Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| model_id = "ranggafermata/Fermata-v1.2-light" # replace with your actual repo | |
| # Load model and tokenizer | |
| tokenizer = AutoTokenizer.from_pretrained(model_id, attn_implementation="eager") | |
| model = AutoModelForCausalLM.from_pretrained( | |
| model_id, | |
| device_map="auto", | |
| torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, | |
| attn_implementation="eager" | |
| ) | |
| model.eval() | |
| # Generation function | |
| def chat(prompt, max_new_tokens=256, temperature=0.8, top_p=0.95): | |
| inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
| with torch.no_grad(): | |
| outputs = model.generate( | |
| **inputs, | |
| max_new_tokens=max_new_tokens, | |
| temperature=temperature, | |
| top_p=top_p, | |
| do_sample=True, | |
| pad_token_id=tokenizer.eos_token_id, | |
| ) | |
| return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| # Gradio interface | |
| gr.Interface( | |
| fn=chat, | |
| inputs=[ | |
| gr.Textbox(lines=4, label="Prompt"), | |
| gr.Slider(64, 1024, value=256, step=64, label="Max New Tokens"), | |
| gr.Slider(0.1, 1.5, value=0.8, step=0.1, label="Temperature"), | |
| gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p") | |
| ], | |
| outputs=gr.Textbox(label="Response"), | |
| title="Fermata Assistant (Gemma 3 - 1B - IT)", | |
| description="A smart assistant built on Gemma 3B with personality from the Fermata project." | |
| ).launch() | |