BasalGanglia's picture
๐Ÿ† Multi-Track Hackathon Submission
1f2d50a verified

A newer version of the Gradio SDK is available: 6.1.0

Upgrade
metadata
title: AI Agent Architecture
description: Multi-agent system design and coordination patterns in KGraph-MCP

AI Agent Architecture

Comprehensive documentation of KGraph-MCP's intelligent multi-agent system that enables autonomous MCP tool orchestration through specialized AI agents.

๐Ÿค– Agent System Overview

KGraph-MCP employs a Multi-Agent Orchestration Architecture where specialized AI agents collaborate to understand user goals, discover appropriate tools, execute complex workflows, and continuously learn from interactions.

Core Agent Framework

graph TB
    subgraph "๐Ÿง  Agent Coordination Layer"
        Controller[Agent Controller<br/>Coordination & Communication]
        Scheduler[Task Scheduler<br/>Agent Workload Management]
        Monitor[Agent Monitor<br/>Health & Performance]
    end
    
    subgraph "๐ŸŽฏ Specialized Agents"
        subgraph "Planner Agent"
            PA_Core[Core Planning Engine]
            PA_NLP[Natural Language Processor]
            PA_Goals[Goal Decomposition]
            PA_Strategy[Strategy Formation]
        end
        
        subgraph "Selector Agent"
            SA_Core[Core Selection Engine]
            SA_Query[Knowledge Query]
            SA_Match[Capability Matching]
            SA_Rank[Tool Ranking]
        end
        
        subgraph "Executor Agent"
            EA_Core[Core Execution Engine]
            EA_Invoke[Tool Invocation]
            EA_Monitor[Execution Monitoring]
            EA_Coord[Multi-tool Coordination]
        end
        
        subgraph "Supervisor Agent"
            SV_Core[Core Supervision Engine]
            SV_Validate[Result Validation]
            SV_Quality[Quality Assurance]
            SV_Learn[Learning Engine]
        end
    end
    
    subgraph "๐Ÿ—„๏ธ Shared Resources"
        Knowledge[Knowledge Graph]
        Memory[Shared Memory]
        Context[Execution Context]
        Metrics[Performance Metrics]
    end
    
    Controller --> PA_Core
    Controller --> SA_Core
    Controller --> EA_Core
    Controller --> SV_Core
    
    Scheduler --> PA_Core
    Scheduler --> SA_Core
    Scheduler --> EA_Core
    Scheduler --> SV_Core
    
    Monitor --> Metrics
    Metrics --> Knowledge
    
    PA_Core --> SA_Core
    SA_Core --> EA_Core
    EA_Core --> SV_Core
    SV_Core --> PA_Core
    
    PA_Core --> Knowledge
    SA_Core --> Knowledge
    EA_Core --> Context
    SV_Core --> Memory
    
    style Controller fill:#e1f5fe
    style PA_Core fill:#fff3e0
    style SA_Core fill:#e8f5e8
    style EA_Core fill:#f3e5f5
    style SV_Core fill:#fce4ec

๐ŸŽฏ Agent Specializations & Responsibilities

1. Planner Agent - Strategic Intelligence

flowchart TD
    Input[User Input/Goal] --> Parse[Natural Language Parsing]
    Parse --> Understand[Goal Understanding]
    Understand --> Decompose[Task Decomposition]
    
    Decompose --> Analyze[Dependency Analysis]
    Analyze --> Prioritize[Priority Assignment]
    Prioritize --> Sequence[Sequence Planning]
    
    Sequence --> Resource[Resource Estimation]
    Resource --> Risk[Risk Assessment]
    Risk --> Optimize[Plan Optimization]
    
    Optimize --> Validate{Plan Validation}
    Validate -->|Valid| Execute[Send to Selector]
    Validate -->|Invalid| Refine[Plan Refinement]
    Refine --> Decompose
    
    Execute --> Monitor[Monitor Execution]
    Monitor --> Adapt[Plan Adaptation]
    Adapt --> Learn[Update Planning Models]
    
    subgraph "๐Ÿง  Planning Intelligence"
        Understand
        Decompose
        Analyze
        Optimize
    end
    
    subgraph "๐Ÿ”„ Adaptive Learning"
        Monitor
        Adapt
        Learn
    end
    
    style Input fill:#e3f2fd
    style Understand fill:#e8f5e8
    style Optimize fill:#f3e5f5
    style Learn fill:#fce4ec

2. Selector Agent - Knowledge Intelligence

graph TB
    subgraph "๐Ÿ” Tool Discovery Pipeline"
        Query[Receive Tool Request]
        Search[Knowledge Graph Search]
        Filter[Capability Filtering]
        Match[Requirement Matching]
    end
    
    subgraph "๐Ÿงฎ Similarity & Ranking"
        Semantic[Semantic Similarity]
        Vector[Vector Search]
        Graph[Graph Traversal]
        Hybrid[Hybrid Scoring]
    end
    
    subgraph "๐ŸŽฏ Selection Logic"
        Score[Calculate Scores]
        Rank[Rank Candidates]
        Filter_Quality[Quality Filtering]
        Select[Final Selection]
    end
    
    subgraph "๐Ÿ“Š Contextual Factors"
        Performance[Past Performance]
        Availability[Tool Availability]
        Cost[Resource Cost]
        Constraints[Business Constraints]
    end
    
    Query --> Search
    Search --> Filter
    Filter --> Match
    
    Match --> Semantic
    Match --> Vector
    Match --> Graph
    
    Semantic --> Hybrid
    Vector --> Hybrid
    Graph --> Hybrid
    
    Hybrid --> Score
    Score --> Rank
    Rank --> Filter_Quality
    Filter_Quality --> Select
    
    Performance --> Score
    Availability --> Score
    Cost --> Score
    Constraints --> Filter_Quality
    
    Select --> Feedback[Update Selection Models]
    Feedback --> Search
    
    style Query fill:#e1f5fe
    style Semantic fill:#e8f5e8
    style Score fill:#f3e5f5
    style Select fill:#fff3e0

3. Executor Agent - Operational Intelligence

sequenceDiagram
    participant Planner as Planner Agent
    participant Executor as Executor Agent
    participant Tool1 as MCP Tool 1
    participant Tool2 as MCP Tool 2
    participant Monitor as Execution Monitor
    participant Supervisor as Supervisor Agent
    
    Planner->>Executor: Execute Plan
    Note over Executor: Initialize Execution Context
    
    Executor->>Executor: Prepare Execution Environment
    Executor->>Monitor: Start Monitoring
    
    loop For Each Step in Plan
        Executor->>Tool1: Invoke Tool
        Tool1-->>Executor: Stream Response
        Executor->>Monitor: Log Progress
        
        Monitor->>Supervisor: Validate Intermediate Result
        Supervisor-->>Monitor: Validation Status
        
        alt Validation Successful
            Executor->>Tool2: Continue with Next Tool
        else Validation Failed
            Executor->>Executor: Execute Retry Logic
            Executor->>Tool1: Retry Tool Invocation
        end
    end
    
    Executor->>Monitor: Execution Complete
    Monitor->>Supervisor: Final Validation
    Supervisor-->>Executor: Final Status
    Executor->>Planner: Return Results
    
    Note over Executor: Update Execution Models

4. Supervisor Agent - Quality Intelligence

flowchart TD
    Start[Receive Execution Data] --> Validate[Validate Results]
    Validate --> Quality{Quality Check}
    
    Quality -->|Pass| Approve[Approve Results]
    Quality -->|Fail| Analyze[Analyze Failure]
    
    Analyze --> Classify[Classify Error Type]
    Classify --> Decide{Recovery Decision}
    
    Decide -->|Retry| Retry[Request Retry]
    Decide -->|Fallback| Fallback[Activate Fallback]
    Decide -->|Abort| Abort[Abort Execution]
    
    Approve --> Learn[Learn from Success]
    Retry --> Monitor[Monitor Retry]
    Fallback --> Monitor
    
    Monitor --> Validate
    
    Learn --> UpdateKG[Update Knowledge Graph]
    Abort --> LogFailure[Log Failure Pattern]
    LogFailure --> UpdateKG
    
    UpdateKG --> Improve[Improve Agent Models]
    Improve --> End[Complete Supervision]
    
    subgraph "๐Ÿ” Quality Assurance"
        Validate
        Quality
        Analyze
    end
    
    subgraph "๐Ÿ›ก๏ธ Error Recovery"
        Classify
        Decide
        Retry
        Fallback
    end
    
    subgraph "๐Ÿ“ˆ Continuous Learning"
        Learn
        UpdateKG
        Improve
    end
    
    style Start fill:#e3f2fd
    style Quality fill:#e8f5e8
    style Learn fill:#f3e5f5
    style Improve fill:#fce4ec

๐Ÿ”„ Agent Communication Patterns

Inter-Agent Communication Protocol

graph TB
    subgraph "๐Ÿ“ก Communication Layer"
        MessageBus[Message Bus<br/>Event-Driven Communication]
        Protocol[Communication Protocol<br/>Standardized Messages]
        Router[Message Router<br/>Intelligent Routing]
        Queue[Message Queue<br/>Asynchronous Processing]
    end
    
    subgraph "๐Ÿค Communication Patterns"
        RequestReply[Request-Reply<br/>Synchronous Communication]
        PubSub[Publish-Subscribe<br/>Event Broadcasting]
        Pipeline[Pipeline<br/>Sequential Processing]
        Broadcast[Broadcast<br/>All-Agent Notifications]
    end
    
    subgraph "๐Ÿ“‹ Message Types"
        TaskMsg[Task Messages<br/>Planning & Execution]
        StatusMsg[Status Messages<br/>Progress Updates]
        DataMsg[Data Messages<br/>Results & Context]
        ControlMsg[Control Messages<br/>Coordination & Commands]
    end
    
    MessageBus --> RequestReply
    MessageBus --> PubSub
    MessageBus --> Pipeline
    MessageBus --> Broadcast
    
    Protocol --> TaskMsg
    Protocol --> StatusMsg
    Protocol --> DataMsg
    Protocol --> ControlMsg
    
    Router --> Queue
    Queue --> MessageBus
    
    RequestReply --> TaskMsg
    PubSub --> StatusMsg
    Pipeline --> DataMsg
    Broadcast --> ControlMsg
    
    style MessageBus fill:#e1f5fe
    style RequestReply fill:#e8f5e8
    style TaskMsg fill:#f3e5f5
    style Router fill:#fff3e0

Agent Coordination Workflow

stateDiagram-v2
    [*] --> Idle
    
    Idle --> Planning : User Request Received
    Planning --> ToolSelection : Plan Generated
    ToolSelection --> Execution : Tools Selected
    Execution --> Monitoring : Execution Started
    
    Monitoring --> Validation : Step Completed
    Validation --> Execution : Continue Execution
    Validation --> ErrorHandling : Validation Failed
    
    ErrorHandling --> Retry : Recoverable Error
    ErrorHandling --> Fallback : Non-recoverable Error
    ErrorHandling --> Abort : Critical Error
    
    Retry --> Execution
    Fallback --> ToolSelection
    Abort --> Learning
    
    Execution --> Completion : All Steps Done
    Completion --> Learning : Results Validated
    Learning --> Idle : Models Updated
    
    state Planning {
        [*] --> GoalAnalysis
        GoalAnalysis --> TaskDecomposition
        TaskDecomposition --> DependencyMapping
        DependencyMapping --> PlanGeneration
        PlanGeneration --> [*]
    }
    
    state Execution {
        [*] --> ToolInvocation
        ToolInvocation --> ProgressMonitoring
        ProgressMonitoring --> ResultCollection
        ResultCollection --> [*]
    }
    
    state Learning {
        [*] --> PerformanceAnalysis
        PerformanceAnalysis --> PatternIdentification
        PatternIdentification --> ModelUpdate
        ModelUpdate --> KnowledgeGraphUpdate
        KnowledgeGraphUpdate --> [*]
    }

๐Ÿง  Agent Intelligence Mechanisms

Planner Agent Decision Making

flowchart TD
    Goal[User Goal] --> Context[Gather Context]
    Context --> Knowledge[Query Knowledge Base]
    Knowledge --> Patterns[Identify Patterns]
    
    Patterns --> Generate[Generate Plan Options]
    Generate --> Evaluate[Evaluate Options]
    Evaluate --> Score[Score Plans]
    
    Score --> Select{Select Best Plan}
    Select -->|Confidence > Threshold| Execute[Execute Plan]
    Select -->|Confidence < Threshold| Explore[Explore Alternatives]
    
    Explore --> Research[Research Domain]
    Research --> Consult[Consult Other Agents]
    Consult --> Generate
    
    Execute --> Monitor[Monitor Execution]
    Monitor --> Feedback[Collect Feedback]
    Feedback --> Learn[Update Planning Model]
    Learn --> Knowledge
    
    subgraph "๐ŸŽฏ Decision Factors"
        Complexity[Task Complexity]
        Resources[Available Resources]
        History[Historical Success]
        Constraints[User Constraints]
    end
    
    Complexity --> Score
    Resources --> Score
    History --> Score
    Constraints --> Evaluate
    
    style Goal fill:#e3f2fd
    style Generate fill:#e8f5e8
    style Select fill:#f3e5f5
    style Learn fill:#fce4ec

Selector Agent Reasoning Process

graph TB
    subgraph "๐Ÿ” Tool Analysis Pipeline"
        Capability[Tool Capability Analysis]
        Compatibility[Compatibility Check]
        Performance[Performance History]
        Context[Context Relevance]
    end
    
    subgraph "๐Ÿงฎ Scoring Algorithm"
        Semantic[Semantic Similarity<br/>0.0 - 1.0]
        Functional[Functional Match<br/>0.0 - 1.0]
        Quality[Quality Score<br/>0.0 - 1.0]
        Availability[Availability Score<br/>0.0 - 1.0]
    end
    
    subgraph "โš–๏ธ Weighted Decision"
        Weights[Configure Weights<br/>ฮฑ, ฮฒ, ฮณ, ฮด]
        Combine[Weighted Combination<br/>ฮฑร—S + ฮฒร—F + ฮณร—Q + ฮดร—A]
        Threshold[Apply Threshold<br/>Min Score Required]
        Rank[Final Ranking<br/>Top K Tools]
    end
    
    Capability --> Semantic
    Compatibility --> Functional
    Performance --> Quality
    Context --> Availability
    
    Semantic --> Weights
    Functional --> Weights
    Quality --> Weights
    Availability --> Weights
    
    Weights --> Combine
    Combine --> Threshold
    Threshold --> Rank
    
    Rank --> Feedback[Learning Feedback]
    Feedback --> Capability
    
    style Capability fill:#e1f5fe
    style Semantic fill:#e8f5e8
    style Combine fill:#f3e5f5
    style Rank fill:#fff3e0

Executor Agent Resource Management

graph LR
    subgraph "๐Ÿ“Š Resource Pool"
        CPU[CPU Resources]
        Memory[Memory Pool]
        Network[Network Bandwidth]
        Connections[Tool Connections]
    end
    
    subgraph "๐ŸŽฏ Allocation Strategy"
        Assess[Assess Requirements]
        Reserve[Reserve Resources]
        Monitor[Monitor Usage]
        Release[Release Resources]
    end
    
    subgraph "โšก Optimization"
        LoadBalance[Load Balancing]
        Queue[Request Queuing]
        Priority[Priority Management]
        Scaling[Dynamic Scaling]
    end
    
    subgraph "๐Ÿ›ก๏ธ Safety Mechanisms"
        Limits[Resource Limits]
        Timeout[Timeout Handling]
        Fallback[Fallback Resources]
        Recovery[Recovery Procedures]
    end
    
    CPU --> Assess
    Memory --> Assess
    Network --> Reserve
    Connections --> Reserve
    
    Assess --> LoadBalance
    Reserve --> Queue
    Monitor --> Priority
    Release --> Scaling
    
    LoadBalance --> Limits
    Queue --> Timeout
    Priority --> Fallback
    Scaling --> Recovery
    
    style CPU fill:#e1f5fe
    style Assess fill:#e8f5e8
    style LoadBalance fill:#f3e5f5
    style Limits fill:#ffebee

๐Ÿ“ˆ Agent Learning & Adaptation

Continuous Learning Architecture

flowchart TD
    Experience[Execution Experience] --> Collect[Collect Data]
    Collect --> Process[Process Patterns]
    Process --> Extract[Extract Insights]
    
    Extract --> ModelUpdate[Update Agent Models]
    ModelUpdate --> Validate[Validate Improvements]
    Validate --> Deploy{Deploy Updates?}
    
    Deploy -->|Yes| Apply[Apply to Production]
    Deploy -->|No| Rollback[Rollback Changes]
    
    Apply --> Monitor[Monitor Performance]
    Monitor --> Measure[Measure Impact]
    Measure --> Feedback[Generate Feedback]
    
    Feedback --> Experience
    Rollback --> Experience
    
    subgraph "๐Ÿง  Learning Components"
        PatternRecognition[Pattern Recognition]
        ReinforcementLearning[Reinforcement Learning]
        TransferLearning[Transfer Learning]
        MetaLearning[Meta Learning]
    end
    
    subgraph "๐Ÿ“Š Learning Metrics"
        Success[Success Rate]
        Efficiency[Efficiency Improvement]
        UserSatisfaction[User Satisfaction]
        ToolPerformance[Tool Performance]
    end
    
    Process --> PatternRecognition
    Extract --> ReinforcementLearning
    ModelUpdate --> TransferLearning
    Validate --> MetaLearning
    
    Measure --> Success
    Measure --> Efficiency
    Measure --> UserSatisfaction
    Measure --> ToolPerformance
    
    style Experience fill:#e3f2fd
    style Extract fill:#e8f5e8
    style Apply fill:#f3e5f5
    style PatternRecognition fill:#fce4ec

Agent Performance Optimization

graph TB
    subgraph "๐Ÿ“Š Performance Monitoring"
        ResponseTime[Response Time]
        Accuracy[Decision Accuracy]
        ResourceUsage[Resource Usage]
        UserFeedback[User Feedback]
    end
    
    subgraph "๐Ÿ” Analysis Engine"
        Baseline[Establish Baseline]
        Compare[Compare Performance]
        Identify[Identify Bottlenecks]
        Root[Root Cause Analysis]
    end
    
    subgraph "โšก Optimization Strategies"
        Algorithm[Algorithm Tuning]
        Parallel[Parallelization]
        Cache[Caching Strategy]
        Load[Load Distribution]
    end
    
    subgraph "โœ… Validation & Deployment"
        Test[A/B Testing]
        Gradual[Gradual Rollout]
        Monitor[Monitor Changes]
        Rollback[Rollback if Needed]
    end
    
    ResponseTime --> Baseline
    Accuracy --> Compare
    ResourceUsage --> Identify
    UserFeedback --> Root
    
    Baseline --> Algorithm
    Compare --> Parallel
    Identify --> Cache
    Root --> Load
    
    Algorithm --> Test
    Parallel --> Gradual
    Cache --> Monitor
    Load --> Rollback
    
    style ResponseTime fill:#e1f5fe
    style Baseline fill:#e8f5e8
    style Algorithm fill:#f3e5f5
    style Test fill:#fff3e0

๐Ÿ”’ Agent Security & Reliability

Security Architecture

graph TB
    subgraph "๐Ÿ›ก๏ธ Security Layers"
        Authentication[Agent Authentication]
        Authorization[Authorization Control]
        Encryption[Communication Encryption]
        Validation[Input Validation]
    end
    
    subgraph "๐Ÿ” Trust Management"
        Identity[Agent Identity Verification]
        Reputation[Reputation System]
        Permissions[Permission Management]
        Audit[Audit Logging]
    end
    
    subgraph "๐Ÿšจ Threat Protection"
        Anomaly[Anomaly Detection]
        Intrusion[Intrusion Detection]
        Isolation[Agent Isolation]
        Recovery[Security Recovery]
    end
    
    Authentication --> Identity
    Authorization --> Reputation
    Encryption --> Permissions
    Validation --> Audit
    
    Identity --> Anomaly
    Reputation --> Intrusion
    Permissions --> Isolation
    Audit --> Recovery
    
    style Authentication fill:#e1f5fe
    style Identity fill:#e8f5e8
    style Anomaly fill:#ffebee

๐Ÿ”— Related Documentation

This agent architecture documentation provides comprehensive insights into KGraph-MCP's intelligent multi-agent system that enables autonomous MCP tool orchestration through specialized AI agents.