IMITATION OF LIFE",
"starred_actors",
"WARREN WILLIAM"
],
[
"INTIMATE RELATIONS",
"has_imdb_rating",
"GOOD"
],
[
"INTIMATE RELATIONS",
"release_year",
"1996"
],
[
"IT'S MY PARTY",
"has_imdb_rating",
"GOOD"
],
[
"IT'S MY PARTY",
"release_year",
"1996"
],
[
"JERRY MAGUIRE",
"has_imdb_rating",
"GOOD"
],
[
"JERRY MAGUIRE",
"release_year",
"1996"
],
[
"MOTHER NIGHT",
"has_imdb_rating",
"GOOD"
],
[
"MOTHER NIGHT",
"release_year",
"1996"
],
[
"RACE",
"has_imdb_rating",
"GOOD"
],
[
"RAISING ARIZONA",
"has_imdb_rating",
"GOOD"
],
[
"RAISING ARIZONA",
"has_tags",
"ARIZONA"
],
[
"THE LONG KISS GOODNIGHT",
"has_imdb_rating",
"GOOD"
],
[
"THE LONG KISS GOODNIGHT",
"release_year",
"1996"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
724, 1979
39289, ACTION
21803, CAPTAIN AMERICA
23921, CUBA
1544, KEVIN DRONEY
28310, METEOR
39027, MORTAL KOMBAT
6183, REB BROWN
36591, SEAN CONNERY
16103, THE AVENGERS
19052, UNCOMMON VALOR
src, edge_attr, dst
21803, has_tags, 21803
21803, release_year, 724
21803, starred_actors, 6183
23921, release_year, 724
23921, starred_actors, 36591
28310, release_year, 724
28310, starred_actors, 36591
39027, has_genre, 39289
39027, written_by, 1544
16103, has_tags, 21803
16103, has_tags, 36591
16103, starred_actors, 36591
19052, has_genre, 39289
19052, starred_actors, 6183
Question: In what context are KEVIN DRONEY, METEOR, and REB BROWN connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"KEVIN DRONEY",
"METEOR",
"REB BROWN"
],
"valid_edges": [
[
"CAPTAIN AMERICA",
"has_tags",
"CAPTAIN AMERICA"
],
[
"CAPTAIN AMERICA",
"release_year",
"1979"
],
[
"CAPTAIN AMERICA",
"starred_actors",
"REB BROWN"
],
[
"CUBA",
"release_year",
"1979"
],
[
"CUBA",
"starred_actors",
"SEAN CONNERY"
],
[
"METEOR",
"release_year",
"1979"
],
[
"METEOR",
"starred_actors",
"SEAN CONNERY"
],
[
"MORTAL KOMBAT",
"has_genre",
"ACTION"
],
[
"MORTAL KOMBAT",
"written_by",
"KEVIN DRONEY"
],
[
"THE AVENGERS",
"has_tags",
"CAPTAIN AMERICA"
],
[
"THE AVENGERS",
"has_tags",
"SEAN CONNERY"
],
[
"THE AVENGERS",
"starred_actors",
"SEAN CONNERY"
],
[
"UNCOMMON VALOR",
"has_genre",
"ACTION"
],
[
"UNCOMMON VALOR",
"starred_actors",
"REB BROWN"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
8486, 1999
27123, ANGEL BABY
36212, DRAMA
27446, IN TOO DEEP
33911, INSTINCT
22200, MAURA TIERNEY
9509, MICHAEL RYMER
24816, OXYGEN
25336, RIDE THE PINK HORSE
183, THOMAS GOMEZ
src, edge_attr, dst
27123, directed_by, 9509
27123, has_genre, 36212
27123, written_by, 9509
27446, directed_by, 9509
27446, has_genre, 36212
27446, release_year, 8486
33911, release_year, 8486
33911, starred_actors, 22200
24816, release_year, 8486
24816, starred_actors, 22200
25336, has_genre, 36212
25336, starred_actors, 183
Question: For what reason are MAURA TIERNEY, MICHAEL RYMER, and THOMAS GOMEZ associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"MAURA TIERNEY",
"MICHAEL RYMER",
"THOMAS GOMEZ"
],
"valid_edges": [
[
"ANGEL BABY",
"directed_by",
"MICHAEL RYMER"
],
[
"ANGEL BABY",
"has_genre",
"DRAMA"
],
[
"ANGEL BABY",
"written_by",
"MICHAEL RYMER"
],
[
"IN TOO DEEP",
"directed_by",
"MICHAEL RYMER"
],
[
"IN TOO DEEP",
"has_genre",
"DRAMA"
],
[
"IN TOO DEEP",
"release_year",
"1999"
],
[
"INSTINCT",
"release_year",
"1999"
],
[
"INSTINCT",
"starred_actors",
"MAURA TIERNEY"
],
[
"OXYGEN",
"release_year",
"1999"
],
[
"OXYGEN",
"starred_actors",
"MAURA TIERNEY"
],
[
"RIDE THE PINK HORSE",
"has_genre",
"DRAMA"
],
[
"RIDE THE PINK HORSE",
"starred_actors",
"THOMAS GOMEZ"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
1006, 1996
30219, BLONDE ICE
14724, CRIME
37290, DALTON JAMES
33345, DANIEL TOPOLSKI
18084, JACK BERNHARD
4294, THE SUBSTITUTE
3432, TRUE BLUE
src, edge_attr, dst
30219, directed_by, 18084
30219, has_genre, 14724
4294, has_genre, 14724
4294, release_year, 1006
4294, starred_actors, 37290
3432, release_year, 1006
3432, written_by, 33345
Question: In what context are DALTON JAMES, DANIEL TOPOLSKI, and JACK BERNHARD connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"DALTON JAMES",
"DANIEL TOPOLSKI",
"JACK BERNHARD"
],
"valid_edges": [
[
"BLONDE ICE",
"directed_by",
"JACK BERNHARD"
],
[
"BLONDE ICE",
"has_genre",
"CRIME"
],
[
"THE SUBSTITUTE",
"has_genre",
"CRIME"
],
[
"THE SUBSTITUTE",
"release_year",
"1996"
],
[
"THE SUBSTITUTE",
"starred_actors",
"DALTON JAMES"
],
[
"TRUE BLUE",
"release_year",
"1996"
],
[
"TRUE BLUE",
"written_by",
"DANIEL TOPOLSKI"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
6181, ALL THE KING'S MEN
5044, AUTUMN SONATA
10045, BD-R
19826, BLACK DEATH
14530, COLM MEANEY
23112, CON AIR
26931, COOL HAND LUKE
23205, DARLING
36212, DRAMA
3099, EVENING
10210, LAJOS KOLTAI
19809, LATE SPRING
17728, MAD LOVE
31562, MY LIFE AS A DOG
27893, POSSESSED
30919, PRISON
15475, SHOTGUN STORIES
34349, SVENGALI
33978, THE BRIBE
15198, THE HUNCHBACK OF NOTRE DAME
35764, THE PASSIONATE FRIENDS
8727, THE PICTURE OF DORIAN GRAY
164, UNDER CAPRICORN
src, edge_attr, dst
6181, has_genre, 36212
6181, has_tags, 10045
5044, has_genre, 36212
5044, has_tags, 10045
19826, has_genre, 36212
19826, has_tags, 10045
23112, has_tags, 30919
23112, starred_actors, 14530
26931, has_genre, 36212
26931, has_tags, 10045
26931, has_tags, 36212
23205, has_genre, 36212
23205, has_tags, 10045
3099, directed_by, 10210
3099, has_genre, 36212
19809, has_genre, 36212
19809, has_tags, 10045
17728, has_genre, 36212
17728, has_tags, 10045
31562, has_genre, 36212
31562, has_tags, 10045
27893, has_genre, 36212
27893, has_tags, 10045
30919, has_genre, 36212
15475, has_genre, 36212
15475, has_tags, 10045
34349, has_genre, 36212
34349, has_tags, 10045
33978, has_genre, 36212
33978, has_tags, 10045
15198, has_genre, 36212
15198, has_tags, 10045
35764, has_genre, 36212
35764, has_tags, 10045
8727, has_genre, 36212
8727, has_tags, 10045
164, has_genre, 36212
164, has_tags, 10045
Question: For what reason are COLM MEANEY, LAJOS KOLTAI, and POSSESSED associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"COLM MEANEY",
"LAJOS KOLTAI",
"POSSESSED"
],
"valid_edges": [
[
"ALL THE KING'S MEN",
"has_genre",
"DRAMA"
],
[
"ALL THE KING'S MEN",
"has_tags",
"BD-R"
],
[
"AUTUMN SONATA",
"has_genre",
"DRAMA"
],
[
"AUTUMN SONATA",
"has_tags",
"BD-R"
],
[
"BLACK DEATH",
"has_genre",
"DRAMA"
],
[
"BLACK DEATH",
"has_tags",
"BD-R"
],
[
"CON AIR",
"has_tags",
"PRISON"
],
[
"CON AIR",
"starred_actors",
"COLM MEANEY"
],
[
"COOL HAND LUKE",
"has_genre",
"DRAMA"
],
[
"COOL HAND LUKE",
"has_tags",
"BD-R"
],
[
"COOL HAND LUKE",
"has_tags",
"DRAMA"
],
[
"DARLING",
"has_genre",
"DRAMA"
],
[
"DARLING",
"has_tags",
"BD-R"
],
[
"EVENING",
"directed_by",
"LAJOS KOLTAI"
],
[
"EVENING",
"has_genre",
"DRAMA"
],
[
"LATE SPRING",
"has_genre",
"DRAMA"
],
[
"LATE SPRING",
"has_tags",
"BD-R"
],
[
"MAD LOVE",
"has_genre",
"DRAMA"
],
[
"MAD LOVE",
"has_tags",
"BD-R"
],
[
"MY LIFE AS A DOG",
"has_genre",
"DRAMA"
],
[
"MY LIFE AS A DOG",
"has_tags",
"BD-R"
],
[
"POSSESSED",
"has_genre",
"DRAMA"
],
[
"POSSESSED",
"has_tags",
"BD-R"
],
[
"PRISON",
"has_genre",
"DRAMA"
],
[
"SHOTGUN STORIES",
"has_genre",
"DRAMA"
],
[
"SHOTGUN STORIES",
"has_tags",
"BD-R"
],
[
"SVENGALI",
"has_genre",
"DRAMA"
],
[
"SVENGALI",
"has_tags",
"BD-R"
],
[
"THE BRIBE",
"has_genre",
"DRAMA"
],
[
"THE BRIBE",
"has_tags",
"BD-R"
],
[
"THE HUNCHBACK OF NOTRE DAME",
"has_genre",
"DRAMA"
],
[
"THE HUNCHBACK OF NOTRE DAME",
"has_tags",
"BD-R"
],
[
"THE PASSIONATE FRIENDS",
"has_genre",
"DRAMA"
],
[
"THE PASSIONATE FRIENDS",
"has_tags",
"BD-R"
],
[
"THE PICTURE OF DORIAN GRAY",
"has_genre",
"DRAMA"
],
[
"THE PICTURE OF DORIAN GRAY",
"has_tags",
"BD-R"
],
[
"UNDER CAPRICORN",
"has_genre",
"DRAMA"
],
[
"UNDER CAPRICORN",
"has_tags",
"BD-R"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
18366, 1960
37484, 2004
12102, BUSH'S BRAIN
1551, CLUB DREAD
40091, CONTROL ROOM
17267, CRAZY SEXY CANCER
8300, CZECH DREAM
19515, DARWIN'S NIGHTMARE
24831, DIG!
12841, DOCUMENTARY
30411, FAHRENHEIT 9/11
24923, FAHRENHYPE 9/11
23477, HAWKING
28027, ISLAND
25583, JOHN PILGER
27565, KRIS CARR
4832, L'AVVENTURA
13797, MONDOVINO
12983, PALESTINE IS STILL THE ISSUE
40022, PAPER CLIPS
18482, PRIMARY
32499, RIDING GIANTS
5274, STEALING A NATION
24109, SUPER SIZE ME
8061, SWISS FAMILY ROBINSON
3734, THE 3RD VOICE
28461, THE ALAMO
4420, THE HUNTING OF THE PRESIDENT
29242, THE NEW RULERS OF THE WORLD
30565, THE NOMI SONG
30297, THE WAR ON DEMOCRACY
4773, THE WHITE DIAMOND
19891, WATERMARKS
src, edge_attr, dst
12102, has_genre, 12841
12102, release_year, 37484
1551, has_tags, 28027
1551, release_year, 37484
40091, has_genre, 12841
40091, has_tags, 12841
40091, release_year, 37484
17267, directed_by, 27565
17267, has_genre, 12841
17267, starred_actors, 27565
17267, written_by, 27565
8300, has_genre, 12841
8300, release_year, 37484
19515, has_genre, 12841
19515, release_year, 37484
24831, has_genre, 12841
24831, release_year, 37484
30411, has_genre, 12841
30411, has_tags, 12841
30411, release_year, 37484
24923, has_genre, 12841
24923, release_year, 37484
23477, has_genre, 12841
23477, release_year, 37484
4832, has_tags, 28027
4832, release_year, 18366
13797, has_genre, 12841
13797, release_year, 37484
12983, has_genre, 12841
12983, starred_actors, 25583
12983, written_by, 25583
40022, has_genre, 12841
40022, release_year, 37484
18482, has_genre, 12841
18482, release_year, 18366
32499, has_genre, 12841
32499, release_year, 37484
5274, directed_by, 25583
5274, has_genre, 12841
5274, has_tags, 28027
5274, has_tags, 25583
5274, release_year, 37484
5274, starred_actors, 25583
5274, written_by, 25583
24109, has_genre, 12841
24109, has_tags, 12841
24109, release_year, 37484
8061, has_tags, 28027
8061, release_year, 18366
3734, release_year, 18366
28461, release_year, 18366
28461, release_year, 37484
4420, has_genre, 12841
4420, has_tags, 12841
4420, release_year, 37484
29242, directed_by, 25583
29242, has_genre, 12841
29242, has_tags, 25583
29242, written_by, 25583
30565, has_genre, 12841
30565, release_year, 37484
30297, directed_by, 25583
30297, has_genre, 12841
30297, has_tags, 25583
30297, starred_actors, 25583
30297, written_by, 25583
4773, has_genre, 12841
4773, has_tags, 12841
4773, release_year, 37484
19891, has_genre, 12841
19891, release_year, 37484
Question: For what reason are KRIS CARR, STEALING A NATION, and THE 3RD VOICE associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"KRIS CARR",
"STEALING A NATION",
"THE 3RD VOICE"
],
"valid_edges": [
[
"BUSH'S BRAIN",
"has_genre",
"DOCUMENTARY"
],
[
"BUSH'S BRAIN",
"release_year",
"2004"
],
[
"CLUB DREAD",
"has_tags",
"ISLAND"
],
[
"CLUB DREAD",
"release_year",
"2004"
],
[
"CONTROL ROOM",
"has_genre",
"DOCUMENTARY"
],
[
"CONTROL ROOM",
"has_tags",
"DOCUMENTARY"
],
[
"CONTROL ROOM",
"release_year",
"2004"
],
[
"CRAZY SEXY CANCER",
"directed_by",
"KRIS CARR"
],
[
"CRAZY SEXY CANCER",
"has_genre",
"DOCUMENTARY"
],
[
"CRAZY SEXY CANCER",
"starred_actors",
"KRIS CARR"
],
[
"CRAZY SEXY CANCER",
"written_by",
"KRIS CARR"
],
[
"CZECH DREAM",
"has_genre",
"DOCUMENTARY"
],
[
"CZECH DREAM",
"release_year",
"2004"
],
[
"DARWIN'S NIGHTMARE",
"has_genre",
"DOCUMENTARY"
],
[
"DARWIN'S NIGHTMARE",
"release_year",
"2004"
],
[
"DIG!",
"has_genre",
"DOCUMENTARY"
],
[
"DIG!",
"release_year",
"2004"
],
[
"FAHRENHEIT 9/11",
"has_genre",
"DOCUMENTARY"
],
[
"FAHRENHEIT 9/11",
"has_tags",
"DOCUMENTARY"
],
[
"FAHRENHEIT 9/11",
"release_year",
"2004"
],
[
"FAHRENHYPE 9/11",
"has_genre",
"DOCUMENTARY"
],
[
"FAHRENHYPE 9/11",
"release_year",
"2004"
],
[
"HAWKING",
"has_genre",
"DOCUMENTARY"
],
[
"HAWKING",
"release_year",
"2004"
],
[
"L'AVVENTURA",
"has_tags",
"ISLAND"
],
[
"L'AVVENTURA",
"release_year",
"1960"
],
[
"MONDOVINO",
"has_genre",
"DOCUMENTARY"
],
[
"MONDOVINO",
"release_year",
"2004"
],
[
"PALESTINE IS STILL THE ISSUE",
"has_genre",
"DOCUMENTARY"
],
[
"PALESTINE IS STILL THE ISSUE",
"starred_actors",
"JOHN PILGER"
],
[
"PALESTINE IS STILL THE ISSUE",
"written_by",
"JOHN PILGER"
],
[
"PAPER CLIPS",
"has_genre",
"DOCUMENTARY"
],
[
"PAPER CLIPS",
"release_year",
"2004"
],
[
"PRIMARY",
"has_genre",
"DOCUMENTARY"
],
[
"PRIMARY",
"release_year",
"1960"
],
[
"RIDING GIANTS",
"has_genre",
"DOCUMENTARY"
],
[
"RIDING GIANTS",
"release_year",
"2004"
],
[
"STEALING A NATION",
"directed_by",
"JOHN PILGER"
],
[
"STEALING A NATION",
"has_genre",
"DOCUMENTARY"
],
[
"STEALING A NATION",
"has_tags",
"ISLAND"
],
[
"STEALING A NATION",
"has_tags",
"JOHN PILGER"
],
[
"STEALING A NATION",
"release_year",
"2004"
],
[
"STEALING A NATION",
"starred_actors",
"JOHN PILGER"
],
[
"STEALING A NATION",
"written_by",
"JOHN PILGER"
],
[
"SUPER SIZE ME",
"has_genre",
"DOCUMENTARY"
],
[
"SUPER SIZE ME",
"has_tags",
"DOCUMENTARY"
],
[
"SUPER SIZE ME",
"release_year",
"2004"
],
[
"SWISS FAMILY ROBINSON",
"has_tags",
"ISLAND"
],
[
"SWISS FAMILY ROBINSON",
"release_year",
"1960"
],
[
"THE 3RD VOICE",
"release_year",
"1960"
],
[
"THE ALAMO",
"release_year",
"1960"
],
[
"THE ALAMO",
"release_year",
"2004"
],
[
"THE HUNTING OF THE PRESIDENT",
"has_genre",
"DOCUMENTARY"
],
[
"THE HUNTING OF THE PRESIDENT",
"has_tags",
"DOCUMENTARY"
],
[
"THE HUNTING OF THE PRESIDENT",
"release_year",
"2004"
],
[
"THE NEW RULERS OF THE WORLD",
"directed_by",
"JOHN PILGER"
],
[
"THE NEW RULERS OF THE WORLD",
"has_genre",
"DOCUMENTARY"
],
[
"THE NEW RULERS OF THE WORLD",
"has_tags",
"JOHN PILGER"
],
[
"THE NEW RULERS OF THE WORLD",
"written_by",
"JOHN PILGER"
],
[
"THE NOMI SONG",
"has_genre",
"DOCUMENTARY"
],
[
"THE NOMI SONG",
"release_year",
"2004"
],
[
"THE WAR ON DEMOCRACY",
"directed_by",
"JOHN PILGER"
],
[
"THE WAR ON DEMOCRACY",
"has_genre",
"DOCUMENTARY"
],
[
"THE WAR ON DEMOCRACY",
"has_tags",
"JOHN PILGER"
],
[
"THE WAR ON DEMOCRACY",
"starred_actors",
"JOHN PILGER"
],
[
"THE WAR ON DEMOCRACY",
"written_by",
"JOHN PILGER"
],
[
"THE WHITE DIAMOND",
"has_genre",
"DOCUMENTARY"
],
[
"THE WHITE DIAMOND",
"has_tags",
"DOCUMENTARY"
],
[
"THE WHITE DIAMOND",
"release_year",
"2004"
],
[
"WATERMARKS",
"has_genre",
"DOCUMENTARY"
],
[
"WATERMARKS",
"release_year",
"2004"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
39435, 1975
8503, BETTIE PAGE REVEALS ALL
17218, BULLE OGIER
12841, DOCUMENTARY
34808, GEORGE HICKENLOOPER
1205, MAYOR OF THE SUNSET STRIP
18415, MAÎTRESSE
5835, REBECCA ROMIJN
36518, ROLLERBALL
src, edge_attr, dst
8503, has_genre, 12841
8503, starred_actors, 5835
1205, directed_by, 34808
1205, has_genre, 12841
1205, has_tags, 12841
1205, written_by, 34808
18415, release_year, 39435
18415, starred_actors, 17218
36518, release_year, 39435
36518, starred_actors, 5835
Question: In what context are BULLE OGIER, GEORGE HICKENLOOPER, and REBECCA ROMIJN connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"BULLE OGIER",
"GEORGE HICKENLOOPER",
"REBECCA ROMIJN"
],
"valid_edges": [
[
"BETTIE PAGE REVEALS ALL",
"has_genre",
"DOCUMENTARY"
],
[
"BETTIE PAGE REVEALS ALL",
"starred_actors",
"REBECCA ROMIJN"
],
[
"MAYOR OF THE SUNSET STRIP",
"directed_by",
"GEORGE HICKENLOOPER"
],
[
"MAYOR OF THE SUNSET STRIP",
"has_genre",
"DOCUMENTARY"
],
[
"MAYOR OF THE SUNSET STRIP",
"has_tags",
"DOCUMENTARY"
],
[
"MAYOR OF THE SUNSET STRIP",
"written_by",
"GEORGE HICKENLOOPER"
],
[
"MAÎTRESSE",
"release_year",
"1975"
],
[
"MAÎTRESSE",
"starred_actors",
"BULLE OGIER"
],
[
"ROLLERBALL",
"release_year",
"1975"
],
[
"ROLLERBALL",
"starred_actors",
"REBECCA ROMIJN"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
21136, 10 MINUTES
7977, 1969
35935, 2002
10349, CHICAGO
36212, DRAMA
18394, EMPIRE
19943, HOUSE OF FOOLS
30206, KEN PARK
39755, LIVE FROM BAGHDAD
26032, MR. FREEDOM
38585, NICHOLAS NICKLEBY
11696, THE CUCKOO
12614, THE PIANIST
8949, WE WERE SOLDIERS
14051, WILLIAM KLEIN
src, edge_attr, dst
21136, has_genre, 36212
21136, release_year, 35935
7977, has_genre, 36212
10349, has_genre, 36212
10349, release_year, 35935
18394, release_year, 35935
19943, has_genre, 36212
19943, release_year, 35935
30206, has_genre, 36212
30206, release_year, 35935
39755, has_genre, 36212
39755, release_year, 35935
26032, directed_by, 14051
26032, has_tags, 14051
26032, release_year, 7977
26032, written_by, 14051
38585, has_genre, 36212
38585, release_year, 35935
11696, has_genre, 36212
11696, release_year, 35935
12614, has_genre, 36212
12614, has_tags, 36212
12614, release_year, 35935
8949, has_genre, 36212
8949, release_year, 35935
Question: How are EMPIRE, NICHOLAS NICKLEBY, and WILLIAM KLEIN related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"EMPIRE",
"NICHOLAS NICKLEBY",
"WILLIAM KLEIN"
],
"valid_edges": [
[
"10 MINUTES",
"has_genre",
"DRAMA"
],
[
"10 MINUTES",
"release_year",
"2002"
],
[
"1969",
"has_genre",
"DRAMA"
],
[
"CHICAGO",
"has_genre",
"DRAMA"
],
[
"CHICAGO",
"release_year",
"2002"
],
[
"EMPIRE",
"release_year",
"2002"
],
[
"HOUSE OF FOOLS",
"has_genre",
"DRAMA"
],
[
"HOUSE OF FOOLS",
"release_year",
"2002"
],
[
"KEN PARK",
"has_genre",
"DRAMA"
],
[
"KEN PARK",
"release_year",
"2002"
],
[
"LIVE FROM BAGHDAD",
"has_genre",
"DRAMA"
],
[
"LIVE FROM BAGHDAD",
"release_year",
"2002"
],
[
"MR. FREEDOM",
"directed_by",
"WILLIAM KLEIN"
],
[
"MR. FREEDOM",
"has_tags",
"WILLIAM KLEIN"
],
[
"MR. FREEDOM",
"release_year",
"1969"
],
[
"MR. FREEDOM",
"written_by",
"WILLIAM KLEIN"
],
[
"NICHOLAS NICKLEBY",
"has_genre",
"DRAMA"
],
[
"NICHOLAS NICKLEBY",
"release_year",
"2002"
],
[
"THE CUCKOO",
"has_genre",
"DRAMA"
],
[
"THE CUCKOO",
"release_year",
"2002"
],
[
"THE PIANIST",
"has_genre",
"DRAMA"
],
[
"THE PIANIST",
"has_tags",
"DRAMA"
],
[
"THE PIANIST",
"release_year",
"2002"
],
[
"WE WERE SOLDIERS",
"has_genre",
"DRAMA"
],
[
"WE WERE SOLDIERS",
"release_year",
"2002"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
35187, 1948
35063, 1976
6718, A FAREWELL TO ARMS
40009, A FOREIGN AFFAIR
33215, A NIGHT TO REMEMBER
24319, A PASSAGE TO INDIA
9152, A STAR IS BORN
10341, ADVENTURES OF DON JUAN
19904, ADVENTURES OF KITTY O'DAY
28463, AFTER THE FOX
36358, ALEC GUINNESS
29638, ALICE IN WONDERLAND
19293, ALL THE PRESIDENT'S MEN
6793, AND THEN THERE WERE NONE
13573, ANNA CHRISTIE
24104, ARSÈNE LUPIN
694, ASSAULT ON PRECINCT 13
30204, BAFFLED!
10045, BD-R
38657, BEAT THE DEVIL
34744, BEING THERE
25490, BERLIN EXPRESS
8139, BICYCLE THIEVES
18599, BILOXI BLUES
23878, BOUND FOR GLORY
12718, BREAKFAST AT TIFFANY'S
16659, CASINO ROYALE
13302, CHAPTER TWO
6903, CHARIOTS OF FIRE
14858, CHINATOWN
16536, CYRANO DE BERGERAC
981, DEATH ON THE NILE
2362, DENNIS PALUMBO
23396, DIAL M FOR MURDER
16041, DJANGO UNCHAINED
18025, DÉDÉE D'ANVERS
39812, EILEEN BRENNAN
31783, ENGLISH
819, FIST OF THE NORTH STAR
9003, FUNNY GAMES
19221, GASLIGHT
5527, GIGI
8046, GOSFORD PARK
4709, GREAT EXPECTATIONS
20941, HAMLET
36495, I REMEMBER MAMA
30468, I'M ALL RIGHT JACK
30184, IN COLD BLOOD
28169, IN THE CUT
847, JACK THE GIANT KILLER
37227, JAMES COCO
21922, JANE EYRE
38579, JOAN OF ARC
4929, KEY LARGO
19098, KING KONG
26649, KISMET
17954, LETTER FROM AN UNKNOWN WOMAN
33160, LITTLE DORRIT
34533, LOGAN'S RUN
32275, LORD OF THE FLIES
20992, MACBETH
27050, MAN OF LA MANCHA
20579, MARAT/SADE
22678, MARLOWE
16925, MAYERLING
20138, MIDWAY
36083, MIRANDA
6543, MODEL SHOP
7186, MR. BLANDINGS BUILDS HIS DREAM HOUSE
35137, MURDER BY DEATH
31661, MY FAIR LADY
10680, MY FAVORITE YEAR
15145, MYSTERY
35498, MYSTERY OF THE 13TH GUEST
16462, MYSTERY OF THE WAX MUSEUM
37159, NEIL SIMON
31566, NETWORK
30629, NIGHT NURSE
37989, OBSESSION
15644, OLIVER TWIST
5794, ONLY WHEN I LAUGH
36164, OUR MAN IN HAVANA
23755, PETER FALK
38529, PETER SELLERS
39459, RED RIVER
5897, REPULSION
8389, ROBERT MOORE
15873, ROBIN AND MARIAN
2738, ROMEO AND JULIET
32487, SAPPHIRE
6119, SLEUTH
31624, SPELLBOUND
8436, SPIRITS OF THE DEAD
39288, SUDDENLY, LAST SUMMER
29067, SUMMER HOLIDAY
24926, SWEET CHARITY
31138, THAT'S ENTERTAINMENT, PART II
18998, THE BAT
30757, THE BOY WITH GREEN HAIR
36857, THE BRIDGE ON THE RIVER KWAI
14222, THE CANTERVILLE GHOST
36282, THE CHEAP DETECTIVE
18651, THE CORSICAN BROTHERS
24990, THE CURSE OF FRANKENSTEIN
6442, THE FALLEN IDOL
22869, THE GHOST SHIP
6597, THE GOLDEN EYE
19595, THE HEARTBREAK KID
31283, THE HOUND OF THE BASKERVILLES
15198, THE HUNCHBACK OF NOTRE DAME
19104, THE IN-LAWS
4091, THE LADY VANISHES
30690, THE LADYKILLERS
5508, THE LAVENDER HILL MOB
29109, THE LODGER
5834, THE MOUSE THAT ROARED
7341, THE NAKED CITY
11902, THE OUTLAW JOSEY WALES
929, THE PARTY
31851, THE PRISONER OF ZENDA
18162, THE RAVEN
36665, THE RED SHOES
18274, THE ROSE TATTOO
8477, THE SCARLET PIMPERNEL
11265, THE SEA HAWK
30746, THE SECRET LIFE OF WALTER MITTY
8304, THE SILVER CHALICE
4784, THE SNAKE PIT
34579, THE SPY WHO CAME IN FROM THE COLD
26081, THE SUNSHINE BOYS
3516, THE SWAN
7816, THE THREE MUSKETEERS
16504, THE TOWN THAT DREADED SUNDOWN
983, THE TREASURE OF THE SIERRA MADRE
19255, THE VALACHI PAPERS
17568, THE VANISHING
14962, THE WATCHER IN THE WOODS
22751, THE WICKER MAN
14983, THE WINSLOW BOY
34254, THEY ONLY KILL THEIR MASTERS
14471, THIS HAPPY BREED
190, TRUMAN CAPOTE
36262, UNFAITHFULLY YOURS
4378, VICTIM
11659, VIVA MARIA!
22844, WENT THE DAY WELL?
8390, WHISTLING IN DIXIE
10142, WHISTLING IN THE DARK
35212, WHO'S AFRAID OF VIRGINIA WOOLF?
39738, WILLIAM BEAUDINE
6037, WITCHFINDER GENERAL
src, edge_attr, dst
6718, has_tags, 10045
6718, in_language, 31783
40009, has_tags, 10045
40009, release_year, 35187
33215, has_genre, 15145
33215, has_tags, 10045
24319, has_tags, 10045
24319, in_language, 31783
9152, has_tags, 10045
9152, release_year, 35063
10341, has_tags, 10045
10341, release_year, 35187
19904, directed_by, 39738
19904, has_genre, 15145
28463, has_tags, 10045
28463, has_tags, 37159
28463, in_language, 31783
28463, starred_actors, 38529
28463, written_by, 37159
29638, has_tags, 10045
29638, in_language, 31783
19293, has_tags, 10045
19293, release_year, 35063
6793, has_genre, 15145
6793, has_tags, 10045
6793, has_tags, 15145
13573, has_tags, 10045
13573, in_language, 31783
24104, has_genre, 15145
24104, has_tags, 10045
694, has_tags, 10045
694, release_year, 35063
30204, has_genre, 15145
30204, in_language, 31783
38657, has_tags, 10045
38657, written_by, 190
34744, has_tags, 10045
34744, has_tags, 38529
34744, starred_actors, 38529
25490, has_tags, 10045
25490, release_year, 35187
8139, has_tags, 10045
8139, release_year, 35187
18599, has_tags, 10045
18599, has_tags, 37159
18599, written_by, 37159
23878, has_tags, 10045
23878, release_year, 35063
12718, has_tags, 10045
12718, has_tags, 190
12718, written_by, 190
16659, has_tags, 10045
16659, has_tags, 38529
16659, starred_actors, 38529
13302, directed_by, 8389
13302, has_tags, 10045
13302, written_by, 37159
6903, has_tags, 10045
6903, in_language, 31783
14858, has_genre, 15145
14858, has_tags, 10045
14858, has_tags, 15145
16536, has_tags, 10045
16536, in_language, 31783
981, has_genre, 15145
981, has_tags, 10045
981, has_tags, 15145
23396, has_tags, 10045
23396, in_language, 31783
16041, has_tags, 10045
16041, in_language, 31783
18025, in_language, 31783
18025, release_year, 35187
819, has_tags, 10045
819, in_language, 31783
9003, has_tags, 10045
9003, in_language, 31783
19221, has_genre, 15145
19221, has_tags, 10045
5527, has_tags, 10045
5527, in_language, 31783
8046, has_genre, 15145
8046, in_language, 31783
4709, has_tags, 36358
4709, has_tags, 10045
20941, has_tags, 10045
20941, in_language, 31783
20941, release_year, 35187
36495, has_tags, 10045
36495, release_year, 35187
30468, has_tags, 10045
30468, has_tags, 38529
30468, starred_actors, 38529
30184, has_tags, 10045
30184, has_tags, 190
30184, written_by, 190
28169, has_genre, 15145
28169, in_language, 31783
847, has_tags, 10045
847, in_language, 31783
21922, has_tags, 10045
21922, in_language, 31783
38579, has_tags, 10045
38579, release_year, 35187
4929, has_tags, 10045
4929, release_year, 35187
19098, has_tags, 10045
19098, release_year, 35063
26649, has_tags, 10045
26649, in_language, 31783
17954, has_tags, 10045
17954, release_year, 35187
33160, has_tags, 36358
33160, has_tags, 10045
34533, has_tags, 10045
34533, release_year, 35063
32275, has_tags, 10045
32275, in_language, 31783
20992, in_language, 31783
20992, release_year, 35187
27050, has_tags, 10045
27050, in_language, 31783
27050, starred_actors, 37227
20579, has_tags, 10045
20579, in_language, 31783
22678, has_genre, 15145
22678, has_tags, 10045
16925, has_tags, 10045
16925, in_language, 31783
20138, has_tags, 10045
20138, release_year, 35063
36083, has_tags, 10045
36083, release_year, 35187
6543, has_tags, 10045
6543, in_language, 31783
7186, has_tags, 10045
7186, release_year, 35187
35137, directed_by, 8389
35137, has_genre, 15145
35137, has_tags, 36358
35137, has_tags, 10045
35137, has_tags, 15145
35137, has_tags, 37159
35137, has_tags, 38529
35137, has_tags, 190
35137, release_year, 35063
35137, starred_actors, 39812
35137, starred_actors, 37227
35137, starred_actors, 23755
35137, starred_actors, 190
35137, written_by, 37159
31661, has_tags, 10045
31661, in_language, 31783
10680, has_tags, 10045
10680, written_by, 2362
35498, directed_by, 39738
35498, has_genre, 15145
16462, has_genre, 15145
16462, has_tags, 10045
31566, has_tags, 10045
31566, release_year, 35063
30629, has_genre, 15145
30629, has_tags, 10045
37989, has_genre, 15145
37989, has_tags, 10045
37989, release_year, 35063
15644, has_tags, 36358
15644, has_tags, 10045
15644, release_year, 35187
15644, starred_actors, 36358
5794, has_tags, 10045
5794, has_tags, 37159
5794, starred_actors, 37227
5794, written_by, 37159
36164, has_tags, 36358
36164, has_tags, 10045
36164, starred_actors, 36358
39459, has_tags, 10045
39459, release_year, 35187
5897, has_tags, 10045
5897, in_language, 31783
15873, has_tags, 10045
15873, release_year, 35063
2738, has_tags, 10045
2738, in_language, 31783
32487, has_genre, 15145
32487, in_language, 31783
6119, has_genre, 15145
6119, has_tags, 10045
6119, has_tags, 15145
31624, has_genre, 15145
31624, has_tags, 10045
31624, has_tags, 15145
8436, has_genre, 15145
8436, has_tags, 10045
8436, in_language, 31783
39288, has_genre, 15145
39288, has_tags, 10045
29067, has_tags, 10045
29067, release_year, 35187
24926, has_tags, 10045
24926, written_by, 37159
31138, has_tags, 10045
31138, release_year, 35063
18998, has_genre, 15145
18998, has_tags, 10045
30757, has_tags, 10045
30757, release_year, 35187
36857, has_tags, 36358
36857, has_tags, 10045
36857, starred_actors, 36358
14222, has_tags, 10045
14222, in_language, 31783
36282, directed_by, 8389
36282, has_tags, 10045
36282, has_tags, 37159
36282, starred_actors, 39812
36282, starred_actors, 23755
36282, written_by, 37159
18651, has_tags, 10045
18651, in_language, 31783
24990, has_tags, 10045
24990, in_language, 31783
6442, has_tags, 10045
6442, release_year, 35187
22869, has_genre, 15145
22869, has_tags, 10045
6597, directed_by, 39738
6597, in_language, 31783
6597, release_year, 35187
19595, has_tags, 10045
19595, has_tags, 37159
19595, written_by, 37159
31283, has_genre, 15145
31283, has_tags, 10045
15198, has_tags, 10045
15198, in_language, 31783
19104, has_tags, 10045
19104, starred_actors, 23755
4091, has_genre, 15145
4091, has_tags, 10045
4091, in_language, 31783
30690, has_tags, 36358
30690, has_tags, 10045
30690, has_tags, 38529
30690, starred_actors, 36358
30690, starred_actors, 38529
5508, has_tags, 36358
5508, has_tags, 10045
5508, starred_actors, 36358
29109, has_genre, 15145
29109, has_tags, 10045
5834, has_tags, 10045
5834, has_tags, 38529
5834, starred_actors, 38529
7341, has_tags, 10045
7341, release_year, 35187
11902, has_tags, 10045
11902, release_year, 35063
929, has_tags, 10045
929, has_tags, 38529
929, starred_actors, 38529
31851, has_tags, 10045
31851, starred_actors, 38529
18162, has_genre, 15145
18162, has_tags, 10045
36665, has_tags, 10045
36665, release_year, 35187
18274, has_tags, 10045
18274, in_language, 31783
8477, has_tags, 10045
8477, in_language, 31783
11265, has_tags, 10045
11265, in_language, 31783
30746, has_tags, 10045
30746, in_language, 31783
8304, has_tags, 10045
8304, in_language, 31783
4784, has_tags, 10045
4784, release_year, 35187
34579, has_tags, 10045
34579, in_language, 31783
26081, has_tags, 10045
26081, has_tags, 37159
26081, written_by, 37159
3516, has_tags, 10045
3516, starred_actors, 36358
7816, has_tags, 10045
7816, release_year, 35187
16504, has_tags, 10045
16504, release_year, 35063
983, has_tags, 10045
983, in_language, 31783
983, release_year, 35187
19255, has_tags, 10045
19255, in_language, 31783
17568, has_tags, 10045
17568, in_language, 31783
14962, has_genre, 15145
14962, in_language, 31783
22751, has_genre, 15145
22751, has_tags, 10045
14983, in_language, 31783
14983, release_year, 35187
34254, has_genre, 15145
34254, has_tags, 10045
14471, has_tags, 10045
14471, in_language, 31783
36262, has_tags, 10045
36262, release_year, 35187
4378, has_tags, 10045
4378, in_language, 31783
11659, has_tags, 10045
11659, in_language, 31783
22844, has_tags, 10045
22844, in_language, 31783
8390, has_genre, 15145
8390, has_tags, 10045
10142, has_genre, 15145
10142, has_tags, 10045
35212, has_tags, 10045
35212, in_language, 31783
6037, has_tags, 10045
6037, in_language, 31783
Question: For what reason are DENNIS PALUMBO, MURDER BY DEATH, and THE GOLDEN EYE associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"DENNIS PALUMBO",
"MURDER BY DEATH",
"THE GOLDEN EYE"
],
"valid_edges": [
[
"A FAREWELL TO ARMS",
"has_tags",
"BD-R"
],
[
"A FAREWELL TO ARMS",
"in_language",
"ENGLISH"
],
[
"A FOREIGN AFFAIR",
"has_tags",
"BD-R"
],
[
"A FOREIGN AFFAIR",
"release_year",
"1948"
],
[
"A NIGHT TO REMEMBER",
"has_genre",
"MYSTERY"
],
[
"A NIGHT TO REMEMBER",
"has_tags",
"BD-R"
],
[
"A PASSAGE TO INDIA",
"has_tags",
"BD-R"
],
[
"A PASSAGE TO INDIA",
"in_language",
"ENGLISH"
],
[
"A STAR IS BORN",
"has_tags",
"BD-R"
],
[
"A STAR IS BORN",
"release_year",
"1976"
],
[
"ADVENTURES OF DON JUAN",
"has_tags",
"BD-R"
],
[
"ADVENTURES OF DON JUAN",
"release_year",
"1948"
],
[
"ADVENTURES OF KITTY O'DAY",
"directed_by",
"WILLIAM BEAUDINE"
],
[
"ADVENTURES OF KITTY O'DAY",
"has_genre",
"MYSTERY"
],
[
"AFTER THE FOX",
"has_tags",
"BD-R"
],
[
"AFTER THE FOX",
"has_tags",
"NEIL SIMON"
],
[
"AFTER THE FOX",
"in_language",
"ENGLISH"
],
[
"AFTER THE FOX",
"starred_actors",
"PETER SELLERS"
],
[
"AFTER THE FOX",
"written_by",
"NEIL SIMON"
],
[
"ALICE IN WONDERLAND",
"has_tags",
"BD-R"
],
[
"ALICE IN WONDERLAND",
"in_language",
"ENGLISH"
],
[
"ALL THE PRESIDENT'S MEN",
"has_tags",
"BD-R"
],
[
"ALL THE PRESIDENT'S MEN",
"release_year",
"1976"
],
[
"AND THEN THERE WERE NONE",
"has_genre",
"MYSTERY"
],
[
"AND THEN THERE WERE NONE",
"has_tags",
"BD-R"
],
[
"AND THEN THERE WERE NONE",
"has_tags",
"MYSTERY"
],
[
"ANNA CHRISTIE",
"has_tags",
"BD-R"
],
[
"ANNA CHRISTIE",
"in_language",
"ENGLISH"
],
[
"ARSÈNE LUPIN",
"has_genre",
"MYSTERY"
],
[
"ARSÈNE LUPIN",
"has_tags",
"BD-R"
],
[
"ASSAULT ON PRECINCT 13",
"has_tags",
"BD-R"
],
[
"ASSAULT ON PRECINCT 13",
"release_year",
"1976"
],
[
"BAFFLED!",
"has_genre",
"MYSTERY"
],
[
"BAFFLED!",
"in_language",
"ENGLISH"
],
[
"BEAT THE DEVIL",
"has_tags",
"BD-R"
],
[
"BEAT THE DEVIL",
"written_by",
"TRUMAN CAPOTE"
],
[
"BEING THERE",
"has_tags",
"BD-R"
],
[
"BEING THERE",
"has_tags",
"PETER SELLERS"
],
[
"BEING THERE",
"starred_actors",
"PETER SELLERS"
],
[
"BERLIN EXPRESS",
"has_tags",
"BD-R"
],
[
"BERLIN EXPRESS",
"release_year",
"1948"
],
[
"BICYCLE THIEVES",
"has_tags",
"BD-R"
],
[
"BICYCLE THIEVES",
"release_year",
"1948"
],
[
"BILOXI BLUES",
"has_tags",
"BD-R"
],
[
"BILOXI BLUES",
"has_tags",
"NEIL SIMON"
],
[
"BILOXI BLUES",
"written_by",
"NEIL SIMON"
],
[
"BOUND FOR GLORY",
"has_tags",
"BD-R"
],
[
"BOUND FOR GLORY",
"release_year",
"1976"
],
[
"BREAKFAST AT TIFFANY'S",
"has_tags",
"BD-R"
],
[
"BREAKFAST AT TIFFANY'S",
"has_tags",
"TRUMAN CAPOTE"
],
[
"BREAKFAST AT TIFFANY'S",
"written_by",
"TRUMAN CAPOTE"
],
[
"CASINO ROYALE",
"has_tags",
"BD-R"
],
[
"CASINO ROYALE",
"has_tags",
"PETER SELLERS"
],
[
"CASINO ROYALE",
"starred_actors",
"PETER SELLERS"
],
[
"CHAPTER TWO",
"directed_by",
"ROBERT MOORE"
],
[
"CHAPTER TWO",
"has_tags",
"BD-R"
],
[
"CHAPTER TWO",
"written_by",
"NEIL SIMON"
],
[
"CHARIOTS OF FIRE",
"has_tags",
"BD-R"
],
[
"CHARIOTS OF FIRE",
"in_language",
"ENGLISH"
],
[
"CHINATOWN",
"has_genre",
"MYSTERY"
],
[
"CHINATOWN",
"has_tags",
"BD-R"
],
[
"CHINATOWN",
"has_tags",
"MYSTERY"
],
[
"CYRANO DE BERGERAC",
"has_tags",
"BD-R"
],
[
"CYRANO DE BERGERAC",
"in_language",
"ENGLISH"
],
[
"DEATH ON THE NILE",
"has_genre",
"MYSTERY"
],
[
"DEATH ON THE NILE",
"has_tags",
"BD-R"
],
[
"DEATH ON THE NILE",
"has_tags",
"MYSTERY"
],
[
"DIAL M FOR MURDER",
"has_tags",
"BD-R"
],
[
"DIAL M FOR MURDER",
"in_language",
"ENGLISH"
],
[
"DJANGO UNCHAINED",
"has_tags",
"BD-R"
],
[
"DJANGO UNCHAINED",
"in_language",
"ENGLISH"
],
[
"DÉDÉE D'ANVERS",
"in_language",
"ENGLISH"
],
[
"DÉDÉE D'ANVERS",
"release_year",
"1948"
],
[
"FIST OF THE NORTH STAR",
"has_tags",
"BD-R"
],
[
"FIST OF THE NORTH STAR",
"in_language",
"ENGLISH"
],
[
"FUNNY GAMES",
"has_tags",
"BD-R"
],
[
"FUNNY GAMES",
"in_language",
"ENGLISH"
],
[
"GASLIGHT",
"has_genre",
"MYSTERY"
],
[
"GASLIGHT",
"has_tags",
"BD-R"
],
[
"GIGI",
"has_tags",
"BD-R"
],
[
"GIGI",
"in_language",
"ENGLISH"
],
[
"GOSFORD PARK",
"has_genre",
"MYSTERY"
],
[
"GOSFORD PARK",
"in_language",
"ENGLISH"
],
[
"GREAT EXPECTATIONS",
"has_tags",
"ALEC GUINNESS"
],
[
"GREAT EXPECTATIONS",
"has_tags",
"BD-R"
],
[
"HAMLET",
"has_tags",
"BD-R"
],
[
"HAMLET",
"in_language",
"ENGLISH"
],
[
"HAMLET",
"release_year",
"1948"
],
[
"I REMEMBER MAMA",
"has_tags",
"BD-R"
],
[
"I REMEMBER MAMA",
"release_year",
"1948"
],
[
"I'M ALL RIGHT JACK",
"has_tags",
"BD-R"
],
[
"I'M ALL RIGHT JACK",
"has_tags",
"PETER SELLERS"
],
[
"I'M ALL RIGHT JACK",
"starred_actors",
"PETER SELLERS"
],
[
"IN COLD BLOOD",
"has_tags",
"BD-R"
],
[
"IN COLD BLOOD",
"has_tags",
"TRUMAN CAPOTE"
],
[
"IN COLD BLOOD",
"written_by",
"TRUMAN CAPOTE"
],
[
"IN THE CUT",
"has_genre",
"MYSTERY"
],
[
"IN THE CUT",
"in_language",
"ENGLISH"
],
[
"JACK THE GIANT KILLER",
"has_tags",
"BD-R"
],
[
"JACK THE GIANT KILLER",
"in_language",
"ENGLISH"
],
[
"JANE EYRE",
"has_tags",
"BD-R"
],
[
"JANE EYRE",
"in_language",
"ENGLISH"
],
[
"JOAN OF ARC",
"has_tags",
"BD-R"
],
[
"JOAN OF ARC",
"release_year",
"1948"
],
[
"KEY LARGO",
"has_tags",
"BD-R"
],
[
"KEY LARGO",
"release_year",
"1948"
],
[
"KING KONG",
"has_tags",
"BD-R"
],
[
"KING KONG",
"release_year",
"1976"
],
[
"KISMET",
"has_tags",
"BD-R"
],
[
"KISMET",
"in_language",
"ENGLISH"
],
[
"LETTER FROM AN UNKNOWN WOMAN",
"has_tags",
"BD-R"
],
[
"LETTER FROM AN UNKNOWN WOMAN",
"release_year",
"1948"
],
[
"LITTLE DORRIT",
"has_tags",
"ALEC GUINNESS"
],
[
"LITTLE DORRIT",
"has_tags",
"BD-R"
],
[
"LOGAN'S RUN",
"has_tags",
"BD-R"
],
[
"LOGAN'S RUN",
"release_year",
"1976"
],
[
"LORD OF THE FLIES",
"has_tags",
"BD-R"
],
[
"LORD OF THE FLIES",
"in_language",
"ENGLISH"
],
[
"MACBETH",
"in_language",
"ENGLISH"
],
[
"MACBETH",
"release_year",
"1948"
],
[
"MAN OF LA MANCHA",
"has_tags",
"BD-R"
],
[
"MAN OF LA MANCHA",
"in_language",
"ENGLISH"
],
[
"MAN OF LA MANCHA",
"starred_actors",
"JAMES COCO"
],
[
"MARAT/SADE",
"has_tags",
"BD-R"
],
[
"MARAT/SADE",
"in_language",
"ENGLISH"
],
[
"MARLOWE",
"has_genre",
"MYSTERY"
],
[
"MARLOWE",
"has_tags",
"BD-R"
],
[
"MAYERLING",
"has_tags",
"BD-R"
],
[
"MAYERLING",
"in_language",
"ENGLISH"
],
[
"MIDWAY",
"has_tags",
"BD-R"
],
[
"MIDWAY",
"release_year",
"1976"
],
[
"MIRANDA",
"has_tags",
"BD-R"
],
[
"MIRANDA",
"release_year",
"1948"
],
[
"MODEL SHOP",
"has_tags",
"BD-R"
],
[
"MODEL SHOP",
"in_language",
"ENGLISH"
],
[
"MR. BLANDINGS BUILDS HIS DREAM HOUSE",
"has_tags",
"BD-R"
],
[
"MR. BLANDINGS BUILDS HIS DREAM HOUSE",
"release_year",
"1948"
],
[
"MURDER BY DEATH",
"directed_by",
"ROBERT MOORE"
],
[
"MURDER BY DEATH",
"has_genre",
"MYSTERY"
],
[
"MURDER BY DEATH",
"has_tags",
"ALEC GUINNESS"
],
[
"MURDER BY DEATH",
"has_tags",
"BD-R"
],
[
"MURDER BY DEATH",
"has_tags",
"MYSTERY"
],
[
"MURDER BY DEATH",
"has_tags",
"NEIL SIMON"
],
[
"MURDER BY DEATH",
"has_tags",
"PETER SELLERS"
],
[
"MURDER BY DEATH",
"has_tags",
"TRUMAN CAPOTE"
],
[
"MURDER BY DEATH",
"release_year",
"1976"
],
[
"MURDER BY DEATH",
"starred_actors",
"EILEEN BRENNAN"
],
[
"MURDER BY DEATH",
"starred_actors",
"JAMES COCO"
],
[
"MURDER BY DEATH",
"starred_actors",
"PETER FALK"
],
[
"MURDER BY DEATH",
"starred_actors",
"TRUMAN CAPOTE"
],
[
"MURDER BY DEATH",
"written_by",
"NEIL SIMON"
],
[
"MY FAIR LADY",
"has_tags",
"BD-R"
],
[
"MY FAIR LADY",
"in_language",
"ENGLISH"
],
[
"MY FAVORITE YEAR",
"has_tags",
"BD-R"
],
[
"MY FAVORITE YEAR",
"written_by",
"DENNIS PALUMBO"
],
[
"MYSTERY OF THE 13TH GUEST",
"directed_by",
"WILLIAM BEAUDINE"
],
[
"MYSTERY OF THE 13TH GUEST",
"has_genre",
"MYSTERY"
],
[
"MYSTERY OF THE WAX MUSEUM",
"has_genre",
"MYSTERY"
],
[
"MYSTERY OF THE WAX MUSEUM",
"has_tags",
"BD-R"
],
[
"NETWORK",
"has_tags",
"BD-R"
],
[
"NETWORK",
"release_year",
"1976"
],
[
"NIGHT NURSE",
"has_genre",
"MYSTERY"
],
[
"NIGHT NURSE",
"has_tags",
"BD-R"
],
[
"OBSESSION",
"has_genre",
"MYSTERY"
],
[
"OBSESSION",
"has_tags",
"BD-R"
],
[
"OBSESSION",
"release_year",
"1976"
],
[
"OLIVER TWIST",
"has_tags",
"ALEC GUINNESS"
],
[
"OLIVER TWIST",
"has_tags",
"BD-R"
],
[
"OLIVER TWIST",
"release_year",
"1948"
],
[
"OLIVER TWIST",
"starred_actors",
"ALEC GUINNESS"
],
[
"ONLY WHEN I LAUGH",
"has_tags",
"BD-R"
],
[
"ONLY WHEN I LAUGH",
"has_tags",
"NEIL SIMON"
],
[
"ONLY WHEN I LAUGH",
"starred_actors",
"JAMES COCO"
],
[
"ONLY WHEN I LAUGH",
"written_by",
"NEIL SIMON"
],
[
"OUR MAN IN HAVANA",
"has_tags",
"ALEC GUINNESS"
],
[
"OUR MAN IN HAVANA",
"has_tags",
"BD-R"
],
[
"OUR MAN IN HAVANA",
"starred_actors",
"ALEC GUINNESS"
],
[
"RED RIVER",
"has_tags",
"BD-R"
],
[
"RED RIVER",
"release_year",
"1948"
],
[
"REPULSION",
"has_tags",
"BD-R"
],
[
"REPULSION",
"in_language",
"ENGLISH"
],
[
"ROBIN AND MARIAN",
"has_tags",
"BD-R"
],
[
"ROBIN AND MARIAN",
"release_year",
"1976"
],
[
"ROMEO AND JULIET",
"has_tags",
"BD-R"
],
[
"ROMEO AND JULIET",
"in_language",
"ENGLISH"
],
[
"SAPPHIRE",
"has_genre",
"MYSTERY"
],
[
"SAPPHIRE",
"in_language",
"ENGLISH"
],
[
"SLEUTH",
"has_genre",
"MYSTERY"
],
[
"SLEUTH",
"has_tags",
"BD-R"
],
[
"SLEUTH",
"has_tags",
"MYSTERY"
],
[
"SPELLBOUND",
"has_genre",
"MYSTERY"
],
[
"SPELLBOUND",
"has_tags",
"BD-R"
],
[
"SPELLBOUND",
"has_tags",
"MYSTERY"
],
[
"SPIRITS OF THE DEAD",
"has_genre",
"MYSTERY"
],
[
"SPIRITS OF THE DEAD",
"has_tags",
"BD-R"
],
[
"SPIRITS OF THE DEAD",
"in_language",
"ENGLISH"
],
[
"SUDDENLY, LAST SUMMER",
"has_genre",
"MYSTERY"
],
[
"SUDDENLY, LAST SUMMER",
"has_tags",
"BD-R"
],
[
"SUMMER HOLIDAY",
"has_tags",
"BD-R"
],
[
"SUMMER HOLIDAY",
"release_year",
"1948"
],
[
"SWEET CHARITY",
"has_tags",
"BD-R"
],
[
"SWEET CHARITY",
"written_by",
"NEIL SIMON"
],
[
"THAT'S ENTERTAINMENT, PART II",
"has_tags",
"BD-R"
],
[
"THAT'S ENTERTAINMENT, PART II",
"release_year",
"1976"
],
[
"THE BAT",
"has_genre",
"MYSTERY"
],
[
"THE BAT",
"has_tags",
"BD-R"
],
[
"THE BOY WITH GREEN HAIR",
"has_tags",
"BD-R"
],
[
"THE BOY WITH GREEN HAIR",
"release_year",
"1948"
],
[
"THE BRIDGE ON THE RIVER KWAI",
"has_tags",
"ALEC GUINNESS"
],
[
"THE BRIDGE ON THE RIVER KWAI",
"has_tags",
"BD-R"
],
[
"THE BRIDGE ON THE RIVER KWAI",
"starred_actors",
"ALEC GUINNESS"
],
[
"THE CANTERVILLE GHOST",
"has_tags",
"BD-R"
],
[
"THE CANTERVILLE GHOST",
"in_language",
"ENGLISH"
],
[
"THE CHEAP DETECTIVE",
"directed_by",
"ROBERT MOORE"
],
[
"THE CHEAP DETECTIVE",
"has_tags",
"BD-R"
],
[
"THE CHEAP DETECTIVE",
"has_tags",
"NEIL SIMON"
],
[
"THE CHEAP DETECTIVE",
"starred_actors",
"EILEEN BRENNAN"
],
[
"THE CHEAP DETECTIVE",
"starred_actors",
"PETER FALK"
],
[
"THE CHEAP DETECTIVE",
"written_by",
"NEIL SIMON"
],
[
"THE CORSICAN BROTHERS",
"has_tags",
"BD-R"
],
[
"THE CORSICAN BROTHERS",
"in_language",
"ENGLISH"
],
[
"THE CURSE OF FRANKENSTEIN",
"has_tags",
"BD-R"
],
[
"THE CURSE OF FRANKENSTEIN",
"in_language",
"ENGLISH"
],
[
"THE FALLEN IDOL",
"has_tags",
"BD-R"
],
[
"THE FALLEN IDOL",
"release_year",
"1948"
],
[
"THE GHOST SHIP",
"has_genre",
"MYSTERY"
],
[
"THE GHOST SHIP",
"has_tags",
"BD-R"
],
[
"THE GOLDEN EYE",
"directed_by",
"WILLIAM BEAUDINE"
],
[
"THE GOLDEN EYE",
"in_language",
"ENGLISH"
],
[
"THE GOLDEN EYE",
"release_year",
"1948"
],
[
"THE HEARTBREAK KID",
"has_tags",
"BD-R"
],
[
"THE HEARTBREAK KID",
"has_tags",
"NEIL SIMON"
],
[
"THE HEARTBREAK KID",
"written_by",
"NEIL SIMON"
],
[
"THE HOUND OF THE BASKERVILLES",
"has_genre",
"MYSTERY"
],
[
"THE HOUND OF THE BASKERVILLES",
"has_tags",
"BD-R"
],
[
"THE HUNCHBACK OF NOTRE DAME",
"has_tags",
"BD-R"
],
[
"THE HUNCHBACK OF NOTRE DAME",
"in_language",
"ENGLISH"
],
[
"THE IN-LAWS",
"has_tags",
"BD-R"
],
[
"THE IN-LAWS",
"starred_actors",
"PETER FALK"
],
[
"THE LADY VANISHES",
"has_genre",
"MYSTERY"
],
[
"THE LADY VANISHES",
"has_tags",
"BD-R"
],
[
"THE LADY VANISHES",
"in_language",
"ENGLISH"
],
[
"THE LADYKILLERS",
"has_tags",
"ALEC GUINNESS"
],
[
"THE LADYKILLERS",
"has_tags",
"BD-R"
],
[
"THE LADYKILLERS",
"has_tags",
"PETER SELLERS"
],
[
"THE LADYKILLERS",
"starred_actors",
"ALEC GUINNESS"
],
[
"THE LADYKILLERS",
"starred_actors",
"PETER SELLERS"
],
[
"THE LAVENDER HILL MOB",
"has_tags",
"ALEC GUINNESS"
],
[
"THE LAVENDER HILL MOB",
"has_tags",
"BD-R"
],
[
"THE LAVENDER HILL MOB",
"starred_actors",
"ALEC GUINNESS"
],
[
"THE LODGER",
"has_genre",
"MYSTERY"
],
[
"THE LODGER",
"has_tags",
"BD-R"
],
[
"THE MOUSE THAT ROARED",
"has_tags",
"BD-R"
],
[
"THE MOUSE THAT ROARED",
"has_tags",
"PETER SELLERS"
],
[
"THE MOUSE THAT ROARED",
"starred_actors",
"PETER SELLERS"
],
[
"THE NAKED CITY",
"has_tags",
"BD-R"
],
[
"THE NAKED CITY",
"release_year",
"1948"
],
[
"THE OUTLAW JOSEY WALES",
"has_tags",
"BD-R"
],
[
"THE OUTLAW JOSEY WALES",
"release_year",
"1976"
],
[
"THE PARTY",
"has_tags",
"BD-R"
],
[
"THE PARTY",
"has_tags",
"PETER SELLERS"
],
[
"THE PARTY",
"starred_actors",
"PETER SELLERS"
],
[
"THE PRISONER OF ZENDA",
"has_tags",
"BD-R"
],
[
"THE PRISONER OF ZENDA",
"starred_actors",
"PETER SELLERS"
],
[
"THE RAVEN",
"has_genre",
"MYSTERY"
],
[
"THE RAVEN",
"has_tags",
"BD-R"
],
[
"THE RED SHOES",
"has_tags",
"BD-R"
],
[
"THE RED SHOES",
"release_year",
"1948"
],
[
"THE ROSE TATTOO",
"has_tags",
"BD-R"
],
[
"THE ROSE TATTOO",
"in_language",
"ENGLISH"
],
[
"THE SCARLET PIMPERNEL",
"has_tags",
"BD-R"
],
[
"THE SCARLET PIMPERNEL",
"in_language",
"ENGLISH"
],
[
"THE SEA HAWK",
"has_tags",
"BD-R"
],
[
"THE SEA HAWK",
"in_language",
"ENGLISH"
],
[
"THE SECRET LIFE OF WALTER MITTY",
"has_tags",
"BD-R"
],
[
"THE SECRET LIFE OF WALTER MITTY",
"in_language",
"ENGLISH"
],
[
"THE SILVER CHALICE",
"has_tags",
"BD-R"
],
[
"THE SILVER CHALICE",
"in_language",
"ENGLISH"
],
[
"THE SNAKE PIT",
"has_tags",
"BD-R"
],
[
"THE SNAKE PIT",
"release_year",
"1948"
],
[
"THE SPY WHO CAME IN FROM THE COLD",
"has_tags",
"BD-R"
],
[
"THE SPY WHO CAME IN FROM THE COLD",
"in_language",
"ENGLISH"
],
[
"THE SUNSHINE BOYS",
"has_tags",
"BD-R"
],
[
"THE SUNSHINE BOYS",
"has_tags",
"NEIL SIMON"
],
[
"THE SUNSHINE BOYS",
"written_by",
"NEIL SIMON"
],
[
"THE SWAN",
"has_tags",
"BD-R"
],
[
"THE SWAN",
"starred_actors",
"ALEC GUINNESS"
],
[
"THE THREE MUSKETEERS",
"has_tags",
"BD-R"
],
[
"THE THREE MUSKETEERS",
"release_year",
"1948"
],
[
"THE TOWN THAT DREADED SUNDOWN",
"has_tags",
"BD-R"
],
[
"THE TOWN THAT DREADED SUNDOWN",
"release_year",
"1976"
],
[
"THE TREASURE OF THE SIERRA MADRE",
"has_tags",
"BD-R"
],
[
"THE TREASURE OF THE SIERRA MADRE",
"in_language",
"ENGLISH"
],
[
"THE TREASURE OF THE SIERRA MADRE",
"release_year",
"1948"
],
[
"THE VALACHI PAPERS",
"has_tags",
"BD-R"
],
[
"THE VALACHI PAPERS",
"in_language",
"ENGLISH"
],
[
"THE VANISHING",
"has_tags",
"BD-R"
],
[
"THE VANISHING",
"in_language",
"ENGLISH"
],
[
"THE WATCHER IN THE WOODS",
"has_genre",
"MYSTERY"
],
[
"THE WATCHER IN THE WOODS",
"in_language",
"ENGLISH"
],
[
"THE WICKER MAN",
"has_genre",
"MYSTERY"
],
[
"THE WICKER MAN",
"has_tags",
"BD-R"
],
[
"THE WINSLOW BOY",
"in_language",
"ENGLISH"
],
[
"THE WINSLOW BOY",
"release_year",
"1948"
],
[
"THEY ONLY KILL THEIR MASTERS",
"has_genre",
"MYSTERY"
],
[
"THEY ONLY KILL THEIR MASTERS",
"has_tags",
"BD-R"
],
[
"THIS HAPPY BREED",
"has_tags",
"BD-R"
],
[
"THIS HAPPY BREED",
"in_language",
"ENGLISH"
],
[
"UNFAITHFULLY YOURS",
"has_tags",
"BD-R"
],
[
"UNFAITHFULLY YOURS",
"release_year",
"1948"
],
[
"VICTIM",
"has_tags",
"BD-R"
],
[
"VICTIM",
"in_language",
"ENGLISH"
],
[
"VIVA MARIA!",
"has_tags",
"BD-R"
],
[
"VIVA MARIA!",
"in_language",
"ENGLISH"
],
[
"WENT THE DAY WELL?",
"has_tags",
"BD-R"
],
[
"WENT THE DAY WELL?",
"in_language",
"ENGLISH"
],
[
"WHISTLING IN DIXIE",
"has_genre",
"MYSTERY"
],
[
"WHISTLING IN DIXIE",
"has_tags",
"BD-R"
],
[
"WHISTLING IN THE DARK",
"has_genre",
"MYSTERY"
],
[
"WHISTLING IN THE DARK",
"has_tags",
"BD-R"
],
[
"WHO'S AFRAID OF VIRGINIA WOOLF?",
"has_tags",
"BD-R"
],
[
"WHO'S AFRAID OF VIRGINIA WOOLF?",
"in_language",
"ENGLISH"
],
[
"WITCHFINDER GENERAL",
"has_tags",
"BD-R"
],
[
"WITCHFINDER GENERAL",
"in_language",
"ENGLISH"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
28964, A PLACE OF ONE'S OWN
15359, ANTOINE BERTRAND
36388, BOURVIL
30463, COMEDY
36212, DRAMA
17468, LOUIS CYR
34047, STARBUCK
15930, THE SUCKER
src, edge_attr, dst
28964, has_genre, 36212
17468, has_genre, 36212
17468, starred_actors, 15359
34047, has_genre, 30463
34047, starred_actors, 15359
15930, has_genre, 30463
15930, starred_actors, 36388
Question: In what context are A PLACE OF ONE'S OWN, ANTOINE BERTRAND, and BOURVIL connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"A PLACE OF ONE'S OWN",
"ANTOINE BERTRAND",
"BOURVIL"
],
"valid_edges": [
[
"A PLACE OF ONE'S OWN",
"has_genre",
"DRAMA"
],
[
"LOUIS CYR",
"has_genre",
"DRAMA"
],
[
"LOUIS CYR",
"starred_actors",
"ANTOINE BERTRAND"
],
[
"STARBUCK",
"has_genre",
"COMEDY"
],
[
"STARBUCK",
"starred_actors",
"ANTOINE BERTRAND"
],
[
"THE SUCKER",
"has_genre",
"COMEDY"
],
[
"THE SUCKER",
"starred_actors",
"BOURVIL"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
37224, 1990
15374, 2005
1856, EUROPA EUROPA
7498, FLIGHTPLAN
36633, FOUR EYED MONSTERS
6480, GERMAN
34073, HELL
38312, MOUTH TO MOUTH
33684, SIBLING RIVALRY
3008, SUMMER IN BERLIN
3354, THE BROTHERS GRIMM
25829, THE CABINET OF DR. CALIGARI
39544, WE FEED THE WORLD
src, edge_attr, dst
1856, has_tags, 6480
1856, in_language, 6480
1856, release_year, 37224
7498, in_language, 6480
7498, release_year, 15374
36633, release_year, 15374
34073, in_language, 6480
34073, release_year, 15374
38312, in_language, 6480
38312, release_year, 15374
33684, release_year, 37224
3008, in_language, 6480
3008, release_year, 15374
3354, in_language, 6480
3354, release_year, 15374
25829, in_language, 6480
39544, in_language, 6480
39544, release_year, 15374
Question: For what reason are FOUR EYED MONSTERS, SIBLING RIVALRY, and THE CABINET OF DR. CALIGARI associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"FOUR EYED MONSTERS",
"SIBLING RIVALRY",
"THE CABINET OF DR. CALIGARI"
],
"valid_edges": [
[
"EUROPA EUROPA",
"has_tags",
"GERMAN"
],
[
"EUROPA EUROPA",
"in_language",
"GERMAN"
],
[
"EUROPA EUROPA",
"release_year",
"1990"
],
[
"FLIGHTPLAN",
"in_language",
"GERMAN"
],
[
"FLIGHTPLAN",
"release_year",
"2005"
],
[
"FOUR EYED MONSTERS",
"release_year",
"2005"
],
[
"HELL",
"in_language",
"GERMAN"
],
[
"HELL",
"release_year",
"2005"
],
[
"MOUTH TO MOUTH",
"in_language",
"GERMAN"
],
[
"MOUTH TO MOUTH",
"release_year",
"2005"
],
[
"SIBLING RIVALRY",
"release_year",
"1990"
],
[
"SUMMER IN BERLIN",
"in_language",
"GERMAN"
],
[
"SUMMER IN BERLIN",
"release_year",
"2005"
],
[
"THE BROTHERS GRIMM",
"in_language",
"GERMAN"
],
[
"THE BROTHERS GRIMM",
"release_year",
"2005"
],
[
"THE CABINET OF DR. CALIGARI",
"in_language",
"GERMAN"
],
[
"WE FEED THE WORLD",
"in_language",
"GERMAN"
],
[
"WE FEED THE WORLD",
"release_year",
"2005"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
1006, 1996
26762, 2008
11565, GOOD
24425, HARRIET THE SPY
7575, INTIMATE RELATIONS
19855, PEYTON REED
1945, YES MAN
src, edge_attr, dst
11565, has_imdb_rating, 11565
11565, release_year, 26762
24425, release_year, 1006
7575, has_imdb_rating, 11565
7575, release_year, 1006
1945, directed_by, 19855
1945, has_tags, 19855
1945, release_year, 26762
Question: In what context are HARRIET THE SPY, INTIMATE RELATIONS, and PEYTON REED connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"HARRIET THE SPY",
"INTIMATE RELATIONS",
"PEYTON REED"
],
"valid_edges": [
[
"GOOD",
"has_imdb_rating",
"GOOD"
],
[
"GOOD",
"release_year",
"2008"
],
[
"HARRIET THE SPY",
"release_year",
"1996"
],
[
"INTIMATE RELATIONS",
"has_imdb_rating",
"GOOD"
],
[
"INTIMATE RELATIONS",
"release_year",
"1996"
],
[
"YES MAN",
"directed_by",
"PEYTON REED"
],
[
"YES MAN",
"has_tags",
"PEYTON REED"
],
[
"YES MAN",
"release_year",
"2008"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
14259, 1997
14724, CRIME
13964, JOHN RIDLEY
15546, THE TUNNEL OF LOVE
19965, THIS WORLD, THEN THE FIREWORKS
21589, U TURN
10133, UNKNOWN
src, edge_attr, dst
15546, has_imdb_votes, 10133
19965, release_year, 14259
21589, has_genre, 14724
21589, release_year, 14259
21589, written_by, 13964
10133, has_genre, 14724
Question: For what reason are JOHN RIDLEY, THE TUNNEL OF LOVE, and THIS WORLD, THEN THE FIREWORKS associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"JOHN RIDLEY",
"THE TUNNEL OF LOVE",
"THIS WORLD, THEN THE FIREWORKS"
],
"valid_edges": [
[
"THE TUNNEL OF LOVE",
"has_imdb_votes",
"UNKNOWN"
],
[
"THIS WORLD, THEN THE FIREWORKS",
"release_year",
"1997"
],
[
"U TURN",
"has_genre",
"CRIME"
],
[
"U TURN",
"release_year",
"1997"
],
[
"U TURN",
"written_by",
"JOHN RIDLEY"
],
[
"UNKNOWN",
"has_genre",
"CRIME"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
29424, 2011
658, 2012
20562, A THOUSAND WORDS
29800, ACE ATTORNEY
21413, AMARCORD
23994, BARFI!
32770, BEST MAN DOWN
39848, BLUE LIKE JAZZ
35916, BREAD AND CHOCOLATE
33711, CAESAR MUST DIE
26848, CELEBRITY
32450, CHEERFUL WEATHER FOR THE WEDDING
38745, CITY LIGHTS
30463, COMEDY
36212, DRAMA
32892, ENGLISH VINGLISH
6076, FRANCES HA
15135, GINGER AND FRED
1937, HANNAH AND HER SISTERS
39349, HONEYSUCKLE ROSE
35319, HOPE SPRINGS
25277, HUSBANDS AND WIVES
37844, HYDE PARK ON HUDSON
38589, I DO
17344, I VITELLONI
16200, ITALIAN
34634, JASON BUTLER HARNER
18699, JULIET OF THE SPIRITS
25104, LA DOLCE VITA
14931, LIBERAL ARTS
24419, LIFE IS BEAUTIFUL
17372, LOL
19802, LOVE
13672, LOVE ACTUALLY
34517, LUV
35871, MAGIC MIKE
33790, MANHATTAN
34611, ME AND YOU
831, MELINDA AND MELINDA
19216, MID-AUGUST LUNCH
31735, MIDDLE OF NOWHERE
32186, ONE MAN UP
34602, PUNCH-DRUNK LOVE
25023, QUARTET
35746, REALITY
11839, REVENGE FOR JOLLY!
12597, RUBY SPARKS
12153, RUSHMORE
35586, SAHARA
17168, SEEKING A FRIEND FOR THE END OF THE WORLD
25060, SEXUAL CHRONICLES OF A FRENCH FAMILY
34584, SILVER LININGS PLAYBOOK
28026, SOMEBODY UP THERE LIKES ME
7288, STARDUST MEMORIES
25002, STRUCK BY LIGHTNING
3038, STUCK IN LOVE
32984, SWEET AND LOWDOWN
26790, SWEPT AWAY
19501, THANKS FOR SHARING
4157, THE BEST MAN
36932, THE CAIMAN
6644, THE COMEDY
15373, THE FRONT
34673, THE GREEN
15980, THE GUILT TRIP
28107, THE LAST KISS
28217, THE LIFE AQUATIC WITH STEVE ZISSOU
15798, THE ODD LIFE OF TIMOTHY GREEN
20728, THE ROYAL TENENBAUMS
2739, THE SAPPHIRES
37915, THE STORY OF LUKE
6598, TO ROME WITH LOVE
4325, WE ALL LOVED EACH OTHER SO MUCH
35511, WE HAVE A POPE
34118, WHAT TO EXPECT WHEN YOU'RE EXPECTING
35681, WILLIE NELSON
24451, WONDER BOYS
21552, WOODY ALLEN
6279, YOU WILL MEET A TALL DARK STRANGER
src, edge_attr, dst
20562, has_genre, 30463
20562, release_year, 658
29800, has_genre, 30463
29800, release_year, 658
21413, has_genre, 30463
21413, in_language, 16200
23994, has_genre, 30463
23994, release_year, 658
32770, has_genre, 30463
32770, release_year, 658
39848, has_genre, 30463
39848, release_year, 658
35916, has_genre, 30463
35916, in_language, 16200
33711, in_language, 16200
33711, release_year, 658
26848, directed_by, 21552
26848, has_genre, 30463
26848, has_tags, 21552
26848, written_by, 21552
32450, has_genre, 30463
32450, release_year, 658
38745, has_genre, 30463
38745, has_tags, 30463
38745, has_tags, 19802
32892, has_genre, 30463
32892, release_year, 658
6076, has_genre, 30463
6076, release_year, 658
15135, has_genre, 30463
15135, in_language, 16200
1937, directed_by, 21552
1937, has_genre, 30463
1937, has_tags, 30463
1937, has_tags, 21552
1937, written_by, 21552
39349, has_genre, 36212
39349, starred_actors, 35681
35319, has_genre, 30463
35319, release_year, 658
25277, directed_by, 21552
25277, has_genre, 30463
25277, has_tags, 21552
25277, starred_actors, 21552
25277, written_by, 21552
37844, has_genre, 30463
37844, release_year, 658
38589, has_genre, 30463
38589, release_year, 658
17344, has_genre, 30463
17344, has_tags, 16200
17344, in_language, 16200
18699, has_genre, 30463
18699, has_tags, 16200
18699, in_language, 16200
25104, has_genre, 30463
25104, has_tags, 16200
25104, in_language, 16200
14931, has_genre, 30463
14931, release_year, 658
24419, has_genre, 30463
24419, has_tags, 30463
24419, has_tags, 16200
24419, in_language, 16200
17372, has_genre, 30463
17372, release_year, 658
19802, has_genre, 36212
19802, release_year, 29424
13672, has_genre, 30463
13672, has_tags, 30463
13672, has_tags, 19802
34517, has_genre, 30463
34517, release_year, 658
35871, has_genre, 30463
35871, release_year, 658
33790, directed_by, 21552
33790, has_genre, 30463
33790, has_tags, 30463
33790, has_tags, 19802
33790, has_tags, 21552
33790, starred_actors, 21552
33790, written_by, 21552
34611, in_language, 16200
34611, release_year, 658
831, directed_by, 21552
831, has_genre, 30463
831, has_tags, 21552
831, written_by, 21552
19216, has_genre, 30463
19216, in_language, 16200
31735, has_genre, 30463
31735, release_year, 658
32186, has_genre, 30463
32186, in_language, 16200
34602, has_genre, 30463
34602, has_tags, 30463
34602, has_tags, 19802
25023, has_genre, 30463
25023, has_tags, 30463
25023, release_year, 658
35746, in_language, 16200
35746, release_year, 658
11839, has_genre, 30463
11839, release_year, 658
12597, has_genre, 30463
12597, release_year, 658
12153, has_genre, 30463
12153, has_tags, 30463
12153, has_tags, 19802
35586, has_genre, 30463
35586, in_language, 16200
17168, has_genre, 30463
17168, release_year, 658
25060, has_genre, 30463
25060, release_year, 658
34584, has_genre, 30463
34584, release_year, 658
28026, has_genre, 30463
28026, release_year, 658
7288, directed_by, 21552
7288, has_genre, 30463
7288, has_tags, 21552
7288, starred_actors, 21552
7288, written_by, 21552
25002, has_genre, 30463
25002, release_year, 658
3038, has_genre, 30463
3038, has_tags, 19802
3038, release_year, 658
32984, directed_by, 21552
32984, has_genre, 30463
32984, has_tags, 21552
32984, starred_actors, 21552
32984, written_by, 21552
26790, has_genre, 30463
26790, in_language, 16200
19501, has_genre, 30463
19501, release_year, 658
4157, has_genre, 30463
4157, in_language, 16200
36932, has_genre, 30463
36932, in_language, 16200
6644, has_tags, 30463
6644, release_year, 658
15373, has_genre, 30463
15373, has_tags, 21552
15373, starred_actors, 21552
34673, has_genre, 36212
34673, release_year, 29424
34673, starred_actors, 34634
15980, has_genre, 30463
15980, release_year, 658
28107, has_genre, 30463
28107, in_language, 16200
28217, has_genre, 30463
28217, has_tags, 30463
28217, in_language, 16200
15798, has_genre, 30463
15798, release_year, 658
20728, has_genre, 30463
20728, has_tags, 30463
20728, has_tags, 19802
2739, has_genre, 30463
2739, release_year, 658
37915, has_genre, 30463
37915, release_year, 658
6598, directed_by, 21552
6598, has_genre, 30463
6598, has_tags, 30463
6598, has_tags, 19802
6598, has_tags, 21552
6598, in_language, 16200
6598, release_year, 658
6598, written_by, 21552
4325, has_genre, 30463
4325, in_language, 16200
35511, has_genre, 30463
35511, has_tags, 30463
35511, has_tags, 16200
35511, in_language, 16200
34118, has_genre, 30463
34118, release_year, 658
24451, has_genre, 30463
24451, has_tags, 19802
6279, directed_by, 21552
6279, has_genre, 30463
6279, has_tags, 30463
6279, has_tags, 21552
6279, written_by, 21552
Question: How are JASON BUTLER HARNER, TO ROME WITH LOVE, and WILLIE NELSON related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"JASON BUTLER HARNER",
"TO ROME WITH LOVE",
"WILLIE NELSON"
],
"valid_edges": [
[
"A THOUSAND WORDS",
"has_genre",
"COMEDY"
],
[
"A THOUSAND WORDS",
"release_year",
"2012"
],
[
"ACE ATTORNEY",
"has_genre",
"COMEDY"
],
[
"ACE ATTORNEY",
"release_year",
"2012"
],
[
"AMARCORD",
"has_genre",
"COMEDY"
],
[
"AMARCORD",
"in_language",
"ITALIAN"
],
[
"BARFI!",
"has_genre",
"COMEDY"
],
[
"BARFI!",
"release_year",
"2012"
],
[
"BEST MAN DOWN",
"has_genre",
"COMEDY"
],
[
"BEST MAN DOWN",
"release_year",
"2012"
],
[
"BLUE LIKE JAZZ",
"has_genre",
"COMEDY"
],
[
"BLUE LIKE JAZZ",
"release_year",
"2012"
],
[
"BREAD AND CHOCOLATE",
"has_genre",
"COMEDY"
],
[
"BREAD AND CHOCOLATE",
"in_language",
"ITALIAN"
],
[
"CAESAR MUST DIE",
"in_language",
"ITALIAN"
],
[
"CAESAR MUST DIE",
"release_year",
"2012"
],
[
"CELEBRITY",
"directed_by",
"WOODY ALLEN"
],
[
"CELEBRITY",
"has_genre",
"COMEDY"
],
[
"CELEBRITY",
"has_tags",
"WOODY ALLEN"
],
[
"CELEBRITY",
"written_by",
"WOODY ALLEN"
],
[
"CHEERFUL WEATHER FOR THE WEDDING",
"has_genre",
"COMEDY"
],
[
"CHEERFUL WEATHER FOR THE WEDDING",
"release_year",
"2012"
],
[
"CITY LIGHTS",
"has_genre",
"COMEDY"
],
[
"CITY LIGHTS",
"has_tags",
"COMEDY"
],
[
"CITY LIGHTS",
"has_tags",
"LOVE"
],
[
"ENGLISH VINGLISH",
"has_genre",
"COMEDY"
],
[
"ENGLISH VINGLISH",
"release_year",
"2012"
],
[
"FRANCES HA",
"has_genre",
"COMEDY"
],
[
"FRANCES HA",
"release_year",
"2012"
],
[
"GINGER AND FRED",
"has_genre",
"COMEDY"
],
[
"GINGER AND FRED",
"in_language",
"ITALIAN"
],
[
"HANNAH AND HER SISTERS",
"directed_by",
"WOODY ALLEN"
],
[
"HANNAH AND HER SISTERS",
"has_genre",
"COMEDY"
],
[
"HANNAH AND HER SISTERS",
"has_tags",
"COMEDY"
],
[
"HANNAH AND HER SISTERS",
"has_tags",
"WOODY ALLEN"
],
[
"HANNAH AND HER SISTERS",
"written_by",
"WOODY ALLEN"
],
[
"HONEYSUCKLE ROSE",
"has_genre",
"DRAMA"
],
[
"HONEYSUCKLE ROSE",
"starred_actors",
"WILLIE NELSON"
],
[
"HOPE SPRINGS",
"has_genre",
"COMEDY"
],
[
"HOPE SPRINGS",
"release_year",
"2012"
],
[
"HUSBANDS AND WIVES",
"directed_by",
"WOODY ALLEN"
],
[
"HUSBANDS AND WIVES",
"has_genre",
"COMEDY"
],
[
"HUSBANDS AND WIVES",
"has_tags",
"WOODY ALLEN"
],
[
"HUSBANDS AND WIVES",
"starred_actors",
"WOODY ALLEN"
],
[
"HUSBANDS AND WIVES",
"written_by",
"WOODY ALLEN"
],
[
"HYDE PARK ON HUDSON",
"has_genre",
"COMEDY"
],
[
"HYDE PARK ON HUDSON",
"release_year",
"2012"
],
[
"I DO",
"has_genre",
"COMEDY"
],
[
"I DO",
"release_year",
"2012"
],
[
"I VITELLONI",
"has_genre",
"COMEDY"
],
[
"I VITELLONI",
"has_tags",
"ITALIAN"
],
[
"I VITELLONI",
"in_language",
"ITALIAN"
],
[
"JULIET OF THE SPIRITS",
"has_genre",
"COMEDY"
],
[
"JULIET OF THE SPIRITS",
"has_tags",
"ITALIAN"
],
[
"JULIET OF THE SPIRITS",
"in_language",
"ITALIAN"
],
[
"LA DOLCE VITA",
"has_genre",
"COMEDY"
],
[
"LA DOLCE VITA",
"has_tags",
"ITALIAN"
],
[
"LA DOLCE VITA",
"in_language",
"ITALIAN"
],
[
"LIBERAL ARTS",
"has_genre",
"COMEDY"
],
[
"LIBERAL ARTS",
"release_year",
"2012"
],
[
"LIFE IS BEAUTIFUL",
"has_genre",
"COMEDY"
],
[
"LIFE IS BEAUTIFUL",
"has_tags",
"COMEDY"
],
[
"LIFE IS BEAUTIFUL",
"has_tags",
"ITALIAN"
],
[
"LIFE IS BEAUTIFUL",
"in_language",
"ITALIAN"
],
[
"LOL",
"has_genre",
"COMEDY"
],
[
"LOL",
"release_year",
"2012"
],
[
"LOVE",
"has_genre",
"DRAMA"
],
[
"LOVE",
"release_year",
"2011"
],
[
"LOVE ACTUALLY",
"has_genre",
"COMEDY"
],
[
"LOVE ACTUALLY",
"has_tags",
"COMEDY"
],
[
"LOVE ACTUALLY",
"has_tags",
"LOVE"
],
[
"LUV",
"has_genre",
"COMEDY"
],
[
"LUV",
"release_year",
"2012"
],
[
"MAGIC MIKE",
"has_genre",
"COMEDY"
],
[
"MAGIC MIKE",
"release_year",
"2012"
],
[
"MANHATTAN",
"directed_by",
"WOODY ALLEN"
],
[
"MANHATTAN",
"has_genre",
"COMEDY"
],
[
"MANHATTAN",
"has_tags",
"COMEDY"
],
[
"MANHATTAN",
"has_tags",
"LOVE"
],
[
"MANHATTAN",
"has_tags",
"WOODY ALLEN"
],
[
"MANHATTAN",
"starred_actors",
"WOODY ALLEN"
],
[
"MANHATTAN",
"written_by",
"WOODY ALLEN"
],
[
"ME AND YOU",
"in_language",
"ITALIAN"
],
[
"ME AND YOU",
"release_year",
"2012"
],
[
"MELINDA AND MELINDA",
"directed_by",
"WOODY ALLEN"
],
[
"MELINDA AND MELINDA",
"has_genre",
"COMEDY"
],
[
"MELINDA AND MELINDA",
"has_tags",
"WOODY ALLEN"
],
[
"MELINDA AND MELINDA",
"written_by",
"WOODY ALLEN"
],
[
"MID-AUGUST LUNCH",
"has_genre",
"COMEDY"
],
[
"MID-AUGUST LUNCH",
"in_language",
"ITALIAN"
],
[
"MIDDLE OF NOWHERE",
"has_genre",
"COMEDY"
],
[
"MIDDLE OF NOWHERE",
"release_year",
"2012"
],
[
"ONE MAN UP",
"has_genre",
"COMEDY"
],
[
"ONE MAN UP",
"in_language",
"ITALIAN"
],
[
"PUNCH-DRUNK LOVE",
"has_genre",
"COMEDY"
],
[
"PUNCH-DRUNK LOVE",
"has_tags",
"COMEDY"
],
[
"PUNCH-DRUNK LOVE",
"has_tags",
"LOVE"
],
[
"QUARTET",
"has_genre",
"COMEDY"
],
[
"QUARTET",
"has_tags",
"COMEDY"
],
[
"QUARTET",
"release_year",
"2012"
],
[
"REALITY",
"in_language",
"ITALIAN"
],
[
"REALITY",
"release_year",
"2012"
],
[
"REVENGE FOR JOLLY!",
"has_genre",
"COMEDY"
],
[
"REVENGE FOR JOLLY!",
"release_year",
"2012"
],
[
"RUBY SPARKS",
"has_genre",
"COMEDY"
],
[
"RUBY SPARKS",
"release_year",
"2012"
],
[
"RUSHMORE",
"has_genre",
"COMEDY"
],
[
"RUSHMORE",
"has_tags",
"COMEDY"
],
[
"RUSHMORE",
"has_tags",
"LOVE"
],
[
"SAHARA",
"has_genre",
"COMEDY"
],
[
"SAHARA",
"in_language",
"ITALIAN"
],
[
"SEEKING A FRIEND FOR THE END OF THE WORLD",
"has_genre",
"COMEDY"
],
[
"SEEKING A FRIEND FOR THE END OF THE WORLD",
"release_year",
"2012"
],
[
"SEXUAL CHRONICLES OF A FRENCH FAMILY",
"has_genre",
"COMEDY"
],
[
"SEXUAL CHRONICLES OF A FRENCH FAMILY",
"release_year",
"2012"
],
[
"SILVER LININGS PLAYBOOK",
"has_genre",
"COMEDY"
],
[
"SILVER LININGS PLAYBOOK",
"release_year",
"2012"
],
[
"SOMEBODY UP THERE LIKES ME",
"has_genre",
"COMEDY"
],
[
"SOMEBODY UP THERE LIKES ME",
"release_year",
"2012"
],
[
"STARDUST MEMORIES",
"directed_by",
"WOODY ALLEN"
],
[
"STARDUST MEMORIES",
"has_genre",
"COMEDY"
],
[
"STARDUST MEMORIES",
"has_tags",
"WOODY ALLEN"
],
[
"STARDUST MEMORIES",
"starred_actors",
"WOODY ALLEN"
],
[
"STARDUST MEMORIES",
"written_by",
"WOODY ALLEN"
],
[
"STRUCK BY LIGHTNING",
"has_genre",
"COMEDY"
],
[
"STRUCK BY LIGHTNING",
"release_year",
"2012"
],
[
"STUCK IN LOVE",
"has_genre",
"COMEDY"
],
[
"STUCK IN LOVE",
"has_tags",
"LOVE"
],
[
"STUCK IN LOVE",
"release_year",
"2012"
],
[
"SWEET AND LOWDOWN",
"directed_by",
"WOODY ALLEN"
],
[
"SWEET AND LOWDOWN",
"has_genre",
"COMEDY"
],
[
"SWEET AND LOWDOWN",
"has_tags",
"WOODY ALLEN"
],
[
"SWEET AND LOWDOWN",
"starred_actors",
"WOODY ALLEN"
],
[
"SWEET AND LOWDOWN",
"written_by",
"WOODY ALLEN"
],
[
"SWEPT AWAY",
"has_genre",
"COMEDY"
],
[
"SWEPT AWAY",
"in_language",
"ITALIAN"
],
[
"THANKS FOR SHARING",
"has_genre",
"COMEDY"
],
[
"THANKS FOR SHARING",
"release_year",
"2012"
],
[
"THE BEST MAN",
"has_genre",
"COMEDY"
],
[
"THE BEST MAN",
"in_language",
"ITALIAN"
],
[
"THE CAIMAN",
"has_genre",
"COMEDY"
],
[
"THE CAIMAN",
"in_language",
"ITALIAN"
],
[
"THE COMEDY",
"has_tags",
"COMEDY"
],
[
"THE COMEDY",
"release_year",
"2012"
],
[
"THE FRONT",
"has_genre",
"COMEDY"
],
[
"THE FRONT",
"has_tags",
"WOODY ALLEN"
],
[
"THE FRONT",
"starred_actors",
"WOODY ALLEN"
],
[
"THE GREEN",
"has_genre",
"DRAMA"
],
[
"THE GREEN",
"release_year",
"2011"
],
[
"THE GREEN",
"starred_actors",
"JASON BUTLER HARNER"
],
[
"THE GUILT TRIP",
"has_genre",
"COMEDY"
],
[
"THE GUILT TRIP",
"release_year",
"2012"
],
[
"THE LAST KISS",
"has_genre",
"COMEDY"
],
[
"THE LAST KISS",
"in_language",
"ITALIAN"
],
[
"THE LIFE AQUATIC WITH STEVE ZISSOU",
"has_genre",
"COMEDY"
],
[
"THE LIFE AQUATIC WITH STEVE ZISSOU",
"has_tags",
"COMEDY"
],
[
"THE LIFE AQUATIC WITH STEVE ZISSOU",
"in_language",
"ITALIAN"
],
[
"THE ODD LIFE OF TIMOTHY GREEN",
"has_genre",
"COMEDY"
],
[
"THE ODD LIFE OF TIMOTHY GREEN",
"release_year",
"2012"
],
[
"THE ROYAL TENENBAUMS",
"has_genre",
"COMEDY"
],
[
"THE ROYAL TENENBAUMS",
"has_tags",
"COMEDY"
],
[
"THE ROYAL TENENBAUMS",
"has_tags",
"LOVE"
],
[
"THE SAPPHIRES",
"has_genre",
"COMEDY"
],
[
"THE SAPPHIRES",
"release_year",
"2012"
],
[
"THE STORY OF LUKE",
"has_genre",
"COMEDY"
],
[
"THE STORY OF LUKE",
"release_year",
"2012"
],
[
"TO ROME WITH LOVE",
"directed_by",
"WOODY ALLEN"
],
[
"TO ROME WITH LOVE",
"has_genre",
"COMEDY"
],
[
"TO ROME WITH LOVE",
"has_tags",
"COMEDY"
],
[
"TO ROME WITH LOVE",
"has_tags",
"LOVE"
],
[
"TO ROME WITH LOVE",
"has_tags",
"WOODY ALLEN"
],
[
"TO ROME WITH LOVE",
"in_language",
"ITALIAN"
],
[
"TO ROME WITH LOVE",
"release_year",
"2012"
],
[
"TO ROME WITH LOVE",
"written_by",
"WOODY ALLEN"
],
[
"WE ALL LOVED EACH OTHER SO MUCH",
"has_genre",
"COMEDY"
],
[
"WE ALL LOVED EACH OTHER SO MUCH",
"in_language",
"ITALIAN"
],
[
"WE HAVE A POPE",
"has_genre",
"COMEDY"
],
[
"WE HAVE A POPE",
"has_tags",
"COMEDY"
],
[
"WE HAVE A POPE",
"has_tags",
"ITALIAN"
],
[
"WE HAVE A POPE",
"in_language",
"ITALIAN"
],
[
"WHAT TO EXPECT WHEN YOU'RE EXPECTING",
"has_genre",
"COMEDY"
],
[
"WHAT TO EXPECT WHEN YOU'RE EXPECTING",
"release_year",
"2012"
],
[
"WONDER BOYS",
"has_genre",
"COMEDY"
],
[
"WONDER BOYS",
"has_tags",
"LOVE"
],
[
"YOU WILL MEET A TALL DARK STRANGER",
"directed_by",
"WOODY ALLEN"
],
[
"YOU WILL MEET A TALL DARK STRANGER",
"has_genre",
"COMEDY"
],
[
"YOU WILL MEET A TALL DARK STRANGER",
"has_tags",
"COMEDY"
],
[
"YOU WILL MEET A TALL DARK STRANGER",
"has_tags",
"WOODY ALLEN"
],
[
"YOU WILL MEET A TALL DARK STRANGER",
"written_by",
"WOODY ALLEN"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
6925, 1966
13408, 2001
658, 2012
166, A MAN AND A WOMAN
20786, CLAUDE LELOUCH
24124, GAMBIT
32305, GEORGE W. GEORGE
31828, JAMES DEAN
14601, LES MISÉRABLES
5365, THE BODY
13676, THE JAMES DEAN STORY
src, edge_attr, dst
166, directed_by, 20786
166, has_tags, 20786
166, release_year, 6925
24124, release_year, 6925
24124, release_year, 658
31828, release_year, 13408
14601, directed_by, 20786
14601, has_tags, 20786
14601, release_year, 658
14601, written_by, 20786
5365, release_year, 13408
5365, release_year, 658
13676, directed_by, 32305
13676, starred_actors, 31828
Question: For what reason are A MAN AND A WOMAN, GEORGE W. GEORGE, and THE BODY associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"A MAN AND A WOMAN",
"GEORGE W. GEORGE",
"THE BODY"
],
"valid_edges": [
[
"A MAN AND A WOMAN",
"directed_by",
"CLAUDE LELOUCH"
],
[
"A MAN AND A WOMAN",
"has_tags",
"CLAUDE LELOUCH"
],
[
"A MAN AND A WOMAN",
"release_year",
"1966"
],
[
"GAMBIT",
"release_year",
"1966"
],
[
"GAMBIT",
"release_year",
"2012"
],
[
"JAMES DEAN",
"release_year",
"2001"
],
[
"LES MISÉRABLES",
"directed_by",
"CLAUDE LELOUCH"
],
[
"LES MISÉRABLES",
"has_tags",
"CLAUDE LELOUCH"
],
[
"LES MISÉRABLES",
"release_year",
"2012"
],
[
"LES MISÉRABLES",
"written_by",
"CLAUDE LELOUCH"
],
[
"THE BODY",
"release_year",
"2001"
],
[
"THE BODY",
"release_year",
"2012"
],
[
"THE JAMES DEAN STORY",
"directed_by",
"GEORGE W. GEORGE"
],
[
"THE JAMES DEAN STORY",
"starred_actors",
"JAMES DEAN"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
39396, BLACK DYNAMITE
30463, COMEDY
1884, FUN
358, HOWARD THE DUCK
31646, KNIGHT AND DAY
17559, LEGALLY BLONDE
36771, MYRA BRECKINRIDGE
22572, RAFAL ZIELINSKI
6255, THE MAGNET
29641, THE PRINCESS BRIDE
27619, THE WRONG TROUSERS
13738, THERE'S SOMETHING ABOUT MARY
22157, WHEN HARRY MET SALLY...
src, edge_attr, dst
39396, has_genre, 30463
39396, has_tags, 1884
1884, directed_by, 22572
358, has_genre, 30463
358, has_tags, 1884
31646, has_genre, 30463
31646, has_tags, 30463
31646, has_tags, 1884
17559, has_genre, 30463
17559, has_tags, 30463
17559, has_tags, 1884
36771, has_genre, 30463
6255, has_genre, 30463
29641, has_genre, 30463
29641, has_tags, 30463
29641, has_tags, 1884
27619, has_genre, 30463
27619, has_tags, 30463
27619, has_tags, 1884
13738, has_genre, 30463
13738, has_tags, 30463
13738, has_tags, 1884
22157, has_genre, 30463
22157, has_tags, 1884
Question: In what context are MYRA BRECKINRIDGE, RAFAL ZIELINSKI, and THE MAGNET connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"MYRA BRECKINRIDGE",
"RAFAL ZIELINSKI",
"THE MAGNET"
],
"valid_edges": [
[
"BLACK DYNAMITE",
"has_genre",
"COMEDY"
],
[
"BLACK DYNAMITE",
"has_tags",
"FUN"
],
[
"FUN",
"directed_by",
"RAFAL ZIELINSKI"
],
[
"HOWARD THE DUCK",
"has_genre",
"COMEDY"
],
[
"HOWARD THE DUCK",
"has_tags",
"FUN"
],
[
"KNIGHT AND DAY",
"has_genre",
"COMEDY"
],
[
"KNIGHT AND DAY",
"has_tags",
"COMEDY"
],
[
"KNIGHT AND DAY",
"has_tags",
"FUN"
],
[
"LEGALLY BLONDE",
"has_genre",
"COMEDY"
],
[
"LEGALLY BLONDE",
"has_tags",
"COMEDY"
],
[
"LEGALLY BLONDE",
"has_tags",
"FUN"
],
[
"MYRA BRECKINRIDGE",
"has_genre",
"COMEDY"
],
[
"THE MAGNET",
"has_genre",
"COMEDY"
],
[
"THE PRINCESS BRIDE",
"has_genre",
"COMEDY"
],
[
"THE PRINCESS BRIDE",
"has_tags",
"COMEDY"
],
[
"THE PRINCESS BRIDE",
"has_tags",
"FUN"
],
[
"THE WRONG TROUSERS",
"has_genre",
"COMEDY"
],
[
"THE WRONG TROUSERS",
"has_tags",
"COMEDY"
],
[
"THE WRONG TROUSERS",
"has_tags",
"FUN"
],
[
"THERE'S SOMETHING ABOUT MARY",
"has_genre",
"COMEDY"
],
[
"THERE'S SOMETHING ABOUT MARY",
"has_tags",
"COMEDY"
],
[
"THERE'S SOMETHING ABOUT MARY",
"has_tags",
"FUN"
],
[
"WHEN HARRY MET SALLY...",
"has_genre",
"COMEDY"
],
[
"WHEN HARRY MET SALLY...",
"has_tags",
"FUN"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
18366, 1960
8486, 1999
30284, ALL ABOUT MY MOTHER
2067, BETWEEN YOUR LEGS
27477, BIUTIFUL
12217, DON'T TEMPT ME
35657, GLORIA
10457, GOYA IN BORDEAUX
10242, INHERIT THE WIND
36, JAVIER BARDEM
233, LIVE FLESH
33721, LOVE CAN SERIOUSLY DAMAGE YOUR HEALTH
30409, MANUEL GÓMEZ PEREIRA
31871, MARIANO COHN
37995, MONDAYS IN THE SUN
37006, NO ONE WRITES TO THE COLONEL
23816, NOBODY KNOWS ANYBODY
11432, SECOND SKIN
21147, SOLAS
7556, SPANISH
32597, THE DANCER UPSTAIRS
475, THE MAN NEXT DOOR
29990, THE NAMELESS
37903, THE NINTH GATE
5969, THE SEA INSIDE
15139, THE WARPED ONES
30250, TIE ME UP! TIE ME DOWN!
39026, TWO WOMEN
21343, VICTORIA ABRIL
src, edge_attr, dst
30284, has_tags, 7556
30284, in_language, 7556
30284, release_year, 8486
2067, directed_by, 30409
2067, in_language, 7556
2067, release_year, 8486
2067, starred_actors, 36
2067, starred_actors, 21343
2067, written_by, 30409
27477, has_tags, 36
27477, in_language, 7556
27477, starred_actors, 36
12217, in_language, 7556
12217, starred_actors, 21343
35657, in_language, 7556
35657, release_year, 8486
10457, in_language, 7556
10457, release_year, 8486
10242, release_year, 18366
10242, release_year, 8486
233, in_language, 7556
233, starred_actors, 36
33721, directed_by, 30409
33721, in_language, 7556
33721, written_by, 30409
37995, in_language, 7556
37995, starred_actors, 36
37006, in_language, 7556
37006, release_year, 8486
23816, in_language, 7556
23816, release_year, 8486
11432, in_language, 7556
11432, release_year, 8486
11432, starred_actors, 36
21147, in_language, 7556
21147, release_year, 8486
32597, in_language, 7556
32597, starred_actors, 36
475, directed_by, 31871
475, in_language, 7556
29990, in_language, 7556
29990, release_year, 8486
37903, in_language, 7556
37903, release_year, 8486
5969, has_tags, 36
5969, in_language, 7556
5969, starred_actors, 36
15139, release_year, 18366
30250, has_tags, 7556
30250, in_language, 7556
30250, starred_actors, 21343
39026, release_year, 18366
39026, release_year, 8486
Question: In what context are BETWEEN YOUR LEGS, MARIANO COHN, and THE WARPED ONES connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"BETWEEN YOUR LEGS",
"MARIANO COHN",
"THE WARPED ONES"
],
"valid_edges": [
[
"ALL ABOUT MY MOTHER",
"has_tags",
"SPANISH"
],
[
"ALL ABOUT MY MOTHER",
"in_language",
"SPANISH"
],
[
"ALL ABOUT MY MOTHER",
"release_year",
"1999"
],
[
"BETWEEN YOUR LEGS",
"directed_by",
"MANUEL GÓMEZ PEREIRA"
],
[
"BETWEEN YOUR LEGS",
"in_language",
"SPANISH"
],
[
"BETWEEN YOUR LEGS",
"release_year",
"1999"
],
[
"BETWEEN YOUR LEGS",
"starred_actors",
"JAVIER BARDEM"
],
[
"BETWEEN YOUR LEGS",
"starred_actors",
"VICTORIA ABRIL"
],
[
"BETWEEN YOUR LEGS",
"written_by",
"MANUEL GÓMEZ PEREIRA"
],
[
"BIUTIFUL",
"has_tags",
"JAVIER BARDEM"
],
[
"BIUTIFUL",
"in_language",
"SPANISH"
],
[
"BIUTIFUL",
"starred_actors",
"JAVIER BARDEM"
],
[
"DON'T TEMPT ME",
"in_language",
"SPANISH"
],
[
"DON'T TEMPT ME",
"starred_actors",
"VICTORIA ABRIL"
],
[
"GLORIA",
"in_language",
"SPANISH"
],
[
"GLORIA",
"release_year",
"1999"
],
[
"GOYA IN BORDEAUX",
"in_language",
"SPANISH"
],
[
"GOYA IN BORDEAUX",
"release_year",
"1999"
],
[
"INHERIT THE WIND",
"release_year",
"1960"
],
[
"INHERIT THE WIND",
"release_year",
"1999"
],
[
"LIVE FLESH",
"in_language",
"SPANISH"
],
[
"LIVE FLESH",
"starred_actors",
"JAVIER BARDEM"
],
[
"LOVE CAN SERIOUSLY DAMAGE YOUR HEALTH",
"directed_by",
"MANUEL GÓMEZ PEREIRA"
],
[
"LOVE CAN SERIOUSLY DAMAGE YOUR HEALTH",
"in_language",
"SPANISH"
],
[
"LOVE CAN SERIOUSLY DAMAGE YOUR HEALTH",
"written_by",
"MANUEL GÓMEZ PEREIRA"
],
[
"MONDAYS IN THE SUN",
"in_language",
"SPANISH"
],
[
"MONDAYS IN THE SUN",
"starred_actors",
"JAVIER BARDEM"
],
[
"NO ONE WRITES TO THE COLONEL",
"in_language",
"SPANISH"
],
[
"NO ONE WRITES TO THE COLONEL",
"release_year",
"1999"
],
[
"NOBODY KNOWS ANYBODY",
"in_language",
"SPANISH"
],
[
"NOBODY KNOWS ANYBODY",
"release_year",
"1999"
],
[
"SECOND SKIN",
"in_language",
"SPANISH"
],
[
"SECOND SKIN",
"release_year",
"1999"
],
[
"SECOND SKIN",
"starred_actors",
"JAVIER BARDEM"
],
[
"SOLAS",
"in_language",
"SPANISH"
],
[
"SOLAS",
"release_year",
"1999"
],
[
"THE DANCER UPSTAIRS",
"in_language",
"SPANISH"
],
[
"THE DANCER UPSTAIRS",
"starred_actors",
"JAVIER BARDEM"
],
[
"THE MAN NEXT DOOR",
"directed_by",
"MARIANO COHN"
],
[
"THE MAN NEXT DOOR",
"in_language",
"SPANISH"
],
[
"THE NAMELESS",
"in_language",
"SPANISH"
],
[
"THE NAMELESS",
"release_year",
"1999"
],
[
"THE NINTH GATE",
"in_language",
"SPANISH"
],
[
"THE NINTH GATE",
"release_year",
"1999"
],
[
"THE SEA INSIDE",
"has_tags",
"JAVIER BARDEM"
],
[
"THE SEA INSIDE",
"in_language",
"SPANISH"
],
[
"THE SEA INSIDE",
"starred_actors",
"JAVIER BARDEM"
],
[
"THE WARPED ONES",
"release_year",
"1960"
],
[
"TIE ME UP! TIE ME DOWN!",
"has_tags",
"SPANISH"
],
[
"TIE ME UP! TIE ME DOWN!",
"in_language",
"SPANISH"
],
[
"TIE ME UP! TIE ME DOWN!",
"starred_actors",
"VICTORIA ABRIL"
],
[
"TWO WOMEN",
"release_year",
"1960"
],
[
"TWO WOMEN",
"release_year",
"1999"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
22041, A BULLET FOR THE GENERAL
12694, A PISTOL FOR RINGO
14053, ACE HIGH
4763, ADVENTURE
26786, APARTMENT 143
17157, ARABIAN NIGHTS
19219, BACK TO THE FUTURE PART III
38657, BEAT THE DEVIL
14981, BREAKHEART PASS
29632, CHINA 9, LIBERTY 37
13888, CITY OF THE LIVING DEAD
8438, CUT AND RUN
20620, DJANGO
17645, DJANGO THE BASTARD
7704, FOR A FEW DOLLARS MORE
22710, GOD'S GUN
2600, HELL OF THE LIVING DEAD
5870, HORROR
24167, INFERNO
16200, ITALIAN
22136, JESSE JAMES MEETS FRANKENSTEIN'S DAUGHTER
20149, LAST OF THE DOGMEN
18287, MAN OF THE EAST
1909, MANUEL POIRIER
25283, MAVERICK
14237, NEAR DARK
147, ONCE UPON A TIME IN THE WEST
38962, OPERA
16671, RUN, MAN, RUN
31235, SABATA
35586, SAHARA
4109, SEVEN DOLLARS ON THE RED
8436, SPIRITS OF THE DEAD
29427, STARCRASH
26790, SWEPT AWAY
12891, TENTACLES
10334, THE CHURCH
23804, THE COMANCHEROS
36158, THE FIVE MAN ARMY
21435, THE GOOD, THE BAD AND THE UGLY
3711, THE GREAT SILENCE
32270, THE HORSEMAN ON THE ROOF
37677, THE HUNTING PARTY
28599, THE MOUNTAIN MEN
26820, THE MUMMY
7342, THEY CALL ME TRINITY
32079, ULYSSES
919, VAMPIRE IN VENICE
10352, WARLOCK
36026, WESTERN
29631, WHITE FANG
src, edge_attr, dst
22041, has_genre, 36026
22041, in_language, 16200
12694, has_genre, 36026
12694, in_language, 16200
14053, has_genre, 36026
14053, in_language, 16200
26786, has_genre, 5870
17157, has_genre, 4763
17157, in_language, 16200
19219, has_genre, 4763
19219, has_tags, 4763
19219, has_tags, 36026
38657, has_genre, 4763
38657, in_language, 16200
14981, has_genre, 36026
14981, has_tags, 4763
14981, has_tags, 36026
29632, has_genre, 36026
29632, in_language, 16200
13888, has_genre, 5870
13888, has_tags, 5870
13888, has_tags, 16200
13888, in_language, 16200
8438, has_genre, 4763
8438, in_language, 16200
20620, has_genre, 36026
20620, in_language, 16200
17645, has_genre, 36026
17645, in_language, 16200
7704, has_genre, 36026
7704, has_tags, 16200
7704, has_tags, 36026
7704, in_language, 16200
22710, has_genre, 36026
22710, in_language, 16200
2600, has_genre, 5870
2600, in_language, 16200
24167, has_genre, 5870
24167, in_language, 16200
22136, has_genre, 5870
22136, has_genre, 36026
20149, has_genre, 4763
20149, has_genre, 36026
18287, has_genre, 36026
18287, in_language, 16200
25283, has_genre, 4763
25283, has_tags, 36026
14237, has_genre, 5870
14237, has_tags, 36026
147, has_genre, 36026
147, has_tags, 36026
147, in_language, 16200
38962, has_genre, 5870
38962, in_language, 16200
16671, has_genre, 36026
16671, in_language, 16200
31235, has_genre, 36026
31235, in_language, 16200
35586, has_genre, 4763
35586, in_language, 16200
4109, has_genre, 36026
4109, in_language, 16200
8436, has_genre, 5870
8436, in_language, 16200
29427, has_genre, 4763
29427, in_language, 16200
26790, has_genre, 4763
26790, in_language, 16200
12891, has_genre, 5870
12891, has_tags, 5870
12891, has_tags, 16200
10334, has_genre, 5870
10334, in_language, 16200
23804, has_genre, 4763
23804, has_genre, 36026
36158, has_genre, 36026
36158, in_language, 16200
21435, has_genre, 36026
21435, has_tags, 16200
21435, has_tags, 36026
21435, in_language, 16200
3711, has_genre, 36026
3711, in_language, 16200
32270, has_genre, 4763
32270, in_language, 16200
37677, has_genre, 4763
37677, has_genre, 36026
28599, has_genre, 4763
28599, has_genre, 36026
26820, has_genre, 4763
26820, has_genre, 5870
26820, has_tags, 4763
26820, has_tags, 5870
7342, has_genre, 36026
7342, in_language, 16200
32079, has_genre, 4763
32079, in_language, 16200
919, has_genre, 5870
919, in_language, 16200
10352, has_genre, 5870
10352, has_genre, 36026
36026, directed_by, 1909
36026, written_by, 1909
29631, has_genre, 4763
29631, in_language, 16200
Question: In what context are APARTMENT 143, MANUEL POIRIER, and SAHARA connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"APARTMENT 143",
"MANUEL POIRIER",
"SAHARA"
],
"valid_edges": [
[
"A BULLET FOR THE GENERAL",
"has_genre",
"WESTERN"
],
[
"A BULLET FOR THE GENERAL",
"in_language",
"ITALIAN"
],
[
"A PISTOL FOR RINGO",
"has_genre",
"WESTERN"
],
[
"A PISTOL FOR RINGO",
"in_language",
"ITALIAN"
],
[
"ACE HIGH",
"has_genre",
"WESTERN"
],
[
"ACE HIGH",
"in_language",
"ITALIAN"
],
[
"APARTMENT 143",
"has_genre",
"HORROR"
],
[
"ARABIAN NIGHTS",
"has_genre",
"ADVENTURE"
],
[
"ARABIAN NIGHTS",
"in_language",
"ITALIAN"
],
[
"BACK TO THE FUTURE PART III",
"has_genre",
"ADVENTURE"
],
[
"BACK TO THE FUTURE PART III",
"has_tags",
"ADVENTURE"
],
[
"BACK TO THE FUTURE PART III",
"has_tags",
"WESTERN"
],
[
"BEAT THE DEVIL",
"has_genre",
"ADVENTURE"
],
[
"BEAT THE DEVIL",
"in_language",
"ITALIAN"
],
[
"BREAKHEART PASS",
"has_genre",
"WESTERN"
],
[
"BREAKHEART PASS",
"has_tags",
"ADVENTURE"
],
[
"BREAKHEART PASS",
"has_tags",
"WESTERN"
],
[
"CHINA 9, LIBERTY 37",
"has_genre",
"WESTERN"
],
[
"CHINA 9, LIBERTY 37",
"in_language",
"ITALIAN"
],
[
"CITY OF THE LIVING DEAD",
"has_genre",
"HORROR"
],
[
"CITY OF THE LIVING DEAD",
"has_tags",
"HORROR"
],
[
"CITY OF THE LIVING DEAD",
"has_tags",
"ITALIAN"
],
[
"CITY OF THE LIVING DEAD",
"in_language",
"ITALIAN"
],
[
"CUT AND RUN",
"has_genre",
"ADVENTURE"
],
[
"CUT AND RUN",
"in_language",
"ITALIAN"
],
[
"DJANGO",
"has_genre",
"WESTERN"
],
[
"DJANGO",
"in_language",
"ITALIAN"
],
[
"DJANGO THE BASTARD",
"has_genre",
"WESTERN"
],
[
"DJANGO THE BASTARD",
"in_language",
"ITALIAN"
],
[
"FOR A FEW DOLLARS MORE",
"has_genre",
"WESTERN"
],
[
"FOR A FEW DOLLARS MORE",
"has_tags",
"ITALIAN"
],
[
"FOR A FEW DOLLARS MORE",
"has_tags",
"WESTERN"
],
[
"FOR A FEW DOLLARS MORE",
"in_language",
"ITALIAN"
],
[
"GOD'S GUN",
"has_genre",
"WESTERN"
],
[
"GOD'S GUN",
"in_language",
"ITALIAN"
],
[
"HELL OF THE LIVING DEAD",
"has_genre",
"HORROR"
],
[
"HELL OF THE LIVING DEAD",
"in_language",
"ITALIAN"
],
[
"INFERNO",
"has_genre",
"HORROR"
],
[
"INFERNO",
"in_language",
"ITALIAN"
],
[
"JESSE JAMES MEETS FRANKENSTEIN'S DAUGHTER",
"has_genre",
"HORROR"
],
[
"JESSE JAMES MEETS FRANKENSTEIN'S DAUGHTER",
"has_genre",
"WESTERN"
],
[
"LAST OF THE DOGMEN",
"has_genre",
"ADVENTURE"
],
[
"LAST OF THE DOGMEN",
"has_genre",
"WESTERN"
],
[
"MAN OF THE EAST",
"has_genre",
"WESTERN"
],
[
"MAN OF THE EAST",
"in_language",
"ITALIAN"
],
[
"MAVERICK",
"has_genre",
"ADVENTURE"
],
[
"MAVERICK",
"has_tags",
"WESTERN"
],
[
"NEAR DARK",
"has_genre",
"HORROR"
],
[
"NEAR DARK",
"has_tags",
"WESTERN"
],
[
"ONCE UPON A TIME IN THE WEST",
"has_genre",
"WESTERN"
],
[
"ONCE UPON A TIME IN THE WEST",
"has_tags",
"WESTERN"
],
[
"ONCE UPON A TIME IN THE WEST",
"in_language",
"ITALIAN"
],
[
"OPERA",
"has_genre",
"HORROR"
],
[
"OPERA",
"in_language",
"ITALIAN"
],
[
"RUN, MAN, RUN",
"has_genre",
"WESTERN"
],
[
"RUN, MAN, RUN",
"in_language",
"ITALIAN"
],
[
"SABATA",
"has_genre",
"WESTERN"
],
[
"SABATA",
"in_language",
"ITALIAN"
],
[
"SAHARA",
"has_genre",
"ADVENTURE"
],
[
"SAHARA",
"in_language",
"ITALIAN"
],
[
"SEVEN DOLLARS ON THE RED",
"has_genre",
"WESTERN"
],
[
"SEVEN DOLLARS ON THE RED",
"in_language",
"ITALIAN"
],
[
"SPIRITS OF THE DEAD",
"has_genre",
"HORROR"
],
[
"SPIRITS OF THE DEAD",
"in_language",
"ITALIAN"
],
[
"STARCRASH",
"has_genre",
"ADVENTURE"
],
[
"STARCRASH",
"in_language",
"ITALIAN"
],
[
"SWEPT AWAY",
"has_genre",
"ADVENTURE"
],
[
"SWEPT AWAY",
"in_language",
"ITALIAN"
],
[
"TENTACLES",
"has_genre",
"HORROR"
],
[
"TENTACLES",
"has_tags",
"HORROR"
],
[
"TENTACLES",
"has_tags",
"ITALIAN"
],
[
"THE CHURCH",
"has_genre",
"HORROR"
],
[
"THE CHURCH",
"in_language",
"ITALIAN"
],
[
"THE COMANCHEROS",
"has_genre",
"ADVENTURE"
],
[
"THE COMANCHEROS",
"has_genre",
"WESTERN"
],
[
"THE FIVE MAN ARMY",
"has_genre",
"WESTERN"
],
[
"THE FIVE MAN ARMY",
"in_language",
"ITALIAN"
],
[
"THE GOOD, THE BAD AND THE UGLY",
"has_genre",
"WESTERN"
],
[
"THE GOOD, THE BAD AND THE UGLY",
"has_tags",
"ITALIAN"
],
[
"THE GOOD, THE BAD AND THE UGLY",
"has_tags",
"WESTERN"
],
[
"THE GOOD, THE BAD AND THE UGLY",
"in_language",
"ITALIAN"
],
[
"THE GREAT SILENCE",
"has_genre",
"WESTERN"
],
[
"THE GREAT SILENCE",
"in_language",
"ITALIAN"
],
[
"THE HORSEMAN ON THE ROOF",
"has_genre",
"ADVENTURE"
],
[
"THE HORSEMAN ON THE ROOF",
"in_language",
"ITALIAN"
],
[
"THE HUNTING PARTY",
"has_genre",
"ADVENTURE"
],
[
"THE HUNTING PARTY",
"has_genre",
"WESTERN"
],
[
"THE MOUNTAIN MEN",
"has_genre",
"ADVENTURE"
],
[
"THE MOUNTAIN MEN",
"has_genre",
"WESTERN"
],
[
"THE MUMMY",
"has_genre",
"ADVENTURE"
],
[
"THE MUMMY",
"has_genre",
"HORROR"
],
[
"THE MUMMY",
"has_tags",
"ADVENTURE"
],
[
"THE MUMMY",
"has_tags",
"HORROR"
],
[
"THEY CALL ME TRINITY",
"has_genre",
"WESTERN"
],
[
"THEY CALL ME TRINITY",
"in_language",
"ITALIAN"
],
[
"ULYSSES",
"has_genre",
"ADVENTURE"
],
[
"ULYSSES",
"in_language",
"ITALIAN"
],
[
"VAMPIRE IN VENICE",
"has_genre",
"HORROR"
],
[
"VAMPIRE IN VENICE",
"in_language",
"ITALIAN"
],
[
"WARLOCK",
"has_genre",
"HORROR"
],
[
"WARLOCK",
"has_genre",
"WESTERN"
],
[
"WESTERN",
"directed_by",
"MANUEL POIRIER"
],
[
"WESTERN",
"written_by",
"MANUEL POIRIER"
],
[
"WHITE FANG",
"has_genre",
"ADVENTURE"
],
[
"WHITE FANG",
"in_language",
"ITALIAN"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
38097, 1985
31672, A.K.
9989, ALICE AND MARTIN
35549, ANDRÉ TÉCHINÉ
24003, BAROCCO
20489, CHANGING TIMES
6012, FRENCH
31496, MAD MAX BEYOND THUNDERDOME
12358, MY FAVORITE SEASON
29620, POLICE
27191, RENDEZ-VOUS
11723, SHOAH
6323, STRAYED
39270, SUBWAY
32637, THE EARRINGS OF MADAME DE...
36893, THE GIRL ON THE TRAIN
35826, THE PEANUT BUTTER SOLUTION
5537, THE WITNESSES
3617, THIEVES
12294, VAGABOND
23141, WILD REEDS
src, edge_attr, dst
31672, in_language, 6012
31672, release_year, 38097
9989, directed_by, 35549
9989, in_language, 6012
9989, written_by, 35549
24003, directed_by, 35549
24003, in_language, 6012
24003, written_by, 35549
20489, directed_by, 35549
20489, in_language, 6012
20489, written_by, 35549
31496, release_year, 38097
12358, directed_by, 35549
12358, has_tags, 35549
12358, in_language, 6012
12358, written_by, 35549
29620, in_language, 6012
29620, release_year, 38097
27191, directed_by, 35549
27191, in_language, 6012
27191, release_year, 38097
27191, written_by, 35549
11723, in_language, 6012
11723, release_year, 38097
6323, directed_by, 35549
6323, has_tags, 35549
6323, in_language, 6012
6323, written_by, 35549
39270, in_language, 6012
39270, release_year, 38097
32637, in_language, 6012
36893, directed_by, 35549
36893, in_language, 6012
36893, written_by, 35549
35826, in_language, 6012
35826, release_year, 38097
5537, directed_by, 35549
5537, has_tags, 35549
5537, in_language, 6012
5537, written_by, 35549
3617, directed_by, 35549
3617, has_tags, 35549
3617, in_language, 6012
3617, written_by, 35549
12294, in_language, 6012
12294, release_year, 38097
23141, directed_by, 35549
23141, has_tags, 35549
23141, in_language, 6012
23141, written_by, 35549
Question: For what reason are MAD MAX BEYOND THUNDERDOME, THE EARRINGS OF MADAME DE..., and WILD REEDS associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"MAD MAX BEYOND THUNDERDOME",
"THE EARRINGS OF MADAME DE...",
"WILD REEDS"
],
"valid_edges": [
[
"A.K.",
"in_language",
"FRENCH"
],
[
"A.K.",
"release_year",
"1985"
],
[
"ALICE AND MARTIN",
"directed_by",
"ANDRÉ TÉCHINÉ"
],
[
"ALICE AND MARTIN",
"in_language",
"FRENCH"
],
[
"ALICE AND MARTIN",
"written_by",
"ANDRÉ TÉCHINÉ"
],
[
"BAROCCO",
"directed_by",
"ANDRÉ TÉCHINÉ"
],
[
"BAROCCO",
"in_language",
"FRENCH"
],
[
"BAROCCO",
"written_by",
"ANDRÉ TÉCHINÉ"
],
[
"CHANGING TIMES",
"directed_by",
"ANDRÉ TÉCHINÉ"
],
[
"CHANGING TIMES",
"in_language",
"FRENCH"
],
[
"CHANGING TIMES",
"written_by",
"ANDRÉ TÉCHINÉ"
],
[
"MAD MAX BEYOND THUNDERDOME",
"release_year",
"1985"
],
[
"MY FAVORITE SEASON",
"directed_by",
"ANDRÉ TÉCHINÉ"
],
[
"MY FAVORITE SEASON",
"has_tags",
"ANDRÉ TÉCHINÉ"
],
[
"MY FAVORITE SEASON",
"in_language",
"FRENCH"
],
[
"MY FAVORITE SEASON",
"written_by",
"ANDRÉ TÉCHINÉ"
],
[
"POLICE",
"in_language",
"FRENCH"
],
[
"POLICE",
"release_year",
"1985"
],
[
"RENDEZ-VOUS",
"directed_by",
"ANDRÉ TÉCHINÉ"
],
[
"RENDEZ-VOUS",
"in_language",
"FRENCH"
],
[
"RENDEZ-VOUS",
"release_year",
"1985"
],
[
"RENDEZ-VOUS",
"written_by",
"ANDRÉ TÉCHINÉ"
],
[
"SHOAH",
"in_language",
"FRENCH"
],
[
"SHOAH",
"release_year",
"1985"
],
[
"STRAYED",
"directed_by",
"ANDRÉ TÉCHINÉ"
],
[
"STRAYED",
"has_tags",
"ANDRÉ TÉCHINÉ"
],
[
"STRAYED",
"in_language",
"FRENCH"
],
[
"STRAYED",
"written_by",
"ANDRÉ TÉCHINÉ"
],
[
"SUBWAY",
"in_language",
"FRENCH"
],
[
"SUBWAY",
"release_year",
"1985"
],
[
"THE EARRINGS OF MADAME DE...",
"in_language",
"FRENCH"
],
[
"THE GIRL ON THE TRAIN",
"directed_by",
"ANDRÉ TÉCHINÉ"
],
[
"THE GIRL ON THE TRAIN",
"in_language",
"FRENCH"
],
[
"THE GIRL ON THE TRAIN",
"written_by",
"ANDRÉ TÉCHINÉ"
],
[
"THE PEANUT BUTTER SOLUTION",
"in_language",
"FRENCH"
],
[
"THE PEANUT BUTTER SOLUTION",
"release_year",
"1985"
],
[
"THE WITNESSES",
"directed_by",
"ANDRÉ TÉCHINÉ"
],
[
"THE WITNESSES",
"has_tags",
"ANDRÉ TÉCHINÉ"
],
[
"THE WITNESSES",
"in_language",
"FRENCH"
],
[
"THE WITNESSES",
"written_by",
"ANDRÉ TÉCHINÉ"
],
[
"THIEVES",
"directed_by",
"ANDRÉ TÉCHINÉ"
],
[
"THIEVES",
"has_tags",
"ANDRÉ TÉCHINÉ"
],
[
"THIEVES",
"in_language",
"FRENCH"
],
[
"THIEVES",
"written_by",
"ANDRÉ TÉCHINÉ"
],
[
"VAGABOND",
"in_language",
"FRENCH"
],
[
"VAGABOND",
"release_year",
"1985"
],
[
"WILD REEDS",
"directed_by",
"ANDRÉ TÉCHINÉ"
],
[
"WILD REEDS",
"has_tags",
"ANDRÉ TÉCHINÉ"
],
[
"WILD REEDS",
"in_language",
"FRENCH"
],
[
"WILD REEDS",
"written_by",
"ANDRÉ TÉCHINÉ"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
15177, ANDY BELLIN
30463, COMEDY
36212, DRAMA
24002, LOVELACE
26738, OSAMA BIN LADEN
584, THREE SMART GIRLS GROW UP
11987, TRUST
16849, ZERO DARK THIRTY
src, edge_attr, dst
24002, has_genre, 36212
24002, written_by, 15177
584, has_genre, 30463
11987, has_genre, 30463
11987, has_genre, 36212
11987, written_by, 15177
16849, has_genre, 36212
16849, has_tags, 26738
Question: In what context are ANDY BELLIN, OSAMA BIN LADEN, and THREE SMART GIRLS GROW UP connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"ANDY BELLIN",
"OSAMA BIN LADEN",
"THREE SMART GIRLS GROW UP"
],
"valid_edges": [
[
"LOVELACE",
"has_genre",
"DRAMA"
],
[
"LOVELACE",
"written_by",
"ANDY BELLIN"
],
[
"THREE SMART GIRLS GROW UP",
"has_genre",
"COMEDY"
],
[
"TRUST",
"has_genre",
"COMEDY"
],
[
"TRUST",
"has_genre",
"DRAMA"
],
[
"TRUST",
"written_by",
"ANDY BELLIN"
],
[
"ZERO DARK THIRTY",
"has_genre",
"DRAMA"
],
[
"ZERO DARK THIRTY",
"has_tags",
"OSAMA BIN LADEN"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
7841, 1987
13634, ARTHUR PENN
2325, BILLY CRUDUP
19131, BONNIE AND CLYDE
13176, DEAD OF WINTER
5429, FAYE DUNAWAY
34231, GENE HACKMAN
11565, GOOD
28397, KEVIN COSTNER
33575, LITTLE BIG MAN
8253, MICKEY ONE
6446, NIGHT MOVES
32910, NO WAY OUT
6742, TARGET
7, THE LEFT HANDED GUN
18782, THE QUICK AND THE DEAD
37585, WARREN BEATTY
20465, WATCHMEN
19845, WITHOUT LIMITS
29933, WYATT EARP
src, edge_attr, dst
19131, directed_by, 13634
19131, has_imdb_rating, 11565
19131, has_tags, 13634
19131, has_tags, 5429
19131, has_tags, 34231
19131, has_tags, 37585
19131, starred_actors, 5429
19131, starred_actors, 34231
19131, starred_actors, 37585
13176, directed_by, 13634
13176, release_year, 7841
33575, directed_by, 13634
33575, has_tags, 13634
33575, starred_actors, 5429
8253, directed_by, 13634
8253, starred_actors, 37585
6446, directed_by, 13634
6446, has_tags, 13634
6446, has_tags, 34231
6446, starred_actors, 34231
32910, has_tags, 34231
32910, has_tags, 28397
32910, release_year, 7841
32910, starred_actors, 34231
32910, starred_actors, 28397
6742, directed_by, 13634
6742, starred_actors, 34231
7, directed_by, 13634
7, has_imdb_rating, 11565
18782, has_tags, 34231
18782, release_year, 7841
18782, starred_actors, 34231
20465, has_imdb_rating, 11565
20465, has_tags, 2325
20465, starred_actors, 2325
19845, has_imdb_rating, 11565
19845, has_tags, 2325
19845, starred_actors, 2325
29933, has_tags, 34231
29933, has_tags, 28397
29933, starred_actors, 34231
29933, starred_actors, 28397
Question: How are ARTHUR PENN, BILLY CRUDUP, and NO WAY OUT related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"ARTHUR PENN",
"BILLY CRUDUP",
"NO WAY OUT"
],
"valid_edges": [
[
"BONNIE AND CLYDE",
"directed_by",
"ARTHUR PENN"
],
[
"BONNIE AND CLYDE",
"has_imdb_rating",
"GOOD"
],
[
"BONNIE AND CLYDE",
"has_tags",
"ARTHUR PENN"
],
[
"BONNIE AND CLYDE",
"has_tags",
"FAYE DUNAWAY"
],
[
"BONNIE AND CLYDE",
"has_tags",
"GENE HACKMAN"
],
[
"BONNIE AND CLYDE",
"has_tags",
"WARREN BEATTY"
],
[
"BONNIE AND CLYDE",
"starred_actors",
"FAYE DUNAWAY"
],
[
"BONNIE AND CLYDE",
"starred_actors",
"GENE HACKMAN"
],
[
"BONNIE AND CLYDE",
"starred_actors",
"WARREN BEATTY"
],
[
"DEAD OF WINTER",
"directed_by",
"ARTHUR PENN"
],
[
"DEAD OF WINTER",
"release_year",
"1987"
],
[
"LITTLE BIG MAN",
"directed_by",
"ARTHUR PENN"
],
[
"LITTLE BIG MAN",
"has_tags",
"ARTHUR PENN"
],
[
"LITTLE BIG MAN",
"starred_actors",
"FAYE DUNAWAY"
],
[
"MICKEY ONE",
"directed_by",
"ARTHUR PENN"
],
[
"MICKEY ONE",
"starred_actors",
"WARREN BEATTY"
],
[
"NIGHT MOVES",
"directed_by",
"ARTHUR PENN"
],
[
"NIGHT MOVES",
"has_tags",
"ARTHUR PENN"
],
[
"NIGHT MOVES",
"has_tags",
"GENE HACKMAN"
],
[
"NIGHT MOVES",
"starred_actors",
"GENE HACKMAN"
],
[
"NO WAY OUT",
"has_tags",
"GENE HACKMAN"
],
[
"NO WAY OUT",
"has_tags",
"KEVIN COSTNER"
],
[
"NO WAY OUT",
"release_year",
"1987"
],
[
"NO WAY OUT",
"starred_actors",
"GENE HACKMAN"
],
[
"NO WAY OUT",
"starred_actors",
"KEVIN COSTNER"
],
[
"TARGET",
"directed_by",
"ARTHUR PENN"
],
[
"TARGET",
"starred_actors",
"GENE HACKMAN"
],
[
"THE LEFT HANDED GUN",
"directed_by",
"ARTHUR PENN"
],
[
"THE LEFT HANDED GUN",
"has_imdb_rating",
"GOOD"
],
[
"THE QUICK AND THE DEAD",
"has_tags",
"GENE HACKMAN"
],
[
"THE QUICK AND THE DEAD",
"release_year",
"1987"
],
[
"THE QUICK AND THE DEAD",
"starred_actors",
"GENE HACKMAN"
],
[
"WATCHMEN",
"has_imdb_rating",
"GOOD"
],
[
"WATCHMEN",
"has_tags",
"BILLY CRUDUP"
],
[
"WATCHMEN",
"starred_actors",
"BILLY CRUDUP"
],
[
"WITHOUT LIMITS",
"has_imdb_rating",
"GOOD"
],
[
"WITHOUT LIMITS",
"has_tags",
"BILLY CRUDUP"
],
[
"WITHOUT LIMITS",
"starred_actors",
"BILLY CRUDUP"
],
[
"WYATT EARP",
"has_tags",
"GENE HACKMAN"
],
[
"WYATT EARP",
"has_tags",
"KEVIN COSTNER"
],
[
"WYATT EARP",
"starred_actors",
"GENE HACKMAN"
],
[
"WYATT EARP",
"starred_actors",
"KEVIN COSTNER"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
19407, 8½
17698, ALBERTO SORDI
30463, COMEDY
10941, DRIVING MISS DAISY
29506, ENNIO FLAIANO
3353, FEDERICO FELLINI
11227, GIULIETTA MASINA
17344, I VITELLONI
16200, ITALIAN
8923, JOHNNY ENGLISH REBORN
20913, LA STRADA
24926, SWEET CHARITY
34529, THE WHITE SHEIK
25136, TULLIO PINELLI
src, edge_attr, dst
19407, directed_by, 3353
19407, has_tags, 3353
19407, in_language, 16200
19407, written_by, 29506
19407, written_by, 3353
19407, written_by, 25136
10941, has_genre, 30463
17344, directed_by, 3353
17344, has_genre, 30463
17344, has_tags, 3353
17344, has_tags, 16200
17344, in_language, 16200
17344, starred_actors, 17698
17344, written_by, 29506
17344, written_by, 3353
17344, written_by, 25136
8923, has_genre, 30463
8923, has_tags, 30463
20913, directed_by, 3353
20913, has_tags, 3353
20913, has_tags, 11227
20913, has_tags, 16200
20913, in_language, 16200
20913, starred_actors, 11227
20913, written_by, 29506
20913, written_by, 3353
20913, written_by, 25136
24926, written_by, 29506
24926, written_by, 3353
24926, written_by, 25136
34529, directed_by, 3353
34529, has_genre, 30463
34529, has_tags, 3353
34529, in_language, 16200
34529, starred_actors, 17698
34529, starred_actors, 11227
34529, written_by, 29506
34529, written_by, 3353
34529, written_by, 25136
Question: For what reason are DRIVING MISS DAISY, JOHNNY ENGLISH REBORN, and TULLIO PINELLI associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"DRIVING MISS DAISY",
"JOHNNY ENGLISH REBORN",
"TULLIO PINELLI"
],
"valid_edges": [
[
"8½",
"directed_by",
"FEDERICO FELLINI"
],
[
"8½",
"has_tags",
"FEDERICO FELLINI"
],
[
"8½",
"in_language",
"ITALIAN"
],
[
"8½",
"written_by",
"ENNIO FLAIANO"
],
[
"8½",
"written_by",
"FEDERICO FELLINI"
],
[
"8½",
"written_by",
"TULLIO PINELLI"
],
[
"DRIVING MISS DAISY",
"has_genre",
"COMEDY"
],
[
"I VITELLONI",
"directed_by",
"FEDERICO FELLINI"
],
[
"I VITELLONI",
"has_genre",
"COMEDY"
],
[
"I VITELLONI",
"has_tags",
"FEDERICO FELLINI"
],
[
"I VITELLONI",
"has_tags",
"ITALIAN"
],
[
"I VITELLONI",
"in_language",
"ITALIAN"
],
[
"I VITELLONI",
"starred_actors",
"ALBERTO SORDI"
],
[
"I VITELLONI",
"written_by",
"ENNIO FLAIANO"
],
[
"I VITELLONI",
"written_by",
"FEDERICO FELLINI"
],
[
"I VITELLONI",
"written_by",
"TULLIO PINELLI"
],
[
"JOHNNY ENGLISH REBORN",
"has_genre",
"COMEDY"
],
[
"JOHNNY ENGLISH REBORN",
"has_tags",
"COMEDY"
],
[
"LA STRADA",
"directed_by",
"FEDERICO FELLINI"
],
[
"LA STRADA",
"has_tags",
"FEDERICO FELLINI"
],
[
"LA STRADA",
"has_tags",
"GIULIETTA MASINA"
],
[
"LA STRADA",
"has_tags",
"ITALIAN"
],
[
"LA STRADA",
"in_language",
"ITALIAN"
],
[
"LA STRADA",
"starred_actors",
"GIULIETTA MASINA"
],
[
"LA STRADA",
"written_by",
"ENNIO FLAIANO"
],
[
"LA STRADA",
"written_by",
"FEDERICO FELLINI"
],
[
"LA STRADA",
"written_by",
"TULLIO PINELLI"
],
[
"SWEET CHARITY",
"written_by",
"ENNIO FLAIANO"
],
[
"SWEET CHARITY",
"written_by",
"FEDERICO FELLINI"
],
[
"SWEET CHARITY",
"written_by",
"TULLIO PINELLI"
],
[
"THE WHITE SHEIK",
"directed_by",
"FEDERICO FELLINI"
],
[
"THE WHITE SHEIK",
"has_genre",
"COMEDY"
],
[
"THE WHITE SHEIK",
"has_tags",
"FEDERICO FELLINI"
],
[
"THE WHITE SHEIK",
"in_language",
"ITALIAN"
],
[
"THE WHITE SHEIK",
"starred_actors",
"ALBERTO SORDI"
],
[
"THE WHITE SHEIK",
"starred_actors",
"GIULIETTA MASINA"
],
[
"THE WHITE SHEIK",
"written_by",
"ENNIO FLAIANO"
],
[
"THE WHITE SHEIK",
"written_by",
"FEDERICO FELLINI"
],
[
"THE WHITE SHEIK",
"written_by",
"TULLIO PINELLI"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
13241, 2
39289, ACTION
31367, ED O'ROSS
5870, HORROR
11016, MARTITA HUNT
38677, MIAMI VICE
24020, NADJA
13081, R
9555, RED HEAT
29005, SIN CITY
2709, THE BRIDES OF DRACULA
src, edge_attr, dst
38677, has_genre, 39289
38677, has_tags, 13241
38677, has_tags, 13081
24020, has_genre, 5870
24020, has_tags, 13241
9555, has_genre, 39289
9555, has_tags, 39289
9555, starred_actors, 31367
29005, has_tags, 13241
29005, has_tags, 39289
29005, has_tags, 13081
2709, has_genre, 5870
2709, starred_actors, 11016
Question: How are 2, ED O'ROSS, and MARTITA HUNT related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"2",
"ED O'ROSS",
"MARTITA HUNT"
],
"valid_edges": [
[
"MIAMI VICE",
"has_genre",
"ACTION"
],
[
"MIAMI VICE",
"has_tags",
"2"
],
[
"MIAMI VICE",
"has_tags",
"R"
],
[
"NADJA",
"has_genre",
"HORROR"
],
[
"NADJA",
"has_tags",
"2"
],
[
"RED HEAT",
"has_genre",
"ACTION"
],
[
"RED HEAT",
"has_tags",
"ACTION"
],
[
"RED HEAT",
"starred_actors",
"ED O'ROSS"
],
[
"SIN CITY",
"has_tags",
"2"
],
[
"SIN CITY",
"has_tags",
"ACTION"
],
[
"SIN CITY",
"has_tags",
"R"
],
[
"THE BRIDES OF DRACULA",
"has_genre",
"HORROR"
],
[
"THE BRIDES OF DRACULA",
"starred_actors",
"MARTITA HUNT"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
13408, 2001
30463, COMEDY
4107, DIRECTOR'S CUT
22255, DONNIE DARKO
36212, DRAMA
21955, JACINDA BARRETT
21401, KIM DARBY
32018, TEEN WOLF TOO
28107, THE LAST KISS
src, edge_attr, dst
22255, has_genre, 36212
22255, has_tags, 4107
22255, release_year, 13408
32018, has_genre, 30463
32018, starred_actors, 21401
28107, has_genre, 30463
28107, has_genre, 36212
28107, release_year, 13408
28107, starred_actors, 21955
Question: In what context are DIRECTOR'S CUT, JACINDA BARRETT, and KIM DARBY connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"DIRECTOR'S CUT",
"JACINDA BARRETT",
"KIM DARBY"
],
"valid_edges": [
[
"DONNIE DARKO",
"has_genre",
"DRAMA"
],
[
"DONNIE DARKO",
"has_tags",
"DIRECTOR'S CUT"
],
[
"DONNIE DARKO",
"release_year",
"2001"
],
[
"TEEN WOLF TOO",
"has_genre",
"COMEDY"
],
[
"TEEN WOLF TOO",
"starred_actors",
"KIM DARBY"
],
[
"THE LAST KISS",
"has_genre",
"COMEDY"
],
[
"THE LAST KISS",
"has_genre",
"DRAMA"
],
[
"THE LAST KISS",
"release_year",
"2001"
],
[
"THE LAST KISS",
"starred_actors",
"JACINDA BARRETT"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
8486, 1999
27261, 2009
30146, A CHRISTMAS CAROL
10045, BD-R
20946, BIG PUN
722, CHARACTERS
22958, FAMOUS
3179, NANETTE NEWMAN
21512, SHERLOCK HOLMES
16219, STORY
23847, THE STEPFORD WIVES
14499, TOY STORY 2
7105, URBAN MENACE
src, edge_attr, dst
30146, has_imdb_votes, 22958
30146, has_tags, 10045
30146, has_tags, 722
30146, release_year, 8486
30146, release_year, 27261
21512, has_imdb_votes, 22958
21512, has_tags, 722
21512, has_tags, 21512
21512, has_tags, 16219
21512, release_year, 27261
23847, has_tags, 10045
23847, starred_actors, 3179
14499, has_tags, 722
14499, has_tags, 16219
14499, release_year, 8486
7105, release_year, 8486
7105, starred_actors, 20946
Question: In what context are BIG PUN, CHARACTERS, and NANETTE NEWMAN connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"BIG PUN",
"CHARACTERS",
"NANETTE NEWMAN"
],
"valid_edges": [
[
"A CHRISTMAS CAROL",
"has_imdb_votes",
"FAMOUS"
],
[
"A CHRISTMAS CAROL",
"has_tags",
"BD-R"
],
[
"A CHRISTMAS CAROL",
"has_tags",
"CHARACTERS"
],
[
"A CHRISTMAS CAROL",
"release_year",
"1999"
],
[
"A CHRISTMAS CAROL",
"release_year",
"2009"
],
[
"SHERLOCK HOLMES",
"has_imdb_votes",
"FAMOUS"
],
[
"SHERLOCK HOLMES",
"has_tags",
"CHARACTERS"
],
[
"SHERLOCK HOLMES",
"has_tags",
"SHERLOCK HOLMES"
],
[
"SHERLOCK HOLMES",
"has_tags",
"STORY"
],
[
"SHERLOCK HOLMES",
"release_year",
"2009"
],
[
"THE STEPFORD WIVES",
"has_tags",
"BD-R"
],
[
"THE STEPFORD WIVES",
"starred_actors",
"NANETTE NEWMAN"
],
[
"TOY STORY 2",
"has_tags",
"CHARACTERS"
],
[
"TOY STORY 2",
"has_tags",
"STORY"
],
[
"TOY STORY 2",
"release_year",
"1999"
],
[
"URBAN MENACE",
"release_year",
"1999"
],
[
"URBAN MENACE",
"starred_actors",
"BIG PUN"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
12998, 1
29424, 2011
2105, ANAND TUCKER
30976, DOUGLAS BUCK
7139, HILARY AND JACKIE
19247, ITALIAN FOR BEGINNERS
17950, LONE SCHERFIG
29488, ONE DAY
25301, THE THEATRE BIZARRE
src, edge_attr, dst
7139, directed_by, 2105
7139, has_tags, 12998
19247, directed_by, 17950
19247, has_tags, 12998
19247, has_tags, 17950
19247, written_by, 17950
29488, directed_by, 17950
29488, release_year, 29424
25301, directed_by, 30976
25301, release_year, 29424
25301, written_by, 30976
Question: How are ANAND TUCKER, DOUGLAS BUCK, and LONE SCHERFIG related?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"ANAND TUCKER",
"DOUGLAS BUCK",
"LONE SCHERFIG"
],
"valid_edges": [
[
"HILARY AND JACKIE",
"directed_by",
"ANAND TUCKER"
],
[
"HILARY AND JACKIE",
"has_tags",
"1"
],
[
"ITALIAN FOR BEGINNERS",
"directed_by",
"LONE SCHERFIG"
],
[
"ITALIAN FOR BEGINNERS",
"has_tags",
"1"
],
[
"ITALIAN FOR BEGINNERS",
"has_tags",
"LONE SCHERFIG"
],
[
"ITALIAN FOR BEGINNERS",
"written_by",
"LONE SCHERFIG"
],
[
"ONE DAY",
"directed_by",
"LONE SCHERFIG"
],
[
"ONE DAY",
"release_year",
"2011"
],
[
"THE THEATRE BIZARRE",
"directed_by",
"DOUGLAS BUCK"
],
[
"THE THEATRE BIZARRE",
"release_year",
"2011"
],
[
"THE THEATRE BIZARRE",
"written_by",
"DOUGLAS BUCK"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
35063, 1976
29424, 2011
1421, 2013
11835, 21 HOURS AT MUNICH
39501, 30 MINUTES OR LESS
24454, CARRIE
21922, JANE EYRE
14847, JESSE EISENBERG
15254, JORDANA BEATTY
208, JUDY MOODY AND THE NOT BUMMER SUMMER
4136, MIA WASIKOWSKA
35664, RESTLESS
33994, TAKE ME HOME TONIGHT
3680, THE DOUBLE
18520, TOPHER GRACE
src, edge_attr, dst
11835, release_year, 35063
39501, release_year, 29424
39501, starred_actors, 14847
24454, release_year, 35063
24454, release_year, 1421
21922, has_tags, 4136
21922, release_year, 29424
21922, starred_actors, 4136
208, release_year, 29424
208, starred_actors, 15254
35664, release_year, 29424
35664, starred_actors, 4136
33994, has_tags, 18520
33994, release_year, 29424
33994, starred_actors, 18520
33994, written_by, 18520
3680, has_tags, 4136
3680, release_year, 29424
3680, release_year, 1421
3680, starred_actors, 14847
3680, starred_actors, 4136
3680, starred_actors, 18520
Question: In what context are 21 HOURS AT MUNICH, JORDANA BEATTY, and THE DOUBLE connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"21 HOURS AT MUNICH",
"JORDANA BEATTY",
"THE DOUBLE"
],
"valid_edges": [
[
"21 HOURS AT MUNICH",
"release_year",
"1976"
],
[
"30 MINUTES OR LESS",
"release_year",
"2011"
],
[
"30 MINUTES OR LESS",
"starred_actors",
"JESSE EISENBERG"
],
[
"CARRIE",
"release_year",
"1976"
],
[
"CARRIE",
"release_year",
"2013"
],
[
"JANE EYRE",
"has_tags",
"MIA WASIKOWSKA"
],
[
"JANE EYRE",
"release_year",
"2011"
],
[
"JANE EYRE",
"starred_actors",
"MIA WASIKOWSKA"
],
[
"JUDY MOODY AND THE NOT BUMMER SUMMER",
"release_year",
"2011"
],
[
"JUDY MOODY AND THE NOT BUMMER SUMMER",
"starred_actors",
"JORDANA BEATTY"
],
[
"RESTLESS",
"release_year",
"2011"
],
[
"RESTLESS",
"starred_actors",
"MIA WASIKOWSKA"
],
[
"TAKE ME HOME TONIGHT",
"has_tags",
"TOPHER GRACE"
],
[
"TAKE ME HOME TONIGHT",
"release_year",
"2011"
],
[
"TAKE ME HOME TONIGHT",
"starred_actors",
"TOPHER GRACE"
],
[
"TAKE ME HOME TONIGHT",
"written_by",
"TOPHER GRACE"
],
[
"THE DOUBLE",
"has_tags",
"MIA WASIKOWSKA"
],
[
"THE DOUBLE",
"release_year",
"2011"
],
[
"THE DOUBLE",
"release_year",
"2013"
],
[
"THE DOUBLE",
"starred_actors",
"JESSE EISENBERG"
],
[
"THE DOUBLE",
"starred_actors",
"MIA WASIKOWSKA"
],
[
"THE DOUBLE",
"starred_actors",
"TOPHER GRACE"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
20247, 44 INCH CHEST
36212, DRAMA
31783, ENGLISH
9931, JANE GOLDMAN
5650, LOUIS MELLIS
16986, PAVEL LUNGIN
11556, TAXI BLUES
25509, THE DEBT
3437, THE WOMAN IN BLACK
34970, TOM WILKINSON
src, edge_attr, dst
20247, has_genre, 36212
20247, starred_actors, 34970
20247, written_by, 5650
11556, directed_by, 16986
11556, has_genre, 36212
11556, written_by, 16986
25509, has_genre, 36212
25509, has_tags, 34970
25509, in_language, 31783
25509, starred_actors, 34970
25509, written_by, 9931
3437, has_genre, 36212
3437, in_language, 31783
3437, written_by, 9931
Question: For what reason are JANE GOLDMAN, LOUIS MELLIS, and PAVEL LUNGIN associated?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"JANE GOLDMAN",
"LOUIS MELLIS",
"PAVEL LUNGIN"
],
"valid_edges": [
[
"44 INCH CHEST",
"has_genre",
"DRAMA"
],
[
"44 INCH CHEST",
"starred_actors",
"TOM WILKINSON"
],
[
"44 INCH CHEST",
"written_by",
"LOUIS MELLIS"
],
[
"TAXI BLUES",
"directed_by",
"PAVEL LUNGIN"
],
[
"TAXI BLUES",
"has_genre",
"DRAMA"
],
[
"TAXI BLUES",
"written_by",
"PAVEL LUNGIN"
],
[
"THE DEBT",
"has_genre",
"DRAMA"
],
[
"THE DEBT",
"has_tags",
"TOM WILKINSON"
],
[
"THE DEBT",
"in_language",
"ENGLISH"
],
[
"THE DEBT",
"starred_actors",
"TOM WILKINSON"
],
[
"THE DEBT",
"written_by",
"JANE GOLDMAN"
],
[
"THE WOMAN IN BLACK",
"has_genre",
"DRAMA"
],
[
"THE WOMAN IN BLACK",
"in_language",
"ENGLISH"
],
[
"THE WOMAN IN BLACK",
"written_by",
"JANE GOLDMAN"
]
]
}
|
metaqa
|
You are given a directed graph as two CSV-like sections in this order:
1) Node table (header included):
node_id, node_attr
2) Edge table (header included):
src, edge_attr, dst
Task
- Use ONLY edges from the Edge table to answer the question by outputting a path.
- When printing each edge, replace IDs with the exact node_attr from the Node table.
- Output MUST be text triples, not numeric IDs.
Output format (STRICT — no extra text):
PATH:
("subject"|predicate|"object")
...
END
Rules
- Use only listed edges; do NOT invent edges.
- Map IDs → node_attr; preserve node_attr exactly.
- Output NOTHING outside the PATH block.
- If no path exists, output exactly:
PATH:
END
Graph:
node_id, node_attr
15421, 100 BLOODY ACRES
28153, 2 DAYS IN NEW YORK
658, 2012
37304, 21 JUMP STREET
31304, 30 BEATS
30586, A FANTASTIC FEAR OF EVERYTHING
24585, A GLIMPSE INSIDE THE MIND OF CHARLES SWAN III
20562, A THOUSAND WORDS
29800, ACE ATTORNEY
35724, ALTER EGOS
36099, AMERICAN REUNION
35584, ANY QUESTIONS FOR BEN?
26059, BACHELORETTE
23994, BARFI!
26923, BATTLESHIP
2284, BENDING THE RULES
32770, BEST MAN DOWN
10002, BIO-DOME
5946, BLOODY BLOODY BIBLE CAMP
39848, BLUE LIKE JAZZ
14480, BUDDIES
32450, CHEERFUL WEATHER FOR THE WEDDING
274, COCKNEYS VS ZOMBIES
30463, COMEDY
29161, DABANGG 2
30529, DARK SHADOWS
17466, DETENTION OF THE DEAD
32892, ENGLISH VINGLISH
10151, FAMILY WAY
35384, FAT KID RULES THE WORLD
21972, FOODFIGHT!
20213, FOR A GOOD TIME, CALL...
6076, FRANCES HA
34131, FREE SAMPLES
3550, FUN SIZE
24124, GAMBIT
22623, GIMME THE LOOT
39859, GIRL MOST LIKELY
13971, GOATS
13477, GUNS, GIRLS AND GAMBLING
34345, HAPPINESS NEVER COMES ALONE
32513, HERE COMES THE BOOM
6518, HIGH SOCIETY
34440, HIT AND RUN
35319, HOPE SPRINGS
34869, HOTEL TRANSYLVANIA
6886, HOUSEFULL 2
37844, HYDE PARK ON HUDSON
38589, I DO
15403, IT'S A DISASTER
6685, JASON BLOOM
33283, JESUS HENRY CHRIST
36133, JOHN DIES AT THE END
35632, JOKER
16510, JOYFUL NOISE
21883, LAY THE FAVORITE
14931, LIBERAL ARTS
17372, LOL
22226, LOLA VERSUS
38894, LOVE AND OTHER TROUBLES
4564, LOVE IS ALL YOU NEED
34517, LUV
6450, MADEA'S WITNESS PROTECTION
35871, MAGIC MIKE
902, MEN IN BLACK 3
35361, MENTAL
31735, MIDDLE OF NOWHERE
424, MIRROR MIRROR
15981, MOONRISE KINGDOM
31377, MUCH ADO ABOUT NOTHING
8368, MUSHROOMING
34821, MY AWKWARD SEXUAL ADVENTURE
33972, NOT SUITABLE FOR CHILDREN
29217, ONE FOR THE MONEY
1300, OVERNIGHT DELIVERY
19562, PAPERMAN
35289, PARANORMAN
29610, PARENTAL GUIDANCE
11056, PAULETTE
17916, PIRANHA 3DD
6864, PITCH PERFECT
2388, PLAYING FOR KEEPS
10493, POPULAIRE
29303, PRICE CHECK
12939, PROJECT X
25023, QUARTET
11839, REVENGE FOR JOLLY!
14305, ROCK OF AGES
12597, RUBY SPARKS
17321, SAFETY NOT GUARANTEED
17168, SEEKING A FRIEND FOR THE END OF THE WORLD
30190, SEVEN PSYCHOPATHS
25060, SEXUAL CHRONICLES OF A FRENCH FAMILY
10227, SHANGHAI CALLING
37459, SIGHTSEERS
34584, SILVER LININGS PLAYBOOK
31434, SLEEPWALK WITH ME
28361, SMALL APARTMENTS
28026, SOMEBODY UP THERE LIKES ME
36369, STAND UP GUYS
9247, STITCHES
25002, STRUCK BY LIGHTNING
3038, STUCK IN LOVE
10856, STUDENT OF THE YEAR
273, TED
19501, THANKS FOR SHARING
16163, THAT'S MY BOY
31162, THE ABCS OF DEATH
22040, THE BABYMAKERS
10138, THE BAYTOWN OUTLAWS
33050, THE CAMPAIGN
6644, THE COMEDY
12300, THE DICTATOR
16732, THE END
31019, THE FIRST TIME
13130, THE FIVE-YEAR ENGAGEMENT
15980, THE GUILT TRIP
34429, THE LORAX
27052, THE NEWEST PLEDGE
15798, THE ODD LIFE OF TIMOTHY GREEN
24519, THE PLAYERS
18162, THE RAVEN
2739, THE SAPPHIRES
37915, THE STORY OF LUKE
1249, THE THREE STOOGES
31679, THE WATCH
24380, THINK LIKE A MAN
939, THIS IS 40
20169, THIS MEANS WAR
6357, TIM AND ERIC'S BILLION DOLLAR MOVIE
6598, TO ROME WITH LOVE
21694, TOOTH FAIRY 2
24570, VAMPS
21268, VICKY DONOR
26675, WANDERLUST
34118, WHAT TO EXPECT WHEN YOU'RE EXPECTING
38905, WHAT'S IN A NAME?
21236, WRECK-IT RALPH
10235, WRONG
src, edge_attr, dst
15421, has_genre, 30463
15421, release_year, 658
28153, has_genre, 30463
28153, release_year, 658
37304, has_genre, 30463
37304, has_tags, 30463
37304, release_year, 658
31304, has_genre, 30463
31304, release_year, 658
30586, has_genre, 30463
30586, has_tags, 30463
30586, release_year, 658
24585, has_genre, 30463
24585, release_year, 658
20562, has_genre, 30463
20562, release_year, 658
29800, has_genre, 30463
29800, release_year, 658
35724, has_genre, 30463
35724, release_year, 658
36099, has_genre, 30463
36099, release_year, 658
35584, has_genre, 30463
35584, release_year, 658
26059, has_genre, 30463
26059, release_year, 658
23994, has_genre, 30463
23994, release_year, 658
26923, release_year, 658
2284, has_genre, 30463
2284, release_year, 658
32770, has_genre, 30463
32770, release_year, 658
10002, directed_by, 6685
10002, has_genre, 30463
5946, has_genre, 30463
5946, release_year, 658
39848, has_genre, 30463
39848, release_year, 658
14480, has_genre, 30463
14480, release_year, 658
32450, has_genre, 30463
32450, release_year, 658
274, has_genre, 30463
274, release_year, 658
29161, has_genre, 30463
29161, release_year, 658
30529, has_genre, 30463
30529, release_year, 658
17466, has_genre, 30463
17466, release_year, 658
32892, has_genre, 30463
32892, release_year, 658
10151, has_genre, 30463
10151, release_year, 658
35384, has_genre, 30463
35384, release_year, 658
21972, has_genre, 30463
21972, release_year, 658
20213, has_genre, 30463
20213, release_year, 658
6076, has_genre, 30463
6076, release_year, 658
34131, has_genre, 30463
34131, release_year, 658
3550, has_genre, 30463
3550, release_year, 658
24124, has_genre, 30463
24124, release_year, 658
22623, has_genre, 30463
22623, release_year, 658
39859, has_genre, 30463
39859, release_year, 658
13971, has_genre, 30463
13971, release_year, 658
13477, has_genre, 30463
13477, release_year, 658
34345, has_genre, 30463
34345, release_year, 658
32513, has_genre, 30463
32513, release_year, 658
6518, has_genre, 30463
34440, has_genre, 30463
34440, release_year, 658
35319, has_genre, 30463
35319, release_year, 658
34869, has_genre, 30463
34869, release_year, 658
6886, has_genre, 30463
6886, release_year, 658
37844, has_genre, 30463
37844, release_year, 658
38589, has_genre, 30463
38589, release_year, 658
15403, has_genre, 30463
15403, has_tags, 30463
15403, release_year, 658
33283, has_genre, 30463
33283, release_year, 658
36133, has_genre, 30463
36133, has_tags, 30463
36133, release_year, 658
35632, has_genre, 30463
35632, release_year, 658
16510, has_genre, 30463
16510, release_year, 658
21883, has_genre, 30463
21883, release_year, 658
14931, has_genre, 30463
14931, release_year, 658
17372, has_genre, 30463
17372, release_year, 658
22226, has_genre, 30463
22226, release_year, 658
38894, has_genre, 30463
38894, release_year, 658
4564, has_genre, 30463
4564, release_year, 658
34517, has_genre, 30463
34517, release_year, 658
6450, has_genre, 30463
6450, release_year, 658
35871, has_genre, 30463
35871, release_year, 658
902, has_genre, 30463
902, release_year, 658
35361, has_genre, 30463
35361, release_year, 658
31735, has_genre, 30463
31735, release_year, 658
424, has_genre, 30463
424, release_year, 658
15981, has_genre, 30463
15981, has_tags, 30463
15981, release_year, 658
31377, has_genre, 30463
31377, has_tags, 30463
31377, release_year, 658
8368, has_genre, 30463
8368, release_year, 658
34821, has_genre, 30463
34821, release_year, 658
33972, has_genre, 30463
33972, has_tags, 30463
33972, release_year, 658
29217, has_genre, 30463
29217, release_year, 658
1300, directed_by, 6685
1300, has_genre, 30463
19562, has_genre, 30463
19562, release_year, 658
35289, has_genre, 30463
35289, release_year, 658
29610, has_genre, 30463
29610, release_year, 658
11056, has_genre, 30463
11056, release_year, 658
17916, has_genre, 30463
17916, release_year, 658
6864, has_genre, 30463
6864, release_year, 658
2388, has_genre, 30463
2388, release_year, 658
10493, has_genre, 30463
10493, release_year, 658
29303, has_genre, 30463
29303, release_year, 658
12939, has_genre, 30463
12939, release_year, 658
25023, has_genre, 30463
25023, has_tags, 30463
25023, release_year, 658
11839, has_genre, 30463
11839, release_year, 658
14305, has_genre, 30463
14305, release_year, 658
12597, has_genre, 30463
12597, release_year, 658
17321, has_genre, 30463
17321, release_year, 658
17168, has_genre, 30463
17168, release_year, 658
30190, has_genre, 30463
30190, release_year, 658
25060, has_genre, 30463
25060, release_year, 658
10227, has_genre, 30463
10227, release_year, 658
37459, has_genre, 30463
37459, release_year, 658
34584, has_genre, 30463
34584, release_year, 658
31434, has_genre, 30463
31434, release_year, 658
28361, has_genre, 30463
28361, release_year, 658
28026, has_genre, 30463
28026, release_year, 658
36369, has_genre, 30463
36369, release_year, 658
9247, has_genre, 30463
9247, release_year, 658
25002, has_genre, 30463
25002, release_year, 658
3038, has_genre, 30463
3038, release_year, 658
10856, has_genre, 30463
10856, release_year, 658
273, has_genre, 30463
273, has_tags, 30463
273, release_year, 658
19501, has_genre, 30463
19501, release_year, 658
16163, has_genre, 30463
16163, release_year, 658
31162, has_genre, 30463
31162, release_year, 658
22040, has_genre, 30463
22040, release_year, 658
10138, has_genre, 30463
10138, release_year, 658
33050, has_genre, 30463
33050, release_year, 658
6644, has_tags, 30463
6644, release_year, 658
12300, has_genre, 30463
12300, release_year, 658
16732, has_genre, 30463
16732, release_year, 658
31019, has_genre, 30463
31019, release_year, 658
13130, has_genre, 30463
13130, release_year, 658
15980, has_genre, 30463
15980, release_year, 658
34429, has_genre, 30463
34429, release_year, 658
27052, has_genre, 30463
27052, release_year, 658
15798, has_genre, 30463
15798, release_year, 658
24519, has_genre, 30463
24519, release_year, 658
18162, has_genre, 30463
18162, release_year, 658
2739, has_genre, 30463
2739, release_year, 658
37915, has_genre, 30463
37915, release_year, 658
1249, has_genre, 30463
1249, release_year, 658
31679, has_genre, 30463
31679, release_year, 658
24380, has_genre, 30463
24380, release_year, 658
939, has_genre, 30463
939, release_year, 658
20169, has_genre, 30463
20169, release_year, 658
6357, has_genre, 30463
6357, release_year, 658
6598, has_genre, 30463
6598, has_tags, 30463
6598, release_year, 658
21694, has_genre, 30463
21694, release_year, 658
24570, has_genre, 30463
24570, release_year, 658
21268, has_genre, 30463
21268, release_year, 658
26675, has_genre, 30463
26675, release_year, 658
34118, has_genre, 30463
34118, release_year, 658
38905, has_genre, 30463
38905, release_year, 658
21236, has_genre, 30463
21236, release_year, 658
10235, has_genre, 30463
10235, release_year, 658
Question: In what context are BATTLESHIP, HIGH SOCIETY, and JASON BLOOM connected?
Your output must be ONLY the PATH block.
|
graph_path
|
{
"style": "rule"
}
|
{
"entities": [
"BATTLESHIP",
"HIGH SOCIETY",
"JASON BLOOM"
],
"valid_edges": [
[
"100 BLOODY ACRES",
"has_genre",
"COMEDY"
],
[
"100 BLOODY ACRES",
"release_year",
"2012"
],
[
"2 DAYS IN NEW YORK",
"has_genre",
"COMEDY"
],
[
"2 DAYS IN NEW YORK",
"release_year",
"2012"
],
[
"21 JUMP STREET",
"has_genre",
"COMEDY"
],
[
"21 JUMP STREET",
"has_tags",
"COMEDY"
],
[
"21 JUMP STREET",
"release_year",
"2012"
],
[
"30 BEATS",
"has_genre",
"COMEDY"
],
[
"30 BEATS",
"release_year",
"2012"
],
[
"A FANTASTIC FEAR OF EVERYTHING",
"has_genre",
"COMEDY"
],
[
"A FANTASTIC FEAR OF EVERYTHING",
"has_tags",
"COMEDY"
],
[
"A FANTASTIC FEAR OF EVERYTHING",
"release_year",
"2012"
],
[
"A GLIMPSE INSIDE THE MIND OF CHARLES SWAN III",
"has_genre",
"COMEDY"
],
[
"A GLIMPSE INSIDE THE MIND OF CHARLES SWAN III",
"release_year",
"2012"
],
[
"A THOUSAND WORDS",
"has_genre",
"COMEDY"
],
[
"A THOUSAND WORDS",
"release_year",
"2012"
],
[
"ACE ATTORNEY",
"has_genre",
"COMEDY"
],
[
"ACE ATTORNEY",
"release_year",
"2012"
],
[
"ALTER EGOS",
"has_genre",
"COMEDY"
],
[
"ALTER EGOS",
"release_year",
"2012"
],
[
"AMERICAN REUNION",
"has_genre",
"COMEDY"
],
[
"AMERICAN REUNION",
"release_year",
"2012"
],
[
"ANY QUESTIONS FOR BEN?",
"has_genre",
"COMEDY"
],
[
"ANY QUESTIONS FOR BEN?",
"release_year",
"2012"
],
[
"BACHELORETTE",
"has_genre",
"COMEDY"
],
[
"BACHELORETTE",
"release_year",
"2012"
],
[
"BARFI!",
"has_genre",
"COMEDY"
],
[
"BARFI!",
"release_year",
"2012"
],
[
"BATTLESHIP",
"release_year",
"2012"
],
[
"BENDING THE RULES",
"has_genre",
"COMEDY"
],
[
"BENDING THE RULES",
"release_year",
"2012"
],
[
"BEST MAN DOWN",
"has_genre",
"COMEDY"
],
[
"BEST MAN DOWN",
"release_year",
"2012"
],
[
"BIO-DOME",
"directed_by",
"JASON BLOOM"
],
[
"BIO-DOME",
"has_genre",
"COMEDY"
],
[
"BLOODY BLOODY BIBLE CAMP",
"has_genre",
"COMEDY"
],
[
"BLOODY BLOODY BIBLE CAMP",
"release_year",
"2012"
],
[
"BLUE LIKE JAZZ",
"has_genre",
"COMEDY"
],
[
"BLUE LIKE JAZZ",
"release_year",
"2012"
],
[
"BUDDIES",
"has_genre",
"COMEDY"
],
[
"BUDDIES",
"release_year",
"2012"
],
[
"CHEERFUL WEATHER FOR THE WEDDING",
"has_genre",
"COMEDY"
],
[
"CHEERFUL WEATHER FOR THE WEDDING",
"release_year",
"2012"
],
[
"COCKNEYS VS ZOMBIES",
"has_genre",
"COMEDY"
],
[
"COCKNEYS VS ZOMBIES",
"release_year",
"2012"
],
[
"DABANGG 2",
"has_genre",
"COMEDY"
],
[
"DABANGG 2",
"release_year",
"2012"
],
[
"DARK SHADOWS",
"has_genre",
"COMEDY"
],
[
"DARK SHADOWS",
"release_year",
"2012"
],
[
"DETENTION OF THE DEAD",
"has_genre",
"COMEDY"
],
[
"DETENTION OF THE DEAD",
"release_year",
"2012"
],
[
"ENGLISH VINGLISH",
"has_genre",
"COMEDY"
],
[
"ENGLISH VINGLISH",
"release_year",
"2012"
],
[
"FAMILY WAY",
"has_genre",
"COMEDY"
],
[
"FAMILY WAY",
"release_year",
"2012"
],
[
"FAT KID RULES THE WORLD",
"has_genre",
"COMEDY"
],
[
"FAT KID RULES THE WORLD",
"release_year",
"2012"
],
[
"FOODFIGHT!",
"has_genre",
"COMEDY"
],
[
"FOODFIGHT!",
"release_year",
"2012"
],
[
"FOR A GOOD TIME, CALL...",
"has_genre",
"COMEDY"
],
[
"FOR A GOOD TIME, CALL...",
"release_year",
"2012"
],
[
"FRANCES HA",
"has_genre",
"COMEDY"
],
[
"FRANCES HA",
"release_year",
"2012"
],
[
"FREE SAMPLES",
"has_genre",
"COMEDY"
],
[
"FREE SAMPLES",
"release_year",
"2012"
],
[
"FUN SIZE",
"has_genre",
"COMEDY"
],
[
"FUN SIZE",
"release_year",
"2012"
],
[
"GAMBIT",
"has_genre",
"COMEDY"
],
[
"GAMBIT",
"release_year",
"2012"
],
[
"GIMME THE LOOT",
"has_genre",
"COMEDY"
],
[
"GIMME THE LOOT",
"release_year",
"2012"
],
[
"GIRL MOST LIKELY",
"has_genre",
"COMEDY"
],
[
"GIRL MOST LIKELY",
"release_year",
"2012"
],
[
"GOATS",
"has_genre",
"COMEDY"
],
[
"GOATS",
"release_year",
"2012"
],
[
"GUNS, GIRLS AND GAMBLING",
"has_genre",
"COMEDY"
],
[
"GUNS, GIRLS AND GAMBLING",
"release_year",
"2012"
],
[
"HAPPINESS NEVER COMES ALONE",
"has_genre",
"COMEDY"
],
[
"HAPPINESS NEVER COMES ALONE",
"release_year",
"2012"
],
[
"HERE COMES THE BOOM",
"has_genre",
"COMEDY"
],
[
"HERE COMES THE BOOM",
"release_year",
"2012"
],
[
"HIGH SOCIETY",
"has_genre",
"COMEDY"
],
[
"HIT AND RUN",
"has_genre",
"COMEDY"
],
[
"HIT AND RUN",
"release_year",
"2012"
],
[
"HOPE SPRINGS",
"has_genre",
"COMEDY"
],
[
"HOPE SPRINGS",
"release_year",
"2012"
],
[
"HOTEL TRANSYLVANIA",
"has_genre",
"COMEDY"
],
[
"HOTEL TRANSYLVANIA",
"release_year",
"2012"
],
[
"HOUSEFULL 2",
"has_genre",
"COMEDY"
],
[
"HOUSEFULL 2",
"release_year",
"2012"
],
[
"HYDE PARK ON HUDSON",
"has_genre",
"COMEDY"
],
[
"HYDE PARK ON HUDSON",
"release_year",
"2012"
],
[
"I DO",
"has_genre",
"COMEDY"
],
[
"I DO",
"release_year",
"2012"
],
[
"IT'S A DISASTER",
"has_genre",
"COMEDY"
],
[
"IT'S A DISASTER",
"has_tags",
"COMEDY"
],
[
"IT'S A DISASTER",
"release_year",
"2012"
],
[
"JESUS HENRY CHRIST",
"has_genre",
"COMEDY"
],
[
"JESUS HENRY CHRIST",
"release_year",
"2012"
],
[
"JOHN DIES AT THE END",
"has_genre",
"COMEDY"
],
[
"JOHN DIES AT THE END",
"has_tags",
"COMEDY"
],
[
"JOHN DIES AT THE END",
"release_year",
"2012"
],
[
"JOKER",
"has_genre",
"COMEDY"
],
[
"JOKER",
"release_year",
"2012"
],
[
"JOYFUL NOISE",
"has_genre",
"COMEDY"
],
[
"JOYFUL NOISE",
"release_year",
"2012"
],
[
"LAY THE FAVORITE",
"has_genre",
"COMEDY"
],
[
"LAY THE FAVORITE",
"release_year",
"2012"
],
[
"LIBERAL ARTS",
"has_genre",
"COMEDY"
],
[
"LIBERAL ARTS",
"release_year",
"2012"
],
[
"LOL",
"has_genre",
"COMEDY"
],
[
"LOL",
"release_year",
"2012"
],
[
"LOLA VERSUS",
"has_genre",
"COMEDY"
],
[
"LOLA VERSUS",
"release_year",
"2012"
],
[
"LOVE AND OTHER TROUBLES",
"has_genre",
"COMEDY"
],
[
"LOVE AND OTHER TROUBLES",
"release_year",
"2012"
],
[
"LOVE IS ALL YOU NEED",
"has_genre",
"COMEDY"
],
[
"LOVE IS ALL YOU NEED",
"release_year",
"2012"
],
[
"LUV",
"has_genre",
"COMEDY"
],
[
"LUV",
"release_year",
"2012"
],
[
"MADEA'S WITNESS PROTECTION",
"has_genre",
"COMEDY"
],
[
"MADEA'S WITNESS PROTECTION",
"release_year",
"2012"
],
[
"MAGIC MIKE",
"has_genre",
"COMEDY"
],
[
"MAGIC MIKE",
"release_year",
"2012"
],
[
"MEN IN BLACK 3",
"has_genre",
"COMEDY"
],
[
"MEN IN BLACK 3",
"release_year",
"2012"
],
[
"MENTAL",
"has_genre",
"COMEDY"
],
[
"MENTAL",
"release_year",
"2012"
],
[
"MIDDLE OF NOWHERE",
"has_genre",
"COMEDY"
],
[
"MIDDLE OF NOWHERE",
"release_year",
"2012"
],
[
"MIRROR MIRROR",
"has_genre",
"COMEDY"
],
[
"MIRROR MIRROR",
"release_year",
"2012"
],
[
"MOONRISE KINGDOM",
"has_genre",
"COMEDY"
],
[
"MOONRISE KINGDOM",
"has_tags",
"COMEDY"
],
[
"MOONRISE KINGDOM",
"release_year",
"2012"
],
[
"MUCH ADO ABOUT NOTHING",
"has_genre",
"COMEDY"
],
[
"MUCH ADO ABOUT NOTHING",
"has_tags",
"COMEDY"
],
[
"MUCH ADO ABOUT NOTHING",
"release_year",
"2012"
],
[
"MUSHROOMING",
"has_genre",
"COMEDY"
],
[
"MUSHROOMING",
"release_year",
"2012"
],
[
"MY AWKWARD SEXUAL ADVENTURE",
"has_genre",
"COMEDY"
],
[
"MY AWKWARD SEXUAL ADVENTURE",
"release_year",
"2012"
],
[
"NOT SUITABLE FOR CHILDREN",
"has_genre",
"COMEDY"
],
[
"NOT SUITABLE FOR CHILDREN",
"has_tags",
"COMEDY"
],
[
"NOT SUITABLE FOR CHILDREN",
"release_year",
"2012"
],
[
"ONE FOR THE MONEY",
"has_genre",
"COMEDY"
],
[
"ONE FOR THE MONEY",
"release_year",
"2012"
],
[
"OVERNIGHT DELIVERY",
"directed_by",
"JASON BLOOM"
],
[
"OVERNIGHT DELIVERY",
"has_genre",
"COMEDY"
],
[
"PAPERMAN",
"has_genre",
"COMEDY"
],
[
"PAPERMAN",
"release_year",
"2012"
],
[
"PARANORMAN",
"has_genre",
"COMEDY"
],
[
"PARANORMAN",
"release_year",
"2012"
],
[
"PARENTAL GUIDANCE",
"has_genre",
"COMEDY"
],
[
"PARENTAL GUIDANCE",
"release_year",
"2012"
],
[
"PAULETTE",
"has_genre",
"COMEDY"
],
[
"PAULETTE",
"release_year",
"2012"
],
[
"PIRANHA 3DD",
"has_genre",
"COMEDY"
],
[
"PIRANHA 3DD",
"release_year",
"2012"
],
[
"PITCH PERFECT",
"has_genre",
"COMEDY"
],
[
"PITCH PERFECT",
"release_year",
"2012"
],
[
"PLAYING FOR KEEPS",
"has_genre",
"COMEDY"
],
[
"PLAYING FOR KEEPS",
"release_year",
"2012"
],
[
"POPULAIRE",
"has_genre",
"COMEDY"
],
[
"POPULAIRE",
"release_year",
"2012"
],
[
"PRICE CHECK",
"has_genre",
"COMEDY"
],
[
"PRICE CHECK",
"release_year",
"2012"
],
[
"PROJECT X",
"has_genre",
"COMEDY"
],
[
"PROJECT X",
"release_year",
"2012"
],
[
"QUARTET",
"has_genre",
"COMEDY"
],
[
"QUARTET",
"has_tags",
"COMEDY"
],
[
"QUARTET",
"release_year",
"2012"
],
[
"REVENGE FOR JOLLY!",
"has_genre",
"COMEDY"
],
[
"REVENGE FOR JOLLY!",
"release_year",
"2012"
],
[
"ROCK OF AGES",
"has_genre",
"COMEDY"
],
[
"ROCK OF AGES",
"release_year",
"2012"
],
[
"RUBY SPARKS",
"has_genre",
"COMEDY"
],
[
"RUBY SPARKS",
"release_year",
"2012"
],
[
"SAFETY NOT GUARANTEED",
"has_genre",
"COMEDY"
],
[
"SAFETY NOT GUARANTEED",
"release_year",
"2012"
],
[
"SEEKING A FRIEND FOR THE END OF THE WORLD",
"has_genre",
"COMEDY"
],
[
"SEEKING A FRIEND FOR THE END OF THE WORLD",
"release_year",
"2012"
],
[
"SEVEN PSYCHOPATHS",
"has_genre",
"COMEDY"
],
[
"SEVEN PSYCHOPATHS",
"release_year",
"2012"
],
[
"SEXUAL CHRONICLES OF A FRENCH FAMILY",
"has_genre",
"COMEDY"
],
[
"SEXUAL CHRONICLES OF A FRENCH FAMILY",
"release_year",
"2012"
],
[
"SHANGHAI CALLING",
"has_genre",
"COMEDY"
],
[
"SHANGHAI CALLING",
"release_year",
"2012"
],
[
"SIGHTSEERS",
"has_genre",
"COMEDY"
],
[
"SIGHTSEERS",
"release_year",
"2012"
],
[
"SILVER LININGS PLAYBOOK",
"has_genre",
"COMEDY"
],
[
"SILVER LININGS PLAYBOOK",
"release_year",
"2012"
],
[
"SLEEPWALK WITH ME",
"has_genre",
"COMEDY"
],
[
"SLEEPWALK WITH ME",
"release_year",
"2012"
],
[
"SMALL APARTMENTS",
"has_genre",
"COMEDY"
],
[
"SMALL APARTMENTS",
"release_year",
"2012"
],
[
"SOMEBODY UP THERE LIKES ME",
"has_genre",
"COMEDY"
],
[
"SOMEBODY UP THERE LIKES ME",
"release_year",
"2012"
],
[
"STAND UP GUYS",
"has_genre",
"COMEDY"
],
[
"STAND UP GUYS",
"release_year",
"2012"
],
[
"STITCHES",
"has_genre",
"COMEDY"
],
[
"STITCHES",
"release_year",
"2012"
],
[
"STRUCK BY LIGHTNING",
"has_genre",
"COMEDY"
],
[
"STRUCK BY LIGHTNING",
"release_year",
"2012"
],
[
"STUCK IN LOVE",
"has_genre",
"COMEDY"
],
[
"STUCK IN LOVE",
"release_year",
"2012"
],
[
"STUDENT OF THE YEAR",
"has_genre",
"COMEDY"
],
[
"STUDENT OF THE YEAR",
"release_year",
"2012"
],
[
"TED",
"has_genre",
"COMEDY"
],
[
"TED",
"has_tags",
"COMEDY"
],
[
"TED",
"release_year",
"2012"
],
[
"THANKS FOR SHARING",
"has_genre",
"COMEDY"
],
[
"THANKS FOR SHARING",
"release_year",
"2012"
],
[
"THAT'S MY BOY",
"has_genre",
"COMEDY"
],
[
"THAT'S MY BOY",
"release_year",
"2012"
],
[
"THE ABCS OF DEATH",
"has_genre",
"COMEDY"
],
[
"THE ABCS OF DEATH",
"release_year",
"2012"
],
[
"THE BABYMAKERS",
"has_genre",
"COMEDY"
],
[
"THE BABYMAKERS",
"release_year",
"2012"
],
[
"THE BAYTOWN OUTLAWS",
"has_genre",
"COMEDY"
],
[
"THE BAYTOWN OUTLAWS",
"release_year",
"2012"
],
[
"THE CAMPAIGN",
"has_genre",
"COMEDY"
],
[
"THE CAMPAIGN",
"release_year",
"2012"
],
[
"THE COMEDY",
"has_tags",
"COMEDY"
],
[
"THE COMEDY",
"release_year",
"2012"
],
[
"THE DICTATOR",
"has_genre",
"COMEDY"
],
[
"THE DICTATOR",
"release_year",
"2012"
],
[
"THE END",
"has_genre",
"COMEDY"
],
[
"THE END",
"release_year",
"2012"
],
[
"THE FIRST TIME",
"has_genre",
"COMEDY"
],
[
"THE FIRST TIME",
"release_year",
"2012"
],
[
"THE FIVE-YEAR ENGAGEMENT",
"has_genre",
"COMEDY"
],
[
"THE FIVE-YEAR ENGAGEMENT",
"release_year",
"2012"
],
[
"THE GUILT TRIP",
"has_genre",
"COMEDY"
],
[
"THE GUILT TRIP",
"release_year",
"2012"
],
[
"THE LORAX",
"has_genre",
"COMEDY"
],
[
"THE LORAX",
"release_year",
"2012"
],
[
"THE NEWEST PLEDGE",
"has_genre",
"COMEDY"
],
[
"THE NEWEST PLEDGE",
"release_year",
"2012"
],
[
"THE ODD LIFE OF TIMOTHY GREEN",
"has_genre",
"COMEDY"
],
[
"THE ODD LIFE OF TIMOTHY GREEN",
"release_year",
"2012"
],
[
"THE PLAYERS",
"has_genre",
"COMEDY"
],
[
"THE PLAYERS",
"release_year",
"2012"
],
[
"THE RAVEN",
"has_genre",
"COMEDY"
],
[
"THE RAVEN",
"release_year",
"2012"
],
[
"THE SAPPHIRES",
"has_genre",
"COMEDY"
],
[
"THE SAPPHIRES",
"release_year",
"2012"
],
[
"THE STORY OF LUKE",
"has_genre",
"COMEDY"
],
[
"THE STORY OF LUKE",
"release_year",
"2012"
],
[
"THE THREE STOOGES",
"has_genre",
"COMEDY"
],
[
"THE THREE STOOGES",
"release_year",
"2012"
],
[
"THE WATCH",
"has_genre",
"COMEDY"
],
[
"THE WATCH",
"release_year",
"2012"
],
[
"THINK LIKE A MAN",
"has_genre",
"COMEDY"
],
[
"THINK LIKE A MAN",
"release_year",
"2012"
],
[
"THIS IS 40",
"has_genre",
"COMEDY"
],
[
"THIS IS 40",
"release_year",
"2012"
],
[
"THIS MEANS WAR",
"has_genre",
"COMEDY"
],
[
"THIS MEANS WAR",
"release_year",
"2012"
],
[
"TIM AND ERIC'S BILLION DOLLAR MOVIE",
"has_genre",
"COMEDY"
],
[
"TIM AND ERIC'S BILLION DOLLAR MOVIE",
"release_year",
"2012"
],
[
"TO ROME WITH LOVE",
"has_genre",
"COMEDY"
],
[
"TO ROME WITH LOVE",
"has_tags",
"COMEDY"
],
[
"TO ROME WITH LOVE",
"release_year",
"2012"
],
[
"TOOTH FAIRY 2",
"has_genre",
"COMEDY"
],
[
"TOOTH FAIRY 2",
"release_year",
"2012"
],
[
"VAMPS",
"has_genre",
"COMEDY"
],
[
"VAMPS",
"release_year",
"2012"
],
[
"VICKY DONOR",
"has_genre",
"COMEDY"
],
[
"VICKY DONOR",
"release_year",
"2012"
],
[
"WANDERLUST",
"has_genre",
"COMEDY"
],
[
"WANDERLUST",
"release_year",
"2012"
],
[
"WHAT TO EXPECT WHEN YOU'RE EXPECTING",
"has_genre",
"COMEDY"
],
[
"WHAT TO EXPECT WHEN YOU'RE EXPECTING",
"release_year",
"2012"
],
[
"WHAT'S IN A NAME?",
"has_genre",
"COMEDY"
],
[
"WHAT'S IN A NAME?",
"release_year",
"2012"
],
[
"WRECK-IT RALPH",
"has_genre",
"COMEDY"
],
[
"WRECK-IT RALPH",
"release_year",
"2012"
],
[
"WRONG",
"has_genre",
"COMEDY"
],
[
"WRONG",
"release_year",
"2012"
]
]
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.