Farmobjectdetection / README.md
Dhiryashil's picture
Upload 3 files
4dd6a7a verified

A newer version of the Gradio SDK is available: 6.1.0

Upgrade
metadata
title: Farm Object Detection API
emoji: πŸ”
colorFrom: blue
colorTo: indigo
sdk: gradio
sdk_version: 4.28.3
app_file: app.py
pinned: false
license: apache-2.0
short_description: Object detection for farm equipment, crops, and workers

πŸ” Farm Object Detection API

High-performance object detection for agricultural environments using RT-DETR models.

🎯 Capabilities

  • Farm Equipment Detection: Tractors, harvesters, tools
  • Crop Counting: Automated inventory of plants and produce
  • Worker Safety: Personnel detection and activity monitoring
  • Animal Detection: Livestock and wildlife identification

πŸ€– Models

  • RT-DETR R18VD: Lightweight, fast inference (15-30 FPS)
  • RT-DETR R34VD: Balanced performance and accuracy
  • RT-DETR R50VD: High accuracy for detailed analysis

πŸ“‘ API Usage

Python

import requests
import base64

def detect_objects(image_path, model="r50vd"):
    with open(image_path, "rb") as f:
        image_b64 = base64.b64encode(f.read()).decode()
    
    response = requests.post(
        "https://YOUR-USERNAME-farm-object-detection.hf.space/api/predict",
        json={"data": [image_b64, model]}
    )
    return response.json()

result = detect_objects("farm_image.jpg")
print(result)

JavaScript

async function detectObjects(imageFile, model = 'r50vd') {
    const base64 = await fileToBase64(imageFile);
    
    const response = await fetch(
        'https://YOUR-USERNAME-farm-object-detection.hf.space/api/predict',
        {
            method: 'POST',
            headers: { 'Content-Type': 'application/json' },
            body: JSON.stringify({ data: [base64, model] })
        }
    );
    
    return await response.json();
}

πŸ“Š Response Format

{
  "objects_detected": 12,
  "detections": [
    {
      "class": "tractor",
      "confidence": 0.95,
      "bbox": [100, 150, 400, 350],
      "area": 75000
    }
  ],
  "processing_time": 0.8,
  "model_used": "rtdetr_r50vd"
}