BasalGanglia's picture
🏆 Multi-Track Hackathon Submission
1f2d50a verified
---
title: AI Agent Architecture
description: Multi-agent system design and coordination patterns in KGraph-MCP
---
# AI Agent Architecture
Comprehensive documentation of KGraph-MCP's intelligent multi-agent system that enables autonomous MCP tool orchestration through specialized AI agents.
## 🤖 Agent System Overview
KGraph-MCP employs a **Multi-Agent Orchestration Architecture** where specialized AI agents collaborate to understand user goals, discover appropriate tools, execute complex workflows, and continuously learn from interactions.
### **Core Agent Framework**
```mermaid
graph TB
subgraph "🧠 Agent Coordination Layer"
Controller[Agent Controller<br/>Coordination & Communication]
Scheduler[Task Scheduler<br/>Agent Workload Management]
Monitor[Agent Monitor<br/>Health & Performance]
end
subgraph "🎯 Specialized Agents"
subgraph "Planner Agent"
PA_Core[Core Planning Engine]
PA_NLP[Natural Language Processor]
PA_Goals[Goal Decomposition]
PA_Strategy[Strategy Formation]
end
subgraph "Selector Agent"
SA_Core[Core Selection Engine]
SA_Query[Knowledge Query]
SA_Match[Capability Matching]
SA_Rank[Tool Ranking]
end
subgraph "Executor Agent"
EA_Core[Core Execution Engine]
EA_Invoke[Tool Invocation]
EA_Monitor[Execution Monitoring]
EA_Coord[Multi-tool Coordination]
end
subgraph "Supervisor Agent"
SV_Core[Core Supervision Engine]
SV_Validate[Result Validation]
SV_Quality[Quality Assurance]
SV_Learn[Learning Engine]
end
end
subgraph "🗄️ Shared Resources"
Knowledge[Knowledge Graph]
Memory[Shared Memory]
Context[Execution Context]
Metrics[Performance Metrics]
end
Controller --> PA_Core
Controller --> SA_Core
Controller --> EA_Core
Controller --> SV_Core
Scheduler --> PA_Core
Scheduler --> SA_Core
Scheduler --> EA_Core
Scheduler --> SV_Core
Monitor --> Metrics
Metrics --> Knowledge
PA_Core --> SA_Core
SA_Core --> EA_Core
EA_Core --> SV_Core
SV_Core --> PA_Core
PA_Core --> Knowledge
SA_Core --> Knowledge
EA_Core --> Context
SV_Core --> Memory
style Controller fill:#e1f5fe
style PA_Core fill:#fff3e0
style SA_Core fill:#e8f5e8
style EA_Core fill:#f3e5f5
style SV_Core fill:#fce4ec
```
## 🎯 Agent Specializations & Responsibilities
### **1. Planner Agent - Strategic Intelligence**
```mermaid
flowchart TD
Input[User Input/Goal] --> Parse[Natural Language Parsing]
Parse --> Understand[Goal Understanding]
Understand --> Decompose[Task Decomposition]
Decompose --> Analyze[Dependency Analysis]
Analyze --> Prioritize[Priority Assignment]
Prioritize --> Sequence[Sequence Planning]
Sequence --> Resource[Resource Estimation]
Resource --> Risk[Risk Assessment]
Risk --> Optimize[Plan Optimization]
Optimize --> Validate{Plan Validation}
Validate -->|Valid| Execute[Send to Selector]
Validate -->|Invalid| Refine[Plan Refinement]
Refine --> Decompose
Execute --> Monitor[Monitor Execution]
Monitor --> Adapt[Plan Adaptation]
Adapt --> Learn[Update Planning Models]
subgraph "🧠 Planning Intelligence"
Understand
Decompose
Analyze
Optimize
end
subgraph "🔄 Adaptive Learning"
Monitor
Adapt
Learn
end
style Input fill:#e3f2fd
style Understand fill:#e8f5e8
style Optimize fill:#f3e5f5
style Learn fill:#fce4ec
```
### **2. Selector Agent - Knowledge Intelligence**
```mermaid
graph TB
subgraph "🔍 Tool Discovery Pipeline"
Query[Receive Tool Request]
Search[Knowledge Graph Search]
Filter[Capability Filtering]
Match[Requirement Matching]
end
subgraph "🧮 Similarity & Ranking"
Semantic[Semantic Similarity]
Vector[Vector Search]
Graph[Graph Traversal]
Hybrid[Hybrid Scoring]
end
subgraph "🎯 Selection Logic"
Score[Calculate Scores]
Rank[Rank Candidates]
Filter_Quality[Quality Filtering]
Select[Final Selection]
end
subgraph "📊 Contextual Factors"
Performance[Past Performance]
Availability[Tool Availability]
Cost[Resource Cost]
Constraints[Business Constraints]
end
Query --> Search
Search --> Filter
Filter --> Match
Match --> Semantic
Match --> Vector
Match --> Graph
Semantic --> Hybrid
Vector --> Hybrid
Graph --> Hybrid
Hybrid --> Score
Score --> Rank
Rank --> Filter_Quality
Filter_Quality --> Select
Performance --> Score
Availability --> Score
Cost --> Score
Constraints --> Filter_Quality
Select --> Feedback[Update Selection Models]
Feedback --> Search
style Query fill:#e1f5fe
style Semantic fill:#e8f5e8
style Score fill:#f3e5f5
style Select fill:#fff3e0
```
### **3. Executor Agent - Operational Intelligence**
```mermaid
sequenceDiagram
participant Planner as Planner Agent
participant Executor as Executor Agent
participant Tool1 as MCP Tool 1
participant Tool2 as MCP Tool 2
participant Monitor as Execution Monitor
participant Supervisor as Supervisor Agent
Planner->>Executor: Execute Plan
Note over Executor: Initialize Execution Context
Executor->>Executor: Prepare Execution Environment
Executor->>Monitor: Start Monitoring
loop For Each Step in Plan
Executor->>Tool1: Invoke Tool
Tool1-->>Executor: Stream Response
Executor->>Monitor: Log Progress
Monitor->>Supervisor: Validate Intermediate Result
Supervisor-->>Monitor: Validation Status
alt Validation Successful
Executor->>Tool2: Continue with Next Tool
else Validation Failed
Executor->>Executor: Execute Retry Logic
Executor->>Tool1: Retry Tool Invocation
end
end
Executor->>Monitor: Execution Complete
Monitor->>Supervisor: Final Validation
Supervisor-->>Executor: Final Status
Executor->>Planner: Return Results
Note over Executor: Update Execution Models
```
### **4. Supervisor Agent - Quality Intelligence**
```mermaid
flowchart TD
Start[Receive Execution Data] --> Validate[Validate Results]
Validate --> Quality{Quality Check}
Quality -->|Pass| Approve[Approve Results]
Quality -->|Fail| Analyze[Analyze Failure]
Analyze --> Classify[Classify Error Type]
Classify --> Decide{Recovery Decision}
Decide -->|Retry| Retry[Request Retry]
Decide -->|Fallback| Fallback[Activate Fallback]
Decide -->|Abort| Abort[Abort Execution]
Approve --> Learn[Learn from Success]
Retry --> Monitor[Monitor Retry]
Fallback --> Monitor
Monitor --> Validate
Learn --> UpdateKG[Update Knowledge Graph]
Abort --> LogFailure[Log Failure Pattern]
LogFailure --> UpdateKG
UpdateKG --> Improve[Improve Agent Models]
Improve --> End[Complete Supervision]
subgraph "🔍 Quality Assurance"
Validate
Quality
Analyze
end
subgraph "🛡️ Error Recovery"
Classify
Decide
Retry
Fallback
end
subgraph "📈 Continuous Learning"
Learn
UpdateKG
Improve
end
style Start fill:#e3f2fd
style Quality fill:#e8f5e8
style Learn fill:#f3e5f5
style Improve fill:#fce4ec
```
## 🔄 Agent Communication Patterns
### **Inter-Agent Communication Protocol**
```mermaid
graph TB
subgraph "📡 Communication Layer"
MessageBus[Message Bus<br/>Event-Driven Communication]
Protocol[Communication Protocol<br/>Standardized Messages]
Router[Message Router<br/>Intelligent Routing]
Queue[Message Queue<br/>Asynchronous Processing]
end
subgraph "🤝 Communication Patterns"
RequestReply[Request-Reply<br/>Synchronous Communication]
PubSub[Publish-Subscribe<br/>Event Broadcasting]
Pipeline[Pipeline<br/>Sequential Processing]
Broadcast[Broadcast<br/>All-Agent Notifications]
end
subgraph "📋 Message Types"
TaskMsg[Task Messages<br/>Planning & Execution]
StatusMsg[Status Messages<br/>Progress Updates]
DataMsg[Data Messages<br/>Results & Context]
ControlMsg[Control Messages<br/>Coordination & Commands]
end
MessageBus --> RequestReply
MessageBus --> PubSub
MessageBus --> Pipeline
MessageBus --> Broadcast
Protocol --> TaskMsg
Protocol --> StatusMsg
Protocol --> DataMsg
Protocol --> ControlMsg
Router --> Queue
Queue --> MessageBus
RequestReply --> TaskMsg
PubSub --> StatusMsg
Pipeline --> DataMsg
Broadcast --> ControlMsg
style MessageBus fill:#e1f5fe
style RequestReply fill:#e8f5e8
style TaskMsg fill:#f3e5f5
style Router fill:#fff3e0
```
### **Agent Coordination Workflow**
```mermaid
stateDiagram-v2
[*] --> Idle
Idle --> Planning : User Request Received
Planning --> ToolSelection : Plan Generated
ToolSelection --> Execution : Tools Selected
Execution --> Monitoring : Execution Started
Monitoring --> Validation : Step Completed
Validation --> Execution : Continue Execution
Validation --> ErrorHandling : Validation Failed
ErrorHandling --> Retry : Recoverable Error
ErrorHandling --> Fallback : Non-recoverable Error
ErrorHandling --> Abort : Critical Error
Retry --> Execution
Fallback --> ToolSelection
Abort --> Learning
Execution --> Completion : All Steps Done
Completion --> Learning : Results Validated
Learning --> Idle : Models Updated
state Planning {
[*] --> GoalAnalysis
GoalAnalysis --> TaskDecomposition
TaskDecomposition --> DependencyMapping
DependencyMapping --> PlanGeneration
PlanGeneration --> [*]
}
state Execution {
[*] --> ToolInvocation
ToolInvocation --> ProgressMonitoring
ProgressMonitoring --> ResultCollection
ResultCollection --> [*]
}
state Learning {
[*] --> PerformanceAnalysis
PerformanceAnalysis --> PatternIdentification
PatternIdentification --> ModelUpdate
ModelUpdate --> KnowledgeGraphUpdate
KnowledgeGraphUpdate --> [*]
}
```
## 🧠 Agent Intelligence Mechanisms
### **Planner Agent Decision Making**
```mermaid
flowchart TD
Goal[User Goal] --> Context[Gather Context]
Context --> Knowledge[Query Knowledge Base]
Knowledge --> Patterns[Identify Patterns]
Patterns --> Generate[Generate Plan Options]
Generate --> Evaluate[Evaluate Options]
Evaluate --> Score[Score Plans]
Score --> Select{Select Best Plan}
Select -->|Confidence > Threshold| Execute[Execute Plan]
Select -->|Confidence < Threshold| Explore[Explore Alternatives]
Explore --> Research[Research Domain]
Research --> Consult[Consult Other Agents]
Consult --> Generate
Execute --> Monitor[Monitor Execution]
Monitor --> Feedback[Collect Feedback]
Feedback --> Learn[Update Planning Model]
Learn --> Knowledge
subgraph "🎯 Decision Factors"
Complexity[Task Complexity]
Resources[Available Resources]
History[Historical Success]
Constraints[User Constraints]
end
Complexity --> Score
Resources --> Score
History --> Score
Constraints --> Evaluate
style Goal fill:#e3f2fd
style Generate fill:#e8f5e8
style Select fill:#f3e5f5
style Learn fill:#fce4ec
```
### **Selector Agent Reasoning Process**
```mermaid
graph TB
subgraph "🔍 Tool Analysis Pipeline"
Capability[Tool Capability Analysis]
Compatibility[Compatibility Check]
Performance[Performance History]
Context[Context Relevance]
end
subgraph "🧮 Scoring Algorithm"
Semantic[Semantic Similarity<br/>0.0 - 1.0]
Functional[Functional Match<br/>0.0 - 1.0]
Quality[Quality Score<br/>0.0 - 1.0]
Availability[Availability Score<br/>0.0 - 1.0]
end
subgraph "⚖️ Weighted Decision"
Weights[Configure Weights<br/>α, β, γ, δ]
Combine[Weighted Combination<br/>α×S + β×F + γ×Q + δ×A]
Threshold[Apply Threshold<br/>Min Score Required]
Rank[Final Ranking<br/>Top K Tools]
end
Capability --> Semantic
Compatibility --> Functional
Performance --> Quality
Context --> Availability
Semantic --> Weights
Functional --> Weights
Quality --> Weights
Availability --> Weights
Weights --> Combine
Combine --> Threshold
Threshold --> Rank
Rank --> Feedback[Learning Feedback]
Feedback --> Capability
style Capability fill:#e1f5fe
style Semantic fill:#e8f5e8
style Combine fill:#f3e5f5
style Rank fill:#fff3e0
```
### **Executor Agent Resource Management**
```mermaid
graph LR
subgraph "📊 Resource Pool"
CPU[CPU Resources]
Memory[Memory Pool]
Network[Network Bandwidth]
Connections[Tool Connections]
end
subgraph "🎯 Allocation Strategy"
Assess[Assess Requirements]
Reserve[Reserve Resources]
Monitor[Monitor Usage]
Release[Release Resources]
end
subgraph "⚡ Optimization"
LoadBalance[Load Balancing]
Queue[Request Queuing]
Priority[Priority Management]
Scaling[Dynamic Scaling]
end
subgraph "🛡️ Safety Mechanisms"
Limits[Resource Limits]
Timeout[Timeout Handling]
Fallback[Fallback Resources]
Recovery[Recovery Procedures]
end
CPU --> Assess
Memory --> Assess
Network --> Reserve
Connections --> Reserve
Assess --> LoadBalance
Reserve --> Queue
Monitor --> Priority
Release --> Scaling
LoadBalance --> Limits
Queue --> Timeout
Priority --> Fallback
Scaling --> Recovery
style CPU fill:#e1f5fe
style Assess fill:#e8f5e8
style LoadBalance fill:#f3e5f5
style Limits fill:#ffebee
```
## 📈 Agent Learning & Adaptation
### **Continuous Learning Architecture**
```mermaid
flowchart TD
Experience[Execution Experience] --> Collect[Collect Data]
Collect --> Process[Process Patterns]
Process --> Extract[Extract Insights]
Extract --> ModelUpdate[Update Agent Models]
ModelUpdate --> Validate[Validate Improvements]
Validate --> Deploy{Deploy Updates?}
Deploy -->|Yes| Apply[Apply to Production]
Deploy -->|No| Rollback[Rollback Changes]
Apply --> Monitor[Monitor Performance]
Monitor --> Measure[Measure Impact]
Measure --> Feedback[Generate Feedback]
Feedback --> Experience
Rollback --> Experience
subgraph "🧠 Learning Components"
PatternRecognition[Pattern Recognition]
ReinforcementLearning[Reinforcement Learning]
TransferLearning[Transfer Learning]
MetaLearning[Meta Learning]
end
subgraph "📊 Learning Metrics"
Success[Success Rate]
Efficiency[Efficiency Improvement]
UserSatisfaction[User Satisfaction]
ToolPerformance[Tool Performance]
end
Process --> PatternRecognition
Extract --> ReinforcementLearning
ModelUpdate --> TransferLearning
Validate --> MetaLearning
Measure --> Success
Measure --> Efficiency
Measure --> UserSatisfaction
Measure --> ToolPerformance
style Experience fill:#e3f2fd
style Extract fill:#e8f5e8
style Apply fill:#f3e5f5
style PatternRecognition fill:#fce4ec
```
### **Agent Performance Optimization**
```mermaid
graph TB
subgraph "📊 Performance Monitoring"
ResponseTime[Response Time]
Accuracy[Decision Accuracy]
ResourceUsage[Resource Usage]
UserFeedback[User Feedback]
end
subgraph "🔍 Analysis Engine"
Baseline[Establish Baseline]
Compare[Compare Performance]
Identify[Identify Bottlenecks]
Root[Root Cause Analysis]
end
subgraph "⚡ Optimization Strategies"
Algorithm[Algorithm Tuning]
Parallel[Parallelization]
Cache[Caching Strategy]
Load[Load Distribution]
end
subgraph "✅ Validation & Deployment"
Test[A/B Testing]
Gradual[Gradual Rollout]
Monitor[Monitor Changes]
Rollback[Rollback if Needed]
end
ResponseTime --> Baseline
Accuracy --> Compare
ResourceUsage --> Identify
UserFeedback --> Root
Baseline --> Algorithm
Compare --> Parallel
Identify --> Cache
Root --> Load
Algorithm --> Test
Parallel --> Gradual
Cache --> Monitor
Load --> Rollback
style ResponseTime fill:#e1f5fe
style Baseline fill:#e8f5e8
style Algorithm fill:#f3e5f5
style Test fill:#fff3e0
```
## 🔒 Agent Security & Reliability
### **Security Architecture**
```mermaid
graph TB
subgraph "🛡️ Security Layers"
Authentication[Agent Authentication]
Authorization[Authorization Control]
Encryption[Communication Encryption]
Validation[Input Validation]
end
subgraph "🔐 Trust Management"
Identity[Agent Identity Verification]
Reputation[Reputation System]
Permissions[Permission Management]
Audit[Audit Logging]
end
subgraph "🚨 Threat Protection"
Anomaly[Anomaly Detection]
Intrusion[Intrusion Detection]
Isolation[Agent Isolation]
Recovery[Security Recovery]
end
Authentication --> Identity
Authorization --> Reputation
Encryption --> Permissions
Validation --> Audit
Identity --> Anomaly
Reputation --> Intrusion
Permissions --> Isolation
Audit --> Recovery
style Authentication fill:#e1f5fe
style Identity fill:#e8f5e8
style Anomaly fill:#ffebee
```
---
## 🔗 Related Documentation
- [System Architecture Overview](overview.md) - Complete system design
- [Data Flow Architecture](data-flow.md) - Information processing patterns
- [Knowledge Graph Architecture](knowledge-graph.md) - Knowledge representation
- [API Documentation](../api/agents/index.md) - Agent API interfaces
*This agent architecture documentation provides comprehensive insights into KGraph-MCP's intelligent multi-agent system that enables autonomous MCP tool orchestration through specialized AI agents.*