A newer version of the Gradio SDK is available:
6.1.0
MVP 3 Dynamic UI Strategy: Interactive Prompt Filling Components
Task ID: 43
Status: In Progress
Date: 2025-06-08
Author: Claude 4.0 Development Agent
π― Strategic Decision Summary
CHOSEN STRATEGY: Pre-defined Maximum Input Fields (Option 1)
After comprehensive analysis, the pre-defined maximum input approach is optimal for MVP 3 Sprint 1 implementation.
π Current State Analysis
Existing UI Architecture
- Clean MVP 2 Implementation: Professional Gradio interface with custom CSS
- Single Output Model:
handle_find_tools()returnsdicttogr.JSONcomponent - Static Display: Input variables shown as read-only information in JSON format
- Proven Performance: Sub-400ms response times with 102 tests passing
Input Variable Requirements Analysis
Based on data/initial_prompts.json analysis:
| Prompt | Variables | Complexity | Example |
|---|---|---|---|
| Basic Text Summary | 1 | Simple | input_text |
| Structured Document | 3 | Medium | document_type, focus_areas, content |
| Customer Feedback | 2 | Medium | product_service, feedback_text |
| Social Monitoring | 3 | Medium | platform, topic, social_content |
| Accessibility Caption | 3 | Medium | context, key_elements, target_audience |
| Creative Content | 4 | Complex | tone, content_type, purpose, highlight_aspects |
| Security Audit | 4 | Complex | language, application_type, security_concerns, code_snippet |
| Code Quality Review | 4 | Complex | language, team_type, coding_standards, code_block |
Key Insights:
- Range: 1-4 input variables per prompt
- Distribution: 37.5% (3 prompts) have 3+ variables, 25% have 4 variables
- Recommendation:
MAX_PROMPT_INPUTS = 5provides comfortable buffer
ποΈ Strategy Options Evaluation
Option 1: Pre-defined Maximum Input Fields β CHOSEN
Implementation:
- Create 5
gr.Textboxcomponents in UI layout (initiallyvisible=False) - Show/hide and update labels dynamically based on selected prompt
- Use
gr.update()for reactive state management
Pros:
- β Gradio State Simplicity: Minimal complexity for reactive updates
- β Development Speed: Fast implementation for hackathon timeline
- β Predictable Behavior: Fixed components reduce debugging complexity
- β User Experience: Smooth, consistent transitions
- β Performance: No component creation/destruction overhead
- β Maintenance: Easy to understand and modify
Cons:
- β οΈ Fixed Limit: Cannot handle prompts with >5 variables (acceptable limitation)
- β οΈ Minor Overhead: Unused components exist in DOM (negligible impact)
Option 2: Dynamic Group Rendering
Implementation:
- Use
gr.Groupwith conditional component creation - More complex state management with Gradio's reactive model
Pros:
- β Flexibility: Can handle any number of variables
- β Efficiency: Only creates needed components
Cons:
- β Complexity: More difficult state management
- β Development Time: Longer implementation for complex reactive patterns
- β Risk: Higher chance of Gradio state inconsistencies
- β Debugging: More complex to troubleshoot
Option 3: HTML/JS Injection
Implementation:
- Custom HTML/JavaScript for dynamic input generation
- Breaks out of Gradio's Python-first model
Cons:
- β Gradio Integration: Poor integration with Gradio's reactive system
- β Maintenance: Mixed technology stack complexity
- β User Experience: Potential inconsistencies with Gradio styling
π¨ UI Flow & User Interaction Design
User Journey Flow:
1. User enters query β "analyze customer sentiment"
2. Click "Generate Action Plan" button
3. System displays tool+prompt combination in JSON
4. **NEW:** Input fields appear below JSON results
5. **NEW:** Execute button becomes visible
6. User fills input fields β "mobile app", "crashes frequently"
7. **FUTURE:** User clicks Execute β simulated results shown
Visual Hierarchy:
βββββββββββββββββββββββββββββββββββββββββββββββ
β Query Input & Generate Action Plan Button β
βββββββββββββββββββββββββββββββββββββββββββββββ€
β JSON Results (existing MVP 2 functionality) β
βββββββββββββββββββββββββββββββββββββββββββββββ€
β β¨ NEW: Interactive Input Fields Section β
β βββββββββββββββββββββββββββββββββββββββββββ β
β β π Fill Prompt Variables β β
β β βββββββββββββββββββ βββββββββββββββββββ β β
β β β Product/Service β β Feedback Text β β β
β β βββββββββββββββββββ βββββββββββββββββββ β β
β β [π Execute Plan (Simulated)] β β
β βββββββββββββββββββββββββββββββββββββββββββ β
βββββββββββββββββββββββββββββββββββββββββββββββ€
β β¨ FUTURE: Execution Results Area β
βββββββββββββββββββββββββββββββββββββββββββββββ
Interaction States:
- Initial State: All input fields hidden, execute button hidden
- Plan Generated: Relevant input fields visible with proper labels
- Fields Populated: Execute button enabled (future sprint)
- Executing: Loading state with spinner (future sprint)
- Results Shown: Execution output displayed (future sprint)
π§ Technical Implementation Approach
Configuration Constants:
# Configuration for MVP 3
MAX_PROMPT_INPUTS = 5 # Covers 100% of current prompts with buffer
PROMPT_INPUT_PREFIX = "prompt_input_" # Element ID prefix for testing
New UI Components:
# Inside create_gradio_interface() after results_output_json
with gr.Column(visible=False) as prompt_inputs_group:
gr.Markdown("### π Fill Prompt Variables")
gr.Markdown("*Complete the required information for your selected action plan*")
# Pre-defined input fields
prompt_input_fields = []
for i in range(MAX_PROMPT_INPUTS):
field = gr.Textbox(
label=f"Input {i+1}", # Will be updated dynamically
visible=False,
interactive=True,
lines=2, # Allow for longer inputs like code snippets
elem_id=f"{PROMPT_INPUT_PREFIX}{i}",
placeholder="Enter value..."
)
prompt_input_fields.append(field)
# Execute button (for MVP 3 Sprint 2)
execute_button = gr.Button(
"π Execute Plan (Simulated)",
visible=False,
variant="primary",
elem_id="execute_plan_button"
)
# Execution results area (for MVP 3 Sprint 2)
execution_output_display = gr.Markdown(
"",
elem_id="execution_results",
label="π― Execution Results"
)
Enhanced State Management:
def handle_find_tools(query: str) -> tuple:
"""Enhanced return signature for MVP 3 dynamic inputs."""
# ... existing logic for JSON results ...
# Initialize dynamic input updates
textbox_updates = []
prompt_inputs_group_update = gr.Column.update(visible=False)
execute_button_update = gr.Button.update(visible=False)
execution_output_update = gr.Markdown.update(value="")
# Check if we have planned steps with input variables
if planned_steps and planned_steps[0].prompt.input_variables:
current_plan = planned_steps[0] # Focus on first/top plan
input_vars = current_plan.prompt.input_variables
# Show input group if variables exist
prompt_inputs_group_update = gr.Column.update(visible=True)
execute_button_update = gr.Button.update(visible=True)
# Configure each textbox
for i in range(MAX_PROMPT_INPUTS):
if i < len(input_vars):
var_name = input_vars[i]
textbox_updates.append(gr.Textbox.update(
label=f"π {_format_variable_label(var_name)}",
visible=True,
placeholder=f"Enter {_get_variable_description(var_name)}",
value="", # Clear previous values
interactive=True
))
else:
textbox_updates.append(gr.Textbox.update(
visible=False,
value=""
))
else:
# No variables or no plans - hide all input fields
for _ in range(MAX_PROMPT_INPUTS):
textbox_updates.append(gr.Textbox.update(
visible=False,
value=""
))
return (
results_json, # Existing JSON output
prompt_inputs_group_update, # Group visibility
*textbox_updates, # Individual textbox updates (5 items)
execute_button_update, # Execute button visibility
execution_output_update # Clear execution results
)
def _format_variable_label(var_name: str) -> str:
"""Format variable name for better UX."""
return var_name.replace('_', ' ').title()
Event Wiring Update:
# Updated find_button.click() event
find_button.click(
fn=handle_find_tools,
inputs=[query_input],
outputs=[
results_output_json, # Existing output
prompt_inputs_group, # Group visibility
*prompt_input_fields, # All 5 textbox fields
execute_button, # Execute button
execution_output_display # Results display
],
api_name="find_tools"
)
π§ͺ Quality Assurance Strategy
Testing Approach:
- Component Testing: Individual
gr.update()validation - State Testing: Verify correct show/hide behavior
- Integration Testing: Full user workflow validation
- Performance Testing: Ensure <400ms response maintained
- Regression Testing: All existing MVP 2 functionality preserved
Edge Cases to Handle:
- No Input Variables: Prompt with empty
input_variableslist - Single Variable: Simple prompts with one input
- Maximum Variables: 4-5 variable prompts (stress test)
- Rapid Query Changes: Quick succession of different prompts
- Empty Query Results: No plans found scenario
Error States:
- Component Failures: Graceful degradation if Gradio updates fail
- State Inconsistencies: Fallback to hidden state
- Performance Issues: Monitoring for response time degradation
π Integration Points with Existing Code
Files to Modify:
app.py: Primary implementation filecreate_gradio_interface()functionhandle_find_tools()function- Add new helper functions for variable formatting
CSS Enhancements: Extend existing custom CSS
.prompt-inputs-section { background: #f8f9fa; border-radius: 8px; padding: 16px; margin: 16px 0; border: 1px solid #e9ecef; } .input-field { margin: 8px 0; } .execute-button { background: linear-gradient(135deg, #28a745 0%, #20c997 100%); margin-top: 16px; }
Backward Compatibility:
- β All existing MVP 2 functionality preserved
- β JSON output format unchanged
- β API endpoints remain identical
- β Performance characteristics maintained
Dependencies:
- β No new external dependencies required
- β Uses existing Gradio capabilities
- β Compatible with current project structure
π Performance Considerations
Response Time Targets:
- Existing: <400ms for tool suggestion
- MVP 3: <450ms including dynamic UI updates (10% buffer)
- Memory: Minimal increase from 5 additional Gradio components
Optimization Strategies:
- Minimal DOM Changes: Only update necessary components
- Efficient State Updates: Use targeted
gr.update()calls - Caching: Reuse formatted variable descriptions
- Progressive Enhancement: Add features without breaking core functionality
π― Success Metrics
Technical Metrics:
- Dynamic input fields operational for 1-5 variables
- No performance degradation (maintain <450ms target)
- Zero Gradio console errors
- All existing tests continue passing
User Experience Metrics:
- Intuitive input field labeling and placeholders
- Smooth visual transitions between states
- Clear feedback for all interaction states
- Mobile-responsive behavior maintained
Quality Metrics:
- Code quality gates passing (lint, type, test)
- Comprehensive test coverage for new functionality
- Documentation updated appropriately
- Ready for MVP 3 Sprint 2 implementation
π Future Sprint Dependencies
MVP 3 Sprint 2 Requirements:
This strategy creates the foundation for Sprint 2:
- Input Collection: Gather user values from dynamic fields
- Input Validation: Ensure required fields are completed
- Execute Button Logic: Wire execution functionality
- Result Display: Show simulated execution output
Interface Contract:
# Future function signature for Sprint 2
def handle_execute_plan(
query: str,
input_1: str, input_2: str, input_3: str,
input_4: str, input_5: str
) -> str:
"""Execute the planned step with user inputs."""
# Implementation in Sprint 2
pass
π Implementation Plan Summary
Phase 1: UI Layout (30 minutes)
- Add 5 predefined
gr.Textboxcomponents - Create container group with visibility control
- Add execute button infrastructure
- Update CSS styling
Phase 2: State Management (45 minutes)
- Modify
handle_find_tools()return signature - Implement dynamic label and placeholder generation
- Create input field update logic
- Handle edge cases and error states
Phase 3: Event Wiring (15 minutes)
- Update
find_button.click()outputs mapping - Test Gradio reactive updates
- Verify state synchronization
Phase 4: Testing & Validation (30 minutes)
- Component-level testing
- Integration testing with various prompts
- Performance validation
- User experience verification
β Decision Rationale
Why Pre-defined Maximum Input Fields is Optimal:
- Hackathon Timeline: Fast, reliable implementation
- Gradio Expertise: Leverages team's proven Gradio experience
- Risk Management: Low complexity reduces implementation risk
- Performance: Maintains excellent response times
- User Experience: Smooth, predictable interactions
- Maintenance: Easy to understand and extend
- Coverage: Handles 100% of current prompts with growth buffer
Strategic Confidence: 95% - This approach aligns perfectly with project goals, timeline, and technical constraints.
Status: Strategy Complete β
Next Action: Begin Task 44 - Implementation Phase
Expected Implementation Time: 90-120 minutes
Risk Level: LOW - Building on proven foundation with validated approach