A newer version of the Gradio SDK is available:
6.1.0
metadata
title: AI Agent Architecture
description: Multi-agent system design and coordination patterns in KGraph-MCP
AI Agent Architecture
Comprehensive documentation of KGraph-MCP's intelligent multi-agent system that enables autonomous MCP tool orchestration through specialized AI agents.
๐ค Agent System Overview
KGraph-MCP employs a Multi-Agent Orchestration Architecture where specialized AI agents collaborate to understand user goals, discover appropriate tools, execute complex workflows, and continuously learn from interactions.
Core Agent Framework
graph TB
subgraph "๐ง Agent Coordination Layer"
Controller[Agent Controller<br/>Coordination & Communication]
Scheduler[Task Scheduler<br/>Agent Workload Management]
Monitor[Agent Monitor<br/>Health & Performance]
end
subgraph "๐ฏ Specialized Agents"
subgraph "Planner Agent"
PA_Core[Core Planning Engine]
PA_NLP[Natural Language Processor]
PA_Goals[Goal Decomposition]
PA_Strategy[Strategy Formation]
end
subgraph "Selector Agent"
SA_Core[Core Selection Engine]
SA_Query[Knowledge Query]
SA_Match[Capability Matching]
SA_Rank[Tool Ranking]
end
subgraph "Executor Agent"
EA_Core[Core Execution Engine]
EA_Invoke[Tool Invocation]
EA_Monitor[Execution Monitoring]
EA_Coord[Multi-tool Coordination]
end
subgraph "Supervisor Agent"
SV_Core[Core Supervision Engine]
SV_Validate[Result Validation]
SV_Quality[Quality Assurance]
SV_Learn[Learning Engine]
end
end
subgraph "๐๏ธ Shared Resources"
Knowledge[Knowledge Graph]
Memory[Shared Memory]
Context[Execution Context]
Metrics[Performance Metrics]
end
Controller --> PA_Core
Controller --> SA_Core
Controller --> EA_Core
Controller --> SV_Core
Scheduler --> PA_Core
Scheduler --> SA_Core
Scheduler --> EA_Core
Scheduler --> SV_Core
Monitor --> Metrics
Metrics --> Knowledge
PA_Core --> SA_Core
SA_Core --> EA_Core
EA_Core --> SV_Core
SV_Core --> PA_Core
PA_Core --> Knowledge
SA_Core --> Knowledge
EA_Core --> Context
SV_Core --> Memory
style Controller fill:#e1f5fe
style PA_Core fill:#fff3e0
style SA_Core fill:#e8f5e8
style EA_Core fill:#f3e5f5
style SV_Core fill:#fce4ec
๐ฏ Agent Specializations & Responsibilities
1. Planner Agent - Strategic Intelligence
flowchart TD
Input[User Input/Goal] --> Parse[Natural Language Parsing]
Parse --> Understand[Goal Understanding]
Understand --> Decompose[Task Decomposition]
Decompose --> Analyze[Dependency Analysis]
Analyze --> Prioritize[Priority Assignment]
Prioritize --> Sequence[Sequence Planning]
Sequence --> Resource[Resource Estimation]
Resource --> Risk[Risk Assessment]
Risk --> Optimize[Plan Optimization]
Optimize --> Validate{Plan Validation}
Validate -->|Valid| Execute[Send to Selector]
Validate -->|Invalid| Refine[Plan Refinement]
Refine --> Decompose
Execute --> Monitor[Monitor Execution]
Monitor --> Adapt[Plan Adaptation]
Adapt --> Learn[Update Planning Models]
subgraph "๐ง Planning Intelligence"
Understand
Decompose
Analyze
Optimize
end
subgraph "๐ Adaptive Learning"
Monitor
Adapt
Learn
end
style Input fill:#e3f2fd
style Understand fill:#e8f5e8
style Optimize fill:#f3e5f5
style Learn fill:#fce4ec
2. Selector Agent - Knowledge Intelligence
graph TB
subgraph "๐ Tool Discovery Pipeline"
Query[Receive Tool Request]
Search[Knowledge Graph Search]
Filter[Capability Filtering]
Match[Requirement Matching]
end
subgraph "๐งฎ Similarity & Ranking"
Semantic[Semantic Similarity]
Vector[Vector Search]
Graph[Graph Traversal]
Hybrid[Hybrid Scoring]
end
subgraph "๐ฏ Selection Logic"
Score[Calculate Scores]
Rank[Rank Candidates]
Filter_Quality[Quality Filtering]
Select[Final Selection]
end
subgraph "๐ Contextual Factors"
Performance[Past Performance]
Availability[Tool Availability]
Cost[Resource Cost]
Constraints[Business Constraints]
end
Query --> Search
Search --> Filter
Filter --> Match
Match --> Semantic
Match --> Vector
Match --> Graph
Semantic --> Hybrid
Vector --> Hybrid
Graph --> Hybrid
Hybrid --> Score
Score --> Rank
Rank --> Filter_Quality
Filter_Quality --> Select
Performance --> Score
Availability --> Score
Cost --> Score
Constraints --> Filter_Quality
Select --> Feedback[Update Selection Models]
Feedback --> Search
style Query fill:#e1f5fe
style Semantic fill:#e8f5e8
style Score fill:#f3e5f5
style Select fill:#fff3e0
3. Executor Agent - Operational Intelligence
sequenceDiagram
participant Planner as Planner Agent
participant Executor as Executor Agent
participant Tool1 as MCP Tool 1
participant Tool2 as MCP Tool 2
participant Monitor as Execution Monitor
participant Supervisor as Supervisor Agent
Planner->>Executor: Execute Plan
Note over Executor: Initialize Execution Context
Executor->>Executor: Prepare Execution Environment
Executor->>Monitor: Start Monitoring
loop For Each Step in Plan
Executor->>Tool1: Invoke Tool
Tool1-->>Executor: Stream Response
Executor->>Monitor: Log Progress
Monitor->>Supervisor: Validate Intermediate Result
Supervisor-->>Monitor: Validation Status
alt Validation Successful
Executor->>Tool2: Continue with Next Tool
else Validation Failed
Executor->>Executor: Execute Retry Logic
Executor->>Tool1: Retry Tool Invocation
end
end
Executor->>Monitor: Execution Complete
Monitor->>Supervisor: Final Validation
Supervisor-->>Executor: Final Status
Executor->>Planner: Return Results
Note over Executor: Update Execution Models
4. Supervisor Agent - Quality Intelligence
flowchart TD
Start[Receive Execution Data] --> Validate[Validate Results]
Validate --> Quality{Quality Check}
Quality -->|Pass| Approve[Approve Results]
Quality -->|Fail| Analyze[Analyze Failure]
Analyze --> Classify[Classify Error Type]
Classify --> Decide{Recovery Decision}
Decide -->|Retry| Retry[Request Retry]
Decide -->|Fallback| Fallback[Activate Fallback]
Decide -->|Abort| Abort[Abort Execution]
Approve --> Learn[Learn from Success]
Retry --> Monitor[Monitor Retry]
Fallback --> Monitor
Monitor --> Validate
Learn --> UpdateKG[Update Knowledge Graph]
Abort --> LogFailure[Log Failure Pattern]
LogFailure --> UpdateKG
UpdateKG --> Improve[Improve Agent Models]
Improve --> End[Complete Supervision]
subgraph "๐ Quality Assurance"
Validate
Quality
Analyze
end
subgraph "๐ก๏ธ Error Recovery"
Classify
Decide
Retry
Fallback
end
subgraph "๐ Continuous Learning"
Learn
UpdateKG
Improve
end
style Start fill:#e3f2fd
style Quality fill:#e8f5e8
style Learn fill:#f3e5f5
style Improve fill:#fce4ec
๐ Agent Communication Patterns
Inter-Agent Communication Protocol
graph TB
subgraph "๐ก Communication Layer"
MessageBus[Message Bus<br/>Event-Driven Communication]
Protocol[Communication Protocol<br/>Standardized Messages]
Router[Message Router<br/>Intelligent Routing]
Queue[Message Queue<br/>Asynchronous Processing]
end
subgraph "๐ค Communication Patterns"
RequestReply[Request-Reply<br/>Synchronous Communication]
PubSub[Publish-Subscribe<br/>Event Broadcasting]
Pipeline[Pipeline<br/>Sequential Processing]
Broadcast[Broadcast<br/>All-Agent Notifications]
end
subgraph "๐ Message Types"
TaskMsg[Task Messages<br/>Planning & Execution]
StatusMsg[Status Messages<br/>Progress Updates]
DataMsg[Data Messages<br/>Results & Context]
ControlMsg[Control Messages<br/>Coordination & Commands]
end
MessageBus --> RequestReply
MessageBus --> PubSub
MessageBus --> Pipeline
MessageBus --> Broadcast
Protocol --> TaskMsg
Protocol --> StatusMsg
Protocol --> DataMsg
Protocol --> ControlMsg
Router --> Queue
Queue --> MessageBus
RequestReply --> TaskMsg
PubSub --> StatusMsg
Pipeline --> DataMsg
Broadcast --> ControlMsg
style MessageBus fill:#e1f5fe
style RequestReply fill:#e8f5e8
style TaskMsg fill:#f3e5f5
style Router fill:#fff3e0
Agent Coordination Workflow
stateDiagram-v2
[*] --> Idle
Idle --> Planning : User Request Received
Planning --> ToolSelection : Plan Generated
ToolSelection --> Execution : Tools Selected
Execution --> Monitoring : Execution Started
Monitoring --> Validation : Step Completed
Validation --> Execution : Continue Execution
Validation --> ErrorHandling : Validation Failed
ErrorHandling --> Retry : Recoverable Error
ErrorHandling --> Fallback : Non-recoverable Error
ErrorHandling --> Abort : Critical Error
Retry --> Execution
Fallback --> ToolSelection
Abort --> Learning
Execution --> Completion : All Steps Done
Completion --> Learning : Results Validated
Learning --> Idle : Models Updated
state Planning {
[*] --> GoalAnalysis
GoalAnalysis --> TaskDecomposition
TaskDecomposition --> DependencyMapping
DependencyMapping --> PlanGeneration
PlanGeneration --> [*]
}
state Execution {
[*] --> ToolInvocation
ToolInvocation --> ProgressMonitoring
ProgressMonitoring --> ResultCollection
ResultCollection --> [*]
}
state Learning {
[*] --> PerformanceAnalysis
PerformanceAnalysis --> PatternIdentification
PatternIdentification --> ModelUpdate
ModelUpdate --> KnowledgeGraphUpdate
KnowledgeGraphUpdate --> [*]
}
๐ง Agent Intelligence Mechanisms
Planner Agent Decision Making
flowchart TD
Goal[User Goal] --> Context[Gather Context]
Context --> Knowledge[Query Knowledge Base]
Knowledge --> Patterns[Identify Patterns]
Patterns --> Generate[Generate Plan Options]
Generate --> Evaluate[Evaluate Options]
Evaluate --> Score[Score Plans]
Score --> Select{Select Best Plan}
Select -->|Confidence > Threshold| Execute[Execute Plan]
Select -->|Confidence < Threshold| Explore[Explore Alternatives]
Explore --> Research[Research Domain]
Research --> Consult[Consult Other Agents]
Consult --> Generate
Execute --> Monitor[Monitor Execution]
Monitor --> Feedback[Collect Feedback]
Feedback --> Learn[Update Planning Model]
Learn --> Knowledge
subgraph "๐ฏ Decision Factors"
Complexity[Task Complexity]
Resources[Available Resources]
History[Historical Success]
Constraints[User Constraints]
end
Complexity --> Score
Resources --> Score
History --> Score
Constraints --> Evaluate
style Goal fill:#e3f2fd
style Generate fill:#e8f5e8
style Select fill:#f3e5f5
style Learn fill:#fce4ec
Selector Agent Reasoning Process
graph TB
subgraph "๐ Tool Analysis Pipeline"
Capability[Tool Capability Analysis]
Compatibility[Compatibility Check]
Performance[Performance History]
Context[Context Relevance]
end
subgraph "๐งฎ Scoring Algorithm"
Semantic[Semantic Similarity<br/>0.0 - 1.0]
Functional[Functional Match<br/>0.0 - 1.0]
Quality[Quality Score<br/>0.0 - 1.0]
Availability[Availability Score<br/>0.0 - 1.0]
end
subgraph "โ๏ธ Weighted Decision"
Weights[Configure Weights<br/>ฮฑ, ฮฒ, ฮณ, ฮด]
Combine[Weighted Combination<br/>ฮฑรS + ฮฒรF + ฮณรQ + ฮดรA]
Threshold[Apply Threshold<br/>Min Score Required]
Rank[Final Ranking<br/>Top K Tools]
end
Capability --> Semantic
Compatibility --> Functional
Performance --> Quality
Context --> Availability
Semantic --> Weights
Functional --> Weights
Quality --> Weights
Availability --> Weights
Weights --> Combine
Combine --> Threshold
Threshold --> Rank
Rank --> Feedback[Learning Feedback]
Feedback --> Capability
style Capability fill:#e1f5fe
style Semantic fill:#e8f5e8
style Combine fill:#f3e5f5
style Rank fill:#fff3e0
Executor Agent Resource Management
graph LR
subgraph "๐ Resource Pool"
CPU[CPU Resources]
Memory[Memory Pool]
Network[Network Bandwidth]
Connections[Tool Connections]
end
subgraph "๐ฏ Allocation Strategy"
Assess[Assess Requirements]
Reserve[Reserve Resources]
Monitor[Monitor Usage]
Release[Release Resources]
end
subgraph "โก Optimization"
LoadBalance[Load Balancing]
Queue[Request Queuing]
Priority[Priority Management]
Scaling[Dynamic Scaling]
end
subgraph "๐ก๏ธ Safety Mechanisms"
Limits[Resource Limits]
Timeout[Timeout Handling]
Fallback[Fallback Resources]
Recovery[Recovery Procedures]
end
CPU --> Assess
Memory --> Assess
Network --> Reserve
Connections --> Reserve
Assess --> LoadBalance
Reserve --> Queue
Monitor --> Priority
Release --> Scaling
LoadBalance --> Limits
Queue --> Timeout
Priority --> Fallback
Scaling --> Recovery
style CPU fill:#e1f5fe
style Assess fill:#e8f5e8
style LoadBalance fill:#f3e5f5
style Limits fill:#ffebee
๐ Agent Learning & Adaptation
Continuous Learning Architecture
flowchart TD
Experience[Execution Experience] --> Collect[Collect Data]
Collect --> Process[Process Patterns]
Process --> Extract[Extract Insights]
Extract --> ModelUpdate[Update Agent Models]
ModelUpdate --> Validate[Validate Improvements]
Validate --> Deploy{Deploy Updates?}
Deploy -->|Yes| Apply[Apply to Production]
Deploy -->|No| Rollback[Rollback Changes]
Apply --> Monitor[Monitor Performance]
Monitor --> Measure[Measure Impact]
Measure --> Feedback[Generate Feedback]
Feedback --> Experience
Rollback --> Experience
subgraph "๐ง Learning Components"
PatternRecognition[Pattern Recognition]
ReinforcementLearning[Reinforcement Learning]
TransferLearning[Transfer Learning]
MetaLearning[Meta Learning]
end
subgraph "๐ Learning Metrics"
Success[Success Rate]
Efficiency[Efficiency Improvement]
UserSatisfaction[User Satisfaction]
ToolPerformance[Tool Performance]
end
Process --> PatternRecognition
Extract --> ReinforcementLearning
ModelUpdate --> TransferLearning
Validate --> MetaLearning
Measure --> Success
Measure --> Efficiency
Measure --> UserSatisfaction
Measure --> ToolPerformance
style Experience fill:#e3f2fd
style Extract fill:#e8f5e8
style Apply fill:#f3e5f5
style PatternRecognition fill:#fce4ec
Agent Performance Optimization
graph TB
subgraph "๐ Performance Monitoring"
ResponseTime[Response Time]
Accuracy[Decision Accuracy]
ResourceUsage[Resource Usage]
UserFeedback[User Feedback]
end
subgraph "๐ Analysis Engine"
Baseline[Establish Baseline]
Compare[Compare Performance]
Identify[Identify Bottlenecks]
Root[Root Cause Analysis]
end
subgraph "โก Optimization Strategies"
Algorithm[Algorithm Tuning]
Parallel[Parallelization]
Cache[Caching Strategy]
Load[Load Distribution]
end
subgraph "โ
Validation & Deployment"
Test[A/B Testing]
Gradual[Gradual Rollout]
Monitor[Monitor Changes]
Rollback[Rollback if Needed]
end
ResponseTime --> Baseline
Accuracy --> Compare
ResourceUsage --> Identify
UserFeedback --> Root
Baseline --> Algorithm
Compare --> Parallel
Identify --> Cache
Root --> Load
Algorithm --> Test
Parallel --> Gradual
Cache --> Monitor
Load --> Rollback
style ResponseTime fill:#e1f5fe
style Baseline fill:#e8f5e8
style Algorithm fill:#f3e5f5
style Test fill:#fff3e0
๐ Agent Security & Reliability
Security Architecture
graph TB
subgraph "๐ก๏ธ Security Layers"
Authentication[Agent Authentication]
Authorization[Authorization Control]
Encryption[Communication Encryption]
Validation[Input Validation]
end
subgraph "๐ Trust Management"
Identity[Agent Identity Verification]
Reputation[Reputation System]
Permissions[Permission Management]
Audit[Audit Logging]
end
subgraph "๐จ Threat Protection"
Anomaly[Anomaly Detection]
Intrusion[Intrusion Detection]
Isolation[Agent Isolation]
Recovery[Security Recovery]
end
Authentication --> Identity
Authorization --> Reputation
Encryption --> Permissions
Validation --> Audit
Identity --> Anomaly
Reputation --> Intrusion
Permissions --> Isolation
Audit --> Recovery
style Authentication fill:#e1f5fe
style Identity fill:#e8f5e8
style Anomaly fill:#ffebee
๐ Related Documentation
- System Architecture Overview - Complete system design
- Data Flow Architecture - Information processing patterns
- Knowledge Graph Architecture - Knowledge representation
- API Documentation - Agent API interfaces
This agent architecture documentation provides comprehensive insights into KGraph-MCP's intelligent multi-agent system that enables autonomous MCP tool orchestration through specialized AI agents.