Spaces:
Sleeping
Sleeping
A newer version of the Gradio SDK is available:
6.1.0
metadata
title: Farm Object Detection API
emoji: π
colorFrom: blue
colorTo: indigo
sdk: gradio
sdk_version: 4.28.3
app_file: app.py
pinned: false
license: apache-2.0
short_description: Object detection for farm equipment, crops, and workers
π Farm Object Detection API
High-performance object detection for agricultural environments using RT-DETR models.
π― Capabilities
- Farm Equipment Detection: Tractors, harvesters, tools
- Crop Counting: Automated inventory of plants and produce
- Worker Safety: Personnel detection and activity monitoring
- Animal Detection: Livestock and wildlife identification
π€ Models
- RT-DETR R18VD: Lightweight, fast inference (15-30 FPS)
- RT-DETR R34VD: Balanced performance and accuracy
- RT-DETR R50VD: High accuracy for detailed analysis
π‘ API Usage
Python
import requests
import base64
def detect_objects(image_path, model="r50vd"):
with open(image_path, "rb") as f:
image_b64 = base64.b64encode(f.read()).decode()
response = requests.post(
"https://YOUR-USERNAME-farm-object-detection.hf.space/api/predict",
json={"data": [image_b64, model]}
)
return response.json()
result = detect_objects("farm_image.jpg")
print(result)
JavaScript
async function detectObjects(imageFile, model = 'r50vd') {
const base64 = await fileToBase64(imageFile);
const response = await fetch(
'https://YOUR-USERNAME-farm-object-detection.hf.space/api/predict',
{
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ data: [base64, model] })
}
);
return await response.json();
}
π Response Format
{
"objects_detected": 12,
"detections": [
{
"class": "tractor",
"confidence": 0.95,
"bbox": [100, 150, 400, 350],
"area": 75000
}
],
"processing_time": 0.8,
"model_used": "rtdetr_r50vd"
}